

Acknowledgement

The outcome of this master thesis is the result of extensive lab work performed at the Centre for Organelle Research (CORE) that belongs to the Department of Mathematics and Natural Sciences, Faculty of Science and Technology, University of Stavanger, Norway.

I would first like to express my deep gratitude to our research group leader, and my main supervisor Professor Svein Bjelland, for once again trusting me to be part of his team. Even though our group is small, he provides us with the opportunity and support to explore the interesting topics of DNA damage and repair. He has been a great advisor regarding all theoretical topics, and even though we don't see much of him in the lab, he takes a great interest in our work, progression and results. I would also like to thank him for his patience with my never ending array of questions regarding mutation induction, DNA repair and everything even remotely related to these topics, from a student who will probably never learn to tame her curious mind to stay on topic. I have also greatly appreciated our long talks and discussions about politics and other general topics.

I would also like to thank my supervisors in the lab, Marina Alexeeva, PhD and Almaz Tesfahun, PhD student, for all guidance regarding protein production and purification, and DNA incision/excision assays, respectively. I would also like to thank them for all assistance and comfort through challenging times in the lab when things did not go according to plan, and finally for long talks about life outside the lab. Even though our group is small it is part of a larger collaboration at CORE, I would therefore like to thank all engineers and technicians for technical assistance, encouraging words and clean and sterilized equipment.

This thesis would not be possible without the support of my family, and therefore I share the achievement with them. My wife Karina has been a great motivator and her ability to reset my mind when it gets stuck is invaluable to me. I am endlessly indebted to her for understanding my absence during evenings and weekends, spent either in the laboratory or reading and writing in my home office. To my children Sigmund Arne and Sigrid Helene, thank you for your hugs and smiles, which can drive away any grievances, and thank you for reminding me what is truly important in life.

I also have to thank my mother, brother and sister for always supporting me, believing in me and pushing me to do my very best, and my in law family for encouraging words, support and much needed babysitting.

Abstract

The cell has several mechanisms for repairing DNA damages, and it has been widely accepted that the base excision repair (BER) pathway is the main repair mechanism for small non helix distorting damages caused by oxidation. However, evidence exists that the nucleotide excision repair (NER) pathway plays a role in repair of oxidized bases in mammalian cells in vitro. To investigate if the NER pathway is involved in repair of oxidized bases in vivo, exponentially growing E. coli cells were exposed to 0.1 mM 5 -formyldeoxyuridine ($\mathrm{f}^{5} \mathrm{dU}$) followed by analyzing the mutations caused in the $r p o B^{+}$gene. Previous experiments performed within our group indicated that the $u v r A^{+}$gene was highly involved in promoting mutations caused by exposure to 5 -formyldeoxyuridine. This thesis work combined with results from previously performed experiments within the same study, show that all the three Uvr proteins are involved in promoting AT \rightarrow GC mutations at sites 1534 and 1547 within the rpoB ${ }^{+}$gene following exposure to a low concentration of $f^{5} \mathrm{dU}$. An indication that there might also be an unknown function of UvrA is something that needs to be further investigated.

5-methylcytosin $\left(\mathrm{m}^{5} \mathrm{C}\right)$ is recognized as the most important epigenetic DNA base in mammalian cells, yet relatively few studies have investigated damaging chemical alterations to this important DNA base. Certain methylases expressed by prokaryotes can convert $\mathrm{m}^{5} \mathrm{C}$ to $\mathrm{N}^{4}, 5$-dimethylcytosine $\left(\mathrm{m}^{N 4,5} \mathrm{C}\right.$) in vitro and it is therefore a possibility of $\mathrm{m}^{\mathrm{N4,5}} \mathrm{C}$ existing in vivo. MutY, hMPG and a truncated version of hSMUG1 (hSMUG 25-270) were investigated for activity against $\mathrm{m}^{\mathrm{N4,5} \mathrm{C}} \mathrm{in}$ vitro. Short fluorescently tagged oligodeoxyribonucleotides with $\mathrm{m}^{N 4,5} \mathrm{C}$ inserted at a specific position were hybridized with complimentary oligodeoxyribonucleotides with A, C, G or T placed opposite the damaged base, followed by incubation with the abovementioned enzymes. Denaturing PAGE was used to determine incision activity. None of the tested enzymes showed any activity against the lesion.

ACKNOWLEDGEMENT 1
ABSTRACT 2
LIST OF FIGURES 4
LIST OF TABLES 6
ABBREVIATIONS 7
1 INTRODUCTION 8
1.1 DNA DAMAGES 8
1.1.1 Oxidized bases 8
1.1.2 Methylated bases 11
1.2 DNA DAMAGE REPAIR 13
1.2.1 \quad SOS Response in E. coli 13
1.2.2 Nucleotide Excision Repair 14
1.2.3 Base Excision Repair 19
1.3 AIM OF STUDY 26
2 MATERIALS AND METHODS 27
2.1 Effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in Escherichia coli. 27
2.1.1 Mutagenesis 27
2.1.2 DNA- extraction, -amplification and -sequencing 28
2.2 DNA GlyCOSYLASE ACTIVITIES FOR $N^{4}, 5$-DIMETHYLCYTOSINE 29
2.3 Production and purification of hSMUG (25-270) 30
2.3.1 Making competent cells 30
2.3.2 Transforming bacteria 31
2.3.3 Autoinduction 31
2.3.4 Affinity purification 31
2.3.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis 32
2.3.6 Determination of protein concentration 32
2.3.7 Verification of protein 33
3 RESULTS 34
3.1 Effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in E. coli. 34
3.1.1 uvrB 34
3.1.2 uvrC 35
3.2 DNA GLYCOSYLASE ACTIVITIES FOR N^{4},5-DIMETHYLCYTOSINE 37
3.3 Production and purification of hSMUG (25-270) 39
3.3.1 Competent cells and transformation 39
3.3.2 Autoinduction 39
3.3.3 Purification 39
3.3.4 Determining concentration. 40
3.3.5 Protein verification. 41
4 DISCUSSION 42
4.1 EFFECTS OF THE UVRABC SYSTEM ON MUTATION INDUCTION BY 5-FORMYLDEOXYURIDINE IN E. COLI. 42
4.2 DNA GLYCOSYLASE ACTIVITIES FOR $N^{4}, 5$-DIMETHYLCYTOSINE 50
4.3 Future prospectives 50
REFERENCES 51
APPENDICES 55
A. 1 Effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in Escherichia coli. 56
A. 2 DNA GLyCOSYLASE ACTIVITIES FOR $N^{4}, 5$-DIMETHYLCYTOSINE, 251
A. 3 Production and purification of hSMUG (25-270) 258

List of figures

Figure 1: Common oxidized bases
Figure 2: $f^{5} \mathrm{U}$ in enol-, keto- and ionized-form
Figure 3: $f^{5} \mathrm{U}$ base pairing abilities
Figure 4: Proposed models for base substitutions induced by $f^{5} U$

Figure 5: Distribution of methylation sites on the bases and the sugar-phosphate backbone of DNA

Figure 6: Common methylated bases
Figure 7: The two isoforms of N4,5-dimethylcytosine
Figure 8: Overview of the NER pathway in Escherichia coli

Figure 9: Diagrammatic presentation of the $u v$ ra $^{+}$gene in Escherichia coli
Figure 10: Diagrammatic presentation of the uvrc ${ }^{+}$gene in Escherichia coli.
Figure 11: Detailed description of the AP site and cleavage by AP endonuclease and AP lyase activities
Figure 12: Overview of the BER pathway in Escherichia coli
Figure 13: Overview of the BER pathway in mammalian cells
Figure 14: Distribution of detected mutations in the Rif ${ }^{R}$ region of the rpoB gene in Escherichia coli $A B$ 1885 strain

Figure 15: Distribution of detected mutations in the Rif ${ }^{R}$ region of the rpoB gene in Escherichia coli $A B$ 1884 strain

Figure 16: SDS-PAGE gel of MutY shows no activity towards $\mathrm{m}^{N 4,5} \mathrm{C}$ when placed opposite $\mathrm{A}, \mathrm{C}, \mathrm{G}$ or T
Figure 17: SDS-PAGE gel of MPG shows no activity towards $m^{N 4,5} C$ when placed opposite A, C, G or T
Figure 18: SDS-PAGE gel of hSMUG (25-270) shows no activity towards $\mathrm{m}^{N 4,5} \mathrm{C}$ when placed opposite A, C, G or T

Figure 29: SDS-PAGE gel of eluted samples of purified hSMUG (25-270)

Figure 20: Chromatogram from the Äkta Start purification system
Figure 21: Western blot showing the size difference of the his tag bound protein and cleaved protein
Figure 22: Distribution of spontaneous mutations in all repair deficient strains compared to wild type
Figure 23: Distribution of $f^{5} d U$ induced mutations in all repair deficient strains compared to wild type

Figure 24: Map showing mutation distribution within the sequenced part of the rpoB gene of all four investigated E. coli strains, both spontaneous and $\mathrm{f}^{5} \mathrm{dU}$ induced

Figure 25: Mutation rate comparison between wild type and the three tested repair deficient strains of E. Coli, with or without $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ added to the growth medium of exponentially growing cells

Figure 26: Proposed models for mutation induction by $\mathrm{f}^{5} \mathrm{dU}$

List of tables

Table 1: Selected properties of the UvrA, B and C proteins
Table 2: Identified Human and E. coli glycosylases and their known substrates

Table 3: Buffer and media used for mutagenesis assay
Table 4: Buffers used for DNA- extraction, -amplification and -sequencing
Table 5: Examined substrates and control substrates used for glycosylase activity testing
Table 6: Enzymes investigated for excision activity against $\mathrm{m}^{N 4,5} \mathrm{C}$
Table 7: Buffers used for glycosylase activity assay

Table 8: Buffers used for production and purification of hSMUG (25-270)

Table 9: Buffers used for SDS-PAGE analysis

Table 10: Distribution of mutations in E. coli AB 1885

Table 11: Distribution of mutations in E. coli AB 1884

Table 12: OD measurements from BCA protein assay and subsequent microplate analysis
Table 13: Percentage and distribution of base substitutions among Rif ${ }^{R}$ mutants arisen spontaneously and induced by the addition of $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ to exponentially growing cells of E. coli

Table 14: Mutation rates for $\mathrm{Rif}^{\mathrm{R}}$ in exponentially growing cells of wild type, $u v r A^{-}$, $u v r B^{-}$and $u v r C$ cells

Table 15: Mutation rate distribution for Rif ${ }^{R}$ in exponentially growing cells of wild type, $u v r A^{-}, u v r B^{-}$ and $u v r C$ cells

Table 16: DNA glycosylase activity against $\mathrm{m}^{N 4,5} \mathrm{C}$ paired with normal DNA bases in short oligonucleotides

Abbreviations

5'-dRP - 5'-deoxy ribose phosphate
5-OH-dHT - 5-hydroxy-5,6-dihydrothymine
5-OH-dHU - 5-hydroxy-5,6-dihydrouracil
6-OH-dHC - 6-hydroxy-5,6-dihydrocytosine
6-OH-dHT - 6-hydroxy-5,6-dihydrothymine
$6-\mathrm{OH}-\mathrm{dHU}$ - 6-hydroxy-5,6-dihydrouracil
$\varepsilon A-1, N 6$-ethenoadenine
$\varepsilon C-3, N 4$-ethenocytosine
AlkA - 3-methyladenine glycosylase II
AP sites - Apurinic- or Apyrimidinic- (Abasic)
sites in DNA
APE - AP endonuclease
ATP - Adenosine triphosphate
BER - Base Excision Repair
$\mathrm{Ca}{ }^{5} \mathrm{C}$ - 5-carboxymethylcytosine
Cg - cytosine glycol
CPD - Cyclobutane Pyrimidine Dimers
dhC-5,6-dihydroxycytosine
dHT - 5,6-dihydrothymine
dHU - 5,6-dihydrouracil
ds - double stranded
$f^{5} \mathrm{C}$ - 5-formylcytosine
$f^{5} \mathrm{dU}$ - 5 -formyl-2'-deoxyuridine
$f^{5} U-5$-formyluracil
FapyA - 4,6-diamino-5-formidopyrimidine
FapyG - 2,6-diamino-4-hydroxy-5-
formamidopyrimidine
Fpg - formamidopyrimidine-DNA glycosylase
GG-NER - Global Genomic Nucleotide Excision
Repair
Gh - guanidinohydantoin
$h^{5} \mathrm{C}$ - 5-hydroxycytosine
$h^{5} \mathrm{U}$ - 5-hydroxyuracil
$\mathrm{hm}^{5} \mathrm{U}$ - 5-hydroxymethyluracil
hmh - 5-hydroxy-5-methylhydantoin
HtH - Helix-turn-Helix
$\mathrm{m}^{5} \mathrm{C}$ - 5-methylcytosine
$h^{5} \mathrm{C}$ - 5-hydroxycytosine
$\mathrm{hm}^{5} \mathrm{U}$ - 5-hydroxymethyluracil
$\mathrm{m}^{3} \mathrm{~A}-3$-methyladenine
$m^{3} G-3$-methylguanine
$m^{7} G-7$-methylguanine
$m^{7} A-7$-methyladenine
mfapy - 2,6-diamino-4-oxo-5-(N-
methyl)formamidopyrimidine
$\mathrm{m}^{02} \mathrm{C}$ - O 2 -methylcytosine
$\mathrm{m}^{02} \mathrm{G}-02$-methylguanine
$\mathrm{m}^{04} \mathrm{~T}$-O4-methylthymine
$\mathrm{m}^{\mathrm{N} 6} \mathrm{~A}$ - 6 -methyladenine
Nei - Endonuclease VIII
NER - Nucleotide Excision Repair
Nth - Endonuclease III
Oxo ${ }^{8} \mathrm{~A}-7,8$-dihydro-8-oxoadenine
Oxo ${ }^{8} \mathrm{G}-7,8$-dihydro-8-oxoguanine
PAH - Polycyclic aromatic hydrocarbons
Pol I - DNA Polymerase I
Rif ${ }^{R}$ - Rifampicin resistance
ROS - Reactive Oxygen Species
SAM - S-adenosylmethionine
Sp - spiroiminodihydantoin
Ss - single stranded
Tag - 3-methyladenine glycosylase I
TC-NER - Transcription Coupled Nucleotide Excision Repair
Th 5 - 5-hydroksy-6-hydrothymine
Tg - Thymine Glycol
UDG - Uracil-DNA Glycosylase
Ug - 5,6-dihydroxy-5,6-dihydrouracil (uracil glycol)
Uh ${ }^{5}$ - 5-hydroxy-6-hydrouracil
UV - Ultra Violet
UvrD - DNA Helicase II

1.1 DNA Damages

DNA damages are erroneous alterations in the chemical structure of DNA. Important lesions are single- and double-strand breaks, apurinic or apyrimidinic (AP) sites, and chemical alteration to bases. If the damage is not repaired prior to replication, it may cause arrest of DNA replication or transcription resulting in cell death (classified as cytotoxic damage), or mutagenesis (classified as mutagenic damage). The latter can also have devastating consequences for the cell itself, or for the entire organism harboring that cell. DNA damages can be caused by both exogenous and endogenous agents. The exogenous agents and their effects have been extensively studied as they have major effects and are in many cases easily preventable. Such agents include ionizing radiation and various carcinogens. Ionizing radiation can cause oxidative damages, DNA base dimers, single strand breaks and double strand breaks, the latter regarded as the most devastating damage. Cigarette smoke contains various carcinogens including the extensively studied polycyclic aromatic hydrocarbons (PAH's), which can attach to DNA and form adducts. As a defense mechanism PAH's are hydroxylated by Cytochrome P450 enzymes to make them more water soluble, but this may result in other harmful intermediates (e.g. benzo(α)pyrene diol epoxide) efficiently creating adducts in DNA. Studies conducted on various exogenous agents have resulted in e.g. restrictions in cigarette sales (and use), a ban on formerly widely used compounds such as asbestos, and informational campaigns regarding preventive measures and limitation to sun exposure. Whereas measures can be taken to limit or prevent the exposure to most exogenous agents, the threat posed by endogenous agents (i.e., being a consequence of the cell chemistry itself), cannot be avoided. Such damages may arise from hydrolytic reactions (principally, the cell is an aqueous gel), alkylation- or methylationreactions and oxidation reactions. Hydrolytic reactions cleave chemical bonds in DNA, leading to deamination products (e.g. deamination of cytosine forms uracil) or loss of individual bases (N glycosidic bond cleavage leads to an AP site). Alkylation- or methylation- reactions can alter bases and give rise to mutations, as well as induce AP sites.

1.1.1 Oxidized bases

Reactive oxygen species (ROS) can attack all the normal bases in DNA leading to a variety of oxidative damages. The most important source of ROS is aerobic respiration, which in eukaryotes take place in the mithochondria. Thus, some electrons are transferred directly to O_{2} creating the superoxide ion $\mathrm{O}_{2}{ }^{-}$, which is then converted to $\mathrm{H}_{2} \mathrm{O}_{2}$ through the superoxide dismutation reaction, the portion of $\mathrm{H}_{2} \mathrm{O}_{2}$ which is not removed enzymatically can combine with Fe^{2+} through the Fenton reaction and cause the hydroxyl radical $\bullet \mathrm{OH}\left(\mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \bullet \mathrm{OH}\right)$. Exposure of water, and thus cells, to ionizing radiation will also create $\bullet \mathrm{OH}$, which is the most reactive chemical species known, able to react with numerous biomolecules, including DNA and its precursors. The different ROS-oxidized bases pose different challenges to the genomic integrity. A small selection of the most studied are shown in Figure 1.

Thymine glycol (Tg)

5-hydroxyuracil ($h^{5} \mathrm{U}$)

Cytosine glycol (Cg)

8-hydroxyadenine (h^{8} A)

7,8-dihydro-8-oxo-guanine (oxo ${ }^{8}$ G)

2,6-diamino-4-oxo-5-formamidopyrimidine (FapyG)

Figure 1: Common oxidized bases
Red circle indicates the modified position

Thymine is oxidized at two distinct sites; the 5,6-double bond, and the 5-methyl group. Abundant damages arising from these attacks are among others: thymine glycol $(\mathrm{Tg}), 5,6$-dihydrothymine (dHT), 5-hydroxy-5,6-dihydrothymine (5-OH-dHT), 6-hydroxy-5,6-dihydrothymine (6-OH-dHT) and 5-hydroxy-5-methylhydantoin (hmh) [1]. The absence of the methyl group renders the 5,6-double bond as the major site of oxidative attack on cytosine, which changes the planar aromatic ring structure into a non-planar non-aromatic structure that leads to the 5,6-dihydroxy-5,6dihydrouracil (cytosine glycol, Cg) lesion which can be further deaminated and dehydrated to 5,6-dihydroxy-5,6dihydrouracil (uracil glycol, Ug) and 5-hydroxycytosine $\left(\mathrm{h}^{5} \mathrm{U}\right)$, respectively [1]. The epigenetic mark 5methylcytosine $\left(\mathrm{m}^{5} \mathrm{C}\right)$ is an interesting hybrid of thymine and cytosine by exhibiting both targets of attack. In guanine ROS react with C 8 resulting in a $\mathrm{C} 8-\mathrm{OH}$ adduct radical, which can be further oxidized or reduced to 7,8-dihydro-8-oxodeoxyguanine (oxo ${ }^{8} \mathrm{G}$) or 2,6-diamino-4-hydroxy-5formamidopyrimidine (FapyG), respectively, the two major oxidative damages of guanine [1]. Adenine oxidation is similar to guanine oxidation and yields the 8 -oxo- 7,8 -dihydroadenine (oxo ${ }^{8} \mathrm{~A}$) and 4,6-diamino-5-formamidopyrimidine (FapyA) as the main products [2].

1.1.1.1 5-formyluracil

5-Formyluracil ($f^{5} \mathrm{U}$) is a common ROS induced base lesion resulting from oxidation of thymine in the 5 -methyl group. Although $f^{5} \mathrm{U}$ is formed in DNA at a similar level as guanine oxidized in the 8'position (7,8 -dihydro-8-oxoguanine; $00^{8} \mathrm{G}$), the number of studies dedicated to investigate these two lesions are very unequally distributed. Where a great effort has been made to investigate the formation and consequences of $00^{8} G$, relatively few reports have been published on $f^{5} U$. $f^{5} U$ exists in a keto-enol form of equilibrium as shown in Figure 2, with the different forms exhibiting different base-pairing abilities.

Figure 2: $\mathrm{f}^{5} \mathrm{U}$ in enol-, keto- and ionized-form

Adapted from [3]
The keto form ($f^{5} \mathrm{U}^{\mathrm{C}=0}$) pairs preferably with adenine (Figure 3a) in a Watson-Crick configuration. However, it can also pair with cytosine (Figure 3c). The ionized form ($f^{5} \mathrm{U}^{\theta}$) pairs preferably with guanine (Figure 3b).
a)

b)

c)

Figure 3: $f^{5} \mathrm{U}$ base pairing abilities

Adapted from [4]

Mutation induction by 5-formyluracil

As a consequence of the diverse base pairing abilities of $f^{5} \mathrm{U}$ it is a mutagenic agent, and a proposed schematic model of the different ways it will induce substitutions in DNA is presented in Figure 4.
a)

A	A	C	C
I	I	I	I
T	$f^{5} \mathbf{U}$	$f^{5} \mathbf{U}$	G

c)
e)
G
I
C
G
$\mathrm{f}^{5} \mathrm{U}$$\rightarrow \underset{\mathrm{f}^{5} \mathrm{U}}{\mathrm{I}} \rightarrow \begin{gathered}\mathrm{C} \\ \mathrm{I}\end{gathered}$

g)
A
I
$T$$\rightarrow \underset{f^{5} U}{\text { A }} \rightarrow \underset{f^{5} U}{\text { T }} \rightarrow \begin{gathered}\text { T } \\ \text { I }\end{gathered}$
h)

Figure 4: Proposed models for base substitutions induced by $f^{5} U$.
a) $\mathrm{AT} \rightarrow \mathrm{CG}$ transversion.
b) GC \rightarrow TA transversion.
c) $\mathrm{AT} \rightarrow \mathrm{GC}$ transition.
d) \& e) GC \rightarrow CG transversion. \quad f) $G C \rightarrow$ AT transition. \quad g) \& h) AT \rightarrow TA transversion

Adapted from [5]

1.1.2 Methylated bases

Due to the cytotoxicity of methylating agents, they are utilized in cancer treatment, they are also highly mutagenic, where all the bases are susceptible to erroneous methylation by alkylating agents. All the exocyclic oxygens and most of the ring nitrogen atoms can be targeted, in addition to oxygens in the phosphate groups of the sugar-phosphate backbone, however when the ring nitrogen atoms are involved in base pairing in dsDNA, they become quite non-reactive [1, 6]. The alkylating agents are divided in two types by their mode of nucleophilic substitution reactions; $\mathrm{S}_{\mathrm{N}} 1$-type agents and $\mathrm{S}_{\mathrm{N}} 2$-type agents, where the $\mathrm{S}_{\mathrm{N}} 1$-type agents like N -methyl-N-nitrousourea (MNU) alkylate both oxygens and nitrogens, while the $\mathrm{S}_{N} 2$-type agents like methylmethanesulphonate (MMS) mainly alkylates nitrogens [1], as shown in Figure 5.

C:G base pair

T:A base pair

Methyl radicals

Figure 5: Distribution of methylation sites on the bases and the sugar-phosphate backbone of DNA.
Adapted from [6]

Figure 6 shows the most common methylated bases.

N7-methylguanine ($\mathrm{m}^{7} \mathrm{G}$)

N3-methyladenine ($\mathrm{m}^{3} \mathrm{~A}$)

0^{6}-methylguanine ($\mathrm{O}^{6} \mathrm{mG}$)

O^{4}-methylthymine ($\mathrm{O}^{4} \mathrm{mT}$)

Figure 6: Common methylated bases
Red circle indicates the modified positions

1.1.2.1 Enzymatically methylated bases act as epigenetic regulators of the genome

Enzymatically methylated bases at specific sites in DNA act as epigenetic regulators, where $\mathrm{m}^{5} \mathrm{C}$ is so common, constituting up to 4% of the total amount of cytosines in human DNA, that it is often referred to as the "fifth DNA base" [7]. Mostly $\mathrm{m}^{5} \mathrm{C}$ acts as a repressor of gene transcription by either blocking transcription factors or by recruiting methyl-binding domain protein that will inhibit gene transcription [1, 8]. The methyl donor for C5-methyltransferase (MTase) is S-adenosylmethionine (SAM), a $\mathrm{S}_{\mathrm{N}} 2$-type agent [9]. In addition to its function as a transcriptional repressor in eukaryotes, $\mathrm{m}^{5} \mathrm{C}$ also plays an important role in strand recognition during replication, i.e. separating the daughter strand from the parent strand, in prokaryotes. In eukaryotes, the methylation pattern is copied to the unmethylated daughter strand after replication by a maintenance MTase. The methylation pattern of cytosine is not random and mostly occurs in sequences enriched in the CpG dinucleotide (CpG islands), where altered methylation patterns have been implicated in tumorigenesis and developmental issues [10, 11].
While spontaneous hydrolytic deamination of cytosine yields uracil, deamination of $\mathrm{m}^{5} \mathrm{C}$ will yield a thymine, where both result in a $\mathrm{C} \rightarrow \mathrm{T}(\mathrm{G}: \mathrm{C} \rightarrow \mathrm{A}: \mathrm{T})$ transition mutation [12]. As described later, the removal of uracil from DNA is very efficient, while the removal of deaminated $\mathrm{m}^{5} \mathrm{C}$ is less efficient, probably because the resulting thymine is a native DNA base, making it harder to distinguish from a correctly paired thymine. This could also explain the mutational hotspots seen in CpG sequences. $\mathrm{m}^{5} \mathrm{C}$ is also, as all the other bases, a target for attack by ROS, leading to 5-formylcytosine, 5hydroxymethylcytosine and 5-carboxycytosine lesions.
Bacteria include $\mathrm{m}^{5} \mathrm{C}$ as a methylated part of their native DNA, but they also employ N^{6} methyladenine $\left(\mathrm{m}^{N 6} \mathrm{~A}\right)$ and $N 4$-methylcytosine $\left(\mathrm{m}^{N 4} \mathrm{C}\right)$. In fact E. coli DNA contains twice the amount of $m^{N 6} A$ compared to $m^{5} C$. While $m^{5} \mathrm{C}$ is thought to have a main role as protection against own restriction enzymes, it is established that $\mathrm{m}^{N 6} \mathrm{~A}$ plays a much broader role including involvement in regulation, DNA replication, mismatch repair, strand segregation and regulation of gene expression [13]. Recent studies have also identified $\mathrm{m}^{N 6} \mathrm{~A}$ in eukaryotic genomes [14, 15].

1.1.2.2 $N^{4}, 5$-dimethylcytosine

Because $\mathrm{m}^{5} \mathrm{C}$ is common in DNA, it is reasonable to expect it as a target for further methylation (see Figure 5). The Klimasauskas group in Vilnius, Lithuania decided to investigate this further, and in 2002 they published an article where they described successful introduction of $N^{4}, 5$-dimethylcytosine ($\mathrm{m}^{N 4,5} \mathrm{C}$) in vitro [16]. A further investigation to see if the modified base existed in vivo was inconclusive, leading to the hypothesis that the $\mathrm{m}^{N 4,5} \mathrm{C}$ residue exists in vivo, but is effectively removed by a repair mechanism, this hypothesis was also indirectly supported by the fact that in E. coli cells carrying the plasmid used to perform the second N4-methylation, the SOS response was induced [16]. In 2018 our research group in collaboration with the Klimasauskas group published a paper confirming the incision activity of two E. coli glycosylases, Nei and Fpg, on short oligonucleotide substrates containing $\mathrm{m}^{N 4,5} \mathrm{C}$ in vitro [17].
The Klimasauskas group in Vilnius discovered that they could only methylate cytosine to $\mathrm{m}^{N 4,5} \mathrm{C}$ when it was first methylated in the $5^{\text {th }}$ position of the ring. They explained this by the fact that C5methylation requires two N4-hydrogen atoms for interactions with the MTase as well as a transient covalent bond in the $6^{\text {th }}$ position ($\mathrm{S}_{\mathrm{N}} 2$-type reaction).
The $\mathrm{m}^{N 4,5} \mathrm{C}$ deoxynucleoside has two theoretical conformations, the cis conformer which is highly disfavored due to a steric clash between the two methyl groups, and the more likely trans conformer, as shown in figure 7. However, the trans conformation will not accommodate the normal Watson -Crick base pairing, which could be a reason for efficient in vivo removal of $\mathrm{m}^{N 4,5} \mathrm{C}$ from DNA as it is likely to distort its B-helical structure [16].
a)

N4 rotation

Figure 7:The two isoforms of $\mathbf{N}^{4}, 5$-dimethylcytosine
a: cis-conformer
b: trans-conformer

Adapted from [16]

1.2 DNA Damage repair

It is estimated that there are more than 10.000 oxidative damages occurring per day in human cells, which in addition to hydrolytic damages, alkylation damages and the strand breaks adds up to a massive amount of damages that needs to be handled by the cell [18]. Through time cells have evolved a number of mechanisms to detect and repair the damages that arise from exogenous and endogenous agents, and many of them are highly conserved between all domains of life. In this study the nucleotide excision repair- (NER), and the Base excision repair-pathways (BER) are most relevant and will be explained in some detail. Historically there has been a firm belief that BER handles single base damages, whereas NER tackles the more bulky DNA adducts. However, the NER pathway is also responsible for sorting out single base damages in DNA such as $\mathrm{f}^{5} \mathrm{U}[19,20]$.

1.2.1 SOS Response in E. coli

The SOS response is a global defense mechanism against DNA damage in E. coli. When the SOS response is induced, the cell cycle will be arrested, and depending on the severity of the damage(s) a number of different repair mechanisms can be initiated.
The SOS pathway in E. coli consists of two key regulatory proteins; LexA and RecA, but it is estimated that over 30 genes (SOS genes) are controlled by these regulatory proteins in E. coli, among them genes in the nucleotide excision repair pathway (NER), as well as well as the lexA ${ }^{+}$and recA ${ }^{+}$genes themselves.

Mechanism

During normal growth the homo-dimer of LexA acts as a repressor and bind to what is referred to as SOS-boxes of the SOS genes. This causes the transcription of these proteins to stay low. The strength of the repression depends on both the sequence of the SOS-box, and the strength and positioning of the promoter, this feature allows the cell to regulate which response to activate against the damage and at what time. If the cell is subjected to an increased level of DNA damage, the LexA homodimers will dissolve to monomers and no longer repress the transcription of the SOS-genes, in addition the RecA protein will bind to ssDNA and create what is known as RecA-ssDNA filament. This RecA-ssDNA filament promotes cleavage of the LexA homodimers and thus acts as an enhancer of SOS-gene transcription. When the amount of ssDNA in the cell is high, the concentration of RecA-ssDNA is equally high, and the SOS response is induced. The first line of defense are the genes regulated by
weak repression of the LexA homodimers such as the $u v r A^{+}$and $u v r B^{+}$genes, whereas the three polymerases with a less accurate insertion rate Pol III, Pol IV and Pol V have SOS boxes with a stronger binding to LexA homo dimers and can thus be regarded as more of a last resort defense if the former initiated defenses have not been sufficient enough to repair the damages.

1.2.2 Nucleotide Excision Repair

The Nucleotide Excision Repair (NER) mechanism is responsible for recognizing and repairing a wide range of helix distorting lesions to DNA such as carcinogenic cyclobutane pyrimidine dimers (CPD) induced by UV radiation, guanine-cisplatinum adducts formed during chemotherapy, and benzo $[\alpha]$ pyrene-guanine adducts caused by smoking. Helix distorting damages interfere with DNA replication and transcription and is thus an important obstacle to overcome for the cell. It was previously thought that NER did not engage in repairing single-base damages, but it has been proven that this pathway can also repair some oxidation induced damages to DNA, such as $0 \times 0^{8} \mathrm{G}$ and Tg , formed by oxidized guanines and thymines respectively.
The NER pathway is simpler in prokaryotes than in eukaryotes, but in short both consists of the following steps:

1. Recognition and verification of base damage.
2. Incision of the lesion containing DNA strand (bimodal or dual incisions).
3. Excision of the resulting oligonucleotide fragment.
4. Repair synthesis, to fill in the gap from the excised fragment.
5. DNA Ligation to seal newly synthesized fragment with original DNA strand.

In this mechanism, after damage recognition and verification, a short segment of the DNA strand is removed both upstream and downstream of the lesion, resulting in a 12-13 nucleotide gap in E. coli and a 24-32 nucleotide gap in humans. This is followed by repair synthesis based on the opposite unaffected strand before ligase completes the process.
The NER mechanism has two alternative pathways; Global Genomic NER (GG-NER) and Transcription Coupled NER (TC-NER), where their difference lies in the mode of damage detection. TC-NER is initiated upon stalling of RNA polymerase during transcription, while GG-NER is constantly scanning the genome for damages. Because GG-NER is most relevant to mutation induction and thus this thesis, it will be the one described in detail.

1.2.2.1 Nucleotide excision repair in E. coli

In E. coli the UvrABC system initiates and carries out the first steps (1 and 2) of the NER mechanism, while the second part (steps 3-5) is carried out by DNA helicase II (UvrD), DNA Polymerase I and DNA ligase. Even though the system consists of three different proteins with different properties, they are as a whole considered as a DNA Damage-Specific Endonuclease. The name "Uvr" reflects the original discovery of them as UV damage repairing proteins (Table 1).

