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1 Introduction

1.1 The classical-statistical approximation

The classical-statistical approximation (CS) to real-time quantum field dynamics consists
in replacing the evolution of the quantum operators (such as φ̂(x, t)) by classical dynamics
of an ensemble of random initial conditions. The ensemble is taken to reproduce the initial
correlators of the quantum system, and each random member of the ensemble is evolved
by means of the classical equations of motion. The expectation values of observables are
then computed as averages over the ensemble.

The CS approximation is reliable only when the occupation numbers (particle numbers)
nk of the fields are large, nk � 1 (se for instance [2]). For a typical massive scalar field,
the field equation reads

(∂2
t − ∂2

x +m2)φ̂(x, t) = −dVnl(φ̂)
dφ̂

(x, t). (1.1)
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with Vnl denoting non-linear self-interactions. When non-linearities are small, individual
momentum modes behave as harmonic oscillators, and we may write for the field and
canonical momentum operators

φ̂(x, t) =
∫

ddk

(2π)d φ̂k(t)eikx, φ̂k(t) = âkfk(t) + â†kf
∗
k(t), (1.2)

π̂(x, t) =
∫

ddk

(2π)d π̂k(t)eikx, π̂k(t) = âkḟk(t) + â†kḟ
∗
k(t), (1.3)

Then the occupation number of a field momentum mode is given by

〈φk(t)φ†k(t)〉 =
nk + 1

2
ωk

= 〈a
†
kak + aka

†
k〉

2 |fk(t)|2 =
(
〈a†kak〉+ 1

2

)
|fk(t)|2. (1.4)

where by standard convention, we have taken |fk|2(0) = 1/ωk, ω2
k = k2 + m2. The zero-

point fluctuations (corresponding to the zero point energy of a harmonic oscillator) is the
“1/2”, while the excitations of the system above the vacuum are the nk. The classical limit
corresponds to nk � 1

2 .
This argument relies on the particle numbers nk which is a quasi-particle concept,

valid at weak coupling. The argument may be generalised and made more precise in the
context of the Keldysh formalism and Kadanoff-Baym equations for the real-time corre-
lation functions (see for instance [3], and a related discussion in [2]). It is convenient to
introduce the “statistical” and “spectral” propagators

F (x, y) = 1
2〈[φ(x), φ(y)]+〉, ρ(x, y) = i〈[φ(x), φ(y)]−〉, (1.5)

so that the complete propagator (on the Keldysh contour C) may be written:

G(x, y) = 〈T{φ(x), φ(y)}〉 = F (x, y)− i

2signC(x
0 − y0)ρ(x, y). (1.6)

The real-time evolution of correlators may be expressed through diagram expansions in
terms of F and ρ, both for quantum and classical field theory [3, 4] (see also [5] for an
explicit application and comparison). In the classical approximation, certain diagrams turn
out to be absent1 so that whenever the quantum theory self-energy contains a combination
of the form2

Σquantum ' F 2(x, y)− ρ2(x, y)/4, (1.7)

in the classical theory the same diagram has only

Σclassical ' F 2(x, y). (1.8)
1In terms of the Keldysh field basis of φcl and φq, for instance in λφ4-theory, the 3-φq vertex is absent,

and any diagram involving this vertex.
2For different theories, diagrams and self-energies, prefactors may vary. For instance, in λφ4-theory, the

sunset diagram produces 3F 2 − ρ2/4 in the self-energy component for ρ, while F 2 − 3ρ2/4 appears in the
self-energy component for F [6].
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Hence, the classical approximation is good, whenever ρ2 can in fact be neglected, F 2 � ρ2.
For weak coupling and in the quasi-particle picture, F ' (nk + 1/2)/ωk, ρ ' 1, in which
case the criterion for classicality again amounts to nk � 1.

A third fully non-perturbative derivation of the classical-statistical approximation fol-
lows directly from the Keldysh contour path integral [7].3 In short, whereas the quantum
result comes about from averaging over the field variables at all times on the Keldysh con-
tour (all “paths”), the CS approximation amounts to only averaging over the field variables
at the initial time, corresponding to the ensemble of initial conditions.

The authors of [7] proceed to show that the phenomenon of tunneling in quantum
mechanics may be computed from the complete path integral or the Schrödinger equa-
tion yielding the same result, while the CS approximation fails to correctly reproduce the
tunneling rate. Similarly, the CS approximation fails to describe the famous quantum vi-
olation of Bell or Leggett-Garg inequalities [8], even in the free-field limit. In fact, the CS
approximation may only be used to compute certain “classical” observables.4 One obvious
example is that the fundamental commutator [φ(x), π(y)]− = iδd(x−y), which is inherently
“quantum”, vanishes in the CS approximation.5 The failure of the CS approximation to
reproduce the tunneling rate in quantum mechanics (as given by solving the Schrödinger
equation) is a standard (see [9] for a recent analysis in the present context).

1.2 Classical-statistical simulations and the “half”

There is nothing to prevent us from performing CS computations from any initial condition,
provided we are able to somehow generate the configurations making up the initial ensem-
ble. One example is the classical thermal equilibrium-like state, parametrized by some
temperature T , nk + 1/2 = T/ωk, which up to corrections from non-linear interactions is
a fixed point of the dynamics. But evolving some generic initial ensemble amounts to clas-
sical field theory from a non-equilibrium initial state, not necessarily with any connection
to a quantum system.

