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Abstract: Flow around two tandem cylinders at Re = 3.6 × 106 for different center-to-center spacing
ratio (L/D) is investigated numerically using two-dimensional (2D) Unsteady Reynolds-Averaged
Navier–Stokes (URANS) equations combined with a standard k − ω SST turbulence model. The
instantaneous flow structures around the cylinders, hydrodynamic forces on the cylinders and
Strouhal number (St) are analyzed and discussed. Dynamic Mode Decomposition (DMD) is used to
extract the spatiotemporal information of the coherent flow structures in the wake regions behind
the upstream (UC) and downstream (DC) cylinders. A sparsity-promoted algorithm is implemented
to select the dominant modes which contribute the most to the dynamics of the system. Based on
the dominant modes, a reduced-order representation of the flows is built. A comparison of the lift
and drag force–time histories, obtained by simulation results and the reduced-order representations,
shows a high capability of the latter to reproduce the surrounding flow and hydrodynamic properties
of the tandem cylinders at the high Reynolds number.

Keywords: tandem cylinders; high Reynolds number flow; Dynamic Mode Decomposition

1. Introduction

Flow around tandem cylinders is of industrial and academic interest. In the field
of offshore engineering, marine risers and subsea pipelines are usually subjected to a
high Reynolds number flow in the order of 106 to 107 as reported by Sumer and Fredsøe
(1997) [1] and Ong et al. (2009) [2]. When two cylinders are in proximity, there are complex
hydrodynamic forces acting on the cylinders. The tandem configuration of the cylinders
results in a complicated surrounding flow, due to the mutual interaction of the upstream
cylinder (UC) and the downstream (DC) shear layers shedding from the cylinders. As a
result, the impact of lift and drag forces becomes higher, compared with those for a single
cylinder, and reduces the fatigue life of the cylindrical structures. Therefore, it is significant
to explore the hydrodynamic forces and the instantaneous flow structures around cylinders
subjected to a high Re flow to optimize the relative arrangement of the tandem cylindrical
structures and increase their service life in the subsea environment.

Plenty of studies have been conducted to investigate the flow around, and forces on,
circular, rectangular (Nakaguchi et al., 1968 [3], Norberg 1993 [4], Ohya 1994 [5], Okajima
et al., 1990 [6], Tian et al., 2013 [7]) and triangular (Dutta et al., 2015 [8], El-Sherbiny et al.,
1983 [9], Nakagawa 1989 [10], Cheng 2000 [11]) cylinders. Especially, the prediction of the
flow separation around circular bluff bodies is a crucial topic for many researchers. The
reason is the complexity of the separated flow caused by a constantly changing point of
separation on the surfaces of the structures, due to the unsteadiness of the flow. Thus,
comprehensive experimental studies have been conducted in the previous decades in
order to get a deep understanding of the flow separation phenomenon. Tritton (1959) [12],
Dimopoulos and Hanratty (2006) [13] investigated the flow around circular cylinders at low
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Re number experimentally. Trittion (1959) [12] conducted measurements of the drag force
on the flow past a circular cylinder at Re = 0.5∼100. Dimopoulos and Hanratty (2006) [13]
employed electrochemical techniques to analyze the velocity gradient around the surface
of a cylinder at Re = 60∼360. They found that the values of the velocity gradient near the
cylinder surface in the wake region are lower in comparison with that in the front part of
the cylinder.

However, experimental investigation of hydrodynamic quantities and instantaneous
flow structures requires suitable laboratory equipment to reproduce real flow conditions to
achieve correct scaling of the dimensionless parameters, such as Re, and also to minimize
instrumental errors, which is difficult and expensive. Therefore, Computational Fluid
Dynamics (CFD) has become increasingly popular, which allows the obtaining of full spatial
and temporal information of the surrounding flow fields, including the flow velocities
and pressures for engineering design. Park et al. (1998) [14] and Rajani et al. (2009) [15]
numerically investigated the hydrodynamic coefficients and instantaneous flow patterns
around cylindrical bluff bodies at low Re number. Park et al. (1998) [14] studied flow
around a circular structure at Re numbers up to 160 by employing high resolution unsteady
simulations. He reported that the simulation results showed a reasonable agreement with
previously published experimental data. Rajani et al. (2009) [15] investigated instantaneous
flow structures around a circular cylinder at Re = 0.1∼400 by using an implicit pressure-
based finite volume algorithm. He reported that the 2D numerical simulations results
were in good agreement with the measured data up to Re = 200. However, beyond the
critical Re number, differences between the simulation results and experimental data were
observed, due to three-dimensional (3D) effects.