Table 1: Selected properties of the UvrA, B and C proteins.

| | | Protein | |
| :--- | :---: | :---: | :---: | :---: |
| Property | UvrA | UvrB | UvrC |
| Mol mass (kDa) | 103.9 | 76.1 | 66,0 |
| No. of amino acids | 940 | 673 | 610 |
| DNA Binding | Yes | No | Yes |
| Nucleotide binding motifs | 2 | 1 | 0 |
| ATP-ase activity | Yes | No | No |
| SOS Regulation | Yes | Yes | No |
| No of molecules/cell* | $20(250)$ | $250(1000)$ | 10 (10) |
| (Probable) Function | Molecular matchmaker,
 initial DNA damage
 detection, | Definitive DNA damage
 recognition, DNA
 unwinding, 3' incision | Initiation of 3'
 incision and 5'
 incision |
| | Transcription-coupled | | |
| repair | | | |

*Numbers within parentheses reflects values after SOS induction.
For many years there was a common understanding that UvrA forms a homodimer that loosely binds to DNA and scans for damages. Upon contact with such damages (UvrA) ${ }_{2}$ will recruit UvrB to the site of damage and form a $(\mathrm{UvrA})_{2} U v r B$ complex more stably bound to DNA. Then $(\mathrm{UvrA})_{2}$ will disassociate leaving behind a stable UvrB-DNA complex exhibiting high affinity for UvrC, which once recruited to the site of damage binds to UvrB and executes the incisions 8 nucleotides upstream and 4 nucleotides downstream of the damage. Over the years some studies have suggested that the complex formed between UvrA and UvrB is a heterotetramer; $(\mathrm{UvrA})_{2}(\mathrm{UvrB})_{2}$. Although no definitive conclusion to this predicament is reached, the mechanism is presented with $(\mathrm{UvrA})_{2}(\mathrm{UvrB})_{2}$ as the DNA binding complex in Figure 8 because of increasing evidence for its involvement [21-24]. A more detailed description of each step and the role of the components is as follows.

Nucleotide excision repair in E-coli

Figure 8: Overview of the NER pathway in Escherichia coli

Recognition of base damage

The first player in E. coli NER is the UvrA protein encoded by the $u v r A^{+}$gene, which is produced in a ten times higher amount following SOS induction (Table 1). UvrA has several domains and motifs (Figure 9), corresponding to the proposed mechanism for its activity. Among these domains we find two ATP binding domains which are associated with both the need for ATP to execute the conformational change that is required for dimerization [25] and the specificity for binding damaged DNA [26]. The presence of ATP also seem to stimulate the dissociation of UvrA from DNA once UvrB is present [27]. Another important feature of the protein are the two zinc finger domains as well as a consensus helix-turn-helix (HtH) motif. The latter plays an important role in DNA binding, as the Cterminal helix can fit into the major groove of DNA, where it establishes contact between bases of DNA and amino acid residues in the protein. The zinc finger domains are also implicated in the DNA binding [28], and the glycine rich C-terminal end of UvrA is believed to be involved in damage recognition [29].

Figure 9: Diagrammatic presentation of the uvrA ${ }^{+}$gene in Escherichia coli
Adapted from [26]

Stable DNA binding and confirmation of damage

Although the UvrA homodimer binds to specific DNA damages, it does not form a stable complex, for stability the mechanism relies upon the second player in the system; UvrB. The UvrB protein is encoded by the $u v r B^{+}$gene which has both SOS-dependent and SOS-independent promoters. The protein is a helicase and has a domain that suggests ATP binding. However, since ATPase activity was not confirmed by the purified protein, it has been suggested that UvrB has a cryptic ATPase, where binding to UvrA and the subsequent domain movement are necessary for its activation [30]. It is worth mentioning that while UvrA can form an unstable and short-lived complex with dsDNA, UvrB will only bind ssDNA in solution in the absence of UvrA [31], which explains why both are needed for damage detection and binding. When scanning DNA for lesions the DNA strand is wrapped around UvrB, and assuming the UvrAB complex is a heterotetramer, the structures of the UvrAB-DNA complex ensures damage detection in both strands by alternate scanning of the two strands [22]. This is facilitated by ATP hydrolysis in the first subunit that will release the DNA, followed by ATP binding in the second unit that will ensure the DNA wrapping around the latter unit. A proposed model for this damage detection by UvrB involves the protein trying to flip individual nucleotides out of the helix, when no damage is present nucleotides are held in place by stacking forces, and this prevents the necessary unwinding of the helix by the β-hairpin structure of UvrB [32]. If a damage is detected and verified by UvrB, the UvrB-DNA pre-incision complex is formed by insertion of the UvrB $ß$-hairpin followed by the dissociation of the UvrA dimer. Whether the UvrB-DNA pre-incision complex consists of one or two UvrB proteins is not determined at this point, one theory proposes that upon detection and verification of a damage the UvrB protein on the opposite strand is obsolete, and will disassociate before the third player in the mechanism; UvrC, is bound to the preincision complex. This theory is somewhat supported by the fact that the C-terminal domain of UvrB is required for dimerization [33], but also for binding to a homologous amino acid sequence within UvrC [34].

Incision

In prokaryotic NER the incision is bimodal and executed by the third player in the mechanism; the UvrC protein. This protein is encoded by the $u v r C^{+}$gene which unlike the two other Uvr proteins is not linked to the SOS response. Mapping of the $u v r C^{+}$gene reveals two catalytic domains separated by a binding domain for UvrB, as well as two helix-hairpin-helix (HhH) motifs at the C-terminal end of the protein as illustrated in Figure 10.
The first incision is the cleavage of the phosphodiester bond 4 or 5 nucleotides 3^{\prime} to the damage [35], this step requires the interaction between the C-terminal domain of UvrB and the homologous UvrB binding domain of UvrC [36]. The 3' incision requires the presence but not hydrolysis of ATP, apparently because binding of ATP is required to execute a conformational change in the complex to facilitate the incision [35]. The second incision is made by cleavage of the $8^{\text {th }}$ phosphodiester bond 5' to the damage, this incision does not require the interaction between domains of UvrB and UvrC, nor the presence of ATP [26]. After both incisions are carried out by UvrC the fragment is excised by DNA helicase II (sometimes named UvrD).

Figure 10: Diagrammatic presentation of the uvrC ${ }^{+}$gene in Escherichia coli.
N-terminal catalytic Uri domain involved in 3^{\prime} incision, UvrBC domain involved in binding with UvrB, catalytic Endo V domain involved in 5^{\prime} incision and the two C-terminal HhH motifs also involved in 5' incision.

Adapted from [37]

Excision

DNA helicase II (UvrD) is encoded by the $u v r D^{+}$gene and is induced by the SOS response [38, 39]. In the context of NER it is responsible for excising the oligonucleotide fragment containing the damage, as well as releasing UvrC from the incision complex. As no other DNA helicases in E.coli can act as a substitute in this process, it is presumed that this is a highly specific function of DNA helicase II [40]. It remains unknown whether DNA helicase II interacts with the post-incision complex itself, or the generated nicks. However, it is clear that UvrB is not released at this point in the process, but will remain bound to the gapped DNA until repair synthesis has taken place [40].

Repair synthesis of DNA

After the damaged fragment of DNA is removed by UvrD, DNA Polymerase I (Pol I) starts synthesis from the $3^{\prime} \mathrm{OH}$ terminus generated at the 5^{\prime} incision site. As Poll progress it will displace the bound UvrB protein, eventually releasing it from DNA. Some studies have challenged the view that Pol I is the only DNA polymerase that can engage in repair synthesis following the initial steps of NER. However, Pol I was concluded as the preferred polymerase [41, 42].

DNA ligation

After Pol I has completed DNA synthesis, DNA ligase will seal the nick 3' to the newly synthesized strand. E. coli contains only one DNA ligase encoded by the ligA+ gene, which depends on NAD^{+}as energy source for the end-joining process

1.2.2.2 Nucleotide excision repair in mammalian cells

Nucleotide excision repair in mammalian cells follows the same basic steps as in E. coli, but the complexity of the mechanism and number of involved players are much higher. For further details regarding NER in mammalian cells the following references are recommended: [43, 44] However, the severe consequences of dysfunctional NER in humans is worth mentioning, as it highlights the importance of this mechanism and the need for understanding it, at a more comprehensible level to the reader. Three hereditary diseases are identified to be caused by defects in the NER pathway in humans; Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. To various degrees these conditions result in high susceptibility to skin cancer, neurological disorders and premature ageing.

1.2.3 Base Excision Repair

The existence of base excision repair (BER) was discovered in 1974 by Tomas Lindahl when he searched for an enzyme that would remove deaminated cytosine (uracil) from the genome, what he then discovered was however not a nuclease as he expected, but an enzyme that cleaved the bond between the damaged base and the deoxyribose in the sugar-phosphate backbone of DNA. Thus, E. coli uracil-DNA glycosylase (Ung) was the first DNA glycosylase discovered and laid the ground for defining the BER pathway in molecular detail in both prokaryotes and eukaryotes [45]. We now know that this pathway not only relieve genomic uracil from DNA but also includes repair of most non-helix distorting single base damages in DNA caused by oxidation, alkylation and deamination [46]. The basic steps of this mechanism are essentially similar as for NER, with damage recognition as the first step, followed by excision, incision, repair synthesis and ligation. As indicated for uracil, the first step is carried out by a class of DNA repair enzymes called DNA glycosylases, which leave behind an AP site. While NER excises a small fragment of DNA, BER will remove the damaged base only (short patch repair) or a very short segment of DNA (long patch repair, usually a few bases).

1.2.3.1 DNA Glycosylases

The BER pathway is initiated by a DNA glycosylase, which is defined as either monofunctional or bifunctional, depending on its catalytic mechanism. The monofunctional glycosylases cleave the N glycosidic bond between the damaged base and the deoxyribose moiety [47, 48], leaving behind an AP site. The bifunctional glycosylases exhibit AP-lyase (β-elimination) activity in addition to the glycosylase activity, which yields a 3' α, β-unsaturated aldehyde adjacent to a 5' phosphate (Figure 11). This contrasts with the AP enconuclease following a monofunctional glycosylase, which leaves behind a free $3^{\prime}-\mathrm{OH}$ end ready for repair replication and a 5^{\prime} deoxyribosephosphate remnant. Some bifunctional glycosylases can further perform a d-elimination converting the 3^{\prime} aldehyde to a 3^{\prime} phosphate, but in both cases further processing by either a 3^{\prime}-phosphodiesterase ($3^{\prime} \alpha, \beta$-unsaturated aldehyde) or a 3'-polynucleotide phosphatase (3^{\prime} phosphate) is required to obtain a free 3^{\prime}-OH end, in order for the repair synthesis to take place. Presently, at least 8 E. coli and 13 human DNA glycosylases are identified (Table 2).

Figure 11: Detailed description of the AP site and cleavage by AP endonuclease and AP lyase activities. The middle represents a single strand of DNA with an AP site. To the left: cleavage on the 5 ' side of the AP site by an endonuclease resulting in a $3^{\prime} \mathrm{OH}$ terminus and a 5'dRp residue. To the right: Cleavage on the 3^{\prime} side of the AP site by an AP lyase results in a 5^{\prime} phosphorylated end and a 3^{\prime} end with a 3^{\prime} unsaturated aldehyde.

Adapted from [49]

Table 2: Identified Human and E. coli glycosylases and their known substrates

Base damage	Name	Gene	Mono/bifunctional	Known substrates
Human				
Deaminated	hUNG	UNG	M	ssU, U:G, U:A, $h^{5} \mathrm{U}$, isodialuric acid, alloxan, 5-fluoroU
	hSMUG 1	SMUG 1	M*	$\begin{aligned} & \text { ssU, U:A, U:G, } \mathrm{f}^{5} \mathrm{U}, \mathrm{hm}^{5} \mathrm{U}, \mathrm{~h}^{5} \mathrm{U}, \varepsilon \mathrm{C}: \mathrm{G}, \\ & \text { 5-fluoroU:A } \end{aligned}$
	hUDG2	UDG2	m	U:A
	hMBD4 (MED1)	MBD4	M	$\mathrm{U}: \mathrm{G}, \mathrm{T}: \mathrm{G}, \mathrm{hm}^{5} \mathrm{U}$ in $\mathrm{CpG}, \mathrm{f}^{5} \mathrm{U}, \mathrm{m}^{5} \mathrm{C}, \varepsilon \mathrm{C}$ in ss and ds DNA, 5 -fluoroU
	ThDG	TDG	M	U:G, T:G, T:C, T:T, f $\mathrm{f}^{5} \mathrm{U}: \mathrm{G}, \mathrm{f}^{5} \mathrm{U}: \mathrm{A}$, $h m^{5} \mathrm{U}: \mathrm{G}, \mathrm{hm}^{5} \mathrm{U}: \mathrm{A}, \varepsilon \mathrm{E}$ in ss and ds DNA, $\mathrm{f}^{5} \mathrm{C}, \mathrm{ca}{ }^{5} \mathrm{C}, 5$-fluorou
Oxidized	hOGG 1	OGG 1	$M / B, B$-elimination	fapyG:C, oxo ${ }^{8} \mathrm{G}, 0 \times{ }^{8} \mathrm{~A}: \mathrm{C}, \mathrm{mfapyG}: \mathrm{C}$
	hNEIL 1	NEIL	B, B / D-elimination	Tg , fapyG, fapyA, mFapyG, oxo ${ }^{8} \mathrm{G}$, $h^{5} \mathrm{C}, \mathrm{h}^{5} \mathrm{U}, \mathrm{dHU}, \mathrm{dHT}, \mathrm{Sp}$ and Gh in ss and ds DNA
	hNEIL 2	NEIL	B, B / D-elimination	$\mathrm{h}^{5} \mathrm{U}, \mathrm{dHU}, \mathrm{h}^{5} \mathrm{C}, \mathrm{dHT}, \mathrm{Tg}, \mathrm{dHU}, \mathrm{oxo}^{8} \mathrm{G}$,
	hNEIL 3	NEIL	M/B, B / C-elimination	FapyG, FapyA, Sp and Gh in ss DNA,
	hNTH 1 (NTHL1)	NTHL 1	B, β-elimination	
Alkylated	hMUTY	MYH	M	A:G, oxo ${ }^{8} \mathrm{G}, \mathrm{A}: C$ mismatches
	hMPG	MPG	M	$m^{3} A, m^{3} G, m^{7} G$, hypoxanthine, εA, EA, $m^{N 6} A, m^{7} A, o x o^{8} G$
Escherichia coli				
Oxidized	Fpg	fpg^{+}	B, ß/д-elimination, dRP lyase	Oxo ${ }^{8} \mathrm{G}, \mathrm{Oxo}^{8} \mathrm{~A}$, FapyG:C, FapyG:A, mFapy, FapyA, $h^{5} \mathrm{C}, \mathrm{h}^{5} \mathrm{U}, \mathrm{Tg}, \mathrm{dH} \mathrm{T}$, $h m h, h^{5} U, f^{5} \mathrm{U}, \mathrm{Ug}, \mathrm{Gh}, \mathrm{AP}$ sites, $\varepsilon \mathrm{A}$, ring opened εA
	Nei	nei ${ }^{+}$	B, B / ∂-elimination, $d R P$ lyase	$\mathrm{Oxo}^{8} \mathrm{G}$, FapyA, FapyG, Tg, dHT, 5-OH$d H U, h m h, f^{5} U, h m^{5} U U g, h^{5} U, h^{5} C$, $\mathrm{dHC}, \mathrm{dHT}, \mathrm{dHU}, \mathrm{Gh}, \mathrm{Sp}, \mathrm{AP}$ sites, Th^{5}, urea, $\mathrm{dhC}, \mathrm{dhU}, \mathrm{Uh}^{5}$, oxanine, xanthine, β-ureidoisobutaric acid
	Nth	$n t h^{+}$	B, $ß$-elimination	FapyG, Gh, Sp, FapyA, AP sites, Tg, 5-OH-dHT, 6-oh-dHT, dHT, Th ${ }^{5}$, hmh, $\mathrm{hm}^{5} \mathrm{U}, 5-\mathrm{OH}-\mathrm{dHU}, 6-\mathrm{OH}-\mathrm{dHU}, \mathrm{h}^{5} \mathrm{C}$, $\mathrm{dhC}, 6-\mathrm{OH}-\mathrm{dHC}, \mathrm{Ug}, \mathrm{h}^{5} \mathrm{U}, \mathrm{dHU}, \mathrm{dhU}$, mFapy, $\mathrm{Cg}, \mathrm{f}^{5} \mathrm{U}$, urea, ring opened $\varepsilon \mathrm{A}$
	MutY	mut ${ }^{+}$	M	A:G, A:C, A:0xo ${ }^{8} \mathrm{G}$
Methylated	Tag	tag^{+}	M	$m^{3} A, m^{3} G, m^{7} G$
	AlkA	alkA ${ }^{+}$	M	$\begin{aligned} & m^{3} A, m^{3} G, m^{7} A, m^{7} G, h m^{5} U, f^{5} U, \\ & m^{02} C, m^{02} G, E A, \varepsilon A \end{aligned}$
Deaminated	Mug	mug ${ }^{+}$	M	dsU, U:G, T:G, ssT, hm ${ }^{5} \mathrm{U}: \mathrm{A}, \mathrm{hm}^{5} \mathrm{U}: \mathrm{G}$, $f^{5} U: A, f^{5} U: G, h^{5} C: G, h^{5} U: G$
	Ung	ung $^{+}$	M	ssU, U:G, U:A, $\mathrm{h}^{5} \mathrm{U}, \mathrm{dhU}$

Parentheses denotes most common synonyms.

* Although hSMUG1 is historically viewed as a monofunctional glycosylase, a paper was published in 2019, stating that it also has incision activity and further processing activity [50].

Adapted from [26, 51]

In this thesis, three glycosylases were investigated for activity against $\mathrm{m}^{N 4,5} \mathrm{C}$ lesions; E. coli MutY, hMPG and hSMUG (25-270). A more detailed overview of the investigated glycosylases will follow.

MutY

The most important task of the E. coli Adenine DNA glycosylase (MPG) is to catalyze the excision of A from oxo ${ }^{8} \mathrm{G}$:A mispairs. This acts as a backup mechanism in the cases where oxo ${ }^{8} \mathrm{G}$ (usually paired with C) is not removed prior to replication by Fpg. Since replicative polymerases sometimes inserts an A opposite $0 x^{8} \mathrm{G}$ instead of a C. MutY will initiate BER in the undamaged strand, yielding an oxo $^{8} \mathrm{G}: \mathrm{C}$ pair which is a recognizable and a suitable substrate for Fpg to initiate BER in the damaged strand.

hMPG

N-Methylpurine-DNA glycosylase (MPG) has similar functions to E. coli AlkA and utilizes the same base flipping principal but the two are not related. MPG has a broad substrate specificity and efficiently excises both neutral substrates as well as positively charged methylated bases from DNA [26]. MPG show very low activity against unmodified purines, by promoting acid-catalyzed excision of purines from DNA while retaining a selective filter against the 6-amino and 2-amino groups of purines, broad substrate specificity is obtained without unwanted cleavage of undamaged DNA [26].

hSMUG1

The constitutive enzyme human single-strand-selective mono-functional UDG (hSMUG1) is a member of family 3 of UDGs. Unlike hUNG which is upregulated during replication, hSMUG1 is continuously expressed in non-replicating cells [52,53].
Historically hSMUG1 has been classified as a monofunctional glycosylase, yet a recent study has confirmed strand incision and processing activity in this enzyme, yielding a $3^{\prime}-\alpha, \beta$-unsaturated aldehyde and a 5^{\prime}-phosphate, and also further processing of the $3^{\prime}-\alpha, \beta$-unsaturated aldehyde to $3^{\prime}-$ phosphate [50]. The known substrates of hSMUG1 are listed in Table 2. The truncated version used in this thesis has the same activity but lacks the first 24 amino acids.

1.2.3.2 Base excision repair in E. coli

Damage recognition and excision of altered bases

As mentioned above, the first glycosylase identified was the E. coli UDG Ung. Over the years several other uracil-DNA glycosylases have been identified and classified into six families where Ung is a member of family 1 . The active site pocket in this family is highly conserved between the higher organisms and very specific to accommodate uracil binding, and disallow binding of most other bases [54]. Another UDG in E. coli is Mug, which is a member of family 2 . In addition to being a mismatchspecific glycosylase for guanine (removing uracil and thymine opposite guanine), this enzyme has specificity for removing lesions involving $f^{5} U, 5$-hydroxycytosine $\left(h^{5} C\right)$ and 5-hydroxymethyluracil $\left(\mathrm{hm}^{5} \mathrm{U}\right)$ from DNA.

In E. coli, alkylated bases are removed by 3-methyladenine glycosylase I (Tag) and 3-methyladenine glycosylase II (AlkA). AlkA has a wide substrate specificity and is part of the adaptive response to alkylation, but is only responsible for removing about 10% of the erroneously methylated bases unless induced by alkylating agents, after induction the percentage rises to 50-70\% [48]. Tag on the other hand is a constitutive enzyme which has a much more specific substrate recognition and is responsible for removing 3-methyladenine $\left(m^{3} A\right)$, and 3-methylguanine ($m^{3} G$) [55], and has a strong preference for dsDNA.

Oxidized bases in DNA are in E. coli removed by endonuclease III (Nth), formamidopyrimidine DNAglycosylase (Fpg) and endonuclease VIII (Nei), which are all bifunctional glycosylases. It is interesting to note that although Nei has significant sequence homology to Fpg, its substrate specificity has
more overlap with Nth. MutY is also responsible for removing some oxidized bases as mentioned above.

Incision and end-processing

AP sites generated by monofunctional glycosylase excision are cytotoxic by inhibiting DNA replication and transcription, mutagenic and fragile in terms of strand break generation. DNA ends generated after excision and incision by the bifunctional glycosylases are either not yet suitable for repair synthesis (no free $3^{\prime}-\mathrm{OH}$ to act as a primer for Poll) or ligation (a $5^{\prime}-\mathrm{dRP}$ instead of a $5^{\prime}-\mathrm{P}$). Incision of the DNA strand is carried out by an AP endonuclease (APE), in E. coli either Exonuclease III (Xth) or Endonuclease IV (Nfo). They are both 5' AP endonucleases and very diverse enzymes that also has 3'phosphodiesterase and 3^{\prime}-phosphatase activity that can remove 3^{\prime} unsaturated aldehyde and 3^{\prime} phosphate, generated through β-elimination and ∂-elimination by the bifunctional glycosylases Nth and Nei/Fpg, respectively [56]. Xth and Nfo have significant overlap in the substrate specificity, and a main feature that separates them is the $3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity of Xth. Xth is responsible for 90% of the total removal of 3^{\prime}-blocking ends in E. coli DNA [57], however, it is suggested that Nfo may recognize some lesions overlooked by Xth [58]. Although the bifunctional glycosylases exhibit AP lyase activity, they cannot completely substitute the functions of the APEs, and in many cases a bifunctional glycosylase will leave behind an AP site to be further processed by an APE. Both Xth and Nfo use base flipping and hydrolytic attack facilitated by metal ions to perform the incision 5' to the AP site, but where Xth requires a Mg^{2+} ion, Nfo has a tightly bound trinuclear cluster of Zn^{2+} ions in its active site.

Repair synthesis and ligation

Pol I is identified as the most important gap filling polymerase associated with the BER pathway [59], where usually only the single altered base is replaced (short patch repair). However, the $5^{\prime} \rightarrow 3^{\prime}$ exonuclease together with the polymerase activity of Pol I can sometimes digest and replace the neighboring bases for a short stretch downstream of the damaged base (long patch repair, usually 28 bases). The enzymes involved in removing the 5^{\prime}-dRP seems to determine whether the BER pathway continues via short patch or long patch repair. In short; if the 5^{\prime}-dRP is removed by Fpg, Nei or RecJ or by the $5^{\prime} \rightarrow 3^{\prime}$ exonuclease activity of Pol I, short patch BER will follow [1], if the $5^{\prime} d R P$ is not removed prior to initiation of repair synthesis, long patch repair will follow, where Pol I will displace the dRP containing strand via strand displacement [59]. The ligation process for BER in E. coli is the same as for NER.

An overview of the entire BER pathway in E. coli is presented in Figure 12.

Base excision repair in E-coli

Figure 12: Overview of the BER pathway in Escherichia coli.

1.2.3.3 BER in mammalian cells

As with NER, the mechanism of BER in mammalian cells is comparable to prokaryotic BER, although more intricate and with a higher number of players involved. A complete overview of the mechanism is presented in Figure 13.

Short-patch repair

Long-patch repair
Figure 13: Overview of the BER pathway in mammalian cells
Adapted from [60]

1.3 Aim of study

The original aim of this study was to finish identifying E. coli and human DNA glycosylases with the ability to initiate repair of $\mathrm{m}^{N 4,5} \mathrm{C}$ in DNA in vitro, and then extend this work to $\mathrm{m}^{3,5} \mathrm{C}$. However, our collaborators producing DNA with $\mathrm{m}^{3,5} \mathrm{C}$ experienced unforeseen problems and could not deliver the appropriate substrate. Consequently, the focus of the thesis was shifted half way through the work.

Since I had previous experience (bachelor thesis) with investigating the effects of the UvrABC system on mutation induction by 5 -formyldeoxyuridine ($f^{5} \mathrm{dU}$) in E. coli, a larger project not yet finished, we decided to finish the latter project as a part of this master thesis work.

It has been a common belief that the BER pathway is the primary repair mechanism for DNA base lesions induced by oxidation including $f^{5} \mathrm{U}$, but there is now in vitro evidence that the NER pathway also plays a role in the repair of $f^{5} \mathrm{U}$ lesions in mammalian cells [19]. Another study within our group, supplementing uvrA- cells with 5 -formyldeoxyuridine during growth followed by analyzing the mutations formed indicated that the same is true for E. coli. To determine whether it is the UvrA protein alone that is somehow involved in repairing or recognizing $f^{5} U$ lesions, or if it is the entire UvrABC system or the NER pathway, this study was started on uvrB cells and uvrC- cells in 2014/2015 and performed using the exact same protocol as with the uvrA cell study. Together these three studies are closely linked regarding the possible understanding of the role of UvrABC/NER in $\mathrm{f}^{5} \mathrm{dU}$ mediated mutagenesis in E. coli.
In all these studies $f^{5} \mathrm{dU}$ was added to the growth medium of exponentially growing bacteria. Like other thymidine analogues $f^{5} \mathrm{dU}$ is thought to be actively transported in to the E. coli cells, and subsequently converted by in vivo enzymes into 5 -formyl-2'-deoxyuridine triphosphate (f5dUTP) which is then used as a substrate by Pol I.

2 Materials and methods

Complete list of all materials and detailed protocols can be found in appendix A1 for the section regarding effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in E. coli, appendix A2 for the section regarding DNA Glycosylase activities for $N^{4}, 5$-dimethylcytosine and appendix A3 for the section regarding production and purification of hSMUG (25-270).

2.1 Effects of the UvrABC system on mutation induction by 5 -formyldeoxyuridine in Escherichia coli.

2.1.1 Mutagenesis

Materials

$\mathrm{f}^{5} \mathrm{dU}$ was prepared as described (Ono, Okamoto et al., 1994).
Rifampicin was obtained from G Biosciences (Cat.\#: RC-193, Lot\#: 152312) and Alfa Aesar (Cat\#:
60836, Lot\#: T31E022)

Bacterial cells

Two different strains of Escherichia coli K-12 were used in this part of the thesis; AB1884 and AB 1885 (Both obtained from Coli Generic Stock Center, University of Yale). Freeze cultures were stored at $-80^{\circ} \mathrm{C}$.

Buffers

Buffers and media are listed in Table 3.

Table 3: Buffer and media used in mutagenesis assay

Buffers/solutions	Composition
10× Buffer A	```600 mM K2 HPO 17 mM C6 H5 Na,3 O```
A media	$60 \mathrm{mM} \mathrm{K} \mathrm{K}_{2} \mathrm{HPO}_{4}, 33 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, 7.5 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 1.7 \mathrm{mM} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Na}_{3} \mathrm{O}_{7} \mathrm{X}$ $2 \mathrm{H}_{2} \mathrm{O}, 0.1 \mathrm{M} \mathrm{MgSO}_{4}, 0.25 \%$ glucose, 8 mg L -aminoacids, 1 mg vit B_{1}

Mutagenesis was performed essentially as described [61], where all growth was carried out at $37^{\circ} \mathrm{C}$. Cells were taken from freeze culture to LB media (5 ml) and grown overnight, then spread out on a LB agar plate for further growth followed by short-term storage at $4^{\circ} \mathrm{C}$. To keep a fresh stock of bacterial colonies, one colony was once a week transferred and spread out to a new LB plate and grown overnight before short term storage at $4^{\circ} \mathrm{C}$.
For each assay 6 colonies were chosen from the LB stock plate and grown overnight in $2 \mathrm{ml} A$ medium [$1 \times$ Buffer A containing $1 \mathrm{mM} \mathrm{MgSO} 4,0.2 \% ~(w / v)$ glucose, $0.04 \mathrm{mg} / \mathrm{ml}$ L-amino acids (Thr, Arg, Pro, Leu, His) and vitamin $\mathrm{B}_{1}(5 \mu \mathrm{~g} / \mathrm{ml})$], before cell number was determined by OD at 600 nm (one control with no colony was also prepared and used as blanking media for the OD measurements).
The overnight culture ($10 \mu \mathrm{l}$) was diluted in $1 \times \mathrm{A}$ buffer to 200000 cells $/ \mathrm{ml}$, before the diluted culture (293 ll) was added to A medium (6.5 ml) and grown for 2 h in falcon tubes to adapt cells and increase cell number. Each culture was then divided to three culture tubes (2 ml each), before addition of $\mathrm{f}^{5} \mathrm{dU}(0.1 \mathrm{mM})$ (control samples were grown without $\mathrm{f}^{5} \mathrm{dU}$, to determine spontaneous mutagenesis for each strain), this point defined the start of the mutagenesis experiment/culture, and the cultures were grown for 45-48 hours before being plated for Rif ${ }^{R}$ mutants on minimal agar plates containing rifampicin ($150 \mu \mathrm{~g} / \mathrm{ml}$) and viable cells.

2.1.2 DNA- extraction, -amplification and -sequencing

Materials

Forward primer: 5'-GCCAAGCCGATTTCC-3' (F-1021) (DNA Technology A/S: 381044)
Reverse primer: 5'-GTATTCGTTAGTCTG-3' (R-1021) (DNA Technology A/S: 381045)

Buffers

Buffers and solutions are listed in Table 4.

Table 4: Buffers used for DNA- extraction, -amplification and -sequencing

Buffer	Composition/Provider
$5 \times$ colorless GoTaq ${ }^{\oplus}$ Flexi buffer	Promega Ref\#: M890A, Lot\#: 0000129120
$5 \times$ Green GoTaq ${ }^{\oplus}$ Flexi buffer	Promega Ref\#: M891A, Lot\#: 0000135046
$1 \times$ TAE running buffer	40 mM TRIS, 1 mM EDTA pH 8.0, 0.12\% acetic acid

Mutant colonies were transferred to LB media (2 ml) containing $150 \mu \mathrm{~g} / \mathrm{ml}$ rifampicin (only one mutant from each start culture was chosen) and allowed to grow for 5-7 days before chromosomal DNA was extracted for polymerase chain reaction (PCR), by heating 5μ l of culture in $100 \mu \mathrm{l}$ of sterile water at $100^{\circ} \mathrm{C}$ for 5 min , followed by cooling on ice, centrifugation and collection of the supernatant.
The rpoB Rif ${ }^{R}$ region was amplified by PCR using the forward primer 5'-GCCAAGCCGATTTCC-3' (F1021) and the reverse primer 5'-GTATTCGTTAGTCTG-3' (R-1021) ($0.2 \mathrm{pmol} / \mu \mathrm{l}$ each) using GoTaq ${ }^{\circledR}$ HotStart Polymerase (Promega) as recommended by the manufacturer (final volume $50 \mu \mathrm{l}$).
To verify presence and size, the PCR products were run on a 1% agarose gel for 30 min at 100 V , before determining concentration and quality with nanodrop measurement (Thermo Scientific NanoDrop 1), and when necessary, purified using NucleoSpin ${ }^{\circledR}$ Gel and PCR Clean-up (MachereyNagel).
DNA sequencing (using F-1021 as primer) was performed by GATC Biotech, Cologne, Germany (using Applied Biosystems 3730xI DNA Analyzer).

2.2 DNA Glycosylase activities for $N^{4}, 5$-dimethylcytosine

Materials

All substrates used are listed in Table 5.

