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Abstract

Cardiopulmonary resuscitation quality (CPRQ) param-
eters can be derived from electric signals obtained during
resuscitation. We propose to model a probabilistic rela-
tionship between CPRQ parameters and the physiological
response as judged by ECG-features, to guide therapy in a
clinical context.

A total of 821 compression sequences were extracted
from 394 out-of-hospital resuscitation episodes.  Se-
quences were categorized as effective if the post sequence
cardiac rhythm had better prognosis than the pre-sequence
rhythm by a positive difference, otherwise as non effec-
tive if the difference was negative. CPRQ parameters re-
lated to depth and rate were calculated. Three alternative
approaches were designed for the binary classifier based
on the CPRQ parameters: quadratic discriminant anal-
ysis (QDA), logistic regression (LR) and artificial neural
networks (ANN). The positive class discriminant function
defined the probability of effective compressions (Pec).

The classification accuracies were around 0.6 for all
three models. The highest probability estimates of effec-
tive chest compressions corresponded to the depth (5-6 cm)
and rate (100-120 min”' ) currently recommended in the
CPR guidelines.

We have proposed a novel method to relate the quality
of chest compressions to the physiologic response to CPR.

1. Introduction

To survive cardiac arrest, early and good cardiopul-
monary resuscitation (CPR) is important [1]. By moni-
toring the quality of chest compressions it will be possi-
ble to give feedback to the rescuer. This feedback can be
used to improve the quality of the compressions, thus in-
creasing the likelihood of survival [2]. The purpose of this
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study is to develop a probabilistic model of the relationship
between quality parameters for CPR and physiological re-
sponse.

2. Materials and methods

The data set consists of 394 episodes of out-of-hospital
cardiac arrest. Data were collected in connection with a
study that examined the quality of cardiopulmonary re-
suscitation performed by ambulance personnel [2,3]. The
study was conducted between March 2002 and September
2004 in 3 cities: Akershus (Norway), Stockholm (Sweden)
and London (England).

Our group has conducted previous work on the data
set, where methods for automatic classification of heart
rhythm [4] and detection of chest compressions [5] have
been developed. A method has also been developed to es-
timate the probability of change to a cardiac rthythm with
a better prognosis, P,.s[6]. In the current study, Py, will
be used to measure the patient’s physiological response to
therapy.

Figure 1 shows an episode where P, is given in the y-
axis, against time in minutes on the x-axis. The cardiac
rhythms are color-coded. Red color corresponds to the
cardiac arrest rhythms ventricular fibrillation or tachycar-
dia (VF/VT), yellow indicates pulseless electrical activity
(PEA), gray is asystole (AS) and green indicates pulse gen-
erating rhythm (PR). Intervals with chest compressions are
indicated by a black horizontal field at the bottom of each
plot. During periods of chest compressions an adaptive fil-
ter is applied to reduce the effects of the chest compression
artifact on the rhythm annotator [7]. Black vertical bars in-
dicate electric shocks.

Criteria related to changes in P, are used to extract
data points that indicate the quality of chest compressions.
Figure 1 visualizes how data points from a compression

Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2020.073



—_
—

o
3

P P
12 14 16 18 20
t [minl

therapy | Pdes
o

-
o

Figure 1. Rhythm and therapy visualisation for an episode
with time (min) on the x-axis and probability of change
to better condition (Pges) on the y-axis. Cardiac rhythm
is indicated by color code. Red: VT/VE, Yellow: PEA,
Gray: AS, Green: PR. Intervals with chest compressions
are indicated by a black field at the bottom of each sub-
plot. Black vertical bar means that an electric shock has
been performed with a defibrillator. An example of a com-
pression sequence is framed in blue with the start and end
values of Pjes, Pies1 and Pyeso respectively indicated.

interval are retrieved and sorted into the groups favor-
able/unfavorable treatment, depending on the change in the
patient’s condition as indicated by P,.s. The blue box in
Figure 1 shows a sequence with heart rhythm VF/VT, with
chest compressions. To describe a change in the patient’s
condition, AP, is defined as APj.s = Pyeso — Piests
where Pj.s1 and Py.so are average values for the two
compression free sequences preceeding and succeding the
compression sequence in question. A value of APy
larger than 0.1 is considered as an increase in probabil-
ity for change to better condition. If this is the case during
a compression interval, it is marked as an effective treat-
ment. The categories we. and wy,. for effective and non ef-
fective compressions are defined for cases of AP;.s > 0.1
and APy, < —0.1 respectively.

