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Abstract: With the growth of industrialization in recent years, the quality of drinking water has been
a great concern due to increasing water pollution from industries and industrial farming. Many
monitoring stations are constructed near drinking water sources for the purpose of fast reactions to
water pollution. Due to the relatively low sampling frequencies in practice, mathematic prediction
models are clearly needed for such monitoring stations to reduce the delay between the time points
of pollution occurrences and water quality assessments. In this work, 2190 sets of monitoring data
from automatic water quality monitoring stations in the Qiandao Lake, China from 2019 to 2020 were
collected, and served as training samples for prediction models. A grey relation analysis-enhanced
long short-term memory (GRA-LSTM) algorithm was used to predict the key parameters of drinking
water quality. In comparison with conventional LSTM models, the mean absolute errors (MAEs) to
predict the four parameters of water quality, i.e., dissolved oxygen (DO), permanganate index (COD),
total phosphorus (TP), and potential of hydrogen (pH), were reduced by 23.03%, 10.71%, 7.54%, and
43.06%, respectively, using our GRA-LSTM algorithm, while the corresponding root mean square
errors (RMSEs) were reduced by 24.47%, 5.28%, 6.92%, and 35.89%, respectively. Such an algorithm
applies to predictions of events with small amounts of data, but with high parametric dimensions.
The GRA-LSTM algorithm offers data support for subsequent water quality monitoring and early
warnings of polluting water sources, making significant contributions to real-time water management
in basins.

Keywords: water quality prediction; grey relation analysis; long short-term memory

1. Introduction

As a source of life, drinking water with considerable quality has always been of
great concern. Especially in recent decades, disqualified drinking water has become
more and more serious with the advancement of technology and industrialization [1,2].
Water quality risk assessment and pre-warning has become a new challenge for various
countries [3]. In order to evaluate the water quality level, numerous multi-parameter
monitoring stations have been built. However, there is always a time delay between
the water pollution occurrence and water quality assessments, due to the long sampling
period in most monitoring stations. For example, the sampling period is one month for
many of the monitoring stations in Malaysia [4], and one or even two weeks in China [5].
Thus, mathematical models to predict the evolution of water pollution in practice are
clearly necessary.
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Several prediction models are commonly used in practice, including Artificial Neural
Networks (ANNs), Support Vector Regression (SVR), and Recurrent Neural Networks
(RNNs) [6–11]. ANNs are advantageous in treating the system as a ‘black box’, regardless
of underlying physical mechanisms [12,13]. Thus, it is difficult to address dominant factors
and give hints as to the type of data inputs, data division, and data validations during
processing [14]. Compared with ANN, SVR exhibits better performance in data dispersion
for water parameter predictions [15]. However, the accuracy of SVR relies strongly on users’
experiences, because various setting parameters are required to be manually defined [2].
RNN enables long-term series learning and shows superior performance in dealing with
the sequential data of text, stock information, and water quality data [16,17]. However,
as there is an error back-propagation process in RNN, divergences might occur during
iterations due to gradient explosions or gradient disappearances of searching routes. Long
Short-Term Memory (LSTM), as an improved RNN, solves this problem, because LSTM
draws forgetting gates into the memory and truncates the gradient [18,19]. Thus, LSTM
has become one of the most popular methods for time serial predictions [20]. For example,
Rasheed Abdul Haq [21] and Liu [22] used LSTM to predict the water quality with accept-
able accuracy. Like any ANNs methods, in order to increase the accuracy of the solution,
large datasets of good quality should be fed to the networks of LSTM, causing massive
computational loads. Thus, LSTM is restricted to coping with the problem using intensive
feeding datasets and low dimensionality.

Being a multi-response correlation method, Grey Relation Analysis (GRA) can obtain
efficient solutions to uncertainty, multi-input, and discrete data problems [23]. It has
been successfully used to analyze the weight factors of various water parameters [24,25],
as well as to determine the dominant factor during water quality assessments [26–29].
However, limited studies use the GRA to predict accurate temporal responses of water
quality. In this work, we propose a GRA-enhanced LSTM (GRA-LSTM) algorithm to enable
predictions of the events with a limited amount of feeding datasets, making full use of
multiple simultaneous relevant events. Combining LSTM networks and multidimensional
GRA, the GRA-LSTM algorithm is demonstrated here to be able to relieve the quantity
requirements of feeding datasets, and thus increase computational efficiency and accuracy
for water quality predictions.