As we have seen, only for large occupation numbers (or large F ) can a CS computation
be expected to yield a good approximation to the quantum result, and only for appropriate
observables. Also, the approximation can in many cases only be expected to hold for a
finite time, since the late time asymptotic state is the classical equilibrium6 rather than
the quantum equilibrium.

Most physical phenomena are dominated by some characteristic momentum range, and
the spectrum of momentum modes split up into regions with large (� 1), moderate (' 1)
and small (< 1) occupation numbers. As long as the modes relevant for the phenomenon of
interest are highly occupied, the expectation is that classical dynamics will give a reliable

3The primary focus of [7] is the subsequent evaluation of the path integral in the Picard-Lefschetz
formalism, but the relation to the CS approximation is independent of that further application.

4The ones involving the φcl-field and not the φq-field in the Keldysh basis.
5Note that in actual classical field theory, one may define objects with similar properties, such as the

Poisson bracket of canonical variables. But although much of the concrete numerical computation is the
same, conceptually classical field theory and the CS approximation to quantum fields are distinct.

6Which is badly defined in the continuum limit, but has meaning on a finite lattice with a momentum
cutoff.
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result when applied to all modes. Typical examples include (near-to-)equilibrium systems
at high temperature (see for instance [10, 11]), large objects such as topological defects or
sphalerons (for instance [12, 13]), as well as high-occupancy phenomena such as resonances
and instabilities (for instance [14–21]).

For a few very specific cases, a very special initial condition has been employed dubbed
“the quantum half” [14, 22, 23]. The prescription is to represent an initial quantum vacuum
state with nk + 1

2 = 1
2 by an ensemble of classical initial conditions, and evolve the system

classically from there. In most cases, this is very problematic, since nk � 1 is certainly
not satisfied, and the energy density of the initial state is cut-off dependent and divergent.

Another issue is that while the true quantum dynamics ensures that the zero-point
fluctuations stay put in each mode [24], allowing only the exchange of the nk between
modes, the classical dynamics does not distinguish between the nk and the 1/2 excitations,
and will allow all to be exchanged. Extracting energy from the zero-point fluctuations in
this way is an unphysical effect, which is negligible if nk + 1/2 is anyway large, but may
be very important when nk + 1/2 ' 1/2.

However, one property can make it reasonable to describe the quantum dynamics
of a quantum-like “half” initial condition by the CS approximation: for non-interacting
fields, the operator field equations are linear, as described above allowing us to expand
the Heisenberg field operators as independent time-independent harmonic oscillators. To
compute numerically

〈φk(t)φ†k(t)〉 =
(
a†kak + 1

2

)
|fk(t)|2, (1.9)

we only need to solve for fk(t), while the ak, a†k are time-independent operators containing
the information about the initial state. Since the evolution is linear, it makes no difference
whether we evolve from the initial condition fk(0) = 1/√ωk and multiply by nk + 1/2 at
the end, or whether we classically evolve an ensemble of initial conditions φk(0) with the
property that 〈φk(0)φ†k(0)〉 = (nk + 1

2)/ωk. This is the CS approximation, and so for a
non-interacting field, the approximation to the evolution is exact, irrespective of nk.7

This means that for systems, where for some reason the occupation numbers grow
large while still in the linear regime (for small coupling, say), we are allowed to initialise
the classical system in the quantum-vacuum like state nk = 1/2, and evolve the system
using classical equations of motion throughout; at early times because the system is linear,
at late times because the system has large occupation numbers. We only require that
occupation numbers grow large before self-interactions become important.

To summarize: the ideal prescription to simulate a phenomenon arising from a quan-
tum vacuum initial condition is to 1) start off with 1/2 in all modes, 2) evolve them all with
the (quantum, but equivalently classical) linear equations until non-linear self-interactions
become important, 3) discard all the modes that have not by then acquired large occu-
pation numbers, and only 4) continue the now classical evolution of the highly occupied
modes. Various levels of adherence to these rules can be argued for on a case-by-case level.
Examples, where this applies include:

7See [8] for a detailed discussion of what observables this prescription allows us to compute.
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• The primordial perturbations responsible for cosmological structure formation. These
are the zero-point fluctuations of a weakly coupled scalar field, that grow because the
accelerated expansion of space introduces non-adiabatic evolution of the modes [25].
This is one instance of the phenomenon known as “squeezing” of an initial vacuum
state. Observations show that non-Gaussianities are minute, and so the entire early-
time evolution from vacuum fluctuations (1/2) to non-vacuum (nk � 1) may be
simulated using (almost linear) classical evolution.

• Resonant preheating after inflation arises when at the end of inflation, the oscillating
inflaton mean field is in resonance with certain field modes (whether of another field
or the inflaton itself). This resonance amplifies these modes from an initial vacuum
state to large occupation numbers [15, 16] (for a recent review, see [26]). Since the self-
interaction is usually quite small (λ ' 10−12 or smaller for many inflation models), oc-
cupation numbers can grow very large before non-linearities become important. And
so the CS approximation is valid all the way from the quantum vacuum initial state.

• Tachyonic preheating (or spinodal decomposition) occurs in hybrid inflation-type
models, where a negative curvature of the potential V triggers an instability of cer-
tain modes k2 + V ′′ < 0 [17]. These modes grow exponentially, until self-interactions
become important. If the self-interaction is small, the classical evolution again holds
from the initial quantum vacuum state (when the evolution is linear), and also in the
subsequent non-linear regime, because occupation numbers are by then � 1 (see for
instance [22, 23]).