Each compression sequence is characterised through 3-
second analysis windows, with 2 seconds overlap. For
each analysis window all chest compressions are detected
in the chest compression depth signal. From the detections
compression rate (C'R), compression depth (C'D), and the
respective standard deviations, (SDCR and SDCD), are
calculated. Similarly, compression rate features are cal-
culated from the thoracic impedance signal, CRT'I and
SDCRTI.

The features are optionally subjected to log transforma-
tion, normalisation by subtraction of mean and division by
standard deviation, and finally decorrelation through prin-
cipal component analysis (PCA). There is also the option
of reducing the training data set of class w,, by limiting the
data to be within £2 cm and 20 compressions/min to fit
the model to the recommendations for compression depth
and rate.

From these, or a subset of these, feature vectors, x are
constructed as characterisations of the therapeutic perfor-
mance in the analysis windows. Our aim is to indicate

whether a given @, corresponds to efficent compressions
or not. A probabilistic function, P(we.|x) is defined to ex-
press the probability that the compressions within the anal-
ysis window characterised by « are efficient (belonging to
category we.). We denote this function as

Poe = P(weel). 1)

We estimate this function by defining a classifi-
cation problem where the aim is to discriminate
X = {z|P(weelx) > P(wneelx)} from X, =
{x|P(wnec|®) > P(wee|x)}. Bayes law gives

-, Pwj)p(x|w;)

where w;, w; € {Wee, Wnee}-

Thus, different strategies can be used to estimate P,.:
ODA : Quadratic discriminant analysis, where P,. is
estimated through parametric estimation of p(x|w;) and
P(wz) = ni/(nec + nnec)-

LR : Logistic regression where P, is estimated through
the parameters in 0 related by

Pec _pt
ln<1_Pec>9a:. 3)

ANN : P.. and P(wneckc) can be estimated by training
the weights of a multilayer artificial neural network with
two outputs, one for each of the functions, and & will be
the inputs.

For each of these methods a series of 16 experiments
were conducted where the various combinations of data
handling methods (1) fitting model to guidelines by reduc-
ing the training data, (2) log transformation, (3) normali-
sation, and (4) PCA transform were applied.

For the QDA method, the mean vector p; and covari-
ance matrix X, were estimated for ¢ € {wec, wpee}. For
the LR method quadratic versions of CD, CR and CRT'I
were added to provide the necessary nonlinearity. For the
ANN the following hyperparameter space was explored:
learning rates (0.00008, 0.00004, 0.00001), nodes (8, 12,
16), batch sizes (64, 128) and number of hidden layers
(1,2,3,4).

A total of 821 compression sequences were extracted
from the 394 episodes. Table 1 shows the number of com-
pression sequences and corresponding number of 3-second
windows found for the two categories of efficient and non-
efficient performance.

In addition, an extended data set of 44123 analysis win-
dows was compiled from all available compression se-
quences, including |AP,.| < 0.1. Figure 2 illustrates the
extended data set, the QDA model and corresponding P,
values. The distribution of the model specific probabilities
for C'D and C'R were computed for the extended data set.
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APy Total
>0.1 <-01

Sequences 467 354 821
Train 338 254 592
Test 129 100 229
3-sec windows 8702 5051 13753
Train 5856 3423 9279
Test 2846 1628 4474

Table 1. Number of compression sequences and analysis
windows.
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Figure 2. The coordinates of (CD,CR) in the extended
data set are shown as white markers while the corre-
sponding (CR,CD,P,.) coordinates are shown as color
scaled markers. The isolines are shown at percentiles
10,...,80,95,99 for the P.. values.
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3. Results

The highest performance for both QDA and LR were
achieved by applying all data handling techniques. There-
fore all data handling techniques were applied in the ANN
experiments to reduce the number of experiments. For the
ANN a learning rate of 0.0001, 15 nodes, a batch size of
128 and one hidden layer gave the best performance.