Investigation of the hydrodynamic quantities around tandem cylindrical bluff bodies
has both practical and academic significance. A comprehensive review of the work on
two cylinders in various arrangements was presented by Zdravkovich et al. (1977) [16]
and Sumer et al. (2010) [17]. When a cylinder is placed in-line downstream of another
cylinder, they are called a tandem arrangement. When two cylinders are placed in tandem,
a complex flow structure is generated as a result of flow interference in the wake behind
the upstream body. Flow around two tandem cylinders may be classified into three regimes
based on the center-to-center spacing, L/D, between the two cylinders, as reported in
Zdravkovich et al. (1978) [18]: (1) an extended body regime, where L/D ranges from
1 to 1.5. The two cylinders are placed sufficiently close to each other such that the free
shear layers separated from the UC overshoot the DC; (2) a reattachment regime, where
L/D is between 1.5 and 4 (critical L/D), and the shear layers reattach on the DC; (3) a
co-shedding regime, where L/D is larger than a critical value and the shear layers from the
two cylinders roll up alternately. A vortex street appears in the gap between, as well as
behind, the cylinders.

Hori (1959) [19], Huhe-Aode et al. (1985) [20], Nishimura et al. (1986) [21], Xu and
Zhou (2004) [22] and Alam et al. (2011) [23] analyzed the flow pattern around tandem
cylinders at high Re number experimentally. Hori (1959) [19] performed measurements in a
closed-circuit wind tunnel over Re = 800∼4.2 × 104 and a cylinder center-to-center spacing
of L/D = 1∼15. His study confirmed the previous observation of a bi-stable flow between the
reattachment and co-shedding regimes. Huhe-Aode et al. (1985) [20] investigated the wake
flow structure behind two tandem cylinders at Re = 100∼1000 experimentally by using a hot-
wire anemometer and flow visualization techniques. Nishimura et al. (1986) [21] analyzed
the flow pattern around two cylinders in tandem at Re = 800∼1 × 104. and the relative
distance between two cylinders from 1.2 to 7.2, by using flow visualization techniques.
Xu and Zhou (2004) [22] measured the dominant vortex frequencies in the wake region
of two tandem cylinders by using two hot wires placed in tandem at Re = 800∼4.2 × 104

and L/D = 1 ∼15, which also showed the existence of a bi-stable flow regime. Alam et al.
(2011) [23] did experiments to investigate the influence of the L/D ratio between cylinders
on the hydrodynamic coefficients at Re = 9.7 × 103∼6.5 × 104 in a low-speed, closed-circuit
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wind tunnel. He proposed six different interaction mechanisms of the vortices between the
cylinders which have different influence on the induced forces on the cylinders and St.

The present study focuses on prediction of flow structures around tandem cylinders at
the upper transitional Reynolds number regime. To this date, the flow at this high Re has
not been intensively explored. A prediction of hydrodynamic forces on cylinders, and the
surrounding instantaneous flow structures, is challenging, due to the complexity of the flow
at the high Re. The flow around a circular cylinder at Re = 0.5 × 106∼4 × 106 was studied
by Catalano et al. (2003) [24] by using both Large Eddy Simulations (LES) with a wall
model and URANS simulations combined with the k− ε turbulence model. He pointed out
that LES solutions capture the delayed separation of the boundary layer on the surfaces of
the cylinder and reduced drag coefficients after the ‘drag crisis’ more accurately than those
obtained by using RANS simulations. Ong et al. (2009) [2] numerically solved 2D Unsteady
Reynolds-Averaged Navier–Stokes (URANS) equations with a standard high Reynolds
number k− ε turbulence model at Re = 1× 106, 2× 106 and 3.6× 106 to investigate the flow
around a circular cylinder. It was found that the 2D simulations were capable of predicting
the hydrodynamic coefficients at these high Re values. Hu et al. (2019) [25] analyzed the
characteristics of the flow passing two tandem cylinders at both subcritical and supercritical
Reynolds numbers by using Improved Delayed Detached-Eddy Simulation (IDDES) for
spacing ratio 2 ≤ L/D ≤ 5.