• Certain plasma instabilites in gauge theories can also be described as unstable modes,
at weak coupling [18, 19]. As these acquire large occupation numbers, the CS approx-
imation can be applied also in the context of the approach to thermal equilibrium in
heavy-ion collisions.

A final point worth mentioning is that the classical regime with large occupation numbers
does not imply that one particular classical realization (one member of the ensemble) is
singled out. All observables must be computed as statistical expectation values over the
whole classical ensemble of configurations, which is then expected to reproduce well the
expectation values over the wave function (or density matrix) of the quantum system.

1.3 Classical simulations of vacuum decay

A quantum system at zero temperature in a local potential minimum (a “false” vacuum)
may decay into a state in the global minimum (the “true” vacuum) through quantum
mechanical tunneling. In the Euclidean formulation of quantum field theory the transition
is described by an instanton [27], and from a path integral point of view, the transition
is mediated by non-classical paths, paths that do not satisfy the classical equations of
motion. The transition rate is straightforwardly computed in quantum mechanics, but is
substantially harder to extract in quantum field theory.

In [1], an approximate agreement was reported between the instanton computation of
the transition rate in 1+1 space-time dimensions, and the CS evolution of a vacuum (“half”)

– 5 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
6

initial state in the unstable vacuum. This result is surprising since tunneling is precisely
the type of very quantum processes, where one would expect the CS approximation to fail.
Indeed in quantum mechanics (field theory in 0+1 dimensions), the CS approximation does
fail to reproduce the quantum tunneling rate [7].

Classical simulations of bubble nucleation are natural in the context of a finite-
temperature phase transition, where the initial state is described by the finite temperature
distribution of occupation numbers above the unstable vacuum. Then the transition is a
classical effect whereby there is some (Boltzmann) probability that the ambient thermal
fluctuations manage to spontaneously form a true-vacuum bubble, large enough to make it
over the potential barrier and expand to eventually fill the whole of space (we will return to
this point in more detail below). It follows that the finite-temperature bubble nucleation
rate can in principle be computed by classically evolving all field configurations starting in
the local potential minimum, and then averaging them over the initial Boltzmann distri-
bution, schematically

ΓFinite T =
∫
PBoltzmann,T[configuration]× transition rate of the configuration. (1.10)

The result of [1] would suggest that the quantum tunneling rate follows from the same set
of classical trajectories, but averaged over the quantum vacuum-like initial distribution

ΓQuantum =
∫
PVacuum, 1

2
[configuration]× transition rate of the configuration. (1.11)

This is a surprising result, and warrants further scrutiny. In particular, since classical
evolution conserves energy, it would imply that quantum tunneling is simply the classi-
cal evolution of the subset of the initial condition ensemble, that have enough energy to
nucleate a bubble.

In [9], the numerical computations of [1] were reproduced, although crucially it was
pointed out that to get the reported agreement between numerical and instanton results,
a “fudge” factor ε had to be introduced. The agreement occurs for ε ' 1/2 which amounts
to rescaling the zero-point fluctuations from nk = 1

2 to 1
8 . The authors of [9] then carried

out similar simulations of different initial conditions, and different models as well as an
analysis related to cut-off dependence and renormalisation. The conclusion remained, that
only when rescaling the amplitude of the initial conditions by an arbitrary factor < 1 is it
possible to find the approximate agreement reported in [1].

We will expand further on that analysis, and show that the reported agreement is
indeed a coincidence to do with the choice of the parameters of the model, the lattice cut-
off and the fudge factor, and that it is not specific to the “half” initial condition. We will
also generalise the simulations to 2+1 dimensions, and show that there is no agreement
there. We will see that there are some essential differences between nucleation in 1+1 and
higher dimensions.

2 Tunneling and bubble nucleation

Consider a potential V with two non-degenerate minima, with a barrier in-between. If
the system is initially in the local minimum with highest energy, a transition may occur

– 6 –
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whereby the system moves to the global minimum with lowest energy (“false vacuum
decay”). Energetically, it is very expensive for the field to move across the barrier in
all of space simultaneously. Instead, one local region of space (a bubble) is created with
the field in the global vacuum inside, in the local minimum outside, and with the field
continuously interpolating between the two on the boundary (the wall).

2.1 Classical bubble nucleation

Classical bubble nucleation is the process by which random classical fluctuations (for in-
stance in equilibrium at a temperature T ) by chance organise themselves into such a bubble.
This happens all the time, but most bubbles are so small, that they collapse again. The
energy criterion controlling the process is the balance between the energy cost of creating
the bubble wall, interpolating between vacua, and the energy gain from the inside of the
bubble having a lower potential energy than when the bubble is not there. In the simplest
approximation one may write

E = Surface× σ + Volume×∆V, (2.1)

where σ is the surface tension, the energy associated with the interpolating field wall, and
∆V is the difference in potential at the two minima Vglobal − Vlocal (which is negative). In
1+1 dimensions, the volume is the distance between walls, 2R, while the surface is just a
factor of 2 (2 walls),

E1 = 2σ + 2R∆V, (2.2)

In order for a transition to happen, a random fluctuation has to occur that creates a pair
of walls. Once these walls are established, there is no further energy cost in increasing the
size of the bubble. The total energy is linearly decreasing with increasing R. We define
the critical energy and the critical radius to be

Ecrit,1 = 2σ, Rcrit = 0 (or the width of a wall). (2.3)

In 2+1 dimension, things are qualitatively different. Now

E2 = 2πRσ + πR2∆V, (2.4)

which is maximised to give the saddle point solution

Ecrit,2 = πσ2

∆V , Rcrit,2 = − σ

∆V . (2.5)

In most cases, a random fluctuation does not acquire this critical radius, and the transition
does not complete. The bubble shrinks again. But occasionally, a critical-size bubble is
generated, which then continues to grow. In 3+1 dimensions, we have

E3 = 4πR2σ + 4π
3 R3∆V, (2.6)

so that
Ecrit,3 = 16π

3
σ3

∆V 2 , Rcrit,3 = − 2σ
∆V . (2.7)

– 7 –
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Throughout, we have assumed that the bubble is spherical, since this maximises the vol-
ume/area. There will be subleading contributions from many other near-spherical config-
urations.