Table 5: Examined substrates and control substrates used for glycosylase activity testing

	Substrate DNA	Oligo	Sequence 5'-3'
Examined substrates	$\mathrm{m}^{N 4,5} \mathrm{C}: \mathrm{C}$	$\begin{aligned} & \text { Fw: (Cy3) } \mathrm{m}^{N 4,5} \mathrm{C} \\ & \text { Rev: C } \end{aligned}$	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TGAAGTAC[m $\left.{ }^{N 4,5} \mathrm{C}\right]$ AGGAAGCGATTTCGA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{C}$ Rev: G*G*G*TCGAAATCGCTTCCTCGTACTTCA*C*C*G
	$\mathrm{m}^{N 4,5} \mathrm{C}: \mathrm{A}$	$\begin{aligned} & \text { Fw: (Cy3) } \mathrm{m}^{\mathrm{Nu,5}} \mathrm{C} \\ & \text { Rev: A } \end{aligned}$	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TGAAGTAC[m $\left.{ }^{N 4,5} \mathrm{C}\right]$ AGGAAGCGATTTCGA* ${ }^{*} \mathrm{C}^{*} \mathrm{C}$ Rev: $\mathrm{G}^{*} \mathrm{G} * \mathrm{G} * \mathrm{TCGAAATCGCTTCCTAGTACTTCA*}{ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{G}$
	$\mathrm{m}^{\mathrm{Na,5}} \mathrm{C}$: G	$\begin{aligned} & \text { Fw: (Cy3) } \mathrm{m}^{N 4,5} \mathrm{C} \\ & \text { Rev: G } \end{aligned}$	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TGAAGTAC[m $\left.{ }^{N 4,5} \mathrm{C}\right]$ AGGAAGCGATTTCGA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{C}$ Rev: $\mathrm{G}^{*} \mathrm{G}^{*} \mathrm{G} *$ TCGAAATCGCTTCCTGGTACTTCA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{G}$
	$\mathrm{m}^{N 4,5} \mathrm{C}: \mathrm{T}$	$\begin{aligned} & \text { Fw: (Cy3) } \mathrm{m}^{N 4,5} \mathrm{C} \\ & \text { Rev: } \mathrm{T} \end{aligned}$	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ GGAAGTAC[m $\left.{ }^{N 4,5} \mathrm{C}\right]$ AGGAAGCGATTTCGA* ${ }^{*} \mathrm{C}^{*} \mathrm{C}$ Rev: $\mathrm{G}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TCGAAATCGCTTCCTTGTACTTCA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{G}$
Control substrates	A:G	Fw: A Rev: G	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TGAAGTACAAGGAAGCGATTTCGA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{C}$ Rev:G*G*G*TCGAAATCGCTTCCTGGTACTTCA*C*C*G
	$\varepsilon A: T$	$\begin{aligned} & \text { Fw: (Cy3) EA } \\ & \text { Rev: T } \end{aligned}$	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TGAAGTAC[iEth-dA]AGGAAGCGATTTCGA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{C}$ Rev: $\mathrm{G}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TCGAAATCGCTTCCTTGTACTTCA* ${ }^{*}{ }^{*} \mathrm{C}^{*} \mathrm{G}$
	U:G	Fw: (Cy3)U-30 Rev: G	Fw: $\mathrm{C}^{*} \mathrm{G}^{*} \mathrm{G}^{*}$ TGAAGTACUAGGAAGCGATTTCGA* $\mathrm{C}^{*} \mathrm{C}^{*} \mathrm{C}$ Rev: $\mathrm{G}^{*} \mathrm{G}^{*} \mathrm{G}$ *TCGAAATCGCTTCCTGGTACTTCA*C*C*G

Enzymes

Investigated enzymes are listed in Table 6.

Table 6: Enzymes investigated for excision activity against $\mathbf{m}^{N 4,5} \mathbf{C}$

Enzyme	Supplier/Catalog/Lot no/	Dissolved in	Reaction buffer	Control substrate
MutY	$\begin{aligned} & \text { Trevigen/4000-500- } \\ & \text { EB/42623E18 } \end{aligned}$	20 mM Tris $\mathrm{pH} 7.5,100 \mathrm{mM}$ $\mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 50% (v/v) glycerol	$1 \times$ REC $^{\text {TM }}$	A:G
hMPG	New England BioLabs Inc/M0313S/0021707	10 mM Tris-HCl pH 7.5, 100 $\mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM}$ DTT, 0.1 mM EDTA, 50\% glycerol, 0.5\% Tween ${ }^{\circledR}$ 20, 0.5\% IGEPAL ${ }^{\circledR}$ CA-630	$1 \times$ ThermoPol ${ }^{\circledR}$ buffer	EA:T
$\begin{aligned} & \text { hSMUG (25- } \\ & 270) \end{aligned}$	Expressed and purified in lab	50\% Equilibration buffer (50 mM TRIS pH 7.5, 300 mM NaCl) and 50% glycerol	$5 \times$ HEPES with 5 mM DTT	U:G

Buffers

The buffers used in this assay are listed in Table 7.
Table 7: Buffers used for glycosylase activity assay

Buffer	Composition
$5 \times$ HEPES	225 mM 4-(2-hydroxyrthyl)-1-piperazineethanesulfonic acid pH 7.5, 10\% glycerol, 2 mM EDTA
$10 \times$ REC	100 mM HEPES-KOH pH 7.4, $1 \mathrm{M} \mathrm{KCl}, 100 \mathrm{mM}$ EDTA $1.0 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$
$10 \times$ ThermoPol ${ }^{\circledR}$ buffer	200 mM Tris-HCl pH 8.8, $100 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 100 \mathrm{mM} \mathrm{KCl}, 20 \mathrm{mM} \mathrm{MgSO}{ }_{4}, 1 \%$ Triton ${ }^{\circledR}$-X-100,
$1 \times$ TBE running buffer	89 mM Tris base, 89 mM boric acid, 2 mM EDTA pH 8
formamide gel loading buffer	80\% formamide, 1 mM EDTA and 1% (w/v) blue dextran

Substrate oligonucleotides containing $\mathrm{m}^{N 4,5} \mathrm{C}$ opposite $\mathrm{A}, \mathrm{C}, \mathrm{G}$, or T (Table 5) were incubated with DNA glycosylases at $37^{\circ} \mathrm{C}$ for 1 h in appropriate reaction buffers according to Table 7. Positive control of enzyme activity was verified by control substrates listed in table 5 incubated under the same conditions. Reactions were terminated by the addition of Stop solution (20 mM EDTA, $0.5 \%(\mathrm{w} / \mathrm{v}$) and sodium dodecyl sulfate (SDS)) and proteinase $\mathrm{K}\left(10 \mu \mathrm{~g}\right.$), and further incubated for 10 min at $37^{\circ} \mathrm{C}$. tRNA ($16 \mu \mathrm{~g}$) was added as a carrier for nucleic acid precipitation and the DNA precipitation was carried out in 96% ethanol containing 0.1 M sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ at $-20^{\circ} \mathrm{C}$ overnight. Centrifugation ($13000 \mathrm{rpm}, 4^{\circ} \mathrm{C}, 30 \mathrm{~min}$) was used to collect the DNA pellets before they were washed with 70% ethanol $\left(-20^{\circ} \mathrm{C}\right)$. Ethanol disrupts sample loading into the wells of the SDS-PAGE gel, therefore pellets were dried on ice in ventilation cabinet (20 min) prior to resuspension in 0.1 M $\mathrm{NaOH}(10 \mu \mathrm{l})$ and heat treatment $\left(90^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$. All tested enzymes were monofunctional and activity was confirmed by NAOH and heat mediated incision following the creation of AP sites [53], for negative controls enzyme specific reaction buffer was added in the same amount as enzyme to obtain equal sample volumes. Samples were then mixed with formamide gel loading buffer ($10 \mu \mathrm{l}$), heated for 5 min at $90^{\circ} \mathrm{C}$ and immediately cooled on ice. Samples ($5 \mu \mathrm{l}$) were loaded to prewashed wells and run on freshly made denaturing PAGE gels ($20 \%(\mathrm{w} / \mathrm{v}$) polyacrylamide gel containing 8 M urea for 2 h at 200 V in RT and darkness using $1 \times$ TBE as running buffer.

2.3 Production and purification of hSMUG (25-270)

2.3.1 Making competent cells

Bacterial cells

E.coli BL21 (DE3) (from in-house stock), freeze cultures stored at $-80^{\circ} \mathrm{C}$

A single colony of E. coli BL21 (DE3) was inoculated in LB media (3 ml) and grown overnight at $37^{\circ} \mathrm{C}$ with vigorous shaking. The overnight culture was then transferred ($200 \mu \mathrm{l}$) to LB media (25 ml), and grown at $37^{\circ} \mathrm{C}$ with vigorous shaking, until the culture reached an OD_{600} of $0.3-0.5$. Once the culture had reached the desired value for the OD_{600} measurement, the culture was placed on ice for 10 min . The culture was then divided to round bottom falcon tubes (4 tubes, 6 ml each), before they were centrifuged for 10 min at $4000 \times \mathrm{g}$ and $4^{\circ} \mathrm{C}$. Supernatant was decanted and discarded before the pellets were resuspended in $100 \mathrm{mM} \mathrm{CaCl} 2\left(3 \mathrm{ml}, 4^{\circ} \mathrm{C}\right)$ and left to incubate on ice for 30 min . Cells were harvested by centrifugation ($10 \mathrm{~min}, 4000 \times \mathrm{g}$ and $4^{\circ} \mathrm{C}$), supernatant was again decanted and discarded and the pellet was resuspended in $\mathrm{CaCl}_{2}(400 \mu \mathrm{l})$. Cells not immediately used were snap frozen in liquid nitrogen, and stored for later use at $-80^{\circ} \mathrm{C}$.

2.3.2 Transforming bacteria

Plasmid

pETM-11 hSMUG (25-270). (a kind gift from prof. Hilde Nilsen)

Plasmid (50 ng) was added to competent cells ($200 \mu \mathrm{l}$) before incubation on ice for 30 min . The tubes were then placed in a $42^{\circ} \mathrm{C}$ water bath for exactly 90 seconds and then immediately placed on ice to cool down. LB media (1 ml) was added to the tubes before 1 h incubation at $37^{\circ} \mathrm{C}$ with vigourous shaking followed. The transformation solution was then plated ($200 \mu \mathrm{l}$) on a LB plate containing Kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and grown overnight at $37^{\circ} \mathrm{C}$.

2.3.3 Autoinduction

A single colony from the previous step was inoculated in ZYM-5052 (500 ml) containing kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$), and then incubated at $28^{\circ} \mathrm{C}$ for 24 hours with vigorous shaking (220 rpm). Cells were harvested through centrifugation at 6000 rpm for 20 minutes at RT.

2.3.4 Affinity purification

Buffers

Buffers are listed in table 8.

Table 8: Buffers used for production and purification of hSMUG (25-270)

Buffer	Composition
Lysis buffer	50 mM TRIS pH 7.5,300 $\mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol
Equilibration buffer	50 mM TRIS pH 7.5,300 mM NaCl
Wash buffer	50 mM TRIS pH 7.5,300 $\mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole
Elution buffer 1	50 mM TRIS pH 7.5,300 $\mathrm{mM} \mathrm{NaCl}, 100 \mathrm{mM}$ imidazole
Elution buffer 2	50 mM TRIS pH 7.5,300 $\mathrm{mM} \mathrm{NaCl}, 500 \mathrm{mM}$ imidazole
Dialisys buffer 1	50 mM TRIS pH 7.5,300 $\mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{B-ME}$
Dialisys buffer 2	50 mM TRIS ph 7.5,300 mM NaCl

Purification of $6 x$ (His)-hSMUG (25-270) was performed in several steps including affinity purification with Tallon beads as a first step followed by the dialysis and TEV protease treatment, and as the last step a second affinity chromatography using the Äkta start purification system and HiTrap TALLON ${ }^{\circledR}$ Crude 1 ml column. Lysis buffer was added to the pellet from previous step (7 ml per gram of pellet) along with one tablet of Complete EDTA-free protease inhibitor cocktail (Roche) and frozen at $-20^{\circ} \mathrm{C}$. After the lysis buffer was thawed, the bacterial lysate was supplemented with lysozyme (final concentration $100 \mu \mathrm{~g} / \mathrm{ml}$), DNAse I (final concentration $5 \mu \mathrm{~g} / \mathrm{ml}$), RNAse A (final concentration 5 $\mu \mathrm{g} / \mathrm{ml}$), Tergitol (final concentration 0.5%) and MgCl_{2} (final concentration 0.5%) followed by 30 min incubation at RT with gentle orbital shaking. The lysate was then sonicated with pulse-on for 10 sec and pulse-off 10 sec using 30\% amplitude (Branson Digital Sonifier ${ }^{\circledR}$) for a total of 30 sec sonication. Afterwards, the insoluble debris were removed by centrifugation at 20000 rpm for 40 min at $4^{\circ} \mathrm{C}$. The supernatant (crude extract) was placed on ice for following batch purification. TALON ${ }^{\circledR}$ Metal Affinity Resin (2 ml) was prepared in accordance with manufacturer instructions (TaKaRa) and equilibrated with the equilibration buffer. After equilibration, beads were incubated with 35 ml of crude extract from previous step for 30 min at $4^{\circ} \mathrm{C}$. Then the flow through (crude extract after treatment with beads) was separated by centrifugation ($900 \times \mathrm{g}, 10 \mathrm{~min}, 4^{\circ} \mathrm{C}$) and removed to be analyzed by SDS-PAGE to evaluate the efficiency of 6-(His)-tag binding to the beads. Next, the beads were washed with washing buffer (10 ml) for 10 min , and centrifuged ($700 \times \mathrm{g}, 5 \mathrm{~min}$, $4^{\circ} \mathrm{C}$) prior to elution. Elution of $6 \times$ (His)-hSMUG (25-270) was performed using elution buffer $1(2 \mathrm{ml})$ incubated with the beads for 10 min at $4^{\circ} \mathrm{C}$. Elution fraction containing the protein of interest was collected by centrifugation ($700 \times \mathrm{g}, 5 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The elusion step was repeated once. The fractions from two elusion steps were analyzed by SDS-PAGE as described in section 2.3.5 before dialysis.

Dialysis:

The dialysis was needed to treat the samples with the TEV protease, remove the traces of imidazole and remove the histag for the TEV treated fractions. First elution fractions (2 ml) from previous step were split in two. One was treated with TEV protease ($25 \mu \mathrm{l}$ of AcTEV protease, Themo Fisher Scientific, 12575015) to remove the $6 \times$ (His)-tag, and the other was left untreated. Two fractions (1 ml each) were dialyzed using the Pre-wetted RC tubing MWCO 15 kDa (SpectraPor ${ }^{\circledR}$) in 2 L dialysis buffer 1 and incubated with gentle stirring o / n at $4^{\circ} \mathrm{C}$. For the fraction without TEV a second dialysis using dialysis buffer 2 was performed for 3 h at $4^{\circ} \mathrm{C}$ to remove the traces of $\beta \mathrm{ME}$ which interferes with the BCA protein measurement assay. In order to separate TEV protease, $6 \times$ (His)-peptide and un-cleaved $6 \times$ (His)-hSMUG (25-270) and other contaminants, the second affinity chromatography was performed using HiTrap TALON ${ }^{\circledR}$ crude 1 ml column and Äkta Start purification system. The Äkta Start purification system was prepared according to the manual by washing pumps, valves, fractionation tubes and the column first with water, and then with the equilibration buffer. The 1 ml fraction from dialysis after TEV protease treatment was loaded to the Hitrap Tallon crude 1 ml column using sample valve with the flow rate $1 \mathrm{ml} / \mathrm{min}$. The flow through contacting the protein with cleaved $6 \times$ (His)-tag was collected in two 2 ml fractions. Elutions of the column were made stepwise with $50 \mathrm{mM}, 125 \mathrm{mM}, 250 \mathrm{mM}, 375 \mathrm{mM}$ and 500 mM elution buffer 2, and fractions were collected with 1 ml collection size with the flow rate $1 \mathrm{ml} / \mathrm{min}$. Fractions from flow through were analyzed by nanodrop and BCA.

2.3.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis

Buffers

Buffers are listed in Table 9

Table 9: Buffers used for SDS-PAGE analysis

Buffer	Composition
$1 \times$ TRIS-Glycine running buffer	25 mM trisma base, 0.192 M glycine, 1% SDS
formamide gel loading buffer	80% formamide, 1 mM EDTA and 1\% (w/v) blue dextran

Samples ($10 \mu \mathrm{l}$) were mixed with formamide gel loading buffer ($10 \mu \mathrm{l}$) and heated for 5 min at $95^{\circ} \mathrm{C}$. The samples were then cooled for two minutes before they were loaded ($15 \mu \mathrm{l}$) into the wells of a precast SDS-PAGE Gel (BIO-RAD Mini ProteanR TGXT Precast Gel $10 \%, 12$ well). The $10 \mu \mathrm{~L}$ of Precision plus protein ${ }^{\mathrm{TM}}$ dual color standard (BioRad) was used as a molecular weight standard. The system was run with $1 \times$ Tris-Glycine running buffer for SDS-PAGE, for 30 min at 220 V . The gel was then stained with the Simple Blue Protein Stain (Novex by Life Technologies Simply Blue ${ }^{\text {TM }}$ SafeStain) according to the manufacturers manual. After staining, the gel was analyzed on Chemidoc Tough (BioRad). The figure was modified using the Image Lab software (BioRad).

2.3.6 Determination of protein concentration

Protein concentration from previous steps were measured using the BCA Protein Assay Kit (Pierce ${ }^{\text {TM }}$) according to the user manual. Briefly, the microplate procedure with a sample to Working Reagent (WR) ratio of 1:8 was employed using the Culture plates (VWR ${ }^{\circledR}$ Tissue Culture Plates, 96 wells-F, sterile). The 9 standards of BSA were prepared in accordance with manufacturers manual (see app. A.3) using equilibration buffer as diluent. The WR was prepared as described in the maufacturers manual. For each standard and unknown sample, 25μ was transferred to a microplate well along with $200 \mu \mathrm{l}$ of $W R$, followed by 30 min incubation at $37^{\circ} \mathrm{C}$. Plate was cooled to RT before absorbance was measured at 562 nm on a plate reader (Molecular Devices, SpectraMax ${ }^{\circledR}$ Paradigm ${ }^{\circledR}$ Multi-Mode

Detection Platform). Results from the reading provided a standard curve from where the sample concentrations were calculated.

2.3.7 Verification of protein

Materials

- Primary rabbit anti-SMUG (Abcam, Ab192240)
- Goat anti rabbit- IgG-HRP (SouthernBiotech)

A Western Blot (WB) was performed to verify the protein of interest and confirm the efficiency of TEV cleavage. $10 \mathrm{ng}, 20 \mathrm{ng}, 50 \mathrm{ng}$, and 100 ng protein samples with HISTag and without HISTag were used for WB. The samples for SDS-PAGE were treated as above mentioned. For blotting a $0.2 \mu \mathrm{~m}$ PVDF membrane was used as part of the Trans-Blot ${ }^{\circledR}$ Turbo ${ }^{\text {™ }}$ Transfer Pack and performed according to the user manual. A Trans Blot ${ }^{\oplus}$ Turbo ${ }^{\text {TM }}$ Transfer System was used to blot the gel for 3 minutes. The membrane was blocked by $5 \%(0,1 \%$ Twin 20$)$ for 1 h at $4^{\circ} \mathrm{C}$. Then the membrane was incubated with primary rabbit anti-SMUG Ab 1:2000 (Abcam, Ab192240) in 5% PBST milk at $4^{\circ} \mathrm{C}$ overnight. The blot was then washed $3 \times 5 \mathrm{~min}$ with PBST (0.1% Tween 20), before being incubated with secondary Goat anti rabbit- IgG-HRP ab 1:2000 (SouthernBiotech) in 5\% PBST milk for 1.5 h at RT. Blot was again washed $3 \times 5 \mathrm{~min}$ and developed using the SuperSignal ${ }^{\text {TM }}$ West Pico Kit (Thermo Scientific). Blot was then analysed using Chemidoc Tough from BioRad.

3 Results

3.1 Effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in E. coli.

Rifampicin is a potent and broad spectrum antibiotic, primarily used to treat tuberculosis in the medicine of today. It works by obstructing transcription by binding to the β-subunit of the RNA polymerase, which is encoded by the rpo B^{+}gene in E. coli. A multitude of mutations, including all types of base substitutions in this gene, will give rise to rifampicin resistance (Rif ${ }^{\mathrm{R}}$) [62]. In this study resistance to rifampicin was used to measure the mutation rate without and with $f^{5} \mathrm{dU}$ addition to a bacterial culture of 2 ml grown for about two days. The total number of bacteria was determined by different dilutions of the final culture plated on glucose dishes, while the number of mutants arisen was determined by transferring undiluted culture on plates with rifampicin added. From each experiment, one mutant colony was harvested and part of their rpoB B^{+}gene (Rif ${ }^{R}$ region) was amplified and sequenced followed by comparison to the wild type sequence.

3.1.1 uvrB ${ }^{-}$

In total 22 assays were started in 2019 which yielded 51 colonies that were chosen for further analysis, in addition 37 mutant bacterial cultures from 2016 were processed and analyzed. Of the 51 analyzed colonies from 2019, five had mutations that fell outside of the sequenced area, and three yielded sequences of too poor quality to make a definitive decision as to which mutation had occurred. Of the 37 analyzed cultures from 2016, eight were of too poor quality to determine the mutations. In addition, three sequences from 2019 and two sequences from 2016 did not give any result in matching sequences when run through the BLAST program of ncbi. That leaves 67 out of the 88 mutants that were successfully analyzed and are presented in Table 10 and Figure 14.

Table 10: Distribution of mutations detected in Escherichia coli uvrB- (AB 1885)

Mutation	Spontaneous		$\mathbf{0 . 1 m M} \mathbf{f}^{5} \mathbf{d U}$	
	$\%$	No.	$\%$	No.
AT \rightarrow CG	0	0	0	0
GC \rightarrow AT	54.2	19	71.9	23
GC \rightarrow CG	5.7	2	3.1	1
GC \rightarrow TA	34.3	12	15.6	5
AT \rightarrow TA	2.9	1	6.3	2
AT \rightarrow GC	2.9	1	3.1	1
TOT	100	35	100	32

The predominant base substitution in both spontaneously arisen and $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ induced mutations, is the GC \rightarrow AT transition, constituting 54.2% and 71.9% of all detected mutations, respectively. The second most common substitution is the GC \rightarrow TA transversion constituting 34.3% of all spontaneously arisen mutations and 15.6% of all $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ induced mutations.
The order of spontaneously arisen mutation distribution is:
$\mathrm{GC} \rightarrow \mathrm{AT}>\mathrm{GC} \rightarrow \mathrm{TA}>\mathrm{GC} \rightarrow \mathrm{CG}>\mathrm{AT} \rightarrow \mathrm{TA}=\mathrm{AT} \rightarrow \mathrm{GC}$
The order of $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ induced mutation distribution is:
$\mathrm{GC} \rightarrow \mathrm{AT}>\mathrm{GC} \rightarrow \mathrm{TA}>\mathrm{AT} \rightarrow \mathrm{TA}>\mathrm{GC} \rightarrow \mathrm{CG}=\mathrm{AT} \rightarrow \mathrm{GC}$
No AT \rightarrow CG mutations were detected in the strain.

Figure 14: Distribution of detected mutations in the Rif ${ }^{\mathrm{R}}$ region of the rpo $^{+}$gene in Escherichia coli uvrB ${ }^{-}$strain (AB 1885).

Yellow line indicates the wild type sequence. Letters placed above the wild type sequence indicates $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ induced mutations while letters placed below the wild type sequence indicates spontaneous mutations. Numbering of the bases is based upon [62].

The mutations detected were distributed between 10 sites within the sequenced part of the rpo B^{+} gene, where six of the sites were shared between spontaneously arisen mutations and mutations induced by the addition of $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$. Three sites were exclusive to spontaneous mutation and one was exclusive to a $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ induced mutation.

3.1.2 uvrC

Only two assays were started with the $u v r C$ (AB1884) strain, and 9 mutant colonies were further analyzed. One sequence was of too poor quality to determine the actual mutation, and the results of the eight remaining sequences are presented in Table 11 and Figure 15.

Table 11: Distribution of mutations detected in Escherichia coli AB 1884

Mutation	Spontaneous		$\mathbf{0 . 1 m M} \mathbf{f}^{5} \mathbf{d U}$	
	$\%$	No.	$\%$	No.
AT \rightarrow CG	0	0	0	0
GC \rightarrow AT	100	2	50	3
GC \rightarrow CG	0	0	0	0
GC \rightarrow TA	0	0	33.3	2
AT \rightarrow TA	0	0	0	0
AT \rightarrow GC	0	0	16.7	1
TOT	100	2	100	6

The results from the uvrC mutagenesis experiments provide little information unless combined with previously obtained data, which is undertaken in the Discussion section.

Figure 15: Distribution of detected mutations in the Rif ${ }^{\mathrm{R}}$ region of the rpoB gene in Escherichia coli AB 1884 strain. Yellow line indicates the wild type sequence. Letters placed above the wt sequence indicates $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ induced mutations while letters placed below the wt sequence indicates spontaneous mutations. Numbering of the bases is based upon [62].

3.2 DNA glycosylase activities for $N^{4}, 5$-dimethylcytosine

The method used to determine DNA glycosylase activity in this thesis relied upon a method where fluorescently tagged oligodeoxyribonucleotides with $\mathrm{m}^{N 4,5} \mathrm{C}$ inserted at a specific position were hybridized with complimentary oligodeoxyribonucleotides with A, C, G or T placed opposite the damaged base. As all tested enzymes were monofunctional DNA glycosylases, the samples were treated with NaOH and heat to cleave the resultant AP site followed by denaturing PAGE to separate cleaved product DNA from un-cleaved substrate DNA. As positive control for enzyme activity, a verified control substrate was submitted to the same conditions as the tested substrates and run on the same gel (lane 10 in all gels).

For each enzyme, three parallels were performed to confirm the results. None of the enzymes tested showed any activity against the $\mathrm{m}^{N 4,5} \mathrm{C}$ lesion when placed opposite any of the four native DNA bases at the tested concentrations. Results are presented in figures 16-18, and additional gels are included in the appendices.

Figure 16: Denaturing PAGE gel of MutY shows no activity towards $\mathrm{m}^{N 4,5} \mathrm{C}$ when placed opposite $\mathrm{A}, \mathrm{C}, \mathrm{G}$ or T Lanes 1-4 are negative controls with no added enzyme to the substrates, lanes 5-8 are substrates with MutY enzyme added, lane 9 is negative control of control substrate (A:G) with no enzyme added and lane 10 is the positive control for enzyme activity. Incubation was 1 h at $37^{\circ} \mathrm{C}$.

Figure 17: Denaturing PAGE gel of hMPG shows no activity towards $\mathrm{m}^{\mathrm{N4,5}} \mathrm{C}$ when placed opposite $\mathrm{A}, \mathrm{C}, \mathrm{G}$ or T Lanes 1-4 are negative controls with no added enzyme to the substrates, lanes 5-8 are substrates with MPG enzyme added, lane 9 is negative control of control substrate ($\varepsilon A: T$) with no added enzyme and lane 10 is the positive control for enzyme activity. Incubation was 1 h at $37^{\circ} \mathrm{C}$.

Figure 18: Denaturing PAGE gel of hSMUG (25-270) shows no activity towards $\mathrm{m}^{\mathrm{N4,5}} \mathrm{C}$ when placed opposite A, C, G or T Lanes 1-4 are negative controls with no added enzyme to the substrates, lanes 5-8 are substrates with hSMUG (25-270) enzyme added, lane 9 is negative control of control substrate (U:G) with no added enzyme and lane 10 is the positive control for enzyme activity. Incubation was 1 h at $37^{\circ} \mathrm{C}$.

3.3 Production and purification of hSMUG (25-270)

3.3.1 Competent cells and transformation

The competent cells were successfully transferred with the desired plasmid, confirmed by transformation by the control plasmid PUC 19.

3.3.2 Autoinduction

The transfer of one single colony containing the desired plasmid into auto induction media resulted in 5 g of cell pellet with expressed protein per 500 ml of media.

3.3.3 Purification

After the first batch purification the samples were analyzed by SDS-PAGE, and the results are presented in Figure 19. The protein bands are clearly visible, with the expected decrease in intensity after the second elution.
MW - Molecular weight ladder
FT1 - First flow through
S1E1 - Sample 1, first elution
S1E2 - Sample 2, second elution
FT2 - Second flow through
S2E1 - Second sample, first elution
S2E2 - Second sample, second elution

Figure 19: SDS-PAGE gel of eluted samples of purified hSMUG (25-270)

After the dialisys the next step was a second affinity chromatography using the Äkta Start purification system. Data collected through this analysis is presented in Figure 21, where the inserted percentages indicate amount of imidazole used to elute the sample.

Figure 20: Chromatogram from the Äkta Start purification system

The first peak of the chromatogram in Figure 20 was collected and used to perform SDS-PAGE analysis, followed by a western blot which is presented in figure 21.

3.3.4 Determining concentration

Concentration was determined by BCA protein assay, followed by microplate analysis and the results were compared to the standard curve and found to be $96 \mu \mathrm{~g} / \mathrm{ml}$ (the OD measurements are presented in Table 12).

Table 12: OD measurements from BCA protein assay and subsequent microplate analysis

Samples	Wells	OD values	Concentration ($\mu \mathrm{g} / \mathrm{ml}$)	Mean concentration	SD	CV
1	A11	0,148	122,729	120,297	2,591	2,2
	B11	0,142	117,572			
	C11	0,145	120,588			
2	A12	0,070	47,415	44,334	4,442	10,0
	B12	0,062	39,241			
	C12	0,069	46,345			
3	D1	0,056	33,396	22,310	11,094	49,7
	E1	0,033	11,120			
	F1	0,045	22,505			
4	D2	0,018	-3,670	-12,558	9,962	$79,3$
	E2	-0,002	-23,326			
	F2	0,011	-10,676			

3.3.5 Protein verification

Protein was verified by a Western Blot, which also established the difference in size of the $6 x$ (His)Tag bound protein and the cleaved protein as shown in Figure 21.

Figure 21: Western blot showing the size difference of the his tag bound protein and cleaved protein.

4 Discussion

4.1 Effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in

E. coli.

This thesis work combined with previously obtained results from the project provide an experimentally solid basis to draw conclusions. Therefore, the first part of this section is dedicated to presenting the combined findings of the study.

Mutation frequencies and distribution

In all figures regarding distribution of mutations, the position (base numbering) is based upon the start codon, ATG, of the rpoB ${ }^{+}$gene with the A in the ATG codon as base number one [62].

Table 13: Percentage and distribution of base substitutions among Rif ${ }^{\mathrm{R}}$ mutants arisen spontaneously and induced by the addition of $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ to exponentially growing cells of E. coli.

	Wild type* *		uvrA $^{* *}$		uvrB $^{-}$		uvrC	
$\mathrm{f}^{5} \mathrm{dU}$	0 mM	0.1 mM						
	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$
$\mathrm{AT} \rightarrow \mathrm{CG}$	$11.6(10)$	$2.9(2)$	$1.6(1)$	$1.2(1)$	0	0	0	0
$\mathrm{GC} \rightarrow \mathrm{AT}$	$34.9(30)$	$11.8(8)$	$61.9(39)$	$38.2(34)$	$50(26)$	$61.3(38)$	$65.6(40)$	$52.5(32)$
$\mathrm{GC} \rightarrow \mathrm{CG}$	$3.5(3)$	0	0	$1.2(1)$	$7.7(4)$	$1.6(1)$	0	0
$\mathrm{GC} \rightarrow \mathrm{TA}$	$13.9(12)$	$4.4(3)$	$25.4(16)$	$22.5(20)$	$30.8(16)$	$16.1(10)$	$23.0(14)$	$36.1(22)$
$\mathrm{AT} \rightarrow \mathrm{TA}$	$10.5(9)$	$7.4(5)$	$4.8(3)$	$11.2(10)$	$3.8(2)$	$6.5(4)$	$1.6(1)$	0
$\mathrm{AT} \rightarrow \mathrm{GC}$	$13.9(12)$	$66.2(45)$	$3.2(2)$	$14.6(13)$	$1.9(1)$	$4.8(3)$	$1.6(1)$	$6.6(4)$
Indels	$2.3(2)$	0	0	0	0	0	0	0
Unknown	$9.3(8)$	$7.4(5)$	$3.2(2)$	$11.2(10)$	$5.8(3)$	$9.7(6)$	$8.2(5)$	$4.9(3)$
TOTAL	$100(86)$	$100(68)$	$100(63)$	$100(89)$	$100(52)$	$100(62)$	$100(61)$	$100(61)$

Numbers in parenthesis indicates number of mutants

* Data collected from [4]

Figure 22: Distribution of spontaneous mutations in all repair deficient strains compared to wild type.
Yellow line indicates the wild type sequence of the sequenced part of the rpoB+ ${ }^{+}$gene.
a) above yellow line: spontaneous wild type mutations, below yellow line: spontaneous uvrA mutations b) above yellow line: spontaneous wild type mutations, below yellow line: spontaneous uvrB- mutations c: above yellow line: spontaneous wild type mutations, below yellow line: spontaneous uvrc- mutations

Figure 23: Distribution of $\mathrm{f}^{5} \mathrm{dU}$ induced mutations in all repair deficient strains compared to wild type.
Yellow line indicates the wild type sequence of the sequenced part of the rpoB ${ }^{+}$gene.
a) above yellow line: $\mathrm{f}^{5} \mathrm{dU}$ induced wild type mutations, below yellow line: $\mathrm{f}^{5} \mathrm{dU}$ induced uvrA- mutations b) above yellow line: $\mathrm{f}^{5} \mathrm{dU}$ induced wild type mutations, below yellow line: $\mathrm{f}^{5} \mathrm{dU}$ induced uvrB- mutations c: above yellow line: $\mathrm{f}^{5} \mathrm{dU}$ induced wild type mutations, below yellow line: $\mathrm{f}^{5} \mathrm{dU}$ induced uvrC- mutations

Figure 24: Map showing mutation distribution within the sequenced part of the rpo B^{+}gene of all four
investigated E. Coli strains, both spontaneous and $\mathrm{f}^{5} \mathrm{dU}$ induced.
Each number represents the percentage of detectable base substitutions within each strain with or
without $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ added to the growth media.

Mutation rates

Since bacteria grow exponentially and mutational events are assumed to be stochastic [63], the information gathered from the mutation frequencies is limited. In short this can be explained by the fact that a mutation that originates early in the growth period prior to selection, will yield more daughter cells carrying that mutation than mutations that arise later in the growth period, a phenomenon referred to as a "jackpot culture", first described by Luria and Delbrück [64]. By calculating the total mutation rates for each individual strain and the mutation rate for each type of mutation, the information provided is more accurate and not skewed by when the mutational event occurred. In short, the mutation rate can be explained as the theoretical probability of a mutational event per cell division.