In the analysis of the surrounding flow and the hydrodynamic forces on the cylindrical
structures, statistics, such as the mean values, the root-mean-square values and spectra of
the time histories of forces, were usually obtained. However, their relationship with the
flow structures was not clearly revealed. Moreover, the turbulent wake flows were char-
acterized by temporal and spatial multiscale vortical structures, which brought challenge
to the analysis of the flow phenomena. Therefore, data-driven methods, such as Proper
Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), as well as
their variations, allow the extraction of dominant flow features from time-dependent flow
fields and the achievement of a deep understanding of the experimental, or simulation,
results. In the present study, to reveal the spatiotemporal behaviors of the flow data, the
DMD method was employed, which was proposed by Schmid (2010) [26] and is based
on the Koopman operator theory of dynamical systems (Rowley et al., 2009 [27]). The
development and use of modal decomposition techniques has gained increasing popularity
in recent years due to its advantage in processing huge experimental and numerical simu-
lations data, as reported by Taira et al. (2017) [28]. DMD decomposes flow data into the
modes and their associated eigenvalues, which characterizes the frequencies and growth
rates of the DMD modes. DMD has been used in a wide variety of applications, including
the wake flows of circular cylinders, such as in the works by Bagheri et al. (2013) [29] and
Hemati et al. (2017) [30], and for jet flow, such as in the work conducted by Schmid et al.
(2011) [31].

The present study investigates the influence of the relative distances between two
cylinders on the hydrodynamic coefficients and instantaneous flow structures in the upper
transition Reynolds number regime. To obtain the flow data, two-dimensional (2D) Un-
steady Reynolds Averaged Navier–Stokes (URANS) equations, with the standard k−ω SST
turbulence model, are solved. The relationship between the dominant flow structures with
the hydrodynamic forces were studied. The paper is organized as follows. Section 2 gives a
brief introduction to the numerical method applied in the present study. The computational
domain and the grid resolution convergence study are provided in Section 2. The validation
study is performed by comparing the obtained hydrodynamic coefficients with the previ-
ously published data. In Section 3, the results and discussion, based on hydrodynamics
quantities, power spectra analysis of their fluctuations, and instantaneous flow structures,
are presented. The DMD analysis is also performed. Finally, conclusions are presented in
Section 4.
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2. Numerical Modeling
2.1. Mathematical Formulation

The two-dimensional incompressible URANS equations of mass and momentum
conservation are given by:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂P
∂xi

+ v
∂2ui

∂x2
j
−

∂u′iu
′
j

∂xj
, (2)

where i, j = 1, 2; x1, x2 are the streamwise and cross-flow directions, respectively; u1 and u2

are the corresponding mean velocity components; u′iu
′
j is the Reynolds stress component

where u′i is the fluctuating part of the velocity; P is the dynamic pressure; ρ is the density of
the fluid. The shear stress transport k−ω SST turbulence model (Menter et al., 2003 [32])
was applied in the present study. It consists of the k−ω and k− ε models. The k− ε model
is suitable for simulating the free-stream flow, while it performs poorly where there are
adverse pressure gradients, boundary layer separations and strong streamline curvatures.
The k− ω model performs better under adverse pressure gradient conditions, and flow
separations, compared with the k− ε model. Therefore, the adopted k−ω SST model that
is presented was selected because it can combine the advantages of the k− ε model in the
free stream outside the cylinder boundary layer and the advantages of the k−ω model to
predict the boundary layer separations in the near-wall regions. The transport equations
for specific dissipation rate ω and turbulence kinetic energy k are given by:

Dk
Dt

= P̃k − β∗kω +
∂

∂xj

[
(ν + σkνt)