In thermal equilibrium, the bubble nucleation rate is then proportional to the Boltz-
mann probability of a large enough random fluctuation

Γ
V t
∝ e−Ecrit/T . (2.8)

Dividing by the volume V (not to be confused with the potential) and t normalises the
rate to unit volume and time, respectively. A more detailed numerical analysis along the
lines of (1.10) allows the direct computation of this quantity [28–30].

In a non-thermal environment, for instance a state with some non-thermal occupation
numbers nk, the probability of creating such bubbles will depend on the state. As for
the thermal equilibrium state, it may require that random multi-wavelength fluctuations
manage to organise themselves into a large enough bubble configuration. But one could
also imagine a state with only long-wavelength fluctuations (say, of size Rcrit), in which
critical-size bubbles are ubiquitous.

There is also the possibility that the state (whether thermal or not), simply has an
energy density (much) larger than the height of the potential barrier. Then the system
hardly notices, that the minima are separated, and will not need to minimise energy into a
spherical bubble to perform the transition. In this case, transitions are common and fast.
If the energy density is larger than |∆V |, one may also get transitions back again.

Finally, there is the possibility that the entire physical volume has too little energy to
even make a single critical bubble. This is only a practical issue in a numerical simulation
of a finite volume, and hence finite total energy. Then a transition will never happen, if
the dynamics are classical and energy conserving.

2.2 Quantum bubble nucleation

Quantum tunneling is most apparent in situations where a barrier separates two local
minima of the potential, and the energy of the state is smaller than the height of the barrier.
In quantum mechanics (field theory in 0+1 dimensions), starting in one minimum, one may
straightforwardly solve for the wavefunction of the system, giving a non-zero probability
of finding the particle inside, and on the other side of the barrier. In time, there is an ever
increasing probability for the particle to be measured in the other minimum. In the case
when the second minimum is in fact the global minimum, we speak of vacuum decay.

In field theory, the analogous process can also be interpreted in terms of Euclidean
instanton paths, famously in [27]. This instanton is a 4-D spherically symmetric saddle
point of the Euclidean action. One may again write down

Scrit,4 = 27π2

2
σ4

∆V 3 , Rcrit,4 = − 3σ
∆V . (2.9)

To a good approximation, the rate of tunneling may then be written as

Γ
V t
∝ e−Scrit,4 , (2.10)

– 8 –
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but keeping in mind that this is the saddle point action rather than an energy, and that
no temperature is involved.

2.3 The wall tension σ

Whereas ∆V is simply the difference between potential minima, computing the wall tension
σ in the general case requires knowledge of the wall profile. For classical nucleation, an
approximation is found by solving the (spherically symmetric) equation of motion for a
static field profile interpolating between the two minima:

∂tφ = 0→
(
∂2
r + (d− 1)

r
∂r

)
φ = dV

dφ
, (2.11)

with the boundary conditions, φ(r =∞) = φlocal, ∂rφ(0) = 0, φ(0) = φglobal.
For d = 1, this looks like time evolution in the potential −V , and is usually solved by

numerical means (shooting) [31]. Then one may compute the wall tension as

Rdσ =
∫ ∞

0
dr rd

[1
2(∂rφ)2 + V (φ)

]
. (2.12)

In the limit when the wall is much thinner than the size of the bubble, the term (d− 1)/r
may be neglected. Then it is not necessary to know the detailed shape of the wall, as one
may rewrite (2.12) into

σ =
∫ φglobal

φlocal

√
2V (φ)dφ (2.13)

which is easily computed, at least numerically.
For the 4-dimensional instanton we must first rotate to Euclidean space, the saddle

point equation in d+ 1 dimensions becomes

(∂2
τ + ∂2

x)φ = ∂V

∂φ
, (2.14)

which in 4-dimensional spherical coordinates is equivalent to eq. (2.11), in one dimension
higher. Hence for a thin wall, the calculation of the wall tension proceeds in exactly the
same way. This does not directly imply a relation between the tunneling rates, since Ecrit
and SE are very different objects.

2.4 A convenient toy model potential

Following [1] we will focus on a specific potential, defined by the action

S =
∫
dxd+1

[
1
2∂µφ∂

µφ− V0

(
− cos

(
φ

φ0

)
+ λ2

2 sin2
(
φ

φ0

)
− 1

)]
. (2.15)

It is parameterized by three quantities, λ, φ0 and V0. For λ > 1 the periodic potential has
global and local minima at φ = 2nπφ0 and φ = (2n + 1)πφ0, respectively, with integer n.
The potential is chosen to have V (φlocal) = 0 and ∆V = −2V0, and we define the masses

m2
f = d2V

dφ2

∣∣∣∣
φ=φlocal

= V0
φ2

0
(−1 + λ2), (2.16)

m2
t = d2V

dφ2

∣∣∣∣
φ=φglobal

= V0
φ2

0
(1 + λ2). (2.17)
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Figure 1. The potential in (2.15) for different values φ0.