Mutation rate calculations were based on the p_{0} method first described in reference [64]. The results of the diluted cultures plated on glucose dishes was used to determine the number of cells $/ 100 \mu$ at the end of each experiment $\left(N_{t}\right)$, where $\mathrm{n}=\mathrm{cells} / 100 \mu \mathrm{l}$. In addition the number of cells at the start of each experiment was also known (N_{0}). From these numbers the number of cell divisions (and thus potentially mutagenic events) was calculated.
Mutation rate calculations are based upon a selection of the performed experiments where the n value was used as a discriminating factor. The interval was set to $n=0.5 \times 10^{8}-1.5 \times 10^{8}$ cells $/ 100 \mu$ l. All numbers and calculations are provided in appendix A.1.4.

Table 14: Mutation rates for RifR in exponentially growing cells of wild type, uvrA', uvrB- and uvrC- cells

	Wild type		uvrA ${ }^{-}$		uvrB ${ }^{-}$		uvrC	
Mutation rate ($\times 10^{-9}$)								
$\mathrm{f}^{5} \mathrm{dU}$		fold		fold		fold		fold
0.0 mM	1.27	1	0.99	1	1.43	1	2.29	1
0.1 mM	2.4	1.89	1.24	1.25	3.98	2.78	4.19	1.83

Table 15: Mutation rate distribution for RifR in exponentially growing cells of wild type, uvrA', uvrB- and uvrC- cells

	Wild type		uvrA ${ }^{-}$		uvrB ${ }^{-}$		uvrC	
	Mutation rates ($\times 10^{-9}$)							
	0.0 mM	0.1 mM						
AT \rightarrow CG	0.15	0.07	0.02	0.01	0	0	0	0
$\mathrm{GC} \rightarrow \mathrm{AT}$	0.44	0.28	0.61	0.47	0.72	2.44	1.50	2.20
$\mathrm{GC} \rightarrow \mathrm{CG}$	0.04	0	0	0.01	0.11	0.06	0	0
$\mathrm{GC} \rightarrow \mathrm{TA}$	0.18	0.11	0.25	0.28	0.44	0.64	0.53	1.51
AT \rightarrow TA	0.13	0.18	0.05	0.14	0.05	0.26	0.04	0
$\mathrm{AT} \rightarrow \mathrm{GC}$	0.18	1.59	0.03	0.18	0.03	0.19	0.04	0.28

Figure 25: Mutation rate comparison between wild type and the three tested repair deficient strains of E. Coli, with or without $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ added to the growth medium of exponentially growing cells.
a) Wild type compared to $u v r A^{-}$
b) Wild type compared to $u^{\prime} \mathrm{ur}^{-}$
c) Wild type compared to uvrC-

Effects of adding $0.1 \mathrm{mM} f^{5} d U$ to the growth medium of exponentially growing E. coli cells
Early experiments performed on the $u v r B^{-}$strain showed a decrease in relative growth of 6% when $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ was added to the growth medium of exponentially growing cells. This indicates that the additive is moderately cytotoxic, and mainly mutagenic, which is in accordance with previous findings [3].

NER involvement in mutation induction by $f^{5} d U$ in E. coli

There is in vitro evidence that the NER pathway can repair $f^{5} U$ lesions in mammalian cells [19]. Previous experiments performed within our group using uvrA- cells indicated that the uvrA ${ }^{+}$gene was highly involved in promotion and somewhat involved in alleviation of $\mathrm{f}^{5} \mathrm{dU}$ induced mutations, based upon the change in mutational pattern observed between the wild type and uvrA- strains (unpublished results). This was evident at positions 1534 and 1547, which were clear hot spots for $f^{5} d U$ induced mutations in the wild type. All $f^{5} d U$ induced AT $\rightarrow G C$ transitions in wild type were found at these two sites. At position 1534 no mutations were detected in the $u v r A^{-}$strain, and at position 1547 few were detected (Figure 23 a).
To determine if these findings were limited to UvrA involvement or if other players in the NER pathway were also involved, the experiments were started on $u v r B^{-}$cells and $u v r C$ cells.
The results show that the same pattern holds true for both strains (Figure 23 b and c), where no or very few mutations were detected at positions 1534 and 1547. This is a clear indication that all the NER proteins, and thus the NER pathway are involved in mutation induction by $\mathrm{f}^{5} \mathrm{dU}$.

Even though the findings in this study indicate that the NER pathway is involved in promoting $f^{5} \mathrm{dU}$ induced mutations, and by an extension, repair of $f^{5} d U$ induced lesions, the BER pathway is most likely the main repair mechanism for $f^{5} \mathrm{U}$, due to the small distortion to the DNA structure caused by this lesion [3].
AlkA is the primary glycosylase for repairing $f^{5} U$ in E.coli, with several back up glycosylases [51, 65],

Addition of $0.1 \mathrm{mM} f^{5} d U$ to the growth medium of exponentially growing E. coli cells increase the overall mutation rate

The total mutation rate did not increase significantly in the $u v r A^{-}$strain (1.3 fold) as apposed to somewhat less than 2 fold in the $u v r C$ and 2.8 fold in the $u v r B^{-}$strains (Table 14). However, the types of mutations contributing to the increase differs between the strains. The insignificant increase in the $u v r A^{-}$cells will be discussed later, while the focus here will be on the difference between the wt, $u v r B^{-}$and $u v r C$ strains.

The main contributor to the increase in mutation rate observed in wt is the AT $\rightarrow G C$ transition (Figure 25). However, the same cannot be said for UvrC and $u v r B^{\circ}$, where the main contributor is the $\mathrm{GC} \rightarrow$ AT transition and the GC \rightarrow TA transversion, respectively. There is no reasonable explanation as to why the three strains behave so differently when incorporating $f^{5} U$ into DNA (Figure 26). Maybe wild type and $u v r C$ seem to favor the incorporation of the keto form of $f^{5} U$, while $u v r B^{-}$favor the ionized form?
a)

b)

c)

A-rule

Figure 26: Proposed models for mutation induction by $\mathrm{f}^{5} \mathrm{dU}$.

A possibly unknown function of UvrA

All strains with an intact $u v r A^{+}$gene show a distinct increase in the overall mutation rate when exposed to $0.1 \mathrm{mM} \mathrm{f}^{5} \mathrm{dU}$ (Figure 26 b and c), whereas the mutation rate in the $u v \mathrm{~A}^{-}$strain only has a very slight or no increase (Figure 26 a). The NER pathway is disabled in all three repair deficient strains, yet the findings in this study suggest that all NER proteins are involved in mutation induction by $f^{5} d U$ induced lesions. Why then, does the $u v r A^{-}$strain show so little increase in the total mutation rate compared to the other strains?

As discussed in the introduction, UvrA initiates the NER pathway by facilitating binding between UvrB and dsDNA before dissociating, leaving behind a stable UvrB-DNA complex which then recruits UvrC to perform the incisions. UvrA is not involved in the actual repair, it could therefore be regarded as a facilitator more than a repair protein. Several studies have proposed UvrA as a "molecular matchmaker" [27, 66], which utilize the energy released from ATP hydrolysis to perform a conformational change within the DNA binding protein (see Introduction). UvrA fulfills all the proposed criteria for being a molecular matchmaker [67].
1: Affinity of the two molecules in question must be low when the matchmaker is not present.
-UvrB will not bind dsDNA in solution, only ssDNA [31].
2: Stable complex formation between the two molecules must be obtained.
-Studies have shown that the half-life of the UvrB-DNA complex is 2-3 hours [68].
3: Conformational change is required without covalent interactions.
-The cryptic ATPase activity of UvrB is codependent on the presence of both UvrA and DNA, which is explained by the conformational change within the UvrB protein upon binding to UvrA and DNA [30].
4: The matchmaker itself or one of the matched molecules must be an ATPase.

- UvrA is a DNA-independent ATPase, and the UvrB protein exhibits cryptic ATPase activity when bound to UvrA and DNA[30].
5: The matchmaker must leave the complex after stable complex formation is achieved.
-Upon damage detection and verification, UvrA will facilitate binding of UvrB to DNA through ATP hydrolysis. UvrA will then dissociate, leaving behind a UvrB-DNA complex which has a high affinity for UvrC [26].
All strains where UvrA is present show a distinct increase in total mutation rate, this could be explained if UvrA exhibits more functions than is presently known. For instance, if UvrA has a function where it recruits other repair enzymes upon detecting $f^{5} U$ lesions in addition to UvrB.

4.2 DNA glycosylase activities for $\mathbf{N}^{4}, 5-$ dimethylcytosine

The results from this part of the project is also combined with earlier results within the same project. As there was no activity detected in any of the investigated DNA glycosylases, we are close to conclude that Nei is the major glycosylase for repair of $\mathrm{m}^{N 4,5} \mathrm{C}$ in DNA (highest activity opposite G), and together with Fpg provide repair of the lesion opposite all common bases in DNA [17]. To reach a final conclusion it is needed to investigate 3-methyladenine-DNA-glycosylase I (Tag), which, however, is unlikely to exhibit activity for $\mathrm{m}^{\mathrm{N4,5}} \mathrm{C}$ due to its very narrow substrate specificity [55]

Table 16: DNA glycosylase activity against $\mathrm{m}^{\mathrm{N4,5}} \mathrm{C}$ paired with normal DNA bases in short oligonucleotides

DNA pairing/ glycosylases		$\mathrm{m}^{\text {N4,5 }} \mathrm{C}: \mathrm{G}$	$\mathrm{m}^{\text {N4,5 }} \mathrm{C}: \mathrm{C}$	$\mathrm{m}^{\mathrm{N4,5}} \mathrm{C}: \mathrm{A}$	$\mathrm{m}^{\text {N4,5 }} \mathrm{C}: \mathbf{T}$
E. coli	Fpg	-	+++	-	+
	Nei	+++	-	+	+
	Nth	-	-	-	-
	MutY*	-	-	-	-
	Ung	-	-	-	-
	Mug	-	-	-	-
Human	hOGG1	-	-	-	-
	hSMUG1	-	-	-	-
	hTDG	-	-	-	-
	hNEIL1	-	-	-	-
	hNEIL2	-	-	-	-
	hNEIL3	-	-	-	-
	hMPG*	-	-	-	-
	hUNG	-	-	-	-

High activity: +++, low activity: +, no activity: -
*Tested as part of this master thesis
Adapted from [17]

4.3 Future prospectives

Some questions were answered as a result of this thesis work, yet more were raised, as is often the case when working in science. Questions that were raised include why the different strains seem to incorporate $\mathrm{f}^{5} \mathrm{dU}$ differently leading to distinct raise in specific mutations, and maybe most importantly, why does $u v r A^{-}$not experience the same rise in total mutation rates as other investigated strains? Could there be an unknown function of the UvrA protein not yet discovered? Also, the effects of higher $\mathrm{f}^{5} \mathrm{dU}$ concentrations such as 0.2 mM for $u v r A^{-}, u v r B^{-}$and $u v r C$ strains should be investigated. In addition, an investigation to see the effects of $\mathrm{f}^{5} \mathrm{dU}$ on the double mutant $u v r A^{-}$alkA could shed some more insight to the repair of $f^{5} U$ in DNA. Another important issue to consider is whether or not the SOS response is induced as a consequence of the addition of $\mathrm{f}^{5} \mathrm{dU}$ to the growth medium.

References

Uncategorized References

1. Krwawicz, J., et al., Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochim Pol, 2007. 54(3): p. 413-34.
2. Cadet, J. and J.R. Wagner, DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol, 2013. 5(2).
3. Bjelland, S. and E. Seeberg, Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res, 2003. 531(1-2): p. 37-80.
4. Grøsvik, K., et al., The Escherichia coli alkA gene is activated to alleviate mutagenesis by an oxidised base.
5. Ånensen, H., et al., Mutations induced by 5-formyl-2'-deoxyuridine in Escherichia coli include base substitutions that can arise from mispairs of 5-formyluracil with guanine, cytosine and thymine. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001. 476(1-2, 9 May 2001): p. 99-107.
6. Sedgwick, B., Repairing DNA-methylation damage. Nat Rev Mol Cell Biol, 2004. 5(2): p. 14857.
7. Breiling, A. and F. Lyko, Epigenetic regulatory functions of DNA modifications: 5methylcytosine and beyond. Epigenetics Chromatin, 2015. 8: p. 24.
8. Chen, Q.W., et al., Epigenetic regulation and cancer (review). Oncol Rep, 2014. 31(2): p. 52332.
9. Rydberg, B. and T. Lindahl, Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J, 1982. 1(2): p. 211-6.
10. Li, E., T.H. Bestor, and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992. 69(6): p. 915-26.
11. Klungland, A. and A.B. Robertson, Oxidized C5-methyl cytosine bases in DNA: 5Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med, 2017. 107: p. 62-68.
12. Cooper, D.N. and H. Youssoufian, The CpG dinucleotide and human genetic disease. Hum Genet, 1988. 78(2): p. 151-5.
13. Ratel, D., et al., N6-methyladenine: the other methylated base of DNA. Bioessays, 2006. 28(3): p. 309-15.
14. Yao, B., et al., DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun, 2017. 8(1): p. 1122.
15. Yao, B., et al., Active N(6)-Methyladenine Demethylation by DMAD Regulates Gene Expression by Coordinating with Polycomb Protein in Neurons. Mol Cell, 2018. 71(5): p. 848857 e6.
16. Klimasauskas, S., et al., N4,5-dimethylcytosine, a novel hypermodified base in DNA. Nucleic Acids Res Suppl, 2002(2): p. 73-4.
17. Alexeeva, M., et al., Excision of the doubly methylated base N(4),5-dimethylcytosine from DNA by Escherichia coli Nei and Fpg proteins. Philos Trans R Soc Lond B Biol Sci, 2018. 373(1748).
18. Ames, B.N., M.K. Shigenaga, and T.M. Hagen, Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7915-22.
19. Kino, K., et al., Nucleotide excision repair of 5-formyluracil in vitro is enhanced by the presence of mismatched bases. Biochemistry, 2004. 43(10): p. 2682-7.
20. Muruzabal-Lecumberri, I., et al., Alleviation and promotion of damage-specific mutation induction in Escherichia coli are highly dependent on the uvrA gene.
21. Wirth, N., et al., Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition. J Biol Chem, 2016. 291(36): p. 18932-46.
22. Verhoeven, E.E., et al., The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J, 2002. 21(15): p. 4196-205.
23. Malta, E., G.F. Moolenaar, and N. Goosen, Dynamics of the UvrABC nucleotide excision repair proteins analyzed by fluorescence resonance energy transfer. Biochemistry, 2007. 46(31): p. 9080-8.
24. Pakotiprapha, D., et al., Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol, 2012. 19(3): p. 291-8.
25. Thiagalingam, S. and L. Grossman, Both ATPase sites of Escherichia coli UvrA have functional roles in nucleotide excision repair. J Biol Chem, 1991. 266(17): p. 11395-403.
26. Friedberg, E.C., et al., DNA Repair and mutagenesis. 2 ed. 2006, Washington, DC 20036-2904: ASM Press.
27. Sancar, A. and M.S. Tang, Nucleotide excision repair. Photochem Photobiol, 1993. 57(5): p. 905-21.
28. Myles, G.M. and A. Sancar, Isolation and characterization of functional domains of UvrA. Biochemistry, 1991. 30(16): p. 3834-40.
29. Timmins, J., et al., Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs. Structure, 2009. 17(4): p. 547-58.
30. Caron, P.R. and L. Grossman, Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res, 1988. 16(22): p. 10891-902.
31. Van Houten, B., et al., DNase I footprint of ABC excinuclease. J Biol Chem, 1987. 262(27): p. 13180-7.
32. Moolenaar, G.F., L. Hoglund, and N. Goosen, Clue to damage recognition by UvrB: residues in the beta-hairpin structure prevent binding to non-damaged DNA. EMBO J, 2001. 20(21): p. 6140-9.
33. Hildebrand, E.L. and L. Grossman, Oligomerization of the UvrB nucleotide excision repair protein of Escherichia coli. J Biol Chem, 1999. 274(39): p. 27885-90.
34. Moolenaar, G.F., et al., Function of the homologous regions of the Escherichia coli DNA excision repair proteins UvrB and UvrC in stabilization of the UvrBC-DNA complex and in 3'incision. Mutat Res, 1997. 385(3): p. 195-203.
35. Zou, Y., et al., Formation of DNA repair intermediates and incision by the ATP-dependent UvrB-UvrC endonuclease. J Biol Chem, 1997. 272(8): p. 4820-7.
36. Moolenaar, G.F., et al., Characterization of the Escherichia coli damage-independent UvrBC endonuclease activity. J Biol Chem, 1998. 273(52): p. 34896-903.
37. Singh, S., et al., Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli. EMBO J, 2002. 21(22): p. 6257-66.
38. Easton, A.M. and S.R. Kushner, Transcription of the uvrD gene of Escherichia coli is controlled by the lexA repressor and by attenuation. Nucleic Acids Res, 1983. 11(24): p. 8625-40.
39. Maples, V.F. and S.R. Kushner, DNA repair in Escherichia coli: identification of the uvrD gene product. Proc Natl Acad Sci U S A, 1982. 79(18): p. 5616-20.
40. Orren, D.K., et al., Post-incision steps of nucleotide excision repair in Escherichia coli. Disassembly of the UvrBC-DNA complex by helicase II and DNA polymerase I. J Biol Chem, 1992. 267(2): p. 780-8.
41. Gross, J. and M. Gross, Genetic analysis of an E. coli strain with a mutation affecting DNA polymerase. Nature, 1969. 224(5225): p. 1166-8.
42. Campbell, J.L., L. Soll, and C.C. Richardson, Isolation and partial characterization of a mutant of Escherichia coli deficient in DNA polymerase II. Proc Natl Acad Sci U S A, 1972. 69(8): p. 2090-4.
43. Scharer, O.D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012609.
44. Song, J., M.G. Kemp, and J.H. Choi, Detection of the Excised, Damage-containing Oligonucleotide Products of Nucleotide Excision Repair in Human Cells. Photochem Photobiol, 2017. 93(1): p. 192-198.
45. Lindahl, T., An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A, 1974. 71(9): p. 3649-53.
46. Kim, Y.J. and D.M. Wilson, 3rd, Overview of base excision repair biochemistry. Curr Mol Pharmacol, 2012. 5(1): p. 3-13.
47. Krokan, H.E., et al., Base excision repair of DNA in mammalian cells. FEBS Lett, 2000. 476(12): p. 73-7.
48. Seeberg, E., L. Eide, and M. Bjoras, The base excision repair pathway. Trends Biochem Sci, 1995. 20(10): p. 391-7.
49. Friedberg, E.C., et al., DNA repair and mutagenesis. 2006: p. 169-226.
50. Alexeeva, M., et al., Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Nucleic Acids Res, 2019. 47(2): p. 779-793.
51. Whitaker, A.M., et al., Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed), 2017. 22: p. 1493-1522.
52. Kavli, B., et al., hUNG2 is the major repair enzyme for removal of uracil from $U: A$ matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem, 2002. 277(42): p. 39926-36.
53. Nilsen, H., et al., Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J, 2001. 20(15): p. 4278-86.
54. Pearl, L.H., Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res, 2000. 460(3-4): p. 165-81.
55. Bjelland, S., M. Bjoras, and E. Seeberg, Excision of 3-methylguanine from alkylated DNA by 3methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res, 1993. 21(9): p. 20459.
56. Doetsch, P.W. and R.P. Cunningham, The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res, 1990. 236(2-3): p. 173-201.
57. Demple, B., A. Johnson, and D. Fung, Exonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci U S A, 1986. 83(20): p. 7731-5.
58. Cunningham, R.P., et al., Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol, 1986. 168(3): p. 1120-7.
59. Dianov, G. and T. Lindahl, Reconstitution of the DNA base excision-repair pathway. Curr Biol, 1994. 4(12): p. 1069-76.
60. Xu, G., et al., Base excision repair, aging and health span. Mech Ageing Dev, 2008. 129(7-8): p. 366-82.
61. Cupples, C.G. and J.H. Miller, A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A, 1989. 86(14): p. 5345-9.
62. Garibyan, L., et al., Use of the rpoB gene to determine the specificity of base substitutions on the Escherichia coli chromosome. DNA Repair, 2003: p. 593-608.
63. Rosche, W.A. and P.L. Foster, Determining mutation rates in bacterial populations. Methods, 2000. 20(1): p. 4-17.
64. Luria, S.E. and M. Delbruck, Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics, 1943. 28(6): p. 491-511.
65. Bjelland, S., et al., DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. J Biol Chem, 1994. 269(48): p. 30489-95.
66. Lin, J.J. and A. Sancar, (A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme. Mol Microbiol, 1992. 6(16): p. 2219-24.
67. Sancar, A., DNA excision repair. Annu Rev Biochem, 1996. 65: p. 43-81.
68. Van Houten, B. and A. Snowden, Mechanism of action of the Escherichia coli UvrABC nuclease: clues to the damage recognition problem. Bioessays, 1993. 15(1): p. 51-9.

Appendices

A. 1 Effects of the UvrABC system on mutation induction by 5- formyldeoxyuridin 56
A.1.1 Buffers, solutions and dishes 56
A.1.2 Detailed protocols. 58
A.1.2.1 Mutagenesis 58
A.1.2.2 DNA-extraction, -amplification and -sequencing. 60
A.1.3 Complete assay overview 60
A.1.4 Results, mutation rate calculations, BLAST diagrams and chromatograms of mutant colonies. 86
A. 2 DNA glycosylase activities for $N^{4}, 5$-dimethylcytosin. 251
A.2.1 Buffers and solutions 251
A.2.2 Detailed protocols 253
A.2.2.1 Hybridization of oligos 253
A.2.2.2 Base excision assay 253
A.2.2.3 Gel preparation, loading and running 255
A.2.3 Results, additional gels 256
A.2.3.1 MutY 256
A.2.3.2 hMPG 256
A.2.3.3 hSMUG (25-270) 257
A. 3 Production and purification of hSMUG (25-270) 258
A.3.1 Buffers and solutions. 258
A.3.2 Detailed protocols 258
A.3.2.1 Competent cells 258
A.3.2.2 Transforming bacteria. 259
A.3.2.3 Autoinduction 259
A.3.2.4 Affinity purification 259
A.3.2.5 SDS-PAGE analysis 261
A.3.2.6 Measurement of protein concentration. 261
A.3.2.7 Protein verification 262

A. 1 Effects of the UvrABC system on mutation induction by 5-formyldeoxyuridine in Escherichia coli.

A.1.1 Buffers, solutions and dishes

Table A.1.1: $10 \times$ A buffer

Components	Amount used in preparation	Manufacturer
$\mathrm{K}_{2} \mathrm{HPO}_{4}$	105 g	Merck: $1.05104 .1000, \mathrm{Mw}: 174.18 \mathrm{~g} / \mathrm{mol}$
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	45 g	Merck: $1.04873 .1000, \mathrm{Mw}: 136.09 \mathrm{~g} / \mathrm{mol}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	10 g	Merck: $1.01217 .1000, \mathrm{Mw}: 132.10 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Na}_{3} \mathrm{O}_{7} \times 2 \mathrm{H}_{2} \mathrm{O}$	5 g	Merck: $1.06448 .1000, \mathrm{Mw}: 294.10 \mathrm{~g} / \mathrm{mol}$
dH		
Autoclave before use	Dilute to 1000 ml	

Table A.1.2: $50 \times$ TAE

Components	Amount used in preparation	Manufacturer
Tris Base	48.4 g	Sigma, Cat. \#T6066, $121.14 \mathrm{~g} / \mathrm{mol}$
99.5% Acetic acid	11.42 ml	
0.5 M EDTA, pH 8	20 ml	Lab stock
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 200 ml	
Autoclave before use		

Table A.1.3: $1 \mathrm{M} \mathrm{MgSO}_{4}$

Components	Amount used in preparation	Manufacturer
$\mathrm{MgSO}_{4} \times 7 \mathrm{H}_{2} \mathrm{O}$	22.85 g	Merck: $1.05886 .0500, \mathrm{Mw}: 246.48 \mathrm{~g} / \mathrm{mol}$
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 100 ml	

Autoclave before use, store at $4^{\circ} \mathrm{C}$ in a dark bottle.

Table A.1.4: 0.5 M EDTA, pH 8

Components	Amount used in preparation	Manufacturer
EDTA	37.22 g	Sigma: ED2SS, Mw: $372.2 \mathrm{~g} / \mathrm{mol}$
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to $200 \mathrm{ml}^{*}$	
Dilute to 150 ml , and then adjust pH to dissolve the EDTA, using hydrochloric acid. Autoclave before use.		

Table A.1.5: 20\% Glucose

Components	Amount used in preparation	Manufacturer
Glucose	40.0 g	Merck: $1.08337 .1000, \mathrm{Mw}: 180.16 \mathrm{~g}$
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 200 ml	
Autoclave before use, store at $4^{\circ} \mathrm{C}$		

Autoclave before use, store at $4^{\circ} \mathrm{C}$.

Table A.1.6: Vitamine $B_{1}(5 \mathrm{mg} / \mathrm{ml})$

Components	Amount used in preparation	Manufacturer
Thiamine	0.05 g	Sigma: T4625-10G, Mw $337.27 \mathrm{~g} / \mathrm{mol}$
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 10 ml	
Autoclave before use.		

Table A.1.7: L-amino acids ($4 \mathrm{mg} / \mathrm{ml}$)

Components	Amount used in preparation	Manufacturer
L-threonine	1 g	Sigma: T-8441, Mw: $119.1 \mathrm{~g} / \mathrm{mol}$
L-arginine	1 g	Sigma: A-5131, Mw: $210.7 \mathrm{~g} / \mathrm{mol}$
L-proline	1 g	Sigma: P-0380, Mw: $115.1 \mathrm{~g} / \mathrm{mol}$
L-leucine	1 g	Sigma: L-8125, Mw: $209.6 \mathrm{~g} / \mathrm{mol}$
L-histidine	1 g	Sigma: $\mathrm{H}-8125, \mathrm{Mw}: 155.15 \mathrm{~g} / \mathrm{mol}$
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 250 ml	

Autoclave before use.

Table A.1.8: Rifampicin ($30 \mathrm{mg} / \mathrm{ml}$)

Components	Amount used in preparation	Manufacturer
Rifampicin	0.150 g	Sigma: R-3501, Mw: $823 \mathrm{~g} / \mathrm{mol}$
Methanol	Dilute to 5 ml	

Store at $-20^{\circ} \mathrm{C}$ and add to LB media when cultivating mutant colonies. Make fresh solution when adding to media to make dishes.

Table A.1.9: $\mathrm{f}^{5} \mathrm{dU}(10 \mathrm{mM})$

Components	Amount used in preparation	Manufacturer
$\mathrm{f}^{5} \mathrm{dU}$	0.026 g	Gift from prof A.Matsuda, $\mathrm{Mw}: 256.18 \mathrm{~g} / \mathrm{mol}$
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 10 ml	
Store in aliquotes at $-20^{\circ} \mathrm{C}$.		

Table A.1.10: A-medium (liquid)

Components	Amount used in preparation
$10 \times \mathrm{A}$ buffer	20 ml
1 M MgSO	
20% Glucose	0.2 ml
Amino acids $(4 \mathrm{mg} / \mathrm{ml})$	2 ml
Vitamin $\mathrm{B}_{1}(5 \mathrm{mg} / \mathrm{ml})$	0.2 ml
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 200 ml

Autoclave before use, store at $4^{\circ} \mathrm{C}$.

Table A.1.11: Glucose dishes

Components	Amount used in preparation
Agar	12 g
$10 \times$ A buffer	100 ml
20% Glucose	10 ml
1 M MgSO	4
Amino acids $(4 \mathrm{mg} / \mathrm{ml})$	1 ml
Vitamin $\mathrm{B}_{1}(5 \mathrm{mg} / \mathrm{ml})$	1 ml
Deionized $\mathrm{H}_{2} \mathrm{O}$	Dilute to 1000 ml

Autoclave and transfer to dishes.
To make glucose plates with rifampicin, let the bottle cool down to $55^{\circ} \mathrm{C}$ and add 5 ml rifampicin solution $(30 \mathrm{mg} / \mathrm{ml})$ before transferring to dishes. Store for up to one month at $4^{\circ} \mathrm{C}$.

Table A.1.12: Agarose gel

Components	Amount used in preparation	Manufacturer
Agarose	0.5 g	Sigma: 5093
$1 \times$ TAE	Dilute to 50 ml	

Boil in microwave until the agarose is completely dissolved. Cool down to $55^{\circ} \mathrm{C}$ before adding $5 \mu \mathrm{l}$ of GelRed. Mix well and pour into chamber. Let dry for 20-30 min prior to use.

A.1.2 Detailed protocols

A.1.2.1 Mutagenesis

1 - Starting overnight (ON) culture in liquid medium
The bacterial cultures are stored at $-80^{\circ} \mathrm{C}$. Start an ON-culture by using a sterile loop ($1 \mu \mathrm{l}$) to transfer bacteria to a sterile falcon tube containing LB medium (5 ml), followed by incubation for 18-24 h ($37^{\circ} \mathrm{C}, 240 \mathrm{rpm}$).

2 - Spreading bacteria from overnight culture
Use a sterile plastic loop ($1 \mu \mathrm{l}$) to spread the bacteria onto a LB plate, which functiones as a stock where colonies for further analysis are harvested. Incubate the plate for $18-24 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$, and then store at $4^{\circ} \mathrm{C}$. To keep the colonies fresh, a single colony should be harvested and spread onto a new LB plate approximately once a week.

3 - Starting ON cultures for analysis Cultures are harvested from the stock plate and transferred into liquid A-medium (2 ml). For each assay six colonies are transferred to six different culture tubes, before incubation at $37^{\circ} \mathrm{C}$ for $18-24$ hours at a tilted angle. One control tube containing only liquid A-medium should also be incubated under the same conditions.

4 - Measuring concentration and diluting cultures
Use the Bio-Rad spectrophotometer to measure absorption of the cultures at 600 nm . The control sample without added colony is used to blank the spectrophotometer. The ideal absorption values are between 0.4 and 0.8 , so the samples with a value closest to 0.6 should be chosen for further analysis.
The cultures are then diluted to 200.000 bact/ml by first diluting 1:100 by adding $10 \mu \mathrm{l}$ of culture to $990 \mu \mathrm{l} 1 \times$ A-buffer, and then calculate the amount of $1 \times$ A-buffer needed for further dilution using this formula: (bact/ $\left.\mathrm{ml}\left(\times 10^{8}\right) \times 10 \times 25\right)-25=$ amount of $1 \times$ A-buffer needed. The 1:100 dilution $(50 \mathrm{ml})$ is then added to the calculated amount of A-buffer, and 293μ l of the final dilution is added to a falcon tube containing A-medium ($6,5 \mathrm{ml}$), and incubated for 2 h at $37^{\circ} \mathrm{C}$ and 240 rpm to adapt cells, and ensure that mutagenesis is performed during exponential growth.

5 - Mutagenesis

After two hours each sample is divided into three parallels (2 mL), and $\mathrm{f}^{5} \mathrm{dU}$ is added ($20 \mu \mathrm{l}$, sterile) to each parallel, for control samples no $f^{5} \mathrm{dU}$ is added. Further incubation followes at $37^{\circ} \mathrm{C}, 240 \mathrm{rpm}$ for 45-48h.

6 - Harvesting cells
Put the cultures on ice to stop the mutagenesis, and vortex each glass tube before dividing into two Eppendorf tubes ($1,5 \mathrm{ml}$ microspin tube, 1 ml each). The tubes are then centrifuged; $5000 \mathrm{rpm}, 4$
$\min , 4^{\circ} \mathrm{C}$. The supernatant is discarded, and $1 \times$ A-buffer $(1 \mathrm{ml})$ is used to wash the pellet. Perform a second centrifugation with the same settings and discard the supernatant again. Resuspend the pellets in $1 \times$ A-buffer ($0,5 \mathrm{ml}$ to each tube) before the two tubes of each samples are combined again (giving a total of 1 tube with 1 ml washed bacteria per sample).

7 - Dilution of bacterial cultures

The bacterial cultures are diluted as described in table A.1.13:

Table A.1.13: Dilution scheme for bacterial cultures

Dilution		Bacterial culture	$1 \times \mathrm{A}$-buffer	Total volume
10^{-2}	$1: 100$	$10 \mu \mathrm{l}$ concentrated	$990 \mu \mathrm{l}$	$1000 \mu \mathrm{l}$
10^{-4}	$1: 10000$	$10 \mu \mathrm{l} 1: 100$ dilution	$990 \mu \mathrm{l}$	$1000 \mu \mathrm{l}$
10^{-5}	$1: 100000$	$100 \mu \mathrm{l} 1: 10000$ dilution	$900 \mu \mathrm{l}$	$1000 \mu \mathrm{l}$
10^{-6}	$1: 1000000$	$100 \mu \mathrm{l} 1: 100000$ dilution	$900 \mu \mathrm{l}$	$1000 \mu \mathrm{l}$
10^{-7}	$1: 10000000$	$100 \mu \mathrm{l} 1: 1000000$ dilution	$900 \mu \mathrm{l}$	$1000 \mu \mathrm{l}$

8 - Spreading dishes
For each assay, a total of 60 minimal media (glucose) plates, and 72 minimal media + rifampicin plates are used. The dishes should be marked with assay number, sample number, dilution and initials prior to use. Add cultures and spread bacteria using an ethanol (70\%) and flame sterilized steel loop according to table A.1.14. Incubate the dishes at $37^{\circ} \mathrm{C}$ for 48 hours (minimal media) or 96 hours (minimal media + rifampicin).