∂k
∂xj

]
, (3)

Dω

Dt
= αS2 − β∗ω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2(1− F1)

σω2

ω

∂k
∂xj

∂ω

∂xj
, (4)

where P̃k is a production limiter term given by the equation:

P̃k = min

[
νt

∂ui
∂xj

(
∂ui
∂xj

+
∂uj

∂xi

)
, 10β∗kω

]
. (5)

The variable ϕ1 represents any constant in the standard k−ω model and ϕ2 denotes
any constant in the standard k− ε model. The blending function F1 is used to calculate the
corresponding constant of the k−ω SST model:

ϕ = F1 ϕ1 + (1− F1)ϕ2, (6)

F1 = tan h

[min

[
max

( √
k

β∗ωy
,

500v
y2ω

)
,

4ρσω2k
CDkωy2

]]4
, (7)

CDkω = max

[
2ρ

σω2

ω

∂k
∂xj

∂ω

∂xj
, 10−10

]
, (8)

where y is the distance to the nearest wall, CDkω is the positive part of the cross-diffusion
term in Equation (4). The turbulent eddy viscosity vt can be defined as:

vt =
a1k

max(a1ω, SF2)
, (9)
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where S represents the strain rate invariant and F2 is a second blending function given by:

F2 = tan h

[max

(
2
√

k
β∗ωy

,
500v
y2ω

)]2
. (10)

The model constants: σk, σω, β, β∗, γ have standard values and can be found in
Menter et al. (2003) [32].

2.2. Numerical Method

The open source CFD toolbox OpenFOAM v2012 was used to perform all the sim-
ulations in the present study. The PIMPLE algorithm was used to solve the governing
equations. It is a combination of the Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) and the Pressure Implicit with Split Operators (PISO) method. An implicit sec-
ond order backward time integration scheme was applied. The divergence and gradient
terms were discretized using the Gauss linear integration scheme. The Laplacian term was
discretized using Gauss linear integration with limited non-orthogonal correction. All the
used schemes were of second-order accuracy.

2.3. Computational Domain

The computational domain is shown in Figure 1. The center of the front cylinder is
located at a distance 10 D from the inlet boundary and 25 D from the outlet boundary. The
center of the back cylinder is located with a horizontal center-to-center offset L from the
front cylinder. The upper and lower boundaries are placed at the distance of 10 D to the
centers of both cylinders.
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The boundary conditions used for the numerical simulations were set as follows:

1. A uniform flow was specified at the inlet as:

u1 = U∞, (11)

u2 = 0, (12)

k =
3
2
(uI)2, (13)

ω =
k0,5

(Cµ)
0,25l

, (14)
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where Cµ = 0.09 is the model constant; l = 0.045 D is the turbulent length scale; I = 1% is
the turbulent intensity.

2. At the outlet of the domain, the velocities, k and ω were set as zero normal gradient
condition and the pressure was set to be zero.

3. At the top and bottom of the domain, the velocities, the pressure, k and ω were set as
zero normal gradient.

4. A no-slip boundary condition was applied for the velocities on the cylinder surfaces
with u1 = u2 = 0. A standard wall function was used to resolve the near-wall
boundary layer. Therefore, a criterion of 30 < y+ < 40 with y+ was used, defined as:

y+ =
u∗hp

v
, (15)

where u∗ is the friction velocity defined as:

u∗ =
√

τω

ρ
, (16)

and τω is the wall shear stress.

2.4. Mesh Convergence and Validation Studies

The aim of the mesh convergence study was to determine the appropriate grid resolu-
tions for the simulations. The convergence studies were conducted on three computational
grids, shown in Table 1, with a different number of cells for the single cylinder case. An
example of the mesh for the case M1 in Table 1 is shown in Figure 2. The geometry of each
grid was kept similar. The time step (∆t) used in the mesh convergence study was chosen
such that a maximum Courant number (defined as Co = u·∆t/∆x where u is the velocity
magnitude of the flow and ∆x is the computational cell size) at each time step was below
0.5. The difference in the cell number was approximately 50% between cases.

Table 1. Results of grid convergence study.

Case No. of Cells ¯
CD

CL,rms St

M1 74,496 0.4657 0.1565 0.3227
M2 113,256 0.4706 0.1599 0.3293
M3 171,970 0.4639 0.1553 0.3221
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Table 1 presents the results of the grid convergence study of the single cylinder case.
The results showed that the relative difference of the time-averaged drag coefficient (the
drag coefficient CD is defined as FD/

(
0.5ρDU2

∞
)
, where the force acting on the cylinder in

the streamwise direction per unit length and the time-averaged values was calculated as
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CD = 1
n ∑n

i=1 CD,i) between cases, was lower than 2%. The relative difference of the root-
mean-square values of the lift coefficient (the drag coefficient CL is defined as FL/

(
0.5ρDU2

∞
)
,

where the force acting on the cylinder in the cross-stream direction per unit length and the

root-mean-square value was defined as CL,rms =
√

∑n
i=1
(
CL,i − CL

)2/n), was lower than 5%,
and the relative difference of the Strouhal number (defined as St = fvD/U∞, where fv is
the vortex shedding frequency obtained by performing fast Fourier transform of the time
histories of the lift force coefficient CL of the cylinder) was lower than 3% between cases.
According to the Table 1, the results suggested that for the computational grids with a
cell number higher than approximately 113,000, a further grid refinement showed a slight
influence on the obtained hydrodynamic quantities. Therefore, it could be concluded that
the mesh of the case M2 could provide sufficient grid resolution for the simulations.

The obtained hydrodynamic coefficients are compared with the previously published
experimental and numerical simulation data in Table 2. Generally, the CD predicted in
the present simulation was within the range of the experimental data and in reasonable
agreement with the numerical simulation results. However, the CL,rms, which was more
sensitive than the value of CD, was different from the obtained value of CL,rms reported
by Ong et al. (2009) [2], where the k − ε turbulence model was applied. However, the
present predicted values were close to those reported by Porteous et al. (2015) [33] and
Pang et al. (2016). The value of St was higher than the value predicted by Porteous et al.
(2015) [33] but close to the data reported by Ong et al. (2009), Pang et al. (2016) [34] and
Janocha et al. (2021) [35]. To sum up, a general agreement with the published data could be
achieved by the present numerical model. Therefore, the numerical model could be used
for further investigation of the instantaneous flow structures and hydrodynamic properties
around tandem cylinders. An example of the mesh used in the study for two tandem
cylinders for L/D = 3 is shown in Figure 3. The mesh of the near cylinder wall region was
refined to accurately predict the flow features in that area. Mesh distribution around the
cylinders could be described by PC and PR parameters, which are presented in Figure 3b.
The value PC = 220 is the total number of points in circumferential direction along the
cylinder surface and PR = 41 is the number of nodes in radial orientation.

Table 2. Numerical and experimental data of a fixed single cylinder at high Reynolds number regime.

Source/Author Method Re ¯
CD

CL,rms St

Present study 2D URANS k−ω SST 3.6× 106 0.4706 0.1599 0.3293
Ong et al. (2009) [2] 2D URANS k− ε 3.6× 106 0.4573 0.0766 0.3052
Porteous et al. (2015) [33] 2D URANS k−ω SST 3.6× 106 0.4206 - 0.1480
Pang et al. (2016) [34] 2D URANS k−ω SST 5.2× 106 0.4570 0.1847 0.3210
Janocha et al. (2021) [35] 2D URANS k−ω SST 3.6× 106 0.4616 0.1750 0.3204
Jones et al. (1969) [36] Experiments (0.5− 8)× 106 0.15–0.54 - -
Shih et al. (1993) [37] Experiments (1− 5)× 106 0.16–0.50 - -
Schmidt (1996) [38] Experiments (0.3− 8)× 106 0.18–0.53 - -
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3. Results

The effect of the center-to-center offset between two cylinders on the instantaneous
flow structures, hydrodynamic quantities and St were analyzed for L/D = 1.56, 1.8, 2.5, 3,
3.7, 4. Furthermore, DMD was applied to the velocities and pressure data in the 2D XY-
plane flow field to extract the spatiotemporal information of the coherent flow structures in
the wake regions of the UC and DC.

3.1. Hydrodynamic Forces

The hydrodynamics forces are analysed in this section in terms of the instantaneous
drag and lift coefficients of the two tandem cylinders.

Figure 4 presents the time histories of CL and CD for L/D = 1.56, 1.8, 2.5, 3, 3.7 and 4.
As seen from Figure 4, the CD oscillated at a frequency which was twice the CL of the
cylinders. The pressure distribution around the cylinder underwent a periodic change
as the vortex shedding grew, resulting in periodic variation in the force. The drag force
was always positive due to the stagnation point at the front surface of the cylinders, in
comparison with the lift force which could be positive and negative. Two vortices of
almost equal strength and opposite signs were shed each oscillation period in the wake of
a cylinder. Each vortex contributed to the maximum positive value of CD and contributed
to the maximum values with opposite signs of CL. Therefore, two positive peaks of the
CD and two negative and positive peaks per one cycle of vortex shedding were seen. It
resulted in a period doubling of the CD compared to the oscillation of the CL.
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According to Figure 4, the value of CD of the UC increased when the distance between
UC and DC reduced. In contrast, the value of CD for the DC underwent a nonmonotonic
change with shortening of the space between the two cylinders due to shielding effect. At
L/D = 1.56, CD of the DC was negative, as presented in Figure 4a. This was related to the
cavity flow in the gap between UC and DC. In addition, CD fluctuation amplitude of the
DC was higher in comparison with the UC for distance ratios L/D = 1.8, 2.5, 3, 3.7 and 4,
as shown in Figure 4. The UC shear layers reattached to the DC surface and contributed to
the pressure distribution around the DC. However, at L/D = 1.56, the values of CD of the
UC and DC were approximately constant, as shown in Figure 4a. A possible reason was
that the shear layers of the UC overshot the DC. Therefore, the two cylinders behaved as
an extended body at L/D = 1.56.

According to Figure 4b–d, the fluctuation amplitudes of CL were large in comparison
with other cases. This might have been connected with the reattachment flow regime which
triggered strong interaction of shear layers between UC and DC. A small angle of the UC
shear layers reattachment to the front part of the DC caused strong vortex shedding behind
the DC, and vice versa, which influenced the values of CL. In addition, at L/D = 1.8, the
shape of the oscillating time history of CL was not sinusoidal, which indicated a strong
modulation of the CL for both cylinders, as shown in Figure 4b. For L/D = 3.7 and 4, the
fluctuation amplitudes of CL were smaller in contrast to L/D = 1.8, 2.5 and 3. The reason
might have been connected with a change of the flow pattern around the tandem cylinders
caused by the increasing distance between the two cylinders.

Table 3 represents the values of CL,rms and CD for different distance ratios. According
to Table 3, the value of the CD of the DC was smaller in comparison with UC for all distance
ratios. The DC was located in the wake region of the UC. Therefore, the shielding effect
caused by the UC influenced the flow pattern around the DC. However, the values of CD
of the DC achieved maximum values at L/D = 1.8 and 3, as presented in Table 3. This
might have again been connected with the transitions of the instantaneous flow structures
between L/D = 1.8 and L/D = 2.5, and L/D = 2.5 and L/D = 3.

Table 3. The values of CL,rms and CD for different distance ratios.

L/D
CL,rms CD

UC DC UC DC

1.56 0.0271 0.0283 0.4279 −0.1376
1.8 0.8352 1.1848 0.5845 0.3969
2.5 0.7512 1.5898 0.5456 0.2740
3 0.5234 1.3160 0.4707 0.3106

3.7 0.1447 0.4911 0.3031 0.1875
4 0.1394 0.3580 0.2169 0.2120

As shown in Table 3, the values of the CL,rms for both UC and DC became large when
the distance between two cylinders reduced. At L/D = 2.5, the value of the CL,rms of the
DC achieved a maximum value. This might have been related to the dominance of the
front reattachment (FR) flow regime, which caused strong vortex shedding behind the DC.
However, the value of the CL,rms of both cylinders decreased drastically at L/D = 1.56.
The possible reason was that the overshoot flow regime dominated at L/D = 1.56 and the
interaction of UC and DC shear layers was minimized.

Figure 5 shows the mean pressure coefficient around the UC and DC for L/D = 1.56.
According to Figure 5, the front surface of the DC had a low negative pressure, which was
almost the same as the corresponding value of the base pressure of the UC. This fact was an
indication that the flow in the gap between UC and DC was almost stagnant. Furthermore,
the negative pressure coefficient on the front side of the DC exceeded that on its back
surface. Therefore, the DC experienced a negative drag force.
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Figure 5. The pressure coefficient distribution for L/D = 1.56. cp = (p− p0)/
(
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)
, where p0 is

the pressure in the far field.

3.2. Strouhal Number and Flow Structures

The relationship between St and flow structures around tandem cylinders is analysed
in this section. Figure 6 presents the PSD (Power Spectral Density) functions ECL1

and
ECL2

of CL for L/D = 1.56, 1.8, 2.5, 3, 3.7 and 4 of the UCs and DCs, respectively. For all
considered cases, the values of St, and its harmonics of the DC, dominated at the same
frequency as measured for the UC. This was explained by Meyer et al. (2011) [39] as follows:
when L/D is less than 8 the vortices of the UC can trigger the vortex shedding from the
DC, leading to a lock-in of UC and DC vortex shedding.
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Figure 6. The PSD ECL1
and ECL2
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According to Figure 6a,b, the value of St decreased from 0.336 to 0.180 when L/D
increased from 1.56 to 1.8. The decrease was connected to change in the flow structure.
Instantaneous contours of the spanwise vorticity for L/D = 1.56 are presented in Figure 7a.
At L/D = 1.56, where over-shoot flow regime dominated, as shown in Figure 7a, the value
of St was close to that of an isolated cylinder (≈ 0.329, as presented in Table 2). When the
over-shoot regime dominated, the DC was located inside the recirculation region behind
the UC. The separated shear layers of the UC overshot the DC without reattachment before
rolling up into a Karman vortex street, as shown in Figure 7a. Therefore, only one St was
observed, shown in Figure 6a.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 11 of 24 
 

 

 

 

 

(d) (e) (f) 

Figure 6. The PSD 𝐸𝐶𝐿1
and 𝐸𝐶𝐿2

: (a) 𝐿/𝐷 = 1.56, (b) 𝐿/𝐷 = 1.8, (c) 𝐿/𝐷 = 2.5, (d) 𝐿/𝐷 =3, (e) 𝐿/𝐷 =

3.7, (f) 𝐿/𝐷 = 4. 

  
(a) (b) 

 
(c) 

Figure 7. Instantaneous contours of the spanwise vorticity for (a) 𝐿/𝐷 = 1.56; (b) 𝐿/𝐷 = 3.7; (c) 

𝐿/𝐷 = 4. 

The spanwise vorticities for 𝐿/𝐷 =  1.8 at different time steps are shown in Figure 8. 

Meyer et al. (2011) [39] suggested a division of the cylinder surface to the following zones: 

front ( 𝜃 =  0°~60° ), front-side (𝜃 = 60°~90° ), rear-side (𝜃 = 90°~120°)  and rear ( 𝜃 =

120°~180° ) (𝜃  is presented in Figure 9). According to the surface division, front-side 

reattachment regime dominated at  𝐿 𝐷⁄ = 1.8,  as shown in Figure 8a. Three peaks, 

including the third and fifth harmonics of 𝑆𝑡, were observed in the PSD, as shown in 

Figure 6b at 𝐿/𝐷 =  1.8. The first 𝑆𝑡 was connected to the vortex shedding. The multiple 

peaks in the PSD were due to the reattachment of the shear layer on the DC. The lower 

shear layer of the UC reattached on the upper part of the DC at the front-side surface, as 

seen in Figure 8a. Then, the reattached shear layer split into two vortex slices going 

through the lower and upper part of the DC. The upper reattached vortex slice went to 

the upper side of the DC and further separated from its surface. It did not seem to 

influence the negative vortex behind