The height of the potential barrier separating the two minima is given by

Vmax = m2
fφ

2
0

(−1 + λ2

2λ2

)
. (2.18)

We will follow [1] and set λ = 1.2. The potential is therefore parametrized by mf and φ0.
In this parametrization φ0 fixes the location of the local vacuum but also influences the
relative height of the potential barrier. We show in figure 1 the potential for example sets
of parameters. We will compute the bubble nucleation rate primarily as a function of φ0,
and from the potential alone, we expect the rate to decrease with increasing φ0.

2.5 Numerical implementation

We discretize the action on a space-time lattice, and solve the classical equation of motion,

φ̇ = π, (2.19)
π̇ = ∇2φ− V ′(φ). (2.20)

A symplectic integrator scheme is used to ensure energy conservation for long simulation
times.

The lattice has periodic boundary conditions and the number of lattice sites per di-
mension and the spacing are denoted as Nx and a, giving the linear lattice size L = Nxa.
We recast the lattice action in lattice units, whereby all dimensionfull quantities appear
in dimensionless versions by means of the lattice spacing as amf , ad+1V0, a2k2 and so
on. Consequently, the dispersion relation on the lattice is determined by the discretized
Laplacian and given by

a2ω2
k = k2

L + a2m2
f , k2

L =
d∑
i=1

2− 2 cos(ki), (2.21)

– 10 –
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Figure 2. The potential for φ0 = 1 and φ0 = 1.5 for amf = 0.8. The superimposed histograms
show the initial distribution of φ(x) which depends on both the fudge factor ε and the mass amf .

where for each spatial dimension i, ki = ni
2π
Nx

for ni = −Nx/2 + 1, . . . , Nx/2. The quantity
amf then defines the lattice cut-off, since if the maximum momentum is aΛ ' π then the
cut-off in physical units is Λ/mf = π

amf
. As amf decreases, the cut-off increases. We will

in the following only explicitly write out powers of a when needed.
The quantum-like initial conditions are Gaussian distributed field fluctuations defined

by
〈φkφk′〉 = ε2

1
2ωk

δdk−k′ 〈πkπk′〉 = ε2
ωk
2 δdk−k′ (2.22)

These vacuum fluctuations are added to a homogeneous field placed initially at the local
minimum φ(x) = πφ0.

The “fudge factor” ε was introduced by [9] to parametrically fit tunneling rates to
instanton results. ε = 1 is the physical value that mimics a quantum vacuum state, whereas
other values have no obvious physical interpretation. As we will see, and consistent with [9],
the apparent agreement between CS results and the instanton rate arises for ε ' 0.5.

In preparation of the later discussion, it is instructive to generate a single initial con-
dition φ(x), and simply compute the distribution of local field values. Figure 2 shows a
histogram superimposed on the potential. For a fudge factor of ε = 0.5, we see that the
entire field configuration is inside the false vacuum initially. But for ε = 1, already at the
initial time, the field is on the other side of the potential barrier in some small parts of space.

Following [1, 9], as the simulation proceeds, we monitor the observable 〈cos(φ/φ0)〉,
where 〈.〉 refers to the ensemble average, to define whether a configuration has transi-
tioned to one of the neighboring global minima. For homogeneous configurations at the
local/global minima this observable takes the value −1 or +1. A configuration is then said
to have transitioned if

〈cos(φ/φ0)〉 > 〈cos(φ/φ0)〉t=0 + 10∆t=0, (2.23)

where ∆t=0 is the standard deviation of the same observable cos(φ/φ0) at the initial time.
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Figure 3. Example in 1+1 dimensions of the time dependence Nsurv(t) and a fit to the form
N0e

−tΓ. The plot shows the exponential behaviour starting from roughly 60 percent of the total
number of configurations, which was N = 100.

Given an ensemble of N configurations, we define Nsurv(t) to be the number of these
configurations that by a given time t have not yet transitioned. We then perform a fit to
the form

Nsurv(t) = N0e
−Γt, (2.24)

where N0 refers to the starting point of the fit. Then Γ is the bubble nucleation rate.
Typically it takes some time before the configurations begin to transition. The fit was
therefore performed from a time when N0 was 60 percent of the total configurations in the
simulation. An example is shown in figure 3.

3 The rate in 1+1 dimensions

We first consider the system in 1+1 dimensions, exactly as in [1, 9]. We compute the
nucleation rate for different values of φ0 and for different values of the fudge factor, shown
in figure 4. The number of configurations is N = 100, which was sufficient to get convincing
results. In all our figures, the (bootstrap) statistical error bars are roughly the same size
as the plotting symbols. The instanton estimate of the quantum tunneling rate is obtained
via the expression [9]

Γ
L

= 2m2
f

(
SB
2π

)
e−SB , (3.1)

Where SB refers to bounce action computed with the tool CosmoTransitions [31]. The
software package CosmoTransitions numerically computes the instanton solution (or equiv-
alently the bounce solution) in any number of Euclidean dimensions, using the shooting
method. It then provides the Euclidean action corresponding to this solution. Making
allowance for possible small differences in fitting procedure and numerical implementation,
this reproduces the results of [1] and [9], which may be summarized as follows: in 1+1
dimensions, CS simulations of a quantum vacuum-like initial ensemble produces a bubble

– 12 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
6

Figure 4. The nucleation rate from the instanton model and the simulations with ε = 0.5 and
ε = 1. The lattice simulation has Nx = 512, amf = 0.06 and integration step size dt = 0.05.

nucleation rate of a similar order of magnitude as the quantum instanton result, at least for
φ0 ≤ 1.25. However, this agreement is achieved from a quantum-like initial condition not
with occupation numbers of 1/2, but instead 1/8, hence a fudge factor of 1/2 [9]. In fact,
tuning the fudge factor down from 1, one may achieve different levels of agreement with
the instanton result at different values of φ0. The “half” initial condition (fudge factor 1)
overestimates the quantum nucleation rate by several orders of magnitude, and has a weak
dependence on the shape of the potential, φ0.