2. Methods and Materials
2.1. GRA Formulations

GRA measures the correlation degree of vectors by measuring the vector distance. For
the time series, it is commonly used to predict event trends [30,31]. To eliminate the unit
effect, all data are normalized by the feature engineering method [30]. All values are scaled
to [0, 1].

The format of the data array is Xi = (X1
∗, X2

∗, . . . , Xk
∗), where i = 1, 2, . . . , m; k = 1,

2, . . . , n; m is the number of arrays; and n is the dimension of the array. The symbol ‘*’
indicates the original data.

Three steps are normally involved in calculating correlation degrees between any two
data arrays.

Step 1: Scale the original data by the first data array:

X′i(k) =
Xi(k)

∗

X1(k)
∗ (1)

or by max-min normalization:

X′i(k) =
Xi(k)∗ −min(Xi)

max(Xi)−min(Xi)
(2)
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Step 2: Calculate the correlation coefficients by:

ζi(k) =
min

i
min

k

∣∣∣X′j(k)− X′i(k)
∣∣∣+ ρ ·max

i
max

k

∣∣∣X′j(k)− X′i(k)
∣∣∣

| X′j(k)− X′i(k)
∣∣∣∣+ρ ·max

i
max

k

∣∣∣∣X′j(k)− X′i(k) |
(3)

where X′j(k) is the reference data array, j = 1, 2, . . . , m, and j 6= i. If we define

∆i(k) =
∣∣∣X′j(k)− X′i(k)

∣∣∣, min
i

min
k
(∆i(k)) is equivalent to min{min(∆i(k))}.

A similar indication holds for max
i

max
k

(∆i(k)) and ρ is the resolution coefficient. The

value of the correlation coefficient is between 0 and 1. The closer to 1 the value is, the
stronger the potential correlation between two arrays.

Step 3: Evaluate the correlation degree by:

ri =
1
n ∑n

k=1 ζi(k) (4)

2.2. LSTM Structure

LSTM was first proposed by Hochreiter and Schmidhuber [32]. It can overcome the
long computational time, large errors, explosions, or disappearances of data gradients
issues of standard RNN networks. The schematic structure of an LSTM network is shown
in Figure 1. Ct−1 and Ct are the cell state of the prior nod and the current nod, respectively;
C̃t is temporary variable of the cell state; Ht−1 and Ht are the hidden layer state of the prior
layer and the current layer state; Xt is the input variable; σ and tanh represent activation
functions of neurons; the red crosses represent pointwise multiplication operations; the
black cross represents the totaling operation; the two lines with one arrow represent
concatenate operation; and the two arrows represent copy operation.
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Figure 1. Schematic LSTM network structure.

Activation functions σ and tanh are used to scale the input vector x into a range of
[0, 1], and are expressed mathematically as:

σ = sigmoid(ωx + b) (5)

tanh = tanh
(

ωTx + b
)

(6)

where ω and b are the transfer and bias matrices, respectively.
The main difference between an LSTM structure and a standard RNN structure lies

in the introduction of memory cell C and gate structures. The gate structures consist of
three parts: a forgetting gate, an updating gate, and an output gate. The forgetting gate is
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expressed using Equation (7), which determines how much information is forgotten in the
memory cell by the state of hidden layers at the previous node and at the current input.

ft = σ
(

ω f · [Ht−1, Xt] + b f

)
(7)

where Ht−1 is the hidden state matrix of the last time stamp; sigmoid function σ maps the
values to [0, 1]; 1 represents forgetting all; and 0 represents forgetting null.

The update gate is described in Equations (8)–(10). Equation (8) is the input gate of
the current memory cell. Equation (9) is the information brought by the current input. The
current memory cell is updated with Equation (10), in accordance with the past and present
states of the input cell.

it = σ(ωi · [Ht−1, Xt] + bi) (8)

C̃t = tanh(ωc · [Ht−1, Xt] + bc) (9)

Ct = ft·Ct−1 + i·Ct (10)

where it is the coefficient that controls the candidate memory cell C̃t to update the memory
cell; the candidate memory cell C̃t holds short-term dependency information computed
from the input matrix Xt.