Table A.1.14: Plates used for mutagenesis assay

Dilution	Volume	Dish
10^{-5}	$100 \mu \mathrm{l}$	Minimal media $\times 1$
10^{-6}	$100 \mu \mathrm{l}$	Minimal media $\times 2$
10^{-7}	$100 \mu \mathrm{l}$	Minimal media $\times 2$
Concentrated culture	$100 \mu \mathrm{l}$	Minimal media + rifampicin $\times 6$

9 - Cultivating mutant colonies
For every sample, a suitable colony should be harvested and inoculated into LB media (2 ml), containing $150 \mu \mathrm{~g} / \mathrm{ml}$ rifampicin, and vortexed before incubating at $37^{\circ} \mathrm{C}, 240 \mathrm{rpm}$ for 5 - 7 days.

A.1.2.2 DNA-extraction, -amplification and -sequencing

10 - DNA extraction
Put the cultures on ice, before mixing with sterile water (5μ l culture and 100μ l water, DNase-, RNase-, and -Protease free). Boil the mixture for 5 min , before cooling on ice (1 min) prior to centrifugation; $13000 \mathrm{rpm}, 3 \mathrm{~min}, 4^{\circ} \mathrm{C}$. The supernatant ($80 \mu \mathrm{l}$) is then transferred to a sterile microspin tube ($1,5 \mathrm{ml}$).

11 - Polymerase Chain Reaction (PCR)
The PCR reaction is set up as described in table XXX.
Table A.1.15: PCR reaction mix

Reagent	$1 x$ Reaction $(\mu \mathrm{l})$	Final concentration
$5 \times$ GoTaq Flexi buffer	10	$1 \times$
25 mM MgCl	2	3
1.5 mM		
dNTP	1	$200 \mu \mathrm{M}$ each
Primer $1021(10 \mathrm{pmol} / \mu \mathrm{l})$	1	$0.2 \mathrm{pmol} / \mu \mathrm{l}$
Primer $1022(10 \mathrm{pmol} / \mu \mathrm{l})$	1	$0.2 \mathrm{pmol} / \mu \mathrm{l}$
GoTaq Hot start DNA polymerase $(5 \mathrm{U} / \mu \mathrm{l})$	0.25	$1.25 \mathrm{U} / \mu \mathrm{l}$
Sterile $\mathrm{H}_{2} \mathrm{O}$	28.75	
Total	45	

For each PCR, multiply the reaction mix with the number of samples $(\mathrm{n})+2$ (one negative control, and one extra).
Aliquot he reaction mix ($45 \mu \mathrm{l}$) into $\mathrm{n}+1$ microspin tubes $(0,2 \mathrm{ml})$ and add the DNA templates $(5 \mu \mathrm{l})$.
Sterile water is used as a negative control.
Amplify the DNA using the parameters in table A.1.16.

Table A.1.16: PCR set up

Step	Time	Temperature	Cycles
Initial denaturation	4 min	$94^{\circ} \mathrm{C}$	$\times 1$
Denaturation	1 min	$94^{\circ} \mathrm{C}$	$\times 4$
Annealing	1 min	$50^{\circ} \mathrm{C}$	
Extension	20 sec	$72^{\circ} \mathrm{C}$	
Final extension	5 min	$72^{\circ} \mathrm{C}$	$\times 1$
Storage	∞	$4^{\circ} \mathrm{C}$	

12 - Gel of PCR products
Run the PCR products on a 1\% agarose gel with GelRed ($5 \mu \mathrm{l}$) for 40 min at 100 V

13 - Purification of PCR products

When necessary the PCR products should be purified using a purification kit (NucleoSpin ${ }^{\circledR}$ Gel and PCR Clean-up, Macherey-Nagel).

1. $2 \times \mathrm{V}$ NT1 is added to the PCR product ($45 \mu \mathrm{l}$ PCR products $=90 \mu \mathrm{NT} 1$), mixed and then 90 $\mu \mathrm{l}$ should be transferred to the column, which is placed in a collecting tube.
2. The columns are centrifuged; $11000 \mathrm{rpm}, 30 \mathrm{sec}, 4^{\circ} \mathrm{C}$.
3. Discard the content in the collection tube.
4. NT3 buffer is added to the column ($700 \mu \mathrm{l}$).
5. The columns are centrifuged; $11000 \mathrm{rpm}, 30 \mathrm{sec}, 4^{\circ} \mathrm{C}$.
6. The content in the collection tube is discarded.
7. Steps 4 through 6 are repeated.
8. Dry the silica in the column; $11000 \mathrm{rpm}, 30 \mathrm{sec}, 4^{\circ} \mathrm{C}$.
9. Discard the content in the collection tube.
10. Place the column in a regular microspin tube ($1,5 \mathrm{ml}$).
11. Elute the DNA by adding NE ($15 \mu \mathrm{l})$, and incubate for 1 minute.
12. Centrifuge the columns; $1.000 \mathrm{rpm}, 1 \mathrm{~min}, 4^{\circ} \mathrm{C}$.

14 - Nanodrop measure
The surface of the instrument should first be cleaned using sterile water (DNase-, RNase-, and Protease free), before calibrating with either sterile water or NE (sterile water for PCR products, NE for purified PCR samples). Samples are measured ($2 \mu \mathrm{l}$), and results registered.

15 - Preparation for sequencing
For each sample, dilute $5 \mu \mathrm{I}$ PRC products (or purified PCR products) with primer mix ($5 \mu \mathrm{l}$), before shipping to sequencing. The primer mix consists of $5 \mu 1021$ primer 10 mM and 5μ l sterile water (DNase-, RNase-, and -Protease free).
Lable the tubes with barcodes, and insert the corresponding sticker to the right sample in your journal.
Sequencing is performed by GATC Biotech AG, European custom sequencing centre, using sanger sequencing.

A.1.3 Complete assay overview

Assay number: 2019/1
Bacterial strain: AB 1885 (uvrB)
Overnight culture: 19 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ n r}$	OD at $\mathbf{6 0 0} \mathbf{~ \mathbf { ~ m ~ }}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0 ^ { \mathbf { 8 } })}\right.$
\mathbf{a}	0.394	1.97	d	0.502	2.51
\mathbf{b}	0.010	0	e	0.459	2.29
\mathbf{c}	0.504	2.52	f	0.512	2.56

Cultures chosen for further analysis: $c=A, d=B, e=C, f=D$
Mutagenesis: 45.5 h

Notes

Number of colonies on glucose dishes					
Dish	10^{-5}				
AK	-	-	-	-	-
AF I	-	-	-	-	-
AF II	-	-	-	-	-
BK	-	-	-	-	-
BFI	-	-	-	-	-
BF II	-	-	-	-	-
CK	-	-	-	-	-
CFI	1	-	-	-	-
CF II	-	-	-	-	-
DK	2	2	1	-	-
DF I	-	-	-	-	-
DF II	-	-	-	-	-

Number of colonies on rifampicin dishes							Number of dishes
AK	-	-	-	-	-	-	6
AF I	-	-	-	-	-	-	6
AF II	-	-	-	-	-	-	6
BK	-	-	-	-	-	-	6
BFI	-	-	-	-	-	-	6
BF II	-	-	-	-	-	-	6
CK	-	-	-	-	-	-	6
CFI	-	-	-	-	-	-	6
CF II	-	-	-	-	-	-	6
DK	-	-	-	-	-	-	6
DFI	-	-	-	-	-	-	6
DF II	-	-	-	-	-	-	6

Notes: Fire in lab during critical step of the assay. Work was interrupted and is probably the reason for no growth in the dishes.
Incubation time glucose dishes: $50.5 \mathrm{~h} \quad$ Incubation time rifampicin dishes: 91 h
No mutant colonies to cultivate, assay aborted at this stage.

Assay number: 2019/2
Bacterial strain: AB 1885 (uvrB)

Overnight culture: 19.75 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0 ^ { \mathbf { 8 } })}\right.$
\mathbf{a}	0.513	2.56	d	0.513	2.57
\mathbf{b}	0.522	2.61	e	0.525	2.63
\mathbf{c}	0.541	2.71	f	0.527	2.63

Cultures chosen for further analysis: $b=A, c=B, e=C, f=D$
Mutagenesis: 46 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	9	1	-	-	-
AF I	-	-	-	-	-
AF II	-	-	-	-	-
BK	-	-	-	-	-
BF I	260	16	29	4	-
BF II	136	17	7	1	3
CK	-	-	-	-	-
CF I	217	26	15	2	2
CF II	-	-	-	-	-
DK	-	-	-	-	-
DF I	-	-	-	-	-
DF II	-	-	-	-	-

Number of colonies on rifampicin dishes							Number of dishes
AK	1	-	-	-	-	-	6
AF I	-	-	-	-	-	-	6
AF II	-	-	-	-	-	-	6
BK	-	-	-	-	-	-	6
BFI	-	-	-	-	-	-	6
BF II	1	-	-	-	-	-	6
CK	-	-	-	-	-	-	6
CFI	1	-	-	-	-	-	6
CF II	-	-	-	-	-	-	6
DK	-	-	-	-	-	-	6
DFI	-	-	-	-	-	-	6
DF II	-	-	-	-	-	-	6

Notes: Incubation time glucose dishes: 49 h
Incubation time rifampicin dishes: 96 h
3 colonies from three different plates were cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/3
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)
Overnight culture: $21,5 \mathrm{~h}$
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ m m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ n r}$	OD at $\mathbf{6 0 0} \mathbf{~ \mathbf { n m }}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.578	2.89	d	0.476	2.38
\mathbf{b}	0.551	2.76	e	0.541	2.71
\mathbf{c}	0.578	2.89	f	0.533	2.66

Cultures chosen for further analysis: $a=A, b=B, c=C, e=D$
Mutagenesis: 45 h
Notes: No growth during mutagenesis in tubes CF II, DF I and DF II. These samples were not included in further analysis. Contamination in one of the Eppendorf tubes in test CK, only half volume in sample, therefore only 4 rifampicin dishes.

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	14	-	2	-	-
AF I	4	-	-	-	-
AF II	11	3	-	-	-
BK	2	1	-	-	-
BFI	89	7	-	-	-
BF II	30	1	-	-	-
CK	2	1	2	-	-
CFI	1	1	-	-	-
CF II					
DK	5	3	1		1
DFI					
DF II					

Notes: Incubation time glucose dishes: $48.5 \mathrm{~h} \quad$ Incubation time rifampicin dishes: 91.5 h 1 colony from 1 sample was cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/4
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 22 hours
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.491	2.45	d	0.436	2.18
\mathbf{b}	0.451	2.26	e	0.459	2.30
\mathbf{c}	0.412	2.06	f	0.468	2.34

Cultures chosen for further analysis: $a=A, b=B, e=C, f=D$
Mutagenesis: 45.5 h

Notes: Overnight cultures grown in plastic tubes, no glass tubes available.
No growth during mutagenesis for cultures AF I, AF II, BF I, BF II, CF I and CF II. These samples were not included in further analysis.

Notes: Incubation time glucose dishes: $49.5 \mathrm{~h} \quad$ Incubation time rifampicin dishes: 96 h
3 colonies from 3 different samples cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 6 days.

Assay number: 2019/5

Bacterial strain: AB 1885 (uvrB-)
Overnight culture: 23,5 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0 ^ { \mathbf { 8 } })}\right.$
\mathbf{a}	0.524	2.62	d	0.454	2.26
\mathbf{b}	0.532	2.66	e	0.526	2.63
\mathbf{c}	0.527	2.64	f	0.521	2.60

Cultures chosen for further analysis: $a=A, b=B, c=C, e=D$
Mutagenesis: 45 h
Notes: No growth in any tubes during mutagenesis, assay aborted at this point.

Assay number: 2019/6
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)
Overnight culture: 20 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ m m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ \mathbf { ~ m }}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0 ^ { \mathbf { 8 } })}\right.$
\mathbf{a}	0.452	2.26	e	0.631	3.15
\mathbf{b}	0.536	2.68	f	0.591	2.96
\mathbf{c}	0.416	2.08	g	0.622	3.11
\mathbf{d}	0.571	2.86			

Cultures chosen for further analysis: $d=A, e=B, f=C, g=D$
Mutagenesis: 45 h

Notes: No growth in sample AF I, sample excluded from further analysis.

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	50	62	66	13	29
AF I					
AF II	61	6	3	-	1
BK	509	89	89	12	26
BFI	259	35	52	6	7
BF II	516	89	93	14	1
CK	546	59	55	6	8
CF I	457	44	55	7	9
CF II	411	57	62	7	7
DK	531	82	67	8	6
DF I	370	54	53	7	6
DF II	414	56	49	4	4

Number of colonies on rifampicin dishes							Number of dishes
AK		-	-	-	-	-	6
AF I							
AF II	-	-	-	-	-	-	6
BK	-	-	-	-	-	-	6
BF I	150	172	164	188	146	145	6
BF II	1	-	2	1	-	1	6
CK	-	1	-	-	-	-	6
CFI	-	1	1	1	-	-	6
CF II	-	-	-	-	2	2	6
DK	3	2	2	3	4	1	6
DF I	-	-	3	1	1	1	6
DF II	-	1	3	1	1	1	6

Notes: Incubation time glucose dishes: 48 h
Incubation time rifampicin dishes: 92 h
8 colonies from 8 different samples were cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/7

Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r ~}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
a	0.628	3.14	d	0.631	3.16
\mathbf{b}	0.627	3.14	e	0.638	3.19
c	0.629	3.14	f	0.622	3.11

Cultures chosen for further analysis: $a=A, b=B, c=C, f=D$
Mutagenesis: 45.5 h

Notes: No visible turbidity in sample DF II, no pellet after centrifugation. Sample excluded from the rest of the assay.

Number of colonies on glucose dishes					
Dish	10^{-5}				
AK	2	-	1	-	-
AF I	-	-	-	-	-
AF II	3	-	-	-	-
BK	-	-	-	-	-
BF I	4	2	3	-	-
BF II	-	-	-	-	-
CK	-	-	-	-	-
CFI	-	-	-	-	-
CF II	-	-	-	-	-
DK	-	-	-	-	-
DF I	1	-	-	-	-
DF II					

Number of colonies on rifampicin dishes							Number of dishes
AK	-	-	-	-	-	-	6
AF I	-	-	-	-	-	-	6
AF II	-	-	-	-	-	-	6
BK	-	-	-	-	-	-	6
BF I	-	-	-	-	-	-	6
BF II	-	-	-	-	-	-	6
CK	-	-	-	-	-	-	6
CFI	-	-	-	-	-	-	6
CF II	-	-	-	-	-	-	6
DK	-	-	-	-	-	-	6
DFI	-	-	-	-	-	-	6
DF II							

Notes: Incubation time glucose dishes: 50.5 h No mutant colonies, assay aborted at this stage.

Incubation time rifampicin dishes: 93.5 h

Assay number: 2019/8
Bacterial strain: AB 1885 (uvrB)

Overnight culture: 22.5 h
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r ~}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.661	3.30	d	0.647	3.23
\mathbf{b}	0.638	3.19	e	0.661	3.31
\mathbf{c}	0.631	3.15	f	0.646	3.23

Cultures chosen for further analysis: $b=A, c=B, d=C, f=D$
Mutagenesis: 45.5 h

Notes: No visible growth, and no pellet formed during centrifugation in the following samples: AF II, BK, BF II, DF I and DF II. These samples were excluded from the rest of the assay.

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	602	103	86	8	10
AF I	517	48	78	9	5
AF II					
BK					
BF I	635	81	78	7	12
BF II					
CK	746	93	112	11	10
CFI	586	56	74	3	4
CF II	380	75	61	6	8
DK	413	59	26	8	11
DF I					
DF II					

Number of colonies on rifampicin dishes							Number of dishes
AK	-	-	-	-	-	-	6
AF I	2	1	-	1	-	-	6
AF II							
BK							
BF I	3	4	3	4	6	5	6
BF II							
CK	8	7	14	6	10	14	6
CFI	1	-	2	3	-	2	6
CF II	-	1	1	-	1	-	6
DK	4	3	6	1	1	1	6
DF I							
DF II							

Notes: Incubation time glucose dishes: 51 h
Incubation time rifampicin dishes: $9 ., 5 \mathrm{~h}$
6 colonies from 6 different samples were cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 6 days

Assay number: 2019/9

Bacterial strain: AB 1885 (uvrB)
Overnight culture: 21 hours
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ m m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
a	0.617	3.08	d	0.631	3.15
b	0.655	3.27	e	0.653	3.26
c	0.629	3.14	f	0.638	3.19

Cultures chosen for further analysis: $a=A, c=B, d=C, f=D$ Mutagenesis:
Notes: Assay aborted during mutagenesis due to illness.

Assay number: 2019/10

Bacterial strain: AB 1885 (uvrB)

Overnight culture: 21 h
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
a	0.661	3.30	d	0.686	3.43
\mathbf{b}	0.645	3.23	e	0.659	3.29
c	0.659	3.30	f	0.679	3.40

Cultures chosen for further analysis: $a=A, b=B, c=C, e=D$
Mutagenesis: 47.5 h
Notes: Due to unresolved growth issues during previous assays, growth period prior to mutagenesis was extended from 2 to 3 h in this assay. This is the first assay with visible turbidity and pellet in all samples.

Number of colonies on glucose dishes						
Dish	10^{-5}					
AK	609	72				
AF I	657	88	96	5	10^{-7}	
AF II	526	67	69	8	12	
BK	603	77	50	6	9	
BF I	500	3	59	5	7	
BF II	501	78	73	-	8	
CK	526	63	52	17	-	
CF I	466	77	42	5	4	
CF II	494	71	83	7	2	
DK	-	-	70	8	8	
DF I	347	29	-	-	4	
DF II	411	38	65	6	-	

Number of colonies on rifampicin dishes									Number of dishes
AK	-	-	-	$\mathbf{1}$	-	-	6		
AF I	-	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	-	6		
AF II	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1 2}$	-	$\mathbf{1}$	6		
BK	$\mathbf{1}$	-	$\mathbf{1}$	-	$\mathbf{2}$	-	6		
BF I	$\mathbf{4}$	$\mathbf{6}$	-	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{5}$	6		
BF II	-	$\mathbf{3}$	-	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	6		
CK	-	-	$\mathbf{3 9}$	-	$\mathbf{2}$	$\mathbf{2}$	6		
CF I	-	-	-	-	-	$\mathbf{2}$	6		
CF II	$\mathbf{1}$	-	-	-	-	-	6		
DK	-	-	-	-	-	-	6		
DF I	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{1}$	6		
DF II	$\mathbf{1}$	-	-	-	-	$\mathbf{1}$	6		

Notes: Incubation time glucose dishes: 48 h
Incubation time rifampicin dishes: 94 h
11 colonies from 11 different samples were cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days

Assay number: 2019/11
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	$\mathbf{O D}$ at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.616	3.08	d	0.577	2.88
\mathbf{b}	0.578	2.89	e	0.578	2.89
\mathbf{c}	0.617	3.08	f	0.563	2.82

Cultures chosen for further analysis: $a=A, b=B, c=C, e=D$
Mutagenesis: 45 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	480	47	65	2	5
AF I	522	46	39	10	9
AF II	605	58	50	9	6
BK	469	51	53	10	6
BF I	500	54	54	6	9
BF II	373	48	37	8	1
CK	461	45	36	2	5
CFI	348	41	41	5	4
CF II	346	49	29	2	6
DK	324	43	35	4	3
DF I	257	17	10	1	2
DF II	339	34	33	2	3

Number of colonies on rifampicin dishes							Number of dishes
AK	-	-	-	-	-	-	6
AF I	-	-	-	-	2	-	6
AF II	-	-	-	-	3	4	6
BK	1	-	-	1	1	1	6
BF I	1	1	-	-	-	-	6
BF II	-	-	-	-	-	-	6
CK	-	-	-	-	-	-	6
CFI	-	-	-	-	-	-	6
CF II	-	-	-	-	-	-	6
DK	-	-	-	-	-	-	6
DF I	-	-	-	-	-	-	6
DF II	-	-	1	1	-	-	6

Notes: Incubation time glucose dishes: 50 h
Incubation time rifampicin dishes: 95
5 colonies from 5 different samples were cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/12
Bacterial strain: AB 1885 (uvrB)
Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0 ^ { \mathbf { 8 } })}\right.$
\mathbf{a}	0.528	2.64	d	0.534	2.67
\mathbf{b}	0.540	2.70	e	0.568	2.84
\mathbf{c}	0.512	2.56	f	0.546	2.73

Cultures chosen for further analysis: $b=A, d=B, e=C, f=D$
Mutagenesis: 46 h

Notes: The settings on the shaking incubator was changed sometime during the incubation period from 240 rpm to 200 rpm . I do not think if that this is relevant to the survival rate of the bacteria. There was some turbidity in the tubes, and small visible pellets after centrifugation, but almost no growth. I am not sure if any other settings were changed during the mutagenesis, as this is a shared resource.

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	2	-	-	-	-
AF I	2	-	-	-	-
AF II	1	-	-	-	-
BK	-	-	-	-	-
BF I	-	-	-	-	-
BF II	-	-	-	-	-
CK	1	-	-	-	1
CF I	-	-	-	-	-
CF II	-	-	-	-	-
DK	-	-	-	-	-
DF I	-	-	-	-	-
DF II	-	-	-	-	-

Number of colonies on rifampicin dishes								
AK	-	-	-	-	-	-	Number of dishes	
AF I	-	-	-	-	-	-	6	
AF II	-	-	-	-	-	-	6	
BK	-	-	-	-	-	-	6	
BF I	-	-	-	-	-	-	6	
BF II	-	-	-	-	-	-	6	
CK	-	-	-	-	-	-	6	
CF I	-	-	-	-	-	-	6	
CF II	-	-	-	-	-	-	6	
DK	-	-	-	-	-	-	6	
DF I	-	-	-	-	-	-	6	
DF II	-	-	-	-	-	-	6	

Notes: Incubation time glucose dishes: 48 h
No mutant colonies, assay aborted at this stage.

Incubation time rifampicin dishes: 95 h

Assay number: 2019/13
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)
Overnight culture: 21.5 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.580	2.90	d	0.563	2.81
\mathbf{b}	0.576	2.88	e	0.573	2.87
\mathbf{c}	0.522	2.76	f	0.561	2.80

Cultures chosen for further analysis: $a=A, b=B, d=D, e=D$
Mutagenesis: 45 h

Notes: The settings on the shaking incubator was changed sometime during the incubation period from 240 rpm to 200 rpm . I do not think that this is relevant to the survival rate of the bacteria. There was some turbidity in the tubes, and small visible pellets after centrifugation, but almost no growth. I am not sure if any other settings were changed during the mutagenesis, as this is a shared resource.

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK I	-	-	-	-	-
AK II	-	-	-	-	-
AK III	1	-	-	-	-
BK I	2	-	-	-	-
BK II	-	-	-	-	-
BK III	2	-	-	-	-
CK I	-	1	1	-	-
CK II	-	-	-	-	-
CK III	-	-	-	-	-
DK I	-	-	1	-	-
DK II	-	-	-	-	-
DK III	-	-	-	-	-

| Number of colonies on rifampicin dishes | | | Number of dishes | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AK I | - | - | - | - | - | - | 6 |
| AK II | - | - | - | - | - | - | 6 |
| AK III | - | - | - | - | - | - | 6 |
| BK I | - | - | - | - | - | - | 6 |
| BK II | - | - | - | - | - | - | 6 |
| BK III | - | - | - | - | - | - | 6 |
| CK I | - | - | - | - | - | - | 6 |
| CK II | - | - | - | - | - | - | 6 |
| CK III | - | - | - | - | - | - | 6 |
| DK I | - | - | - | - | - | - | 6 |
| DK II | - | - | - | - | - | - | 6 |
| DK III | - | - | - | - | - | - | 6 |

Notes: Incubation time glucose dishes: 48 h
Incubation time rifampicin dishes: 94 h
No mutant colonies, assay aborted at this stage.

Assay number: 2019/14
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.570	2.85	d	0.582	2.91
\mathbf{b}	0.584	2.92	e	0.593	2.97
\mathbf{c}	0.612	3.06	f	0.577	2.89

Cultures chosen for further analysis: $b=A, c=B, d=C, e=D$
Mutagenesis: 45 h
Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK I	-	-	-	-	-
AK II	-	-	-	-	-
AK III	1	-	-	-	-
BK	2	-	-	-	-
BK II	-	-	-	-	-
BK III	2	-	-	-	-
CK I	-	1	1	-	-
CK II	-	-	-	-	-
CK III	-	-	-	-	-
DK I	-	-	1	-	-
DK II	-	-	-	-	-
DK III	-	-	-	-	-

| Number of colonies on rifampicin dishes | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AK I | - | - | - | - | - | - | Number of dishes |
| AK II | - | - | - | - | - | - | 6 |
| AK III | - | - | - | - | - | - | 6 |
| BK I | - | - | - | - | - | - | 6 |
| BK II | - | - | - | - | - | - | 6 |
| BK III | - | - | - | - | - | - | 6 |
| CK I | - | - | - | - | - | - | 6 |
| CK II | - | - | - | - | - | - | 6 |
| CK III | - | - | - | - | - | - | 6 |
| DK I | - | - | - | - | - | - | 6 |
| DK II | - | - | - | - | - | - | 6 |
| DK III | - | - | - | - | - | - | 6 |

Notes: Incubation time glucose dishes: 50 h
No mutant colonies, assay aborted at this stage.

Incubation time rifampicin dishes: 93 h

Assay number: 2019/15
Bacterial strain: AB 1885 (uvrB)

Overnight culture: 21 h
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.570	2.85	d	0.582	2.91
\mathbf{b}	0.584	2.92	e	0.593	2.97
\mathbf{c}	0.612	3.06	f	0.577	2.89

Cultures chosen for further analysis: $b=A, c=B, d=C, e=D$
Mutagenesis: 45 h
Notes: To check whether media was involved in the major growth challenges experienced, LB was added to some plates in this assay, as indicated by * below.

Number of colonies on glucose dishes								
Dish	10^{-5}		10^{-6}			10^{-7}		
AK I	41	716*	15	-	69*	-	-	9*
AK II	1	816*	5	9	112*	-	-	11*
AK III	36	638*	-	1	68*	-	-	10*
BK I	180	552*	-	2	102*	-	-	14*
BK II	397	532*	1	17	73*	-	-	11*
BK III	128	549*	-	4	94*	-	-	3*
CK I	-		-	-		-	-	
CK II	-		-	-		-	-	
CK III	-		-	-		-	-	
DK I	-		1	-		-	-	
DK II	1		-	-		-	-	
DK III	1		-	-		-	-	

*LB dishes

Number of colonies on rifampicin dishes									
AK I	1	-	-	-	-	-	-*	2*	8
AK II	-	-	-	-	-	-	-*	-*	8
AK III	-	-	-	-	-	-	16*	18*	8
BK I	-	-	-	-	-	-	7*	4*	8
BK II	-	-	-	-	-	-	8*	8*	8
BK III	-	-	-	-	-	-	-*	-*	8
CK I	-	-	-	-	-	-			6
CK II	-	-	-	-	-	-			6
CK III	-	-	-	-	-	-			6
DK I	-	-	-	-	-	-			6
DK II	-	-	-	-	-	-			6
DK III	-	-	-	-	-	-			6

*LB+rifampicin dishes
Notes: Incubation time glucose dishes: 73.5 h LB dishes incubated for 24 h

Incubation time rifampicin dishes: 116.5 h . Incubation time LB+rifampicine dishes: 74 h .
5 colonies from 5 different dishes were cultivated in LB+rifampicine media for 6 days.

Assay number: 2019/16
Bacterial strain: AB 1885 (uvrB)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.510	2.55	d	0.511	2.56
\mathbf{b}	0.502	2.51	e	0.556	2.78
\mathbf{c}	0.513	2.57	f	0.554	2.77

Cultures chosen for further analysis: $c=A, d=B, e=C, f=D$

Mutagenesis: 45 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}				
AK I	-	-	-	-	-
AK II	-	-	-	-	-
AK III	-	-	-	-	-
BK I	-	-	-	-	-
BK II	-	-	-	-	-
BK III	-	-	-	-	-
CK I	-	-	-	-	-
CK II	-	-	-	-	-
CK III	-	-	-	-	1
DK I	-	-	-	-	-
DK II	-	-	-	-	-
DK III	-	-	-	-	-

| Number of colonies on rifampicin dishes | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AK I | - | - | - | - | - | - | Number of dishes |
| AK II | - | - | - | - | - | - | 6 |
| AK III | - | - | - | - | - | - | 6 |
| BK I | - | - | - | - | - | - | 6 |
| BK II | - | - | - | - | - | - | 6 |
| BK III | - | - | - | - | - | - | 6 |
| CK I | - | - | - | - | - | - | 6 |
| CK II | - | - | - | - | - | - | 6 |
| CK III | - | - | - | - | - | - | 6 |
| DK I | - | - | - | - | - | - | 6 |
| DK II | - | - | - | - | - | - | 6 |
| DK III | - | - | - | - | - | - | 6 |

Notes: Incubation time glucose dishes: 93.5 h
No mutant colonies, assay aborted at this stage

Incubation time rifampicin dishes: 96 h

Assay number: 2019/17
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
a	0.529	2.65	d	0.581	2.90
b	0.589	2.95	e	0.624	3.12
\mathbf{c}	0.613	3.07	f	0.599	3.00

Cultures chosen for further analysis: $b=A, c=B, d=C, f=D$
Mutagenesis: 45 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}				
AK I	-	-	1	-	-
AK II	-	-	-	-	-
AK III	-	-	-	-	-
BK I	-	-	-	-	-
BK II	-	-	-	-	-
BK III	1	-	1	-	-
CK I	-	-	-	-	-
CK II	-	-	-	-	-
CK III	-	-	-	-	-
DK I	-	-	-	-	-
DK II	-	-	-	-	-
DK III	-	-	-	-	-

| Number of colonies on rifampicin dishes | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AK I | - | - | - | - | - | - | Number of dishes |
| AK II | - | - | - | - | - | - | 6 |
| AK III | - | - | - | - | - | - | 6 |
| BK I | - | - | - | - | - | - | 6 |
| BK II | - | - | - | - | - | - | 6 |
| BK III | - | - | - | - | - | - | 6 |
| CK I | - | - | - | - | - | - | 6 |
| CK II | - | - | - | - | - | - | 6 |
| CK III | - | - | - | - | - | - | 6 |
| DK I | - | - | - | - | - | - | 6 |
| DK II | - | - | - | - | - | - | 6 |
| DK III | - | - | - | - | - | - | 6 |

Notes: Incubation time glucose dishes: 92.5 h
No mutant colonies, assay aborted at this stage.

Incubation time rifampicin dishes: 92.5 h

Assay number: 2019/18
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r ~}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.630	3.15	d	0.659	3.30
\mathbf{b}	0.618	3.09	e	0.563	2.82
\mathbf{c}	0.629	3.14	f	0.603	3.02

Cultures chosen for further analysis: $a=A, b=B, c=C, f=D$
Mutagenesis: 45 h

Notes:

Number of colonies on glucose dishes						
Dish	10^{-5}	10^{-6}		10^{-7}		
AK I	28	9	1	-		-
AK II	19	6	-	-		1
AK III	11	-	2	1		1
BKI	26	18	22	4		2
BK II	27	15	23	1		1
BK III	14	2	5	-		-
CK I	16	2	2	-		1
CK II	12	-	-	1		-
CK III	11	1		3	1	1
DK I	4	-	-	-		1
DK II	27	3	1	1		1
DK III	4	-	-	-		-

Number of colonies on rifampicin dishes							Number of dishes
AK I	-	-	-	-	-	2	6
AK II	-	-	-	-	-	-	6
AK III	-	-	-	-	-	-	6
BK I	-	-	-	-	-	-	6
BK II	-	-	-	-	-	-	6
BK III	-	-	-	-	-	-	6
CK I	1	-	-	-	-	-	6
CK II	-	-	-	-	-	-	6
CK III	-	-	-	-	-	-	6
DK I	-	-	-	-	-	-	6
DK II	-	-	-	-	-	-	6
DK III	-	-	-	-	-	-	6

Notes: Incubation time glucose dishes: 69 h
Incubation time rifampicin dishes: 95 h
2 colonies from 2 different samples were cultivated in LB medium containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days

Assay number: 2019/19
Bacterial strain: AB 1884 (uvrC)
Overnight culture: 21.5 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.629	3.15	d	0.644	3.22
\mathbf{b}	0.630	3.15	e	0.650	3.25
\mathbf{c}	0.632	3.16	f	0.631	3.15

Cultures chosen for further analysis: $a=A, b=B, c=C, f=D$
Mutagenesis: 45 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK	57	6	14	1	-
AF I	10	3	6	-	-
AF II	11	4	4	-	-
BK	7	3	3	-	-
BFI	22	16	10	-	3
BF II	3	-	2	-	-
CK	6	1	15	-	-
CFI	10	1	5	-	2
CF II	25	6	7	-	1
DK	2	8	3	1	-
DFI	64	10	3	-	3
DF II	6	-	1	-	-

| Number of colonies on rifampicin dishes | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AK | - | - | - | - | - | - | Number of dishes |
| AF I | - | - | - | - | - | - | 6 |
| AF II | - | $\mathbf{1}$ | - | - | - | - | 6 |
| BK | - | - | - | - | - | - | 6 |
| BF I | - | - | - | - | - | - | 6 |
| BF II | - | - | - | $\mathbf{-}$ | - | - | 6 |
| CK | - | - | - | - | - | - | 6 |
| CF I | - | - | - | - | $\mathbf{1}$ | - | 6 |
| CF II | - | - | - | - | - | - | 6 |
| DK | - | - | - | - | - | - | 6 |
| DF I | - | - | - | - | - | - | 6 |
| DF II | - | - | - | $\mathbf{1}$ | - | - | 6 |

Notes: Incubation time glucose dishes: 76.5 h
Incubation time rifampicin dishes: 96 h
Four mutant colonies from four different dishes samples were cultivated in LB media containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin media for 7 days.