Table 2 shows the performance metrics for the highest
performing classifier for each model. The methods are
fairly comparable, with slightly lower sensitivity and PPV
for QDA.

Figure 3 shows a visualisation which was partly shown
in Figure 1, the difference being that the compression se-
quences have been color-coded according to the P,.. Fig-
ure 4 shows a scatter plot of the extended data color-coded
according to the computed P, values and contour lines for
each model.

Method Accuracy Sens Spec PPV NPV

QDA 059 036 072 042 0.66
LR 063 050 070 049 071
ANN 063 053 0.69 0.50 0.72

Table 2. Model discrimination results.
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Figure 3. Rhythm and therapy visualisation of an episode.
Compared to Figure 1, where chest compressions were
indicated by a black horizontal line, chest compressions
are now shown with the probability of favorable treatment
(P..) using the same color code as in Figure 2.

Table3 shows the marginal distributions of P.. for com-
pression depth and compression rate respectively.

Compression depth [cm]
2-4 4-6 6-8

QDA 0.5(0.1,0.7) 0.8(0.6,0.9) 0.3(0.1,0.4)
LR 0.3(0.1,0.6) 0.7(0.6,0.8) 0.2(0.1,0.3)
ANN 0.3(0.2,0.5) 0.7(0.6,0.8) 0.2(0.1,0.3)
Compression rate [min ']
70-100 100-130 130-160
QDA 0.4(0.0,0.8) 0.8(0.5,0.8) 0.4(0.1,0.6)
LR 0.5(0.3,0.6) 0.6(0.4,0.7) 0.2(0.0,0.4)
ANN 0.4(0.2,0.7) 0.6(0.4,0.7) 0.3(0.2,0.4)

Table 3. Distributions of P,. for compression depth and
rate.

4. Discussion

The models behave nicely in the sense that the maxi-
mum P, values are in accordance with the guidelines as
can be seen from both the P,. distribution data in Table
3. Interestingly, Figure 3 shows that the compression se-
quences are shorter with more interruptions prior to the
three first shocks. The quality in terms of P.. is gener-
ally low prior to these shocks with the exception of some
sequences prior to shock no 2. In contrast to this, the com-
pression sequences prior to shock 4 are longer and with a
higher value of P,.. Only shock 4 is successful in reestab-
lishing a spontaneous circulation (PR rhythm). This is just
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Figure 4. Distributions of P, for CD and CR for models QDA (a), LR (b) and ANN (c).

a single example, and does not tell about behavior in gen-
eral.

Studying the contour lines of the models, Figure 4, the
ANN based model is strikingly different from the other two
models. A reason might be the larger number of parame-
ters to be learned as well as generating highly nonlinear
decision boundaries. The other models seem more reason-
able considering the guidelines, but the ANN model seems
to describe the data distribution better. This needs further
investigation.

The rationale for using the discriminatory power to se-
lect the parametric configuration for each of the models
might be questioned. We do not desire high discriminatory
power itself, but see it as an indication that the probability
function will have some degree of soft transition from high
to low probability.

It is important to consider the effect of limiting the train-
ing data set which has been a contributing factor to the nice
fit to the guideline recommended values.

S. Conclusion

‘We have proposed a novel method to relate the quality of
chest compressions to the physiological response to CPR.
The highest probability estimates of effective chest com-
pressions corresponded to values currently recommended
in the CPR guidelines.
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