In figure 5 we consider another choice of initial condition, namely the classical equilib-
rium mentioned above

nk + 1
2 →

T

ωk
. (3.2)

While the quantum vacuum has constant occupation number for all modes, in the classical
equilibrium they are suppressed in the UV. The energy density is however still divergent as
the cut-off amf goes to zero. We perform the same simulation procedure as previously, but
now for different values of the parameter T . We see that just as we did for the fudge factor
ε, we may also tune T to a semi-quantitative agreement with the instanton nucleation rate,
in this case T = 0.1mf .

Since the initial conditions correspond to a divergent energy density in the continuum,
it is also prudent to test the robustness of our results to changing the cut-off, in our
parametrization the quantity amf . The result of this procedure is shown in figure 6 for
ε = 0.5. We see that while giving a weaker effect than varying ε, changing the cut-off is
an alternative way of tuning the rate to match the instanton rate. As might be expected,
smaller amf corresponding to larger cut-off and more energy in the system leads to a larger
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Figure 5. The thermal nucleation rate for different initial temperatures, compared to the instanton
rate and the quantum-ε = 0.5 result. The cut-off is amf = 0.3.

Figure 6. The dependence of the nucleation rate on the lattice cut-off in 1+1 dimensions, for
quantum-ε = 0.5 initial conditions and comparing to the instanton rate.
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Figure 7. The time evolution of 〈cos(φ/φ0)〉 (top) for ε = 1.0 (left) and ε = 0.5 (right). Below are
examples of configurations of one of the simulations. Other simulation parameters are Nx = 512,
dt = 0.05, φ0 = 1.2, amf = 0.3. Each ensemble consists of 100 individual configurations.

nucleation rate. We may consider introducing a mass counterterm (or more generally,
renormalise the potential [32]) to counter the effect of the divergent initial condition. But
because the zero point fluctuations do not stay put in classical simulations, this is difficult
to achieve (see for instance [24]), and does not in itself solve the problem of a divergent
energy being available for tunneling. The particular potential considered here is also not
readily renormalisable.

3.1 Looking for bubbles and energy considerations in 1+1 dimensions

The nucleation rate for ε = 1 has a weak dependence on φ0, and similarly for ε = 0.5 for
small φ0. We can begin to understand this at least qualitatively by considering the energy
density of the configurations.

The top left panel of figure 7 shows the time-evolution of the observable 〈cos(φ/φ0)〉 for
individual configurations for ε = 1 at φ0 = 1.2. The bottom left panel is one field configu-
ration in space at different times, labelled by the value of 〈cos(φ/φ0)〉 at that time. We see
that all configurations transition through the threshold value ' −0.6 almost immediately,
and that the field configurations have many nuclei and bubbles. This is an example of an
initial condition with an energy density ρ larger than the potential barrier Vmax. There
is no need for the configuration to randomly organise itself into a critical bubble for the
transition to take place. In contrast, the right-hand panels of figure 7 show a simulation
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Figure 8. The dependence of energy density on φ0 and ε. We also see a small dependence on the
cut-off amf .

at ε = 0.5 and φ0 = 1.2. Here, the transitions happen as an exponential decay. Also, field
configurations evolve over time from a single, initially small, bubble (light blue) to a larger
and larger bubble.

To make this more explicit, we compute the total energy and average energy density of
the configurations. Figure 8 shows the dependence of the average energy density on φ0 and
ε. The grey shaded region is where the average energy density is smaller than the potential
barrier, while above, the energy density is larger than the barrier. Roughly speaking, one
would expect the rate of nucleation to be exponentially suppressed only in the grey region,
as a critical bubble needs to emerge through a stochastic process. And one would expect
the rate to be unsuppressed everywhere else. Of course, individual field configurations are
inhomogeneous, multiple nuclei complicate the picture, and some out-of-equilibrium initial
states may have special properties enhancing nucleation. And so the boundaries of the
grey region should be considered fuzzy.

We see that for ε = 1, we only enter the grey region far beyond the range of the figure.
And that for ε = 0.5, we enter the region around φ0 = 1.05, corresponding roughly to
where the exponential dependence on φ0 kicks in figure 4.

Since the energy density is approximately ∝ ε2 and the potential barrier ∝ φ2
0, the

criterion for entering the grey region ρ = Vmax amounts to φ0 ∝ ε. The proportionality
constant in the case depicted here happens to be ' 2.05, and so the rate for the ε = 1 initial
condition of physical relevance only becomes exponentially suppressed around φ0 = 2.1,
where the instanton rate is Γ

L
φ2

0
V0

= 4.7× 10−9.
In figure 9 we have extended the range of figure 4 to include the exponentially sup-

pressed region for ε = 1. We see again that the CS approximation overestimates the
nucleation rate by several orders of magnitude.