Assay number: 2019/20
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	$\mathbf{O D}$ at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0,616	3,08	d	0,555	2,78
\mathbf{b}	0,566	2,83	e	0,610	3,05
\mathbf{c}	0,552	2,76	f	0,547	2,74

Cultures chosen for further analysis: $a=A, b=B, d=C, e=D$
Mutagenesis: 45.5 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK I	20	4	3	-	1
AK II	44	15	6	-	1
AK III	23	3	-	1	-
BK I	36	6	34	-	3
BK II	62	3	10	-	1
BK III	19	3	6	-	2
CK I	28	2	9	-	-
CK II	50	7	4	-	-
CK III	14	2	2	-	1
DK I	43	5	15	-	1
DK II	53	12	1	5	-
DK III	45	4	2	1	-

Number of colonies on rifampicin dishes							Number of dishes
AK I	-	-	-	-	-	-	6
AK II	-	-	1	-	-	-	6
AK III	-	-	-	-	-	-	6
BK I	-	2	-	1	-	-	6
BK II	-	-	-	-	-	-	6
BK III	-	-	-	-	-	-	6
CK I	-	-	-	-	-	-	6
CK II	-	-	-	-	-	-	6
CK III	-	-	-	-	-	-	6
DK I	-	-	-	-	-	-	6
DK II	-	-	-	-	-	-	6
DK III	-	-	-	-	-	-	6

Notes: Notes: Incubation time glucose dishes: $70.5 \mathrm{~h} \quad$ Incubation time rifampicin dishes: 96 h Four mutant colonies from four different dishes samples were cultivated in LBmedia containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin media for 6 days.

Assay number: 2019/21

Bacterial strain: AB 1884 (uvrC)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.644	3.22	d	0.653	3.27
\mathbf{b}	0.655	3.27	e	0.656	3.28
\mathbf{c}	0.665	3.33	f	0.657	3.28

Cultures chosen for further analysis: $a=A, b=B, d=C, e=D$
Mutagenesis: 45.5 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK I	178	29	15	-	-
AK II	221	31	31	-	1
AF	166	5	6	1	-
BK I	356	37	13	1	2
BK II	216	31	23	1	-
BF	78	12	6	-	-
CK I	183	24	7	1	1
CK II	198	17	5	-	-
CF	100	5	19	-	-
DK I	301	24	21	3	5
DK II	83	9	7	-	-
DF	223	20	17	2	-

Number of colonies on rifampicin dishes							Number of dishes
AK I	-	-	-	-	-	-	6
AK II	-	1	-	2	-	-	6
AF	-	2	-	-	-	1	6
BK I	-	-	-	-	-	-	6
BK II	-	-	-	-	-	-	6
BF	-	-	-	-	-	-	6
CK I	-	-	-	-	-	-	6
CK II	-	-	-	-	-	-	6
CF	-	1	-	-	-	-	6
DK I	-	-	-	-	-	-	6
DK II	1	-	-	-	-	-	6
DF	-	1	-	-	-	-	6

Notes: Heating cabinet stopped functioning sometime between 26/4-19 14:00 and 27/4-19 11:45. Plates were moved when the malfunction was discovered
Incubation time glucose dishes: $68.5 \mathrm{~h} \quad$ Incubation time rifampicin dishes: 96 h
Four mutant colonies from four different dishes samples were cultivated in LB media containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/22
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture nr	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l} \mathbf{(\times 1 \mathbf { 0 } ^ { \mathbf { 8 } })}$	Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.597	2.98	d	0.600	3.00
\mathbf{b}	0.597	2.99	e	0.611	3.05
\mathbf{c}	0.594	2.97	f	0.591	2.95

Cultures chosen for further analysis: $a=A, b=B, c=C, d=D$
Mutagenesis: 45.5 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK I	24	11	17	2	3
AK II	5	1	-	-	-
AK III	21	1	1	-	1
BK I	4	-	4	-	1
BK II	9	1	1	-	-
BK III	5	4	-	-	-
CK I	6	1	2	1	-
CK II	5	-	-	-	1
CK III	1	1	1	-	-
DKI	-	-	-	-	-
DK II	1	-	-	-	-
DK III	-	-	-	-	-

Number of colonies on rifampicin dishes							Number of dishes
AK I	-	2	-	-	-	1	6
AK II	-	-	-	-	-	-	6
AK III	-	-	-	-	-	-	6
BK I	-	-	-	-	-	-	6
BK II	-	-	-	-	-	-	6
BK III	-	-	-	-	-	-	6
CK I	-	-	-	-	-	-	6
CK II	-	-	-	-	-	-	6
CK III	-	-	-	-	-	-	6
DK I	-	-	-	-	-	-	6
DK II	-	-	-	-	-	-	6
DK III	-	-	-	-	-	-	6

Notes: Incubation time glucose dishes: 93 h
Incubation time rifampicin dishes: 96 h
One mutant colonies from one sample was cultivated in LB media containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/23
Bacterial strain: AB 1885 (uvrB)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.617	3.09	d	0.622	3.11
\mathbf{b}	0.635	3.18	e	0.621	3.11
\mathbf{c}	0.628	3.14	f	0.625	3.12

Cultures chosen for further analysis: $a=A, d=B, e=C, f=D$
Mutagenesis: 45.5 h

Notes:

Number of colonies on glucose dishes						
Dish	10^{-5}	10^{-6}		10^{-7}		
AK I	184	19	19	3		
AK II	273	31	44	-		
AK III	80	9		-	1	-
BK I	52	2	9	3		
BK II	17	4	7	-		
BK III	51	9	2	-		
CK I	46	19	12	1		
CK II	74	13	17	1		
CK III	57	14	13	2		
DK I	135	18	16	3		
DK II	127	22	16	1		
DK III	142	14	16	1		

Number of colonies on rifampicin dishes							Number of dishes
AK I	-	-	-	-	-	-	6
AK II	-	-	-	-	-	-	6
AK III	-	-	-	-	-	-	6
BK I	-	-	-	-	-	-	6
BK II	-	-	-	-	-	-	6
BK III	-	-	-	-	-	-	6
CK I	32	42	41	51	37	48	6
CK II	-	-	2	1	1	-	6
CK III	-	-	-	-	-	-	6
DK I	-	-	-	-	-	-	6
DK II	-	-	-	-	-	-	6
DK III	-	-	-	-	-	-	6

Notes: Incubation time glucose dishes: 51.5 h
Incubation time rifampicin dishes: 96 h two mutant colonies from two different samples were cultivated in LB media containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

Assay number: 2019/24
Bacterial strain: AB 1885 (uvrB ${ }^{-}$)

Overnight culture: 21 h
OD Measurements:

Culture $\mathbf{n r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$	Culture $\mathbf{~ r}$	OD at $\mathbf{6 0 0} \mathbf{~ n m}$	Bact $/ \mathbf{m l}\left(\times \mathbf{1 0}^{\mathbf{8}}\right)$
\mathbf{a}	0.606	3.03	d	0.612	3.06
\mathbf{b}	0.619	3.10	e	0.618	3.09
\mathbf{c}	0.618	3.09	f	0.614	3.07

Cultures chosen for further analysis: $a=A, c=B, d=C, f=D$
Mutagenesis: 45.5 h

Notes:

Number of colonies on glucose dishes					
Dish	10^{-5}	10^{-6}		10^{-7}	
AK I	4	1	-	-	1
AK II	8	-	3	-	-
AK III	8	-	3	-	-
BKI	13	3	6	-	-
BK II	51	6	16	1	1
BK III	36	2	2	-	-
CK I	3	1	1	-	-
CK II	52	7	7	-	-
CK III	37	4	7	-	-
DK I	16	4	2	1	1
DK II	15	6	4	-	-
DK III	13	9	5	1	-

Number of colonies on rifampicin dishes							Number of dishes
AK I	-	-	-	-	-	-	6
AK II	-	-	-	-	-	-	6
AK III	-	-	-	-	-	-	6
BK I	-	-	-	-	-	-	6
BK II	-	-	-	-	-	-	6
BK III	-	-	-	-	-	-	6
CK I	-	1	-	-	-	-	6
CK II	-	-	-	-	-	-	6
CK III	-	-	-	-	-	-	6
DK I	-	-	-	2	2	-	6
DK II	-	-	-	-	-	-	6
DK III	1	-	1	-	-	-	6

Notes: Incubation time glucose dishes: 92 h
Incubation time rifampicin dishes: 94 h
Three mutant colonies from three different samples were cultivated in LB media containing $30 \mathrm{mg} / \mathrm{ml}$ rifampicin for 7 days.

A.1.4 Results, mutation rate calculations and BLAST diagrams and chromatograms of mutant

 coloniesTable A.1.17: Complete list of results

Assay	Sample	Mutation
uvrB ${ }^{-}$		
2019/2	AK	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	BF II	$\mathrm{A} \rightarrow \mathrm{T} \quad \mathrm{TA} \rightarrow \mathrm{AT}$
	CFI	Mutation occurred outside of sequenced area
2019/3	BF I	$\mathrm{C} \rightarrow \mathrm{A}$
2019/4	AK	$\mathrm{G} \rightarrow \mathrm{T} \quad \mathrm{CG} \rightarrow \mathrm{AT}$
	CK	$\mathrm{C} \rightarrow \mathrm{A} \quad \mathrm{GC} \rightarrow \mathrm{TA}$
	DF II	
2019/6	BFI	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	BF II	$\mathrm{G} \rightarrow \mathrm{T} \quad \mathrm{CG} \rightarrow \mathrm{AT}$
	CK	$\mathrm{G} \rightarrow \mathrm{T} \quad \mathrm{CG} \rightarrow \mathrm{AT}$
	CF I	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	CF II	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	DK	$\mathrm{G} \rightarrow \mathrm{A} \quad \mathrm{CG} \rightarrow \mathrm{TA}$
	DF I	$\mathrm{C} \rightarrow \mathrm{T}$
	DF III	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
2019/8	AFI	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	BF I	Mutation occurred outside of sequenced area
	CK	$\mathrm{C} \rightarrow \mathrm{A}$
	CFI	Mutation occurred outside of sequenced area
	CF II	Mutation occurred outside of sequenced area
	DK	Mutation occurred outside of sequenced area
2019/10	AK	$\mathrm{G} \rightarrow \mathrm{T}$
	AF I	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	AF II	$\mathrm{A} \rightarrow \mathrm{G}$, TA \rightarrow CG
	BK	$\mathrm{G} \rightarrow \mathrm{A}$
	BF I	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	BF II	$\mathrm{G} \rightarrow \mathrm{A}$
	CK	
	CFI	No match when run through BLAST program
	CF II	Too poor quality to determine mutation
	DF I	$\mathrm{C} \rightarrow \mathrm{T}$
	DF II	$\mathrm{G} \rightarrow \mathrm{A} \quad \mathrm{CG} \rightarrow$ TA
2019/11	AFI	Too poor quality to determine mutation
	AF II	$\mathrm{C} \rightarrow \mathrm{T}$
	BK	$\mathrm{C} \rightarrow \mathrm{A} \quad \mathrm{GC} \rightarrow \mathrm{TA}$
	BF I	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
	DF II	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
2019/15	AK I	Too poor quality to determine mutation
	AK I*	$\mathrm{C} \rightarrow \mathrm{A}$
	AK III*	$\mathrm{G} \rightarrow \mathrm{C}$
	BK I*	$\mathrm{C} \rightarrow \mathrm{A}$
	BK II*	
2019/18	AK I	$\mathrm{G} \rightarrow \mathrm{T} \quad \mathrm{CG} \rightarrow \mathrm{AT}$
	CK I	$\mathrm{C} \rightarrow \mathrm{T} \quad \mathrm{GC} \rightarrow \mathrm{AT}$
2019/20	AK II	No match when run through BLAST program
	BKI	$\mathrm{C} \rightarrow \mathrm{T}$

2019/23	CK I	$\mathrm{G} \rightarrow \mathrm{T}$	CG \rightarrow AT
	CK III	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
2019/24	CK I	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	DK I	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	DK II	No match when run through BLAST program	
2016/1	AK I	$\mathrm{C} \rightarrow$ T	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AK II	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{GC} \rightarrow$ TA
2016/2	AK I	No match when run through the BLAST program	
	AK III	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AK IV	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{GC} \rightarrow$ TA
	AK V	$\mathrm{G} \rightarrow \mathrm{T}$	CG \rightarrow AT
2016/3	AK III	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AK V	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AFI	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AF II	$\mathrm{G} \rightarrow \mathrm{A}$	CG \rightarrow TA
	AF III	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AF IV	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AF V	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BK II	Too poor quality to determine mutation	
	BK III	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BKIV	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{AT} \rightarrow \mathrm{GC}$
	BK V	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BFI	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BF II	Too poor quality to determine mutation	
	BF III	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BFIV	Too poor quality to determine mutation	
	BF V	Too poor quality to determine mutation	
2016/4	AK III	Too poor quality to determine mutation	
	AK IV	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AFI	$\mathrm{G} \rightarrow \mathrm{A}$	CG \rightarrow TA
	AF II	Too poor quality to determine mutation	
	AF III	Too poor quality to determine mutation	
	AF IV	$\mathrm{C} \rightarrow$ T	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AF V	No match when run through BLAST program	
	BK I	Too poor quality to determine mutation	
	BK II	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BK III	$\mathrm{A} \rightarrow \mathrm{T}$	$\mathrm{TA} \rightarrow \mathrm{AT}$
	BK IV	$C \rightarrow T$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BK V	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BF II	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	BF III	$\mathrm{A} \rightarrow \mathrm{T}$	$\mathrm{TA} \rightarrow \mathrm{AT}$
	BF V	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{GC} \rightarrow$ TA
uvrC			
2019/19	AF II	$\mathrm{G} \rightarrow \mathrm{A}$	CG \rightarrow TA
	BF II	$A \rightarrow G$	$\mathrm{TA} \rightarrow$ CG
	CFI	No match when run through BLAST program	
	DF II	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{GC} \rightarrow$ TA
2019/21	AK II	$C \rightarrow T$	$\mathrm{GC} \rightarrow \mathrm{AT}$
	AF	$\mathrm{G} \rightarrow \mathrm{T}$	$\mathrm{CG} \rightarrow \mathrm{AT}$
	CF	$\mathrm{G} \rightarrow \mathrm{T}$	CG \rightarrow AT
	DK II	$\mathrm{C} \rightarrow$ T	$\mathrm{GC} \rightarrow \mathrm{AT}$
	DF	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{GC} \rightarrow$ TA

uvrB', spontaneous mutations

33 experiments selected from totally 194 experiments, $\mathrm{N}_{\mathrm{t}}=0,5-1,5 \times 10^{9}$

Culture	N_{0}	Time (h)	$N_{\text {t }}$	Muta	pl					z	r	N_{0} / N_{t}
				1	2	3	4	5	6			
2015/72, AK	9000	48	1328000000	0	0	0	0	0	0	0,30	0	0,00000678
2015/72, BK	9000	48	1420000000	0	1	0	0	1	0	0,30	7	0,00000634
2015/72, DK	9000	48	1139000000	0	0	0	0	0	0	0,30		0,00000790
2015/75, AK	9000	45	1560666667	0	0	0	0	0	0	0,30		0,00000577
2015/75, BK	9000	45	1899333333	3	0	0	1	2	0	0,30	20	0,00000474
2015/75, CK	9000	45	1334000000	0	0	0	0	0	0	0,30	0	0,00000675
2015/75, DK	9000	45	991333333	0	1	0	0	0	0	0,30	3	0,00000908
2016/3, AKII	9000	45	1104000000	0	0	0	0	0	0	0,30	0	0,00000815
2016/3, AKIII	9000	45	1691000000	0	0	2	2	1	1	0,30	20	0,00000532
2016/3, AKIV	9000	45	1127000000	0	0	0	0	0	0	0,30	0	0,00000799
2016/3, AKV	9000	45	1693500000	0	0	0	0	0	1	0,30	3	0,00000531
2016/3, BKII	9000	45	1025333333	0	4	3	6	4	3	0,30	67	0,00000878
2016/3, BKIII	9000	45	1192666667	0	0	0	0	0	1	0,30	3	0,00000755
2016/3, BKIV	9000	45	940666667	0	0	0	0	0	1	0,30	3	0,00000957
2016/3, BKV	9000	45	1430500000	0	0	0	0	1	1	0,30	7	0,00000629
2016/4, AKIV	9000	45	949333333	1	2	1	5	2	0	0,30	37	0,00000948
2016/B6, BKII	9000	46	1816000000	1	0	0	0	0	0	0,30	3	0,00000496
2016/B6, BKIII	9000	46	922666667	0	0	0	0	0	0	0,30	0	0,00000975
2016/B6, BKV	9000	46	1090000000	0	0	0	0	0	0	0,30	0	0,00000826
2019/6, BK	18000	45	1526000000	0	0	0	0	0	0	0,30	0	0,00001180
2019/6, CK	18000	45	1124000000	0	1	0	0	0	0	0,30	3	0,00001601
2019/6, DK	18000	45	1347333333	3	2	2	3	4	1	0,30	50	0,00001336
2019/8 AK	18000	45,5	1661333333	0	0	0	0	0	0	0,30	0	0,00001083
2019/8, CK	18000	45,5	1864000000	0	0	0	0	0	0	0,30	0	0,00000966
2019/10, AK	18000	47,5	1526000000	0	0	0	1	0	0	0,30	3	0,00001180
2019/10, BK	18000	47,5	1308666667	1	0	1	0	2	0	0,30	13	0,00001375
2019/10, CK	18000	47,5	1050666667	0	0	39	0	2	0	0,30	137	0,00001713
2019/11, AK	18000	45	1066666667	0	0	0	0	0	0	0,30	0	0,00001688
2019/11, BK	18000	45	1006000000	1	0	0	1	1	1	0,30	13	0,00001789
2019/15 AK I	18000	45,5	1037333333	0	0	0	0	0	2	0,30	7	0,00001735
2019/15, AK II	18000	45,5	1384000000	0	0	0	0	0	0	0,30	0	0,00001301
2019/15, BK I	18000	45,5	1061333333	0	0	0	0	7	4	0,30	37	0,00001696
2019/15, BK II	18000	45,5	954666667	0	0	8	0	8	0	0,30	53	0,00001885
2019/15, BK III	18000	45,5	1019333333	0	0	0	0	0	0	0,30	0	0,00001766
Average	12971	46	1282127451									
SD	4536	1	294232292									
Median	9000	45	1165833333					Zeros				
Average			1,3									
SD			0,3					$\begin{aligned} & \mathrm{p}_{0}=0 \\ & \mathrm{~m}_{\mathrm{obs}}= \end{aligned}$				
Median			1,2					$\mathrm{m}_{\text {act }}=$,66			
								$\mu=1.4$				

37 experiments selected from totally 127 experiments, $N_{t}=0,5-1,5 \times 10^{9}$

Experiment	N_{0}	Time (h)	N_{t}	Muta	plate					z	r	N_{0} / N_{t}
				1	2	3	4	5	6			
2014/62, AFI	9000		2823200000	10	11	25	18	20	14	0,30	327	0,000003
2015/72, AFI	9000	48	1724500000	0	0	0	0	0	0	0,30	0	0,000005
2015/75, AFI	9000	45	1102500000	3	1	0	1	0	1	0,30	20	0,000008
2015/75, BFI	9000	45	2028500000	0	1	1	1	0	2	0,30	17	0,000004
2015/75, BFII	9000	45	1484000000	5	4	2	3	4	4	0,30	73	0,000006
2015/75, CFI	9000	45	1547000000	0	1	0	0	0	0	0,30	3	0,000006
2015/75, CFII	9000	45	1010500000	0	0	0	0	0	0	0,30	0	0,000009
2015/80, BF	9000	46	1223000000	0	0	0	0	0	0	0,30	0	0,000007
2016/3, AFII	9000	45	991333333	0	0	0	0	0	1	0,30	3	0,000009
2016/3, AFIII	9000	45	1390000000	0	0	2	1	1	1	0,30	17	0,000006
2016/3, AFIV	9000	45	1435000000	0	0	0	1	2	1	0,30	13	0,000006
2016/3, AFV	9000	45	1519500000	0	0	0	0	0	4	0,30	13	0,000006
2016/3, BFI	9000	45	1447333333	0	0	0	0	0	1	0,30	3	0,000006
2016/3, BFII	9000	45	1019333333	0	0	0	0	0	3	0,30	10	0,000009
2016/3, BFIII	9000	45	1085333333	0	0	0	0	2	0	0,30	7	0,000008
2016/3, BFIV	9000	45	1209333333	0	0	0	0	0	1	0,30	3	0,000007
2016/3, BFV	9000	45	1700000000	0	4	3	1	3	4	0,30	50	0,000005
2016/4, AFI	9000	45	1004000000	0	0	1	0	0	1	0,30	7	0,000009
2016/4, AFV	9000	45	1678000000	1	0	0	0	1	0	0,30	7	0,000005
2019/6, BF II	18000	45	1543000000	1	0	2	1	0	1	0,30	17	0,000012
2019/6, CF I	18000	45	1123500000	0	1	1	1	0	0	0,30	10	0,000016
2019/6, CF II	18000	45	1150500000	0	0	0	0	2	2	0,30	13	0,000016
2019/6, DF I	18000	45	1045000000	0	0	2	0	3	2	0,30	23	0,000017
2019/6, DF II	18000	45	932000000	0	1	3	1	1	1	0,30	23	0,000019
2019/8, AF I	18000	45,5	1238500000	2	1	0	1	0	0	0,30	13	0,000015
2019/8, BF I	18000	45,5	1587500000	3	4	3	4	6	5	0,30	83	0,000011
2019/8, CF I	18000	45,5	1118000000	1	0	2	3	0	2	0,30	27	0,000016
2019/8, CF II	18000	45,5	1220000000	0	1	1	0	1	0	0,30	10	0,000015
2019/10, AF I	18000	47,5	1538500000	0	1	0	1	1	2	0,30	17	0,000012
2019/10, AF II	18000	47,5	1173000000	1	2	3	12	0	1	0,30	63	0,000015
2019/10, BF II	18000	47,5	1425500000	0	3	0	2	1	1	0,30	23	0,000013
2019/10, CF I	18000	47,5	1408000000	0	0	0	0	0	1	0,30	3	0,000013
2019/10, CF II	18000	47,5	1252000000	1	0	0	0	0	0	0,30	3	0,000014
2019/10, DF II	18000	47,5	945500000	1	0	0	0	0	0	0,30	3	0,000019
2019/11, AF I	18000	45	1161000000	0	0	0	0	2	0	0,30	7	0,000016
2019/11, AF II	18000	45	1217500000	0	0	0	0	3	4	0,30	23	0,000015
2019/11, BF I	18000	45	1165000000	1	1	0	0	0	0	0,30	7	0,000015
Avrerage	13378	46	1342334234									
SD	4560	1	358047513									
Median	9000	45	1223000000									
Average			$1,3 \times 10^{9}$									

$$
\mathrm{m}_{\mathrm{act}}=4,87
$$

$$
\mu=3,98 \times 10^{-9}
$$

2019/2 AK

回Download $~$ GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 6 0}$ to 4182989 GenBank Graphics

$\begin{aligned} & \text { Scor } \\ & 407 \end{aligned}$	220)	Expect $4 \mathrm{e}-114$	$\begin{aligned} & \hline \text { Identities } \\ & 227 / 230(99 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Gaps } \\ & 1 / 230(0 \%) \end{aligned}$	Strand Plus/Plus	
Query		TTCGGGT-CAGCCAGCTGTCTCAGTTTTATGGACCAGAACAACCCGCTGTCTGAGATTACG 				68 418281
Query	69 4182820	CACAAACGTCGTATCTTCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTC 				128 418287
Query	129 4182880	GAAGTTCGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAA 				188 41829
Query	189 4182940	GGTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTaa 238 				

2019/2 BF II
GTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAA 4182989
Sbjct 4182941
A0

2019／2 CF I
回Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1： $\mathbf{4 1 8 2 7 6 1}$ to $\mathbf{4 1 8 2 9 8 9}$	GenBank	Graphics	Next Match \triangle Previous Match	
Score	Expect	Identities	Gaps	Strand

ت゙
4182820
$\underset{\sim}{\underset{\sim}{~}}$
4182880
+
+
+1
0
－
on
N
－
－
－
つЭつษ山
｜｜｜｜｜｜
GCAGGCTTCG
氙三芹

2019/2 CF I
 Sequence: 50401376

2019／3 BF I

$$
\text { 圆Download } ~ \text { GenBank Graphics }
$$

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： 4182761 to 4182997 GenBank Graphics
Score Expect Identities Gaps Strand $\begin{array}{ll}\text { Expect } & \text { 232／237 } \\ 4 \mathrm{e}-114 & \end{array}$
232／237（98\％）
TCGG－T－CAG－CAGCTGTCTAAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGC
｜｜｜｜｜｜｜｜｜｜
4182880

184
 4182940

4182820

124

$||||\mid$
ACG
$\begin{array}{lll}\text { Query } & 185 & \text { GTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACAAATACG } 241 \\ \text { Sbjct } & 4182941 & |||\mid \\ \text { GTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACGAATACG } & 4182997\end{array}$ 3／237（1\％）
CGTGAACGT
AACCC

$||||\mid$
 U三二
二二心ひ U

$\begin{array}{llll}\text { Query } & 185 & \text { GTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACAAATACG } 241 \\ \text { Sbjct } & 4182941 & |||\mid & \\ \text { GTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACGAATACG } & 4182997\end{array}$

Sbjct 418291
2019/4 AK
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 6}$ GenBank	Graphics	
Score	Expect	Identities
411 bits(222)	2e-115	$227 / 229(9)$

Score	Expect	Identities		Gaps
411 bits(222)	$2 \mathrm{e}-115$	$227 / 229(99 \%)$	$1 / 229(0 \%)$	Strand

74
TCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCG

$|||||\mid$
242
4182996

-

DDownload $~$ GenBank Graphics

 Query Sbjct Query Sbjct[^0]4182828
134
4182888

194

2019/4 CK

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182761 to 4182997 GenBank Graphics
回Download \vee GenBank Graphics

[^1]2019／4 DF II

DDownload $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

| Range 1： $\mathbf{4 1 8 2 7 6 1}$ to $\mathbf{4 1 8 2 9 9 7}$ GenBank Graphics |
| :--- | :--- |
| Score \quad Expect Identities |

Score	Expect	Identities	Gaps	Strand
414 bits（224）	$3 e-116$	$233 / 237(98 \%)$	$2 / 237(0 \%)$	Plus／Plus

67
 CTGAGATTACGG C｜｜ $1\|\|\|\|\|$ CTGAGATTACGC曷三苞
 都
 AGAACAACCC

4182820

127

4182880

187

ACAAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCG
 CCCTGAAG
244
4182997
ATACG

回Download $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC 000913.3 Length: 4641652 Number of Matches: 1

| Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 7}$ | GenBank | Graphics | | Next Match \triangle Previous Match |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand | Plus/Plus

76
4182827
136
4182887
$\stackrel{\circ}{-}$
4182947

U
| $1 \|_{\text {CGA }}$
$\stackrel{\circ}{{ }_{\sim}^{2}}$
182997

2019/6 BF I

2019／6 BF II

DDownload $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1：4182760 to $\mathbf{4 1 8 2 9 9 6}$	GenBank	Graphics	Next Match Δ Previous Match	
Score	Expect	Identities	Gaps	Strand

$\begin{array}{ll}\text { Expect } & \text { 233／237（9 } \\ 3 \mathrm{e}-116 & \end{array}$
2／237（0\％）
Plus／Plus

66

4182819
126
｜CTGAGATTACG
｜｜｜｜
CCCTGAA
186
4182939
4182996
U ｜｜｜｜｜
OUVZ
4182879
4182939
243

TTCGGGT－CAG－CAGCTGTCTCAGTTTATGTACCAGAACAAC
CCCGCTG
岂
｜｜｜｜｜
0
0
U
H
H
U
$||||||||\mid$
U二二⿰亻弋
U二二⿰亻弋
${ }_{\text {CCC }}^{C} \mid$
二二⿰亻弋
二〇
二毕
二岂
U
｜｜｜
CACAAACGTCGTATCTC
｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜
4182760
67
4182820
$\stackrel{\wedge}{\sim}$
4182880

Query Sbjet
Query
Sbjct
Query
Sbjct
Sequence:50401437,

2019／6 CK

맴ownload $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
 Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1： 4182761 to 4182997 GenBank Graphics

| Range 1： $\mathbf{4 1 8 2 7 6 1}$ to $\mathbf{4 1 8 2 9 9 7}$ GenBank | $\underline{\text { Graphics }}$ | | Next Match \triangle Previous Match | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 401 bits（217） | $2 \mathrm{e}-112$ | $231 / 237(97 \%)$ | $3 / 237(1 \%)$ | Plus／Plus |

TCGG－T－CAG－CAGCTGTCTCAGTTTATGTACCAGAACAACCCGCTGTCTGAGATTACGC 64
$||||||\mid$
TCGGTTCCAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGC 4182820
AGGCTTCG
4182880
184
4182940
｜｜｜｜

并三烒
U二⿰亻弋
它三苞
U
U
二
曷
H二皆
氐
三电 U三䓌
U్ర్ర
$\stackrel{0}{U}$
二二
U三岱
어ㅂㅓㅓㅂ
U三U
U
H二年
｜｜｜
マפ
U三拄
U
，
昏三二
H二
苞

AAGTTCGAGACGTACAC

Query 8
Sbjct 4182761
Query 65
Sbjct 4182821

Query	125
Sbjet	4182881

Sbjct 4182881
185
4182941
Query
Sbjct
2019/6 CF I

VDownload $~$ GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182768 to 4182996 GenBank Graphics

$\begin{aligned} & \text { Scor } \\ & 411 \end{aligned}$	$\mathrm{s}(222)$	Expect 2e-115	$\begin{aligned} & \text { Identities } \\ & \text { 227/229(99\%) } \end{aligned}$	$\begin{aligned} & \hline \text { Gaps } \\ & 1 / 229(0 \%) \\ & \hline \end{aligned}$	Strand Plus/Plus	
Query	18 4182768	CAG-CAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG 				4182827
Query	77 4182828	TCGTATCTTCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCG 				136 418288
Query	137 4182888	AGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAAGGTCCGAA 				196 41829
Query						

2019／6 CF II

［Download $~$ GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： 4182768 to 4182996 GenBank Graphics

Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 6}$ GenBank	Graphics		Next Match Δ Previous Match	
Score	Expect	Identities	Gaps	Strand
405 bits（219）	$3 e-113$	$226 / 229(99 \%)$	$1 / 229(0 \%)$	Plus／Plus

Query 13 CAG－CAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGTACAAACG 71
Sbjct 4182768 CAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG 4182827
$\underset{\sim}{7}$
4182887

－ －

4182947

240
4182996
GAATAC
式三烒

$1|1|$
｜｜1｜｜｜
｜l｜｜｜｜
$111 \mid$
二家
三二⿰亻弋
CAGG
U

\mid
H
H
0
0
0
0
H
E
H
0
TCGTATCTCCGCAC
TCGTATCTCCGC
ACGCACAGACAAACGAATAC
｜l｜l
｜｜｜｜｜ $\begin{array}{ll}\text { Query } & 72 \\ \text { Sbjct } & 4182828 \\ \text { Query } & 132 \\ \text { Sbjct } & 4182888 \\ \text { Query } & 192 \\ \text { Sbjct } & 4182948\end{array}$

cose

2019／6 DK

■Download $~$ V GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 6 8}$ to 4182996 GenBank Graphics

Range 1：4182768 to 4182996		GenBank Graphics	Next Match	Previous Match
Score	Expect	Identities	Gaps	Strand
411 bits（222）	$2 e-115$	$227 / 229(99 \%)$	$1 / 229(0 \%)$	Plus／Plus

74

4182827
134
4182887
4182887
a
न
－
4182947

TCGAAGTTCG
AAGGTCCGAA
243
6
0
σ
∞
∞
-
-

IAC
ACCCCT $1 \mid$

TCC
昆
二二ひ

｜｜二岃

二己

二岂二二二
二 －

4182888

195
4182948
Query Sbjet Query Sbjct Query Sbjct

Escherichia coli str. K-12 substr. MG1655, complete genome

 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 7}$ GenBank Graphics

Range 1: 4182768 to $\mathbf{4 1 8 2 9 9 7}$ GenBank Graphics		Next Match A Previous Match		
Score	Expect	Identities	Gaps	Strand
409 bits(221)	$1 e-114$	$227 / 230(99 \%)$	$0 / 230(0 \%)$	Plus/Plus

Query 15 CAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG 74
4182827

134

4182887
194
4182947 TTCG
CGAA
CGAA

Wh TTCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCGAGACGTACACCCGACTCACTACGGTCGCGT

TGGTGGT ${ }^{\text {ta }}$ GTTITTTAGAD C C C
2019/6 DF II

VDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

2019/8 AF I

-

$A A^{250} A^{2}$
GGAAGATOGAGGCACAAATTMGC
2019/8 BF I

DDownload \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

TTATITAATATTTCTTAACOCGAAT
2019/8 CK
|lDownload \vee GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 6 0}$ to 4182997 GenBank Graphics

| Range 1: $\mathbf{4 1 8 2 7 6 0}$ to $\mathbf{4 1 8 2 9 9 7}$ | GenBank | Graphics | | Next Match Δ Previous Match |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 416 bits(225) | $7 \mathrm{e}-117$ | $234 / 238(98 \%)$ | $1 / 238(0 \%)$ | Plus/Plus |

Query	7
Sbjct	4182760

66
66

DDownload \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182758 to 4182997 GenBank Graphics