The output gate is described using Equations (11) and (12). The output current cell
state is determined by the hidden layer state of the previous time node and the input node.

Ot = σ(ωo · [Ht−1, Xt] + bo) (11)

Ht = Ot·tanh(Ct) (12)

2.3. Materials

The algorithm of GRA-LSTM is used to predict the water quality of Qiandao Lake, Zhe-
jiang Province, China, based on historical data collected by a monitoring station. Figure 2
shows the geographical location of the monitoring station. The fundamental parameters to
assess the water quality include pH, dissolved oxygen (DO), permanganate index (COD),
ammonia nitrogen (NH3-N), and total phosphorus (TP). The data were collected for 4
h each day during 2019 and 2020. Table 1 shows the statistic information of measured
parameters. Due to occasional malfunctions of some sensors, some data are either abnormal
or lost. Such a database is used to verify our GRA-LSTM algorithms.
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Table 1. Water quality information statistics.

Water Quality
Parameters DO (mg/L) NH3-N(mg/L) pH COD (mg/L) TP (mg/L)

Minimum value 4.05 0 6.68 0.8 0
Maximum value 11.05 0.36 7.58 6.90 0.39
Average value 7.24 0.048 7.16 1.62 0.025

Standard deviation 1.261 0.044 0.206 0.684 0.024
Skewness 0.819 2.762 −0.394 4.082 6.111

3. Modeling Flow

The modeling platform in this study was based on TensorFlow, and the development
environment was Python 3.7. Figure 3 shows the flow chat of GRA-LSTM model, the details
of which are described in the following four steps.
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Step 1: Data preprocesses. The missing data from the original dataset are replenished
by Lagrange interpolations of adjacent values (missing points are less than 6) or the
averaged values of the previous seven (missing points are more than 6). Figure 4 shows
the preprocessed data. From Figure 4, we can observe that the concentrations of DO
and COD are almost one order of magnitude higher those that of TP and NH3-N. The
concentration of TP is close to zero, with the exception of noise-like fluctuations. The sharp
rises and falls in the preprocessed data indicate significant changes in water quality, which
should be captured by the prediction model and then trigger the warning in advance for
water managers.

Step 2: GRA model establishment. The preprocessed data are subjected to feature scal-
ing in accordance with Equation (1) or Equation (2), eliminating the magnitudes and units.
The grey correlation coefficients and degrees are then calculated according to Equation (3)
and Equation (4), respectively. Figure 5 shows calculated grey correlation coefficients using
two feature scaling methods. When the original data are scaled by the first data array, as
shown in Figure 5a, the coefficients almost reach beyond 0.9. However, when the original
data are scaled by the max-min normalization, as shown in Figure 5b, the coefficients span
between 0.5 and 1, and the correlations between different quality parameters becomes much
more distinguishable. The concentrations of NH3-N, TP, and COD are strongly relevant,
while DO and pH are more relevant. Thus, max-min normalization will be used in the
GRA process.
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Step 3: LSTM model establishment. The data are first divided into three subsets: a
training set, a development set, and a validation set, following a typical ratio of 6:2:2 [14].
Since there are 2190 sets of data in total for each water parameter we observed, the sizes
of the three datasets are 1314, 438, and 438, respectively, as shown in Figure 4. The
measurement data on the previous 12 nodes are used as input data, and the data of the 13th
node is used as output data. The output data is further weighted by the grey correlation
degree of the other water quality parameters calculated in Step 2. Different optimizers,
such as Stochastic Gradient Descent, AdaGrad, and Adaptive Moment Estimation, are
applied to adjust the model combining the training set and the development set. Hyper-
parameters of the network, including total number of LSTM layer, number of neurons,
attenuation coefficient, learning rate, patience value, epoch, and batch side are adjusted
according to the root mean square errors (RMSEs) of the water quality parameters. The
final hyper-parameters are listed in Table 2.
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Table 2. Hyper-parameter settings.