– 16 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
6

Figure 9. Tunneling rate in 1+1 dimension for larger values of φ0. Simulations parameters are
Nx = 512, amf = 0.06.

Figure 10. The energy of two bubble walls and the bubble interior versus 〈cos φ
φ0
〉. The simulation

parameters are Nx = 512, φ0 = 0.5 and ε = 0.17.

We can attempt to compute the wall tension in 1+1 dimensions from further developing
the naive model of section 2.1. We note that if the bubble is really in the global minimum
inside the bubble (cos(φ/φ0) = 1) and in the local minimum outside (cos(φ/φ0) = −1),
then for a single configuration

〈cos φ

φ0
〉 = 4R−Nx

Nx
, (3.3)

where 2R is the wall separation, and R hence the radius of the bubble. We now compute
numerically the energy of bubbles, where we by hand force the interior and exterior to be
in the minima. Then

EBubble = 2σ + 2R∆V = a+ b cos φ

φ0
. (3.4)
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Figure 11. The critical bubble energy in 1+1 dimensions for different values of φ0.

We fit the parameters a and b for each critical bubble and relate to σ and ∆V via

σ = a− b; ∆V = 2b
Nx

. (3.5)

In this way, an estimate for σ can be obtained by extrapolating EBubble to 〈cos φ
φ0
〉 = −1.

Figure 10 shows an example fit to a critical bubble obtained with φ0 = 0.5, ε = 0.17.
Figure 11 shows the corresponding energy of the critical bubble, 2σ, for different

values of φ0. This then is the minimal energy required for a configuration to classically
transition to the global minimum. If the volume, cut-off, and ε is such that the energy
is smaller than this value, the evolution of this interacting scalar field initially in an
out-of-equilibrium state, will eventually drive the system to the classical equilibrium state
in the local minimum.

3.2 Energy depletion and thermalization in 1+1 dimensions

Since the occupation numbers of the modes play an important role in the CS approximation,
we also compute these through

nk + 1/2 =
√
〈π†kπk〉〈φ†kφk〉. (3.6)

In figure 12 we show the occupation numbers for a set of modes in time.8 We see that
initially, the occupation numbers (3.6) are indeed ε2/2, and as the nucleation is triggered
(within a time of a few in mass units), they increase as potential energy is converted into
excitations. The energy is mostly deposited in IR modes.

As discussed in the preceding section, we can engineer an initial configuration with
total energy less than the Ecrit which will never transition. An example of this is shown in

8The modes are collected in finite bins with several modes in each, enumerated by their central kL-value.
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Figure 12. The evolution of the occupation numbers in 1+1 dimensions, ε = 0.5, φ0 = 1.5,
amf = 0.06.

Figure 13. The evolution of the occupation numbers in 1+1 dimensions, ε = 0.17, φ0 = 1.5,
amf = 0.06.

figure 13. For very long time, we expect the particle numbers to slowly reorganise them-
selves into a classical thermal spectrum. Clearly, in 1+1 dimensions, this is an extremely
long time, longer than we are able to simulate. This also implies that the nucleation rates
that we have computed so far indeed arise from the quantum-like initial state. It is not
such, that the initial state first thermalises to the equilibrium, after which the nucleation
takes place. We will return to this point when considering 2+1 dimensional simulations.

4 Generalising to 2+1 dimensions

We now perform 2+1 dimensional simulations completely analogously to the 1+1 dimen-
sional case. We discretize the 2+1 dimensional action on a quadratic lattice of size N2

x .
The scale is still set by the mass amf , and the other dimensionless combinations are now
a3V0 and a1/2φ0. The instanton prediction is obtained by generalizing the 1+1 dimensional
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Figure 14. The nucleation rate for different values of φ0 and ε. We used N2
x = 5122, except for

ε = 0.5 where N2
x = 1282 was used. We take amf = 0.3 and dt = 0.05.

case, and is given by
Γ
L2 = 2m3

f

(
SB
2π

)3/2
e−SB , (4.1)

where the bounce action SB is again obtained from CosmoTransitions [31].
In figure 14 we show the transition rates for different values of φ0 for lattice simulations

with fudge factors ε = 1, ε = 0.8, ε = 0.5, respectively, and again comparing to the
instanton prediction. It is clear that the CS rate even when applying a fudge factor vastly
overestimates the quantum tunneling rate. Quantum bubble nucleation and false vacuum
decay cannot be modelled in this way. Simulations for large values of φ0 and ε = 0.5 did
not transition to a global minimum at all.

Figure 15 shows the nucleation rate for different values of the cut-off amf for ε = 0.5.
As in 1+1 dimensions a higher cutoff (low amf ) results in higher rates, but the dependence
is much stronger in 2+1 dimensions than it was in 1+1 dimensions. In 2 spatial dimensions,
the number of UV modes grows much faster as the cut-off increases, and the initial energy
density then also increases faster.

4.1 Looking for bubbles and energy considerations in 2+1 dimensions

We will again take a closer look at the configurations close to the transition. Figure 16 shows
two sets of simulations with high and low transition rates, respectively. The simulations
shown in the left-hand panels have ε = 1.0 and φ0 = 1.2 while the right-hand panels
correspond to ε = 0.5 and φ0 = 1.2.
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Figure 15. The cut-off dependence of the nucleation rate, again for different values φ0.

We observe a clear difference in that on the left-hand side, transitions happen almost
immediately, and the field configurations display many small bubbles nucleating close to
each other. As in 1+1 dimensions, this is a case of the energy density being larger than
the potential barrier. On the right-hand side, we have an exponential decay, with just a
single bubble nucleating in the entire volume.