Score	Expect	Identities	Gaps	Strand
414 bits(224)	$3 e-116$	$235 / 240(98 \%)$	$2 / 240(0 \%)$	Plus/Plus

Query	5
Sbjct	4182758

Query	63
Sbjet	4182818

Query 123
AAGGTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACAAATACG
AAGGTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACGAATACG
TCGTCGGAT-CAG-CAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTA
TCTTCGGTTCCAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTA

4182937
N
N
N
4182997
4182877
182

2019/8 CF I

2019/8 CF II

DDownload \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

| Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 7}$ | GenBank | Graphics | | ∇ Next Match \triangle Previous Match |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Score | Expect | Identities | Gaps | Strand |

Strand
Plus/Plus
CAG-CAGCTGTCTCAGTTTPATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG
TCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCG

244

4182997

Query	75
Sbjct	4182828
Query	135
Sbjct	4182888
Query	195
Sbjct	4182948

Sequence: 16675674	$2019 / 8 \mathrm{CF}$ II

мМр

昷Download \vee GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 6 1 \text { to } 4 1 8 2 9 9 7 \text { GenBank Graphics } \quad \nabla \text { Next Match } \triangle \text { Previous Match }}$
$\begin{array}{lll}\text { Score } & \text { Expect } & \text { Identities } \\ 420 \text { bits（227）} & 6 \mathrm{e}-118 & 234 / 237(9)\end{array}$
2／237（0\％）Plus／Plus
TCGGAT－CAG－CAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGC
65
4182820
125
4182880
｜lTCG

242
4182997
aCTAACGAATACG
｜｜｜｜｜
โออวษ
ICTAACGAATACG
苞
2019／8 DK
（227）
Query 8 Sbjct 4182761 Query 66 Sbjct 4182821 126 4182940 CAATCG
CAATCG
CAGA
我三二

0
发三二氝 ｜อวออ
U ICCAGG
CCCAGG
CTCTG O先苞 U్ర్ర్ర్ర

AAATGCTTCOGGCGTA TATCCO
2019／10 AK

밈Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

| Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 8 5}$ | GenBank | Graphics | | ∇ Next Match Δ Previous Match |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 351 bits（190） | $2 e-97$ | 209／218（96\％） | $1 / 218(0 \%)$ | Plus／Plus |

74
4182827
4182827

133

4182887
193
4182947
TTACGCACAACG
1111111111
TTACGCACAAACG

ICAII
4
4
4
4
4
4
0
｜l｜

態三觔
道三葡
UOU
．
感三
最二

二苟
U－U్U
三烒
二U
U
二二⿰亻
二是
U్ర్ర
U二烒
二烒
｜｜｜
昏

4182828

134

2019/10 AF I

回Download $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1Range 1: 4182761 to 4182989 GenBank Graphics

Score	Expect	Identities	Gaps	Strand
366 bits(198)	$4 \mathrm{e}-102$	$219 / 229(96 \%)$	$2 / 229(0 \%)$	Plus/Plus

TCGGAT-CAGCTAGCTGTCTCGGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGT 67

126
4182880
186
4182940
TGAACGTGCAGGCTTCG

235
4182989

Query	68
Sbjct	4182821
Query	127
Sbjct	4182881
Query	187
Sbjct 4182941	

묨Download \vee GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182773 to 4182996 GenBank Graphics

2019/10 BK
[DDownload $~$ GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank Graphics

Range 1: 4182770 to 4182985 GenBank Graphics	Expect Identities	Next Match \triangle Previous Match

Score Expect Identities
Plus/Plus

CGCACAAACGTC acg cacanacg
CTTCGAAGTTCGAG
CCGAACA
4182949
$\begin{array}{lll}\text { Query } & 195 & \text { TCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGa } \\ \text { Sbjet } & 2182950 \\ \text { SUCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGA }\end{array}$

$\begin{array}{lll}\text { Query } & 195 & \text { TCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGa } \\ \text { Sbjet } & 2182950 \\ \text { SUCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGA }\end{array}$
||||
2/216(0\%)
ك
4182829

4182889
194
41
AACA
TCGAAACCCCTGAAGGTC
$|1111111111| 1|1|$

回Download $~$ GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182770 to 4182989 GenBank Graphics

Range 1: 4182770 to $\mathbf{4 1 8 2 9 8 9}$ GenBank Graphics		Next Match Δ Previous Match		
Score	Expect	Identities	Gaps	Strand
374 bits(202)	$2 e-104$	$215 / 221(97 \%)$	$1 / 221(0 \%)$	Plus/Plus

4182828

137
4182888
197
4182948

4182948
CGAAGTTCGA

238

4182989
ATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTaa
$\begin{array}{ll}\text { Sbjct } & 4182889 \\ \text { Query } & 198 \\ \text { Sbjct } & 4182949\end{array}$
$\begin{array}{ll}\text { Sbjet } & 4182770 \\ \text { Query } & 78\end{array}$ Query
Sbjct Sbjet
$\begin{array}{ll}\text { Sbjct } & 4182829 \\ \text { Query } & 138 \\ \text { Sbjct } & 4182889\end{array}$

2019/10 BF I

2019/10 BF II

IDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: $\mathbf{4 1 8 2 7 7 3}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank Graphics

Range 1: $\mathbf{4 1 8 2 7 7 3}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank	Graphics	Expect	Identities	Next Match Δ Previous Match

0/213(0\%) Plus/Plus
GTCTGATCAACTCTCTGTCCGTGTACGCACAGA 4182985
N
$\underset{\sim}{\infty}$
$\underset{y}{\infty}$
\sim
Query Sbjct Query Sbjct Query Sbjct Query Sbjct

2019/10 BF II
 Sequence: 50401529

$\xrightarrow{\square}$
2019/10 CK

$$
\text { 回Download } \sim \text { GenBank Graphics }
$$

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 8 8}$ GenBank Graphics

［Download \vee GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： 4182768 to 4182977 GenBank Graphics $\quad V$ Next Match Δ Previous Match
Expect Identities
0／210（0\％）Plus／Plus
CCGCTGTCTGAGATTPACGCACAAACG
CGAAGTTCG
二嵑
GAAGGTCCGAA
U三U
73
$\stackrel{N}{n}$
4182887
$\stackrel{M}{-}$
4182947
O
弁三
敋三芜
二葛

204／210（97\％）
204／2
2019／10 DF I
9e－99 204／210（97\％）
TGGACCAGAACAAC
U
三二
二
U
｜｜｜｜｜

CATCGGTCTGATCAACTCTCTGTCCGTGTA

回Download \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 6 1}$ to $\mathbf{4 1 8 2 9 8 6}$ GenBank Graphics V Next Match Δ Previous Match

67

 4182820127 4182880
$\stackrel{\uparrow}{\infty}$
4182940
|l|||||||||||

CCTGAAG GAAACCCC
GAAACCCC
233

4182986
 $\begin{array}{ll}\text { Sbjct } & 4182761 \\ \text { Query } & 68 \\ \text { Sbjet } & 4182821 \\ \text { Query } & 128\end{array}$ Sbjct 4182881 188 $\overrightarrow{7}$
N
N
IQuery

Sbjct
［DDownload $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1： $\mathbf{4 1 8 2 7 6 8}$ to 4182973 GenBank Graphics
 $\begin{array}{lll}\text { Score } & \text { Expect } & \text { Identities } \\ 309 \text { bits（167）} & 1 \mathrm{e}-84 & 194 / 207(9\end{array}$
 puents sdeg

76

4182827
136
4182887

196

4182947

U二
4
4
4
4
GCAGGCTTCGAAGTTCG
$1 \mid 11111111111$
GCAGGCTTCGAAGTTCG
我二甘্氏丶
2019／11 AF II

2019/11 BK
GenBank Graphics
믐Download \vee

2019／11 BF I
GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
 Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1： 4182768 to 4182973 GenBank Graphics

$\begin{array}{lll}\text { Score } & \text { Expect } & \text { Identities } \\ 279 \text { bits（151）} & 5 e-76 & 188 / 206(91\end{array}$

4182887
N
n
－
4182947

AGAA
CGCGAA
三U
岂
悤三二⿰亻弋
Query 14
Sbjct 4182768

Query	73
Sbjct	4182828

Query 133
Sbjct 4182888

[^2]CATCGGTCTGATCAACTCTCTGTCCG 4182973

Download $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182768 to 4182977 GenBank Graphics
 \checkmark Next Match \mathbf{A} Previous Match
 Strand
 位
 Score 326 bit
 Query
 Plus/Plus

CAGCC-GCTGTCTCAGTTTTATGGACCACAACAACGCGCTGTCTGAGATTACGTACAAACG
CGTGAAGGCTTCGAAGTTCG
CGTGCAGGCTTCGAAGTTCG
|||||

4182947
2019/11 DF II
CATCGGTCTGATCAACTCTCTGTCCGTGTA 220
CATCGGTCTGATCAACTCTCTGTCCGTGTA 4182977
Sbjct 4182768

Sbjct 4182828
Query 131
4182888
191
Sbjct 4182948

2019/15 AK I*

Escherichia coli str. K-12 substr. MG1655, complete genome

 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1Range 1: $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 9 6}$ GenBank Graphics

2019/15 AK III*

[Download \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182768 to 4182953 GenBank Graphics
Range 1: 4182768 to 4182953 GenBank Graphics $\quad \nabla$ Next Match \triangle Previous Match

Score	Expect	Identities	Gaps	Strand
237 bits(128)	$6 \mathrm{e}-63$	$168 / 187(90 \%)$	$3 / 187(1 \%)$	Plus/Plus

73

 Query

4182826
133
$\stackrel{M}{-}$
4182946
ACCCGCTGTCTGAGATTACGCACAAAC

ACATCGG 200
4182953
||||||
Query 74
Sbjct 4182827

134

194
F
N
※
-
Sbjct
Query
Sbjct
Query
Sbjct
2019/15 BK I*
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

| Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank | | | Graphics | Expt Match \triangle Previous Match |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Score | Expect | Identities | Gaps | |

Identities
207/219(95\%)
3/219(1\%)
Plus/Plus

ACGTGCAGGCTTCGAAGTTC

|||||||||
230
4182985

335 bits(181)
2019／15 BK II＊

맴Download \vee GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
 Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1： 4182773 to 4182985 GenBank Graphics
Range 1： 4182773 to 4182985 GenBank Graphics $\quad \nabla$ Next Match \triangle Previous Match
Identities Strand
Plus／Plus
AGCTGTCT－AGTTTATGG－CCAGAACAACGCGCTGTCTGAGATTACGCA－GAACGTCGTA
AGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACGTCGTA
｜｜｜｜｜
ACATCG
式三関
울
4182952
4182832
145
4182892 \square
三二
GGCTTC
GGCTTCC
CCTGAA
｜｜｜｜｜
（\％）sdes
二苞
U三二⿰亻弋
U
4三亗
 Sbjct 4182773 Query 86 Sbjct 4182833 $\begin{array}{ll}\text { Query } & 146 \\ \text { Sbjct } & 4182893\end{array}$ $\begin{array}{ll}\text { Query } & 206 \\ \text { Sbjct } & 4182953\end{array}$
回Download $~$ GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

| Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 7 3}$ GenBank | Graphics | | ∇ Next Match Δ Previous Match | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |

$\begin{array}{ll}\text { Expect } & \text { Identities } \\ 1 \mathrm{e}-80 & 192 / 207\end{array}$
73
4182826
131
4182886
191
CAGCC-GCTGTCTCAGTATTATGTACCAGAACAACCCGCTGTCTGAGATTACGCACAAAC
GTCGTATCTCCGCACTCG-CCCAGGCGG-CTGACCCGTGAACGTGCAGGCTTCGAAGTTC
CCGA
CCGA
4/207(1\%) Plus/Plus
2019/18 AK I
Query 15
Sbjct 4182768 $\begin{array}{ll}\text { Query } & 74 \\ \text { Sbjct } & 4182827\end{array}$ $\begin{array}{ll}\text { Query } & 132 \\ \text { Sbjct } & 4182887\end{array}$ กั N
N
※
Query Sbjct

2019/18 CK I

DDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182760 to 4182996 GenBank Graphics

$\begin{aligned} & \text { Score } \\ & 377 \text { bits(204) } \end{aligned}$		$\begin{aligned} & \text { Expect } \\ & 2 e-105 \end{aligned}$	$\begin{aligned} & \text { Identities } \\ & \text { 227/238(95\%) } \end{aligned}$	$\begin{aligned} & \hline \text { Gaps } \\ & \text { 2/238(0\%) } \end{aligned}$	Strand Plus/Plus	
Query Sbjct	$\begin{aligned} & 8 \\ & 4182760 \end{aligned}$	TTCGGGTTCTGCC-GCTGTCTCAGTTTATGAGACCAGAACAACCCGCTGTTTGAGATTAC 				66 41828
uery	4182819	GCACAAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTT \|111				4182
Query	127 4182879	CGAAGTTCGAGACGTACACCCTACTCACTACGGCCGCGTATGTCCAATCGAAACCCCTGA CGAAGTTCGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGA				186 41829
jery	187 4182939	AGGTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACAAACAGACTAACAAATAC AgGtccGancatcgatctantcanctctctgtccgtgtacgcacagactanccanatac				244

Sequence: 29415274

2019／20 BK I
［回Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Score	Expect	Identities	Gaps	Strand
316 bits（171）	$8 e-87$	$196 / 208(94 \%)$	$2 / 208(0 \%)$	Plus／Plus

CAG－CAGCTGTCTCAGTTTATGGACCAGAACAACCGGCTGTCTGAGATTACGTACAAACG 74
4182827
m
\cdots
4182887
n
－
4182947
｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜
AAGATCG

CCTGAAGG
｜｜｜l｜｜l｜
TACAGG
AAACC
二U
｜｜｜｜｜
GAACG
$1\left|\left.\right|_{T C G}\right.$
U
CCAAT

$\stackrel{\square}{\circ}$

4182768

16
75
4182828
134
4182888
194
∞
ふ
ふ
\sim
∞
\cdots
\cdots
\sim
Query
Sbjet
Query
Sbjet
Query Sbjet Query Sbjct

VDownload \vee GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank Graphics

Score	Expect	Identities	Gaps	Strand
372 bits（201）	9e－104	211／216（98\％）	0／216（0\％）	Plus／Plus

137
4182889
N
$\stackrel{\rightharpoonup}{H}$
+
O
－
o
N
－
－
－
｜｜｜｜
｜｜1｜｜｜
曷三二宫
三－
AAGGTCC
233
4182985
TCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGa
$\begin{array}{ll}\text { Query } & 198 \\ \text { Sbjet } & 4182950\end{array}$
78
4182830
∞
\cdots
Γ
4182890
2019／23 CK I

Query

 Sbjct Query Sbjct2019/23 CK III

[Download \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

\section*{Range 1: 4182768 to 4182989 GenBank Graphics
 | Range 1: 4182768 to $\mathbf{4 1 8 2 9 8 9}$ GenBank Graphics | | Next Match Δ Previous Match | | |
| :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 399 bits(216) | $4 \mathrm{e}-112$ | 220/222(99\%) | $0 / 222(0 \%)$ | Plus/Plus |}

2019／24 CK I

GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 2}$ GenBank Graphics
Score Expect Identities
Gaps Strand

$$
0
$$

acgrachancg
$|||||\mid$

岛三U
我三我
｜｜｜｜｜｜｜｜

246

4182992
AACGA
U二苮
H三二甘্弋 CCCGCTGTCTGAG
0
U

（18／225Gg－C
פロּפษ
U
U
式三甙
U్ర్త్ర
苞三荀
山อエ：
GCTG
CAGC
O

O

con
Sbjct 4182768
ouery 82 Sbjct 4182828 Query 142 Sbjct 4182888 $\begin{array}{ll}\text { Query } & 202 \\ \text { Sbjct } & 4182948\end{array}$

2019/24 DK I

呂Download $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: $\mathbf{4 1 8 2 7 6 8}$ to 4182986 GenBank Graphics

2016/1 AK I

[^3]DDownload $~$ GenBank Graphics
2016/1 AK II

2016／2 AK III
［日D Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
 Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

Range 1： $\mathbf{4 1 8 2 7 6 1 \text { to } 4 1 8 2 9 8 6 \text { GenBank Graphics } \quad \nabla \text { Next Match } \triangle \text { Previous Match }}$

Score	Expect	Identities	Gaps	Strand
368 bits（199）	$1 \mathrm{e}-102$	$219 / 228(96 \%)$	$3 / 228(1 \%)$	Plus／Plus

TCGG－TGCAGTCAGCTGTCTCAGTTTTATGAGACCACCAACAACGCGCTGTATGAGATTAC 68
4182818
$\stackrel{\text { N }}{\underset{\sim}{+}}$
4182878

∞	
∞	
\cdots	∞
\cdots	

236
4182986

二左
花
U三U
茿 U CA－G
二烒
CGTGTACGC
182986
星
CAGG
368 bits（199）
Query 10
Sbjct 4182761

\circ00000

4182819

Query
Sbjct Query
Sbjct
2016/2 AK IV

[Download v GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC 000913.3 Length: 4641652 Number of Matches: 1

$\begin{array}{lrrrr}\text { Range 1: } \mathbf{4 1 8 2 7 6 8} \text { to } \mathbf{4 1 8 2 9 9 0} \text { GenBank } & \text { Graphics } & & \text { Next Match } \Delta \text { Previous Match }\end{array}$
Expect Identities
212/225(94\%)
7e-95

Sbjct
2016／2 AK V
BDownload \vee GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 6 4}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank Graphics

| Range 1： $\mathbf{4 1 8 2 7 6 4}$ to $\mathbf{4 1 8 2 9 8 5}$ GenBank | Graphics | | Next Match Δ Previous Match | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 348 bits（188） | $1 \mathrm{e}-96$ | $211 / 222(95 \%)$ | $2 / 222(0 \%)$ | Plus／Plus |

Query 12 GTT－CAGTCAGCTGTCTCAGTTTATGTACCAGAA－GACCCGCTGTCTGAGATTACGCACA 69
4182823

4182883
189
m
－
N
N
－
－
｜l｜｜1｜｜｜｜｜｜ ｜ $11 \mid$
CCTGAAGGTC
$11111111 \mid$
$C C T G A A G G T C$
曷三烒
二二⿰亻弋 cgCAC

山อบษษอコอ
二苟
U
4
U
N
二岂
ออออษอป
U
苞
2016/3 AK III
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182773 to 4182932 GenBank Graphics

2016/3 AK IV

VDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182770 to $\mathbf{4 1 8 2 9 7 7}$ GenBank Graphics

Range 1: 4182770 to $\mathbf{4 1 8 2 9 7 7}$	GenBank Graphics		Next Match A Previous Match	
Score	Expect	Identities	Gaps	Strand
329 bits (178)	$9 e-91$	$199 / 209(95 \%)$	$2 / 209(0 \%)$	Plus/Plus

Query 17 GCCAGCTGTCTCAGTTTATGAGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACGT 76
4182828 $\begin{array}{lllllll}\text { Query } & 77 & \text { CGTACCTTCGCACTCGGCCCAGGCGG-CTGACCCGTGAACGTGCAGGCTTCGAAGTTCGA } \\ \text { Sbjet } & 4182829 & \text { CGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCGA }\end{array}$

2016/3 AK IV

 AGAGGATAATCAGGGTTTTTTCTGTTAATTTGTTGTTGIC IC CGAGCCGCAATTTACTTAATTGTTGG
2016/3 AF I

DDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 7 7}$ GenBank Graphics
 V Next Match A Previous Match

Score Expect Identities Gaps Strand
Plus/Plus
GCC-GCTGTCTCAGTTTTATGGACCAGAA-GACCCGCTGTCTGAGATTTACGCACAAACGTC

$\begin{array}{ll}\text { Expect } & \text { Identities } \\ \text { 2e-90 } & 198 / 208(9\end{array}$
Gaps
2/208(0\%)
327 bits(177)
Sbjct 4182770 - 74 $\stackrel{\leftrightarrow}{~}$

[^4]2016/3 AF II

BDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
$\begin{array}{llll}\text { Range 1: } \mathbf{4 1 8 2 7 6 8} \text { to } \mathbf{4 1 8 2 9 8 9} \text { GenBank Graphics } & \quad \text { Gext Match } \Delta \text { Previous Match }\end{array}$ $\begin{array}{ll}\text { Gaps } & \text { Strand } \\ 1 / 222(0 \%) & \text { Plus/Plus }\end{array}$
CAGCCAGCTGTCTCAGTTTTATGAACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG 74
4182827
$\stackrel{m}{7}$
4182887
$\stackrel{\Im}{-}$
4182947
TCGTACCTCCGCACTCGGCCCAGGC-GCCTGACCCGCGAACGTGCAGGCTTTCGAAGTTCG
TCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCG
AGACGTACACCCTACTCACTACGGCCGCGTATGTCCCATCAAAACCCCTGAAGGTCCGAA =
235
CATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAA 4182989 $\begin{array}{ll}\text { Query } & 75 \\ \text { Sbjct } & 4182828 \\ \text { Query } & 134 \\ \text { Sbjct } & 4182888\end{array}$
194

15

CATCGGTCTGATCAACTCTCTGTCCGTGTACGC
Query
Sbjct

ATGGTTGTTTGGAA TCAGGGATTTTGTGCCTAAAAGAAAAGCTGACCTGTCGATGCTAGGTTGAAGATGCTTTTACCCCATTTG

CGATTTC TTTTCTGGATAGCOTT
2016／3 AF III
EDownload $~$ GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 7 7}$ GenBank Graphics

| Range 1： $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 7 7}$ GenBank | Graphics | | Next Match Δ Previous Match | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 329 bits（178） | $5 \mathrm{e}-91$ | $199 / 209(95 \%)$ | $2 / 209(0 \%)$ | Plus／Plus |

76

4182828
135
4182888
195
$\stackrel{\text { ® }}{\text {－}}$
4182948
信
二苟
｜TCGA
CCGAAC
TTCGAAG
$|||\mid$
苮
三芹
GCAGGC ｜｜｜｜ U フママ GTGAA
式三
｜｜｜｜｜｜｜｜
$\begin{array}{llll}\text { Query } & 196 & \text { ATCGATCTGATCAACTCTCTGTCCGTGTA } & 224 \\ \text { Sbjct } & 4182949 & ||||||||||||||||||||||||\mid & \\ \text { ATCGGTCTGATCAACTCTCTGTCCGTGTA }\end{array}$

2016／3 AF IV

回Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： 4182768 to 4182988 GenBank Graphics

Score	Expect	Identities	Gaps	Strand
370 bits（200）	$3 \mathrm{e}-103$	$214 / 221(97 \%)$	$0 / 221(0 \%)$	Plus／Plus

 4182947

二苮
235

4182988

195
Sbjet 4182948
2016/3 AF V
[Download $~$ GenBank Graphics
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 6 8}$ to 4182973 GenBank Graphics

Score	Expect	Identities	Gaps	Strand							
270 bits(146)	$6 \mathrm{e}-73$	187/207(90\%)	2/207(0\%)	Plus/Plus							
$\begin{array}{ll} \text { Query } & 14 \\ \text { Sbjct } & 4182768 \end{array}$		AGACTATGAGACC $\|1\|\|\|\mid$	GcGCTGTCT \|							ACGTACAAAC	$\begin{aligned} & 72 \\ & 418282 \end{aligned}$

132
4182886
192
4182946 GATC
||
|||
||
|| CGA

[^5]2016/3 BK III
VDownload \vee GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182770 to 4182966 GenBank Graphics

| Range 1: $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 6 6}$ GenBank | Graphics | | | Next Match Δ Previous Match |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 272 bits(147) | $1 \mathrm{e}-73$ | $182 / 199(91 \%)$ | $2 / 199(1 \%)$ | Plus/Plus |

Query 17 GCTAGCTGTCTCAGTTTATGAGACCAGAACAACGCGCTGTCTGACATTACGTACAAACGT 76

4182828

\bullet
\cdots
Γ
4182888
6
$\stackrel{0}{-}$
-1
4182948
TCGAAGTTCAA
GAAC |||||| -U
二U
二U

U
$||||\mid$
U
|||||
TGAAGG
ACCCCTGAA
$\begin{array}{lll}\text { Sbjct } & 4182889 & \text { GACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCC } \\ \text { Query } & 197 & \text { GTCGGTAAAGAACAACTCT } 215 \\ \text { Sbjct } & 4182949 & \text { ATCGGTCT-GATCAACTCT }\end{array}$
2016／3 BK IV
［Download \vee GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome
Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
k Graphics

Range 1： 4182760 to $\mathbf{4 1 8 2 9 3 3}$ GenBank | Score | Expect | Identities | Gaps | Strand |
| :--- | :--- | :--- | :--- | :--- |
| 263 bits（142） | $1 \mathrm{e}-70$ | $164 / 174(94 \%)$ | $3 / 174(1 \%)$ | Plus／Plus | Query 8

Query 8
65
124
4182879
GCTTC
178
m
n
N
－
－
－
GAAACC
TACG
U三二
TGTCT
U
U二U
U
UU
｜｜
岕三
䍐二
｜｜｜｜
CCCG
CCC
二是
U
亿二
氏二甘
思二昏
U三二
CGCG
TATGG
븝붑
｜CAGC
\mid
브응
U三二
U－
｜｜｜
U二
已
U－
U二
U二心
ひ二
U二U
U二U
｜｜
U—U
U—O
브를
昏二昏
U二
リ二
U

二－二二
 GGGT
近
H
H
H

｜TC
，
兵三
Sbjct 4182760

Query	66
Sbjct	4182820

4182820
Sbjct 4182880

AATTTTTACGGAGCGTTGGGGTTCTATGGGGAATACGAAAACCGTGTCTAAGTGCAGATGGAGGI
2016／3 BK V
固Download \vee GenBank Graphics
Escherichia coli str．K－12 substr．MG1655，complete genome Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： 4182768 to 4182973 GenBank Graphics

| Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 7 3}$ GenBank | Graphics | | Next Match Δ Previous Match | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 329 bits（178） | $1 \mathrm{e}-90$ | $197 / 206(96 \%)$ | $2 / 206(0 \%)$ | Plus／Plus |

CAGCC－GCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG 73
4182827
N
$\underset{\sim}{+}$
4182887
N
－

CCGAA

｜｜｜
TCGAAG
苞
GAAGGT

[^6]
Sbjct 4182888

2016/3 BF I

DDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

\section*{Range 1: 4182768 to 4182985 GenBank Graphics
 V Next Match A Previous Match
 | Score | Expect | Identities | Gaps | Strand |
| :--- | :--- | :--- | :--- | :--- |
| 342 bits(185) | $7 \mathrm{e}-95$ | $208 / 219(95 \%)$ | $1 / 219(0 \%)$ | Plus/Plus |}

CAGCCAGCTGTCTCAGTTTATGAGACCAGAACAACCCGCTGTCTGAGATTACGCACAAAC

71

4182826

$$
131
$$

GCAGGC
GCAGG
ACCCC
ACCCC

230
 ACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGA 4182985

Sbjct 4182947

$$
4182886
$$

$$
\begin{aligned}
& 191 \\
& 4182946
\end{aligned}
$$

2016／3 BF III

DDownload $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 7 2}$ to $\mathbf{4 1 8 2 9 8 0}$ GenBank Graphics

Score	Expect	Identities	Gaps

Score
257 bits（139）

Query 19 CAGCTGTCTCGGACTATGAGCCACCCCAACGCGCTGTCTGAGATTACGCACAAACGTCGT 78
4182831
137
4182891
197
4182951
｜11111111｜

든
（\％0）60Z／โ
U三耑
U
皆
岂
U
AACCC
$1|1| \mid$
AACCC
U
TCACGI
4182980

Sbjct 4182772
$\begin{array}{ll}\text { Query } & 79 \\ \text { Sbjct } & 4182832\end{array}$ $\begin{array}{ll}\text { Query } & 138 \\ \text { Sbjct } & 4182892\end{array}$ Query 198
Sbjct 4182952

2016／4 AK IV
回Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome

Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1
Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 8 6}$ GenBank Graphics

| Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 8 6}$ GenBank | Graphics | | ∇ Next Match Δ Previous Match | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 335 bits（181） | $1 \mathrm{e}-92$ | $207 / 219(95 \%)$ | $3 / 219(1 \%)$ | Plus／Plus |

CGTATCTTCGCACTCGGCCCAGGCGGTCTGACCCGCGAACGTGCAGGCTTCGAAGTTCA 131 4182887 191
4182947
我三我
AGGTCC
息三二药
｜｜｜｜

bjct 4182768
$\begin{array}{ll}\text { Query } & 72 \\ \text { Sbjet } & 4182828\end{array}$ Query 132
Sbjct 4182888
192
Sbjct 4182948
2016/4 AF I

VDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182768 to 4182986 GenBank Graphics

Score	Expect	Identities	Gaps	Strand	
231 bits(125)	2e-61	188/219(86\%)	2/219(0\%)	Plus/Plus	
Query 15 Sbjct 4182768					$\begin{aligned} & 74 \\ & 4182827 \end{aligned}$

132
4182887
192
4182947
| |||| TCCGAA AGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAAGGTCCGAA

- ${ }^{\square}$ Download \vee GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182768 to 4182985 GenBank Graphics

Score 370 bits(200)		$\begin{aligned} & \text { Expect } \\ & 3 \mathrm{e}-103 \end{aligned}$	$\begin{aligned} & \text { Identities } \\ & 213 / 219(97 \%) \end{aligned}$	$\begin{aligned} & \text { Gaps } \\ & 1 / 219(0 \%) \end{aligned}$	Strand Plus/Plus											
Query Sbjct	$\begin{aligned} & 15 \\ & 4182768 \end{aligned}$	CAGTCAGCTG $\|\|\|\|\|\|\|\|\mid$	\|													74 4182826
Query	75 4182827	GTCGTATCTC $\|1\| 1\|\|\|\|\mid$ GTCGTATCTC		CGTGAACG	CTTCGAAGTTC	134 4182886										
Query	135 4182887	GAGACGTACA \|								GAGACGTACA	tactcactacgatc 	TCCAATCGAAA $\|\|\|\|\|\|\|\|\|\|\|\mid$	TGAAGGTCCGA $\|\|\|\|\|\|\|\|\mid$ TGAAGGTCCGA	$\begin{aligned} & 194 \\ & 4182946 \end{aligned}$		
Query	195 4182947	ACATCGGTCT \|								ACATCGGTC		$\begin{array}{ll} : A C A G a & 233 \\ \|\|\|\mid & \\ \text { ACAGA } & 4182 \end{array}$				

2016/4 BK II

- Download \vee GenBank Graphics
Download \vee GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

\section*{Range 1: $\mathbf{4 1 8 2 7 6 8 \text { to } 4 1 8 2 9 8 6 \text { GenBank Graphics } , ~}$
 | Score | Expect | Identities |
| :--- | :--- | :--- |
| 339 bits(183) | 9e-94 | 208/220(95 |}

VDownload $~$ GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182768 to 4182986 GenBank Graphics

CAGTCAGGTGTCTCTGTTTATGG-CCACCAAGACCCGCTGTCTGAGATTACGCACAAACG 73

CAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG
TTCG
CCGAA
TCGAAG
||1||
CTGAAGGT
A三4

Query	194	CATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGAC				232
	Sbjet	4182948	$\|\mid l$			
CATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGAC	4182986					

74
4182887
n
$\stackrel{n}{\Gamma}$
N
-
N
N
-
-
232
4182986
2016/4 BK III

$$
\text { Query } 15
$$

Sbjct 4182768 Query Sbjct Query Sbjct
2016/4 BK IV
昷Download v GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182768 to 4182985 GenBank Graphics

2016/4 BK V

llawnload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 8 6}$ GenBank Graphics

> Gaps
Strand
111111
CAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACG
Gaps
132
4182887
n
σ
\sim
4182947
TTCGAAGTTCG
|11 $11111 \mid 1$
|
AAACCCCTGAAGGTCCGAA
AAACCCCTGAAGGTCCGAA
AAACCCCTGAAGGTCCGAA
231
||||
4182986
U
\qquad

U
||||||
旨
d
CATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGAC

Query	73
Sbjct	4182828
Query	133
Sbjct	4182888
Query	193
Sbjct	4182948

2016/4 BF II
圆Download \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

| Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 7 5}$ GenBank | | | Graphics | Next Match Δ Previous Match |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 268 bits(145) | $1 \mathrm{e}-72$ | $188 / 208(90 \%)$ | $5 / 208(2 \%)$ | Plus/Plus |

141

 \qquad

228
4182975

$\begin{array}{ll}\text { Query } & 26 \\ \text { Sbjct } & 4182768 \\ \text { Query } & 82 \\ \text { Sbjct } & 4182828 \\ \text { Query } & 142 \\ \text { Sbjct } & 4182888 \\ \text { Query } & 201 \\ \text { Sbjct } & 4182948\end{array}$
2016／4 BF III

GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
 Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

| Range 1： $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 8 9}$ | GenBank | Graphics | | Next Match Δ Previous Match |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Score | Expect | Identities | Gaps | Strand |

$\begin{array}{lll}\text { Score } & \text { Expect } & \text { Identities } \\ 344 \text { bits（186）} & 2 \mathrm{e}-95 & 212 / 224(9\end{array}$
Plus／Plus
$|||\mid$旦三二早

238
989
｜｜｜｜｜｜
2e－95 212／224（95\％）3／224（1\％）
CGCTGTC＇
74
－
194
n
®
N
－
－
TCGAAG
182885

U
ロゴ
AGAAC
AGGCT
U三葉
曷三烒
U三二⿰亻弋
｜｜｜｜｜｜｜

｜｜｜｜｜
安二苞 昏三家
舁
4182989
｜｜｜
试三慗
$||\mid$
GG
TCAGGTGTCTCTGTTTATGAG
U
TV隹
U్ర్ర
TACGG
U
U
H
ACGC

Query	16
Sbjct	4182768
Query	75
Sbjct	4182826
Query	135
Sbjct	4182886
Query	195
Sbjct	4182946

2016/4 BF V
[Download \vee GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182768 to 4182990 GenBank Graphics

| Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 9 0}$ | GenBank | Graphics | | Next Match Δ Previous Match |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |
| 364 bits(197) | $1 \mathrm{e}-101$ | $216 / 225(96 \%)$ | $2 / 225(0 \%)$ | Plus/Plus |

Query 17 CAGTCAGCTGTCTCAGTCTATGAGACCACCAACAACCCGCTGTATGAGATTACGCACAAA 76
4182825
4182885
196
4182945
AAGTT
A||||
AGTCCG
$1||||\mid$
|TTCGA
CTTCGA
||||||

C

> E

197

Query
Sbjct
Query
Sbjct

Seuweor:29414000 $\quad 2016 / 4$ BF V

2019/19 AF II
뮴Download \vee GenBank Graphics

\section*{Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1 Range 1: 4182768 to 4182978 GenBank Graphics 	Range 1: $\mathbf{4 1 8 2 7 6 8}$ to $\mathbf{4 1 8 2 9 7 8}$	GenBank	Graphics		Next Match Δ Previous Match
Score	Expect	Identities	Gaps	Strand	
270 bits(146)	$3 e-69$	$191 / 213(90 \%)$	$2 / 213(0 \%)$	Plus/Plus	}

76

4182826

4182885

6 $\stackrel{\circ}{-1}$

 4182945 CAGTCAGCTGTCTCGGATTATGAGACCACCCCAACCCGCTGTATGAGATTACGCACAAAC
 GCTTCGAAGTT
|||||||||
GCTTCGAAGTT
||||||||||| |||cctaAgGTCC

136

TCCCATCAAAACC
CGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATC
4182978
||||||||||||||||||||||||||||||
Sbjct 4182768 Query 77
Sbjct 4182827 Query 137 Sbjct 4182886 Sbjct 4182946

밈Download \vee GenBank Graphics
2019/19 BF II

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

\section*{Range 1: $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 8 9}$ GenBank Graphics
 ∇ Next Match Δ Previous Match
 | Score | Expect | Identities | Gaps | Strand |
| :--- | :--- | :--- | :--- | :--- |
| 355 bits(192) | $7 e-95$ | $211 / 220(96 \%)$ | $1 / 220(0 \%)$ | Plus/Plus |
 Query 18 GCCAGCTGTCTCAGACTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACGTC
 }

CGAAGTTCGAG ACCCCTGAAGGTCCGAACA
236
 ACCCCTGAAGGTCCGAACA
236 ACCCCTGAAGGTCCGAACA
A||||||||||||||
236
4182989
GAATaa

4182889
197
4182949
U三
ACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCACAACTCTCTGTCCGTGGAA-CACAGAATaa
2019／19 DF II

！Download $~$ GenBank Graphics

Escherichia coli str．K－12 substr．MG1655，complete genome
 Sequence ID：NC＿000913．3 Length： 4641652 Number of Matches： 1

| Range 1： $\mathbf{4 1 8 2 7 7 0}$ to $\mathbf{4 1 8 2 9 8 9}$ | GenBank | Graphics | | ∇ Next Match Δ Previous Match |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score | Expect | Identities | Gaps | Strand |

Strand
Plus／Plus

77
4182829

∞
∞
∞
$\underset{\sim}{\infty}$

197
4182949

Uే二
U三陁
AGGTCC
CCCCTGAA
CCCCTGAA
236
4182989
TCGGTCTGATCAACTCTCTGTCCGTGGAA－CACAGAATaa
$\begin{array}{ll}\text { sbjct } & 4182890 \\ \text { uery } & 198\end{array}$
Sbjct 4182950
2019/21 AK II
圆Download \vee GenBank Graphics
Escherichia coli str. K-12 substr. MG1655, complete genome Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182768 to $\mathbf{4 1 8 2 9 9 0}$ GenBank Graphics

$\begin{aligned} & \text { Score } \\ & 385 \text { b } \end{aligned}$	$s(208)$	$\begin{aligned} & \text { Expect } \\ & 2 \mathrm{e}-107 \end{aligned}$	$\begin{aligned} & \text { Identities } \\ & \text { 219/224(98\%) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Gaps } \\ & 1 / 224(0 \%) \\ & \hline \end{aligned}$	Strand Plus/Plus								
Query Sbjct	$\begin{aligned} & 14 \\ & 4182768 \end{aligned}$	CAGCCAGCT CAGCCAGCT	agtitatgagacc AgTtTATG-GACC		AGATTACGCACAAAC AGATTACGCACAAAC	73 4182826							
Query	74 4182827	GTCGTCTC $\|\|\|\|\mid$		CGTGAACG $\|\|\|\|\|\|\mid$	CAGGCTTCGAAGTTC $\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$	133 4182886							
Query	134 4182887	GAGACGTAC \|							GAGACGTAC			CCCTTGAAGGTCCGA $\|\|\|\|\|\|\|\|\|\|\|\|\mid$	193 4182946
Query	194 4182947	ACATCGGTC $\|\|\|\|\|\|\|\|\|\mid$	AACTCTCTGTCCG		$\begin{aligned} & 237 \\ & 4182990 \end{aligned}$								

2019/21 AK II
 Sequence: 29415328

[^7]TTGA ATATCA TTG C G G GAGGG ${ }^{4}$
回Download $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
Range 1: 4182760 to $\mathbf{4 1 8 2 9 7 4}$ GenBank Graphics
 V Next Match A Previous Match
 Strand
 Plus/Plus
 8

CACAAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTC CACAAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTC
GAAGTTCGAGACGTACACCCTACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAA
GAAGTTCGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAA
221

N゙
$\underset{\sim}{N}$

GTCCGT
$|1| 1|\mid$
GTCCGT
2019/21 AF
Query 8
Sbjet 4182760
Query 66
sbjct 4182820
Query 126
Sbjet 4182880
$\begin{array}{ll}\text { Query } & 186 \\ \text { Sbjct } & 4182940\end{array}$

Escherichia coli str. K-12 substr. MG1655, complete genome Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182763 to 4182996 GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome						
Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1						
Range 1: 4182763 to $\mathbf{4 1 8 2 9 9 6}$ GenBank Graphics				V Next Match Δ Previous Match		
Score		Expect Identities		Gaps	Strand	
364 bits(197)		1e-101	222/234(95\%)	1/234(0\%)	Plus/Plus	
Query		GGTT-CTGCCGGTTGTCTCAGTTTATGTACCAGAACAATGTGCTGTCTGAGATTACGCAC				69
Sbjet		GGTTCCAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCAC				
Query		GAACGTCGTATCTCCGCACTCGACCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAA				129
Sbjet	4182823	AAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAA				4182882
Query		GTTCGAGACGTACCCCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAAGGT GTTCGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAAGGT				189
Sbjet	4182883					4182942
Query						
Sbjct	4182943					

GGTT-CTGCCGGTTGTCTCAGTTTATGTACCAGAACAATGTGCTGTCTGAGATTACGCAC 69

GAACGTCGTATCTCCGCACTCGACCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAA

$\underset{G G T}{\text { IGT }} \mid$
243
4182996
ATAC
2019/21 CF

묨Download \vee GenBank Graphics

2019/21 DK II
[10wnload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Range 1: 4182772 to 4182977 GenBank Graphics

Score	Expect	Identities	Gaps	Strand
287 bits(155)	3e-78	$190 / 207(92 \%)$	$1 / 207(0 \%)$	Plus/Plus

DDownload $~$ GenBank Graphics

Escherichia coli str. K-12 substr. MG1655, complete genome

Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1

Score \quad Expect Identities \quad Gaps \quad Strand

1/219(0\%) Plus/Plus

GAAGTTC GCTTC
$|||||\mid$ CAG $11|1|$ ||||| | $11 \mid$ $||||\mid$ |||| |111 CCAGG |||| $||||\mid$ ||||| || GTCGTACC |||||

234
4182985
ACATCGGTCTGATCAACTCTCTGTCCGTGTACAAACAGa
$1|1| 1|1| 1|1| 1|1| 1|1| 1|1| 1|1| 1|1|$
ACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGA
Sbjct 4182768
76
4182827
136
4182887
196
$\angle ゅ 628$ Lワ

Query
Sbjct
Query
Sbjct
Query
Sbjet

2019/21 DF
 Sequence: 29416127

[^8]
A. 2 DNA Glycosylase activities for $N^{4}, 5$-dimethylcytosine

A.2.1 Buffers and solutions

Table A.2.1: $5 \times$ HEPES buffer

Composition	Stock	Amount used in preparation
225 mM HEPES, pH 7.5	1 M (lab stock)	$22,5 \mathrm{ml}$
10% glycerol	85% (Merck, Cat \# 1.04094)	12 ml
2 mM EDTA	0.5 M (lab stock)	$400 \mu \mathrm{l}$
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to $100 \mu \mathrm{l}$

Stored in aliquots at $-20^{\circ} \mathrm{C}$

Table A.2.2: Salt-TE (STE) buffer

Composition	Stock	Amount used in preparation
10 mM Tris, pH 8.0	1 M	$200 \mu \mathrm{l}$
50 mM NaCl	Sigma, Cat. \#S5886, $58.44 \mathrm{~g} / \mathrm{mol}$	58.44 mg
1 mM EDTA	0.5 M (lab stock)	$40 \mu \mathrm{l}$
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to $20 \mu \mathrm{l}$

Filtrated and stored in aliquots at $-20^{\circ} \mathrm{C}$

Table A.2.3: $1 \times$ TE buffer

Composition	Stock	Amount used in preparation
10 mM Tris, pH 7.5	1 M	$200 \mu \mathrm{l}$
1 mM EDTA, pH 8.0	0.5 M (lab stock)	1.6 ml
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to 20 ml
Filtrated and stored in aliquots at $-20^{\circ} \mathrm{C}$		

Table A.2.4: 10X TBE running buffer

Composition	Stock	Amount used in preparation
890 mM Tris base	Sigma, Cat. \# T6066, $121,14 \mathrm{~g} / \mathrm{mol}$	108 g
890 mM Boric acid	$\mathrm{Mw} 61.8 \mathrm{~g} / \mathrm{mol}$	55 g
20 mM EDTA, pH 8	0.5 M (lab stock)	40 ml
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to 1000 ml

Autoclave before use

Table A.2.5: Loading buffer

Composition	Stock	Amount used in preparation
formamide, 80%	99.5% (Sigma, Cat. \# F9037)	40.20 ml
1 mM EDTA	0.5 M (lab stock)	$100 \mu \mathrm{l}$
Blue dextran, $1 \%(\mathrm{w} / \mathrm{v})$	Sigma, Cat. \#D5751	0.5 g
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to 50 ml

Stored in aliquots at $-20^{\circ} \mathrm{C}$

Table A.2.6: 96% ethanol with $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$

Composition	Stock	Amount used in preparation
0.1 M NaOAc	Sigma, Cat. \# S2889, $82.03 \mathrm{~g} / \mathrm{mol}$	0.82 g
$96 \% \mathrm{EtOH}$	99.5%	225 ml
Stored in RT, cooled down to $-20^{\circ} \mathrm{C}$ before use		

Table A.2.7: 1 M KCl

Composition	Stock	Amount used in preparation
1 M KCl	Sigma, Cat. \# $55405,74.55 \mathrm{~g} / \mathrm{mol}$	3.72 g
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to 50 ml

Filtrated and stored in aliquots at $-20^{\circ} \mathrm{C}$

Table A.2.8: Stop solution

Composition	Stock	Amount used in preparation
20 mM EDTA	0.5 M (lab stock)	2 ml
Sodium dodecyl sulphate	99% Sigma, Cat. \#L3771, 288.38	252 mg
(SDS), $0.5 \%(\mathrm{w} / \mathrm{v})$	$\mathrm{g} / \mathrm{mol}$	
Deionized $\mathrm{H}_{2} \mathrm{O}$		Dilute to 50 ml
Str		

Stored at room temperature

Table A.2.9: Denaturing 20\% PAGE gel with 8 M urea

Composition	Stock	Amount used in preparation
Polyacrylamide, 20\% (w/v)	40\% (Saveen Werner AB, Cat. \#BIAC21)	3.5 ml
$1 \times$ TBE	$10 \times$ TBE (lab stock)	$700 \mu \mathrm{l}$
urea	99.5%, Sigma, Cat. \#F9037	3.363 g
Deionized $\mathrm{H}_{2} \mathrm{O}$		$280 \mu \mathrm{l}$
ammonium persulfate (APS)	BioRad, Cat. \#161-0700, $228.2 \mathrm{~g} / \mathrm{mol}$)	$35 \mu \mathrm{l}$
tetramethylethylenediamine (Temed)	Invitrogen Cat. \#15524-010	$3.5 \mu \mathrm{l}$

A.2.2 Detailed protocols

A.2.2.1 Hybridization of oligos

Tubes kept on ice and in darkness during assay.

1. Prepare reaction mixture in PCR tube: $\quad 2 \mu \mathrm{l}$ forward ssDNA ($100 \mathrm{pmol} / \mu \mathrm{l}$)
$2 \mu \mathrm{l}$ of complementary strand ssDNA ($100 \mathrm{pmol} / \mathrm{ml}$)
$16 \mu \mathrm{l} 1 \times$ Salt-Tris-EDTA (STE) buffer
2. Incubate at $95^{\circ} \mathrm{C}$ for 4 min in the thermocycler.
3. Leave the tube in the thermocycler to cool down at $1^{\circ} \mathrm{C}$ per min for 2 hours.
4. Dilute with $180 \mu \mathrm{l} 1 \times$ Tris-EDTA (TE) buffer to $1 \mathrm{pmol} / \mu \mathrm{l}$. Store in aliquots at $-20^{\circ} \mathrm{C}$ in the dark.

A.2.2.2 Base excision assay

Whole assay is performed on ice and in darkness.

1. Prepare reaction mix according to table A.2.10, note that DTT has to be made fresh for every assay.

Table A.2.10: Reaction mixtures for base excision assays

hSMUG (25-270)	Reagent	Stock	Reaction 1x
	HEPES buffer with 5 mM DTT	5×	$4 \mu \mathrm{l}$
	KCl	1 M	$1.4 \mu \mathrm{l}$
	BSA	$10 \mathrm{mg} / \mathrm{ml}$	$1 \mu \mathrm{l}$
	Deionized $\mathrm{H}_{2} \mathrm{O}$		$11.6 \mu \mathrm{l}$
	Substrate	$1 \mathrm{pmol} / \mu \mathrm{l}$	$1 \mu \mathrm{l}$
	Enzyme, hSMUG (25-270)		$1 \mu \mathrm{l} / 0 \mu{ }^{*}$
	HEPES buffer with 5mM DTT	1×	$1 \mu \mathrm{l} / 0 \mu \mathrm{I}^{*}$
	Total volume		$20 \mu \mathrm{l}$
MPG	ThermoPol buffer		$2 \mu \mathrm{l}$
	DTT	20 mM	$1 \mu \mathrm{l}$
	BSA	$10 \mathrm{mg} / \mathrm{ml}$	$1 \mu \mathrm{l}$
	Deionized $\mathrm{H}_{2} \mathrm{O}$		$14 \mu \mathrm{l}$
	Substrate	$1 \mathrm{pmol} / \mu \mathrm{l}$	$1 \mu \mathrm{l}$
	Enzyme, MPG		$1 \mu \mathrm{l} / 0 \mu \mathrm{l}$
	ThermoPol buffer		$1 \mu \mathrm{l} / 0 \mu \mathrm{l}$
	Total volume		$20 \mu \mathrm{l}$
MutY	REC buffer		$2 \mu \mathrm{l}$
	DTT	20 mM	$1 \mu \mathrm{l}$
	BSA	$10 \mathrm{mg} / \mathrm{ml}$	$1 \mu \mathrm{l}$
	Deionized $\mathrm{H}_{2} \mathrm{O}$		$14 \mu \mathrm{l}$
	Substrate	$1 \mathrm{pmol} / \mu \mathrm{l}$	$1 \mu \mathrm{l}$
	Enzyme, MutY		$1 \mu \mathrm{l} / 1 \mu \mathrm{l}$
	REC buffer		$1 \mu \mathrm{l} / 1 \mu \mathrm{l}$
	Total volume		$20 \mu \mathrm{l}$

*For negative controls 1μ l of buffer solution is added instead of enzyme to achieve equal volume in all tubes.
2. Centrifuge $1 \mathrm{~min}, 4000 \mathrm{rpm}$ at RT.
3. Incubate at $37^{\circ} \mathrm{C}$ for 1 hour (water bath)
4. Spin down and put on ice
5. Add 45μ l Stop solution and 1μ Proteinase K
6. Spin down
7. Incubate at $37^{\circ} \mathrm{C}$ for 10 min (water bath)
8. Spin down and put on ice
9. Add $150 \mu \mathrm{l} 96 \% \mathrm{EtOH} w / 0.1 \mathrm{M} \mathrm{NaAc}$ (cold from freezer)
10. Add $1.6 \mu \mathrm{l}$ tRNA ($10 \mathrm{mg} / \mathrm{ml}$), and invert the tubes several times
11. Incubate the tubes at $-70^{\circ} \mathrm{C}, 2 \mathrm{~h}$, or $-20^{\circ} \mathrm{C}$ overnight in darkness.
12. Centrifuge the tubes; $13000 \mathrm{rpm}, 15 \mathrm{~min}, 4^{\circ} \mathrm{C}$
13. Rotate the tubes 180°
14. Centrifuge again; $13000 \mathrm{rpm}, 15 \mathrm{~min}, 4^{\circ} \mathrm{C}$
15. Remove supernatant
16. Add $300 \mu \mathrm{l}$ cold $70 \% \mathrm{EtOH}$ (from freezer)
17. Centrifuge tubes; $13000 \mathrm{rpm}, 5 \mathrm{~min}, 4^{\circ} \mathrm{C}$
18. Remove supernatant
19. Centrifuge the tubes; $13000 \mathrm{rpm}, 1 \mathrm{~min}, 4^{\circ} \mathrm{C}$
20. Remove remaining supernatant by pipette
21. Leave pellet to dry in hood for at least 20 min (with open caps), make sure all EtOH has evaporated.
22. Dissolve pellet in $10 \mu \mathrm{l} 0,1 \mathrm{M} \mathrm{NaOH}$, and incubate; $10 \mathrm{~min}, 90^{\circ} \mathrm{C}$
23. Spin down
24. Add 10μ l denaturing loading buffer (DLB), and incubate; $5 \mathrm{~min}, 90^{\circ} \mathrm{C}$
25. Load 5μ l of each sample to the prewashed wells of the polyacrylamide gel containing 8 M urea.
26. Run gel; $2 \mathrm{~h}, 200 \mathrm{~V}$ constant, in darkness
27. Analyse gel

A.2.2.3 Gel preparation, loading and running

1. Assemble the gel cassette as instructed by your supervisor.
2. Check for leakage with $\mathrm{dH}_{2} \mathrm{O}$, the system must not leak, dry with filterpaper upon confirmation of sealed system.
3. Prepare first part of mixture: $\quad 3.363 \mathrm{~g}$ Urea
$3.5 \mathrm{ml} 40 \%$ acrylamide solution
$700 \mu \mathrm{l} 10 \times$ TBE buffer
280μ l deionized water (MQ)
4. Microwave for $8-10 \mathrm{sec}$ to dissolve urea.
5. Cool down for about 10 min .
6. Add $35 \mu \mathrm{l} 10 \%$ APS and $3.5 \mu \mathrm{l}$ Temed and swirl the container gently to mix.
7. Use a plastic pipette and transfer the mixture quickly to the space between the glass plates, and insert the comb before the gel starts to polymerize, make sure there are no air bubbles.
8. Leave the gel to dry for $30-40 \mathrm{~min}$.
9. Remove the gel cassette sandwich from the casting stand and frame, and wipe off any overflow with a damp paper towel (to avoid gel particles in the electrophoresis set up).
10. Assemble the gel cassette sandwich into the Electrode assembly with buffer dam, and fill the gel chamber with $1 \times$ TBE running buffer, make sure there are no leakages.
11. When no leakage is confirmed, place it in the Mini Tank, and carefully remove the comb (use both hands).
12. Use a 1000 ml pipette to wash the wells, do this several times until you are sure there are no residual gel particles left in the wells (critical to create sharp and even bands).
13. Load 5μ l of fully treated samples carefully into the wells.
14. Run the gel at 200 V for 2 h in darkness and RT.

A.2.3 Results, additional gels

A.2.3.1 MutY

A.2.3.2 hMPG

A.2.3.3 hSMUG (25-270)

A. 3 Production and purification of hSMUG (25-270)

A.3.1 Buffers and solutions

Table A.2.11: Buffers and solutions used in production and purification of hSMUG (25-270)

Buffer	Composition
Lysis buffer	$50 \mathrm{mM} \mathrm{TRIS}, \mathrm{pH} 7.5,300 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol
Equilibration buffer	$50 \mathrm{mM} \mathrm{TRIS}, \mathrm{pH} 7.5,300 \mathrm{mM} \mathrm{NaCl}$
Wash buffer	$50 \mathrm{mM} \mathrm{TRIS}, \mathrm{pH} 7.5,300 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole
Elution buffer 1	50 mM TRIS, pH 7.5, $300 \mathrm{mM} \mathrm{NaCl}, 100 \mathrm{mM}$ imidazole
Elution buffer 2	50 mM TRIS, pH 7.5,300 mM NaCl, 500 mM imidazole
Dialisys buffer 1	$50 \mathrm{mM} \mathrm{TRIS}, \mathrm{pH} 7.5,300 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{B-ME}$
Dialisys buffer 2	$50 \mathrm{mM} \mathrm{TRIS}, \mathrm{ph} 7.5,300 \mathrm{mM} \mathrm{NaCl}$
$1 \times$ TRIS-Glycine running	
buffer	25 mM trisma Base, $0,192 \mathrm{M} \mathrm{glycine} ,\mathrm{1} \mathrm{\%} \mathrm{SDS}$

A.3.2 Detailed protocols

A.3.2.1 Competent cells

1. Inoculate a single colony of E.coli BL21 (DE3) in 3 ml LB media containing and grow overnight (ON) at $37^{\circ} \mathrm{C}$ with vigorous shaking (220 rpm).
2. Transfer 200μ l of the ON culture to 25 ml of LB media, and grow with vigorous shaking at $37^{\circ} \mathrm{C}$ until the culture reaches an OD_{600} value of 0.3-0.5.
3. Place the culture on ice for 10 min .
4. Split the culture into round bottom falcon tubes $4 \times 6 \mathrm{ml}$.
5. Centrifuge tubes for 10 min at 4000 rpm and $4^{\circ} \mathrm{C}$.
6. Decant and discard supernatant and resuspend in 3 ml ice cold sterile 100 mM CaCl 2 .
7. Incubate for 30 min on ice.
8. Centrifuge tubes for 10 min at 4000 rpm and $4^{\circ} \mathrm{C}$.
9. Decant and discard supernatant and resuspend pellet in 400μ ice cold CaCl_{2}.
10. Split content of each falcon tube into two Eppendorf tubes (200 $\mu \mathrm{l}$ each).
11. Cells are now competent, and will remain competent for 24 h with decreasing transformation efficiency over time.
12. For storage snap freeze cells in liquid nitrogen and store at $-80^{\circ} \mathrm{C}$.

A.3.2.2 Transforming bacteria

1. Add 50 ng plasmid to $200 \mu \mathrm{l}$ aliquot(s) of competent cells from previous step.
2. Incubate on ice for 30 min .
3. Place tube(s) in a $42^{\circ} \mathrm{C}$ water bath for exactly 90 sec.
4. Place the tube(s) immediately on ice to cool down.
5. Add 1 ml LB media to each tube, and incubate for 1 h at $37^{\circ} \mathrm{C}$ with shaking (225 rpm).
6. Plate 200μ l of the culture(s) on LB plate(s) containing $50 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin.
7. Grow plate(s) overnight at $37^{\circ} \mathrm{C}$.

A.3.2.3 Autoinduction

1. Inoculate a single transformed colony in 500 ml ZYM- 5052 containing $50 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin. Use 2 L baffled Erlenmeyer flasks to allow for enough oxygen, and to create turbulence while shaking.
2. Incubate with shaking (220 rpm) for 24 h at $28^{\circ} \mathrm{C}$.
3. Harvest cells through centrifugation at 6000 rpm for 20 min at RT.

A.3.2.4 Affinity purification

Affinity purification using Tallon Beads

1. Add 7 ml lysis buffer for each gram of pellet formed in autoinduction, along with 1 tablet of complete EDTA-free protease inhibitor cocktail. (If necessary, the lysate can be frozen at this time at $20^{\circ} \mathrm{C}$.)
2. Supplement the bacterial lysate with:

> lysozyme (final concentration $100 \mu \mathrm{~g} / \mathrm{ml}$), DNAse I (final concentration $5 \mu \mathrm{~g} / \mathrm{ml}$), RNAse A (final concentration $5 \mu \mathrm{~g} / \mathrm{ml}$), Tergitol (final concentration 0.5%) and MgCl_{2} (final concentration 0.5%)
3. Incubate for 30 min at RT, with gentle orbital shaking.
4. Sonicate the lysate on ice; amplitude 30\%.

Pulse: 10 sec on, 10 sec off, a total of three times.
5. Remove the insoluble debris by centrifugation: 20000 rpm for 40 min at $4^{\circ} \mathrm{C}$.
(Prepare 2 ml of Tallon beads during centrifugation of lysate.
6. Wash and equilibrate according to manufacturers instructions.)
7. Decant the supernatant (crude extract) from previous step and place on ice.
8. Incubate crude extract with Tallon beads for 30 min at $4^{\circ} \mathrm{C}$.
9. Separate the flow through from the beads by centrifugation; $900 \times \mathrm{g}, 10 \mathrm{~min}, 4^{\circ} \mathrm{C}$)
10. Analyse flow through by SDS-PAGE to check for $6 \times$ (His)tag binding to the beads.
11. Wash beads with 10 ml wash buffer for 10 min .
12. Centrifuge beads: $\left(700 \times g, 5 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$
13. Elute the beads using 2 ml elution buffer 1 and incubate for 10 min at $4^{\circ} \mathrm{C}$.
14. Collect the elution fraction (now containing the protein of interest) by centrifugation for 5 min at $700 \times g$ and $4^{\circ} \mathrm{C}$.
15. Repeat elution step to make sure all of the protein is released from the beads.

16: Analyze the elution fractions by SDS-PAGE.

Dialysis

1. Prepare 2 L of dialysis buffer. (Dialysis buffer 1 to remove his Tag, or dialisys buffer 2 if no TEV treatment is involved).
2. Prepare the Pre-wetted RC tubing; cut to a fitting length and place one magnetic clamp on the bottom of each tube membrane.
3. Add 1 ml of each elution fraction to separate tube membranes, and use clamp at the top to seal the membrane. (Add 25μ l of AcTEV protease to the fraction(s) where removal of His tag is desired).
4. Incubate with gentle stirring over night at $4^{\circ} \mathrm{C}$.
(When fractions both with and without TEV treatment are dialysed together, a second dialysis should be performed with dialysis buffer 2 for the fractions with no TEV treatment to remove traces of ßME.)

Äkta Start Purification System (LPLC)

1. Prepare the Äkta Start by washing pumps and fractionation tube with water and then equilibration buffer. Wash pump B with elution buffer 2 .
2. Wash the column with water, and equilibrate it with equilibration buffer, make sure to wash and equilibrate with at least 3 ml liquid each time.
3. Set flow rate to $1 \mathrm{ml} / \mathrm{min}$, and load sample to be analyzed to the column using the sample valve.
4. Collect the flow through (now containing protein of interest without His tag) in 2 ml fractions.
5. Elute the column stepwise with $50 \mathrm{mM}, 125 \mathrm{mM}, 250 \mathrm{mM}, 375 \mathrm{mM}$ and 500 mM elution buffer 2 with collection size 1 ml , and flow rate $1 \mathrm{ml} / \mathrm{min}$.
6. Analyze fractions from flow through by nano drop and BCA.

A.3.2.5 SDS-PAGE analysis

1. Prepare the precast gel in the electrophoresis chamber with $1 \times$ Tris-Glycine buffer, make sure there are no leakages.
2. Mix $10 \mu \mathrm{l}$ of samples with $10 \mu \mathrm{l} 2 \times$ Laemmli Sample Buffer, and heat for 5 min at $95^{\circ} \mathrm{C}$.
3. Cool samples on ice for two min before loading $15 \mu \mathrm{l}$ of the samples into the wells.
4. Use a molecular weight standard as a ladder for measuring size of protein.
5. Run gel for 30 min at 220 V .
6. Stain the gel by placing on a plate and rinse with $\mathrm{H}_{2} \mathrm{O}$, heat until boiling in microwave oven, and discard the water. Repeat rinsing step with water 2 times to wash out SDS.
7. After removal of water, add 15 ml of stain and heat until boiling in microwave oven, place on orbital shaker for at least 1 h.
8. Discard the stain and add water to remove the background. Repeat until the background is clear.
9. Use ChemiDoc to read and photograph the gel.

A.3.2.6 Measurement of protein concentration

Microplate procedure

1. Prepare the standard according to table A.2.12.

Table A.2.12: Preparation of standards for the BCA microplate analysis

Vial	Volume of Diluent $(\boldsymbol{\mu L})$	Volume and source of BSA $\boldsymbol{(} \boldsymbol{\mu L})$	Final BSA concentration $[\boldsymbol{\mu \mathrm { g } / \mathbf { m l } \boldsymbol {] }}$
A	0	300 of Stock	2000
B	125	375 of Stock	1500
C	325	325 of Stock	1000
\mathbf{D}	175	175 of vial B	750
E	325	325 of vial C	500
F	325	325 of vial E	250
G	325	325 of vial F	125
H	400	100 of vial G	25
I	400	0	$0=$ Blank

2. Use the following formula to determine the total volume of WR (working reagent) required:
(\#standards + \#unknowns) $\times(\#$ replicates) $\times($ volume of WR per sample) $=$ total volume WR
3. $200 \mu \mathrm{l}$ of WR is required for each well in the microplate procedure.
4. Pipette $25 \mu \mathrm{l}$ of each standard and unknown sample into the wells of the microplate (use 3 parallells for each standard and sample).
5. Add $200 \mu \mathrm{l}$ of WR into each well and cover the plate. Incubate for 30 min at $37^{\circ} \mathrm{C}$.
6. Cool the plate to RT before reading absorbance on a plate reader at 562 nm .
7. Use software or the standard curve to calculate concentrations.

A.3.2.7 Protein verification

Western Blot

1. Run SDS-PAGE with precast gel as described in protocol for SDS-PAGE (A.3.2.5), with sample sizes of $10 \mathrm{ng}, 20 \mathrm{ng}, 50 \mathrm{ng}$ and 100 ng as well as a molecular weight standard.
2. Use the Trans-Blot ${ }^{\circledR}$ Turbo ${ }^{\text {TM }}$ Transfer Pack kit, along with the Trans-Blot ${ }^{\circledR}$ Turbo ${ }^{\text {TM }}$ Transfer System to blot the gel.
3. Place the membrane in the cassette followed by the gel and finally the "sponge" on top. Use a roller to make sure there are no air bubbles between gel and membrane.
4. Blot the gel for 3 min in the Trans-Blot ${ }^{\circledR}$ Turbo $^{\text {TM }}$ Transfer System.
5. Remove the gel, and place the membrane in a suitable container.
6. Block the membrane with $5 \%(0.1 \%$ Twin 20$)$ for 1 h at $4^{\circ} \mathrm{C}$.
7. Incubate membrane with primary rabbit anti-SMUG AB 1:2000 in 5% PBST milk at $4^{\circ} \mathrm{C}$ overnight.
8. Wash the blot with 5% PBST (0.1% Tween 20) 3 times $\times 10 \mathrm{~min}$ on an orbital shaker.
9. Incubate blot with secondary Goat anti rabbit-IgG-HRP ab 1:2000 in 5\% PBST milk for 1,5 h at RT.
10. Wash blot 3 times $\times 10 \mathrm{~min}$ again.
11. Use the SuperSignal ${ }^{\text {TM }}$ West Pico Kit to develop the blot.
12. Ananlyse the blot on ChemiDoc.

[^0]: Query

 Sbjct 4182948

[^1]: AGOAGTGCGTGT花AGGACTGTIT

[^2]: Query 193
 Sbjct 4182948

[^3]: 밈Download \vee GenBank Graphics
 Escherichia coli str. K-12 substr. MG1655, complete genome
 Sequence ID: NC_000913.3 Length: 4641652 Number of Matches: 1
 Range 1: $\mathbf{4 1 8 2 7 6 1}$ to $\mathbf{4 1 8 2 9 7 2}$ GenBank Graphics

 194/213(91\%)

 GCTTC
 GCGGATGTCCGATCGAAACCCCAGAA

 Score
 287 bits(155)
 4182761
 \circ
 ∞
 ∞
 \sim
 ∞
 \cdots
 \sim
 \sim $\begin{array}{ll}\text { Query } & 188 \\ \text { Sbjct } & 4182940\end{array}$

[^4]: 221
 4182977

 $\begin{array}{ll}\text { Query } & 194 \\ \text { Sbjct } & 4182950\end{array}$

[^5]: TCCAG ${ }^{420}$ CG TAAACTGAGGTA

[^6]: 218
 4182973

 二
 $\begin{array}{ll}\text { Query } & 193 \\ \text { Sbjct } & 4182948\end{array}$

[^7]:

[^8]: AGGTACGTTGT GTCACTGGGGAT