Hyperparameters DO NH3-N pH COD TP

Total number of LSTM layers 4 4 4 4 4
Number of neurons 100 100 100 100 100

Attenuation coefficient 0.8 0.1 0.6 0.6 0.1
Learning rate 0.0001 0.0001 0.0001 0.0001 0.001

Patience values 2 5 2 15 5
Epoch 200 200 200 200 200

Batch size 128 8 16 64 8

Step 4: Figure of merit (FOM) evaluations. The fitted model is verified by the verifi-
cation set. The FOM of the model performance which we used is the RMSE between the
verification set and the predicted data from the LSTM networks.

4. Results and Discussions

Figure 6 shows the present water quality predictions and their comparisons with the
original data. The configurations of the hardware and software, as well as the calculation
costs of LSTM and GRA-LSTM, are listed in Table 3. From Table 3, it can be found that
the GAR-LSTM model slightly saves computational time, even if the same processor and
platform are used. The computation efficiency could be considerable if a significant amount
of feeding data were needed.
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Table 3. Hardware and software configurations.

Algorithm LSTM GRA-LSTM

Processor Core i7-6700HQ CPU: 8 Core i7-6700HQ CPU: 8
Configurations Windows 10 + python3.7 Windows 10 + python3.7

Calculation time 220.5 s 219.4 s

The parameters of water quality include DO (a), COD (b), TP (c), pH (d), and NH4-N
(e), which are predicted using conventional LSTM (red) and GRA-LSTM (yellow) methods.
The upper panels in Figure 5 show the comparisons of the predicted data with the original
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data (black lines), and the lower panels show the residual errors relative to original data
using two prediction methods. It should be noted that the regions filled with orange
color are the intersections of residual errors using the conventional LSTM (red) and GRA-
LSTM (yellow) methods. As can be clearly seen from the upper panels, the predictions
generally follow the tendencies of original data, regardless of noise-like fluctuations and
sharp changes, validating the feasibility of prediction models. It can also be observed that
the residual errors of conventional LSTM are globally larger than those of GRA-LSTM,
since the yellow regions in the lower panels of Figure 6a–e are generally covered by the
red regions.

In order to quantify the residual errors from the two prediction models, we calculate
the mean absolute errors (MAEs), root mean square errors (RMSEs) and Nash–Sutcliffe
efficiency coefficients (NSEs) for each parameter of water quality. As shown in the bar
diagram in Figure 7a, the MAEs of GRA-LSTM are globally lower than those of conventional
LSTM. The MAEs of five parameters are DO, COD, TP, pH, and NH3-N, and these are
reduced by 23.03%, 10.71%, 7.54%, 43.06%, and 1.62% by using the GRA-LSTM algorithm.
As for RMSEs, as can be observed in Figure 7b, with the exception of a comparable level in
NH3-N, the RMSEs of LSTM are generally higher than those of GRA-LSTM, which can be
reduced by 24.47%, 5.28%, 6.92%, and 35.89% for the four parameters: DO, COD, TP, and
pH, respectively. We also calculate the NSEs for each water parameter, which statistically
denote the relative magnitude of the residual variance compared to the measured data
variance. As seen from Figure 7c, with the exception of a slightly lower level in NH3-
N, NSEs of the other parameters are higher and closer to 1 when using the GRA-LSTM
algorithm, indicating the higher estimation skill of the prediction model. We note that the
NSEs of TP are negative, indicating that the two prediction models are unreliable. This
is due to the low concentration of TP in the water, which is quite close to the noise level.
Based on the above error analyses, we can conclude that GRA-LSTM demonstrates a higher
precision and robustness in comparison with conventional LSTM.

Water 2022, 14, x FOR PEER REVIEW 8 of 11 
 

 

predictions generally follow the tendencies of original data, regardless of noise-like fluc-

tuations and sharp changes, validating the feasibility of prediction models. It can also be 

observed that the residual errors of conventional LSTM are globally larger than those of 

GRA-LSTM, since the yellow regions in the lower panels of Figure 6a-e are generally cov-

ered by the red regions. 