In a similar way as in 1+1 dimensions, we compute the initial energy density and
compare it to the potential barrier. This is shown in figure 17 where again the grey
area corresponds to parameter combinations where the energy density is smaller than the
barrier, and a bubble must be created for the transition to take place.

We can again estimate the wall tension by computing the energy of 2-dimensional
bubbles, but by hand fixing the inside and outside to the local and global minimum values.
Figure 18 shows the energy as a function of the radius of a growing bubble. As we argued
in section 2.1, the critical bubble in 2+1 and higher dimensions have a non-zero Rcrit, in
contrast to the 1+1 dimensional case. From the quadratic fit in the figure we can tentatively
estimate the critical bubble size to be Rmf = 15− 20.

4.2 Energy depletion and thermalization in 2+1 dimensions

Finally, we will consider the evolution of the occupation numbers of the fields, also in 2+1
dimensions. Figure 19 shows the occupation numbers as defined in (3.6) for simulations
with ε = 0.5. The top panel shows the case of φ0 = 1.2, where the configurations transition
around mf t = 4× 106. The bottom panel has φ0 = 1.4, where the configuration does not
transition at all (note the time-axis extends to 2× 107).
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Figure 16. The time evolution of 〈cos(φ/φ0)〉 (top) for ε = 1.0 (left) and ε = 0.5 (right), both
at φ0 = 1.2. Below are example configurations, with snapshots at different times in the evolution,
again for ε = 1.0 (left) and ε = 0.5 (right). The simulation parameters are Nx = 512, dt = 0.05,
and amf = 0.3. Each ensemble consists of 100 individual configurations.

In 1+1 dimensions, we saw that the initial quantum-like distribution is essentially
unchanged up until the transition takes place. But in 2+1 dimensions, even before the
transition happens the dynamics have begun redistributing the energy to approach the
thermal equilibrium state. For φ0 = 1.2 this process does not have time to complete,
but for φ0 = 1.4, the transition rate is so small, that the system thermalises, reaching an
asymptotic state. This would not happen in the true quantum system.

It seems that in 1+1 dimensions, the time scales are such that classical nucleation is
always much faster than thermalization. While in 2+1 dimensions, kinetic equilibration is
often well underway by the time the transition happens. This ordering of time scales is
dependent on the potential (the strength of self-interactions), the initial condition (ε, say)
and the cut-off (amf ).
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Figure 17. The initial energy density for 2+1 dimensional configurations for different values of ε,
φ0 and cut-off amf . Configurations with ε = 0.5 can have a smaller average energy density than
the potential barrier.

Figure 18. The energy of the bubble as a function of its radius. The simulations parameters are
N2
x = 5122, φ0 = 1.5, amf = 0.3 and ε = 0.8.

5 Conclusions

Motivated by the intriguing possibility proposed in [1], that classical-statistical simulations
could have something to say about quantum vacuum decay, we have investigated such
simulations, both in 1+1 and 2+1 dimensions. The conclusion is disappointing, although
perhaps not wholly unexpected.

As also demonstrated in [9], the reported approximate agreement between the instanton
calculation and the CS simulations is there, but as we have seen it arises through arbitrarily
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Figure 19. Time evolution of occupation numbers for simulations with Nx = 128, ε = 0.5 and
different values of φ0. Top φ0 = 1.2, bottom φ0 = 1.4.

adjusting the parameters of the initial conditions (the amplitude ε, cut-off amf ), and is also
not specific to the quantum-like state with equal occupation numbers in all modes (thermal
initial conditions work just as well, when tuning T ). In fact, the actual, ε = 1, “half” initial
condition intended to be mimic the zero-point fluctuations of the false vacuum produces a
nucleation rate several orders of magnitude larger than the instanton nucleation rate, also in
the range of φ0, where the energy density is smaller than the barrier. In addition, obtaining
even approximate agreement between CS simulations and the instanton result is specific
to 1+1 dimensions. In 2+1 dimensions, the CS simulations consistently overestimate the
nucleation rate by many orders of magnitude. We also attempted simulations along the
same lines for the physically relevant case of 3+1 dimensions, but the nucleation rate is then
far below our numerical reach, and advanced Monte-Carlo techniques are likely required
to compute also the classical rate [28–30].

As mentioned in the introduction, the CS-approximation may be derived directly as a
limit of the full real-time path integral [7]. It is only a good approximation for interact-
ing quantum evolution for large occupation numbers, and even then only when computing
“classical” observables. Quantum vacuum decay is both inherently quantum and by con-
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struction has an initial condition with occupation numbers� 1. Such initial conditions can
only reliably be simulated in the CS approximation for very small coupling, when the evolu-
tion equations are (approximately) linear. But we have seen that even the proposed “half”
initial condition probes the non-linear regions of the potential considered here (figure 2).

We conclude that computing quantum tunneling rates in field theory beyond [27] re-
mains a difficult task, which cannot be simulated using classical dynamics of an ensemble
of configurations. It likely requires non-perturbative numerical methods at the level of the
path integral, known to be challenging for real-time systems out of equilibrium (although
see [6, 24, 33, 34] and [7]). Fortunately, in almost all cases, phase transitions involve non-
vacuum initial states, for which the quantum rate is insignificant compared to the classical
nucleation rate. And classical nucleation rates may be computed using CS simulations or
stochastic evolution in effective theories [28, 29].
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