 

Figure 6. Water quality predictions and their comparisons with original data. (a) DO; (b) COD; (c) 

TP; (d)  pH; (e) NH3-N. 

In order to quantify the residual errors from the two prediction models, we calculate 

the mean absolute errors (MAEs), root mean square errors (RMSEs) and Nash–Sutcliffe 

efficiency coefficients (NSEs) for each parameter of water quality. As shown in the bar 

diagram in Figure 7a, the MAEs of GRA-LSTM are globally lower than those of conven-

tional LSTM. The MAEs of five parameters are DO, COD, TP, pH, and NH3-N, and these 

are reduced by 23.03%, 10.71%, 7.54%, 43.06%, and 1.62% by using the GRA-LSTM algo-

rithm. As for RMSEs, as can be observed in Figure 7b, with the exception of a comparable 

level in NH3-N, the RMSEs of LSTM are generally higher than those of GRA-LSTM, which 

can be reduced by 24.47%, 5.28%, 6.92%, and 35.89% for the four parameters: DO, COD, 

TP, and pH, respectively. We also calculate the NSEs for each water parameter, which 

statistically denote the relative magnitude of the residual variance compared to the meas-

ured data variance. As seen from Figure 7c, with the exception of a slightly lower level in 

NH3-N, NSEs of the other parameters are higher and closer to 1 when using the GRA-

LSTM algorithm, indicating the higher estimation skill of the prediction model. We note 

that the NSEs of TP are negative, indicating that the two prediction models are unreliable. 

This is due to the low concentration of TP in the water, which is quite close to the noise 

level. Based on the above error analyses, we can conclude that GRA-LSTM demonstrates 

a higher precision and robustness in comparison with conventional LSTM. 

 

Figure 7. Error analyses using LSTM and GRA-LSTM methods. (a) MAE comparisons; (b) RMSE
comparisons; (c) NSE comparisons.

Similarly to other kinds of prediction methods based on artificial neural networks [33],
GRA-LSTM treats temporal response of multiple parameters as a black box, regardless of
its internal physical mechanisms. This implies that GRA-LSTM can treat universe data
series, which might show sharp variances and even random distributions. Being different
from other neural network-based models, GRA-LSTM does not need a large amount of
feeding data. This is because additional correlations of other events occurring in the same
time range are implemented. This saves considerable computational resources and time,
allowing the possibility of the realizations of real-time predictions. In addition, due to
the considerations of other relevant events or factors, the GRA-LSTM algorithm normally
shows better immunity to background noises, indicating a higher stability and robustness
compared with other neural network-based methods. This has been demonstrated in
the comparison of NSEs. On the other hand, each data series predicted by GRA-LSTM
is dependent and are limited to the situations in which the measurements are multiple
dimensionalities.
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5. Conclusions

By combining conventional LSTM networks with GRA correlation models, an im-
proved GRA-LSTM algorithm was developed in order to better predict the real-time quality
of drinking water. A total of 2190 sets of monitoring data were collected from monitor-
ing stations in the Qiandao Lake, China, from 2019 to 2020, and these served as feeding
datasets. Each dataset was divided into a ratio of 6:2:2, each of which served as training
set, development set, and validation set, for the purpose of dynamic self-corrections. GRA
degree coefficients between different water quality parameters were used to correct the
weight factors of LSTM networks. Compared with conventional LSTM models, the MAEs
of four key parameters of water quality, DO, COD, TP, and pH, were reduced by 23.03%,
10.71%, 7.54%, and 43.06%, respectively, while corresponding RMSEs were reduced by
24.47%, 5.28%, 6.92%, and 35.89%, respectively. Combining GRA and conventional LSTM
algorithms, the GRA-LSTM is proposed to treat discrete events, using a small amount of
feeding datasets and multiple correlated events in the same time range. The prediction
precision and robustness are further enhanced by the implementation of correlation coeffi-
cients to serve as the weight factors at each node of neural networks. We envision that other
mathematical models, such as Markov chains and Kalman recursions, could be further
implemented into the node of our GRA-LSTM or for more generalized artificial neural
networks, in order to better cope with discrete events with sequential correlations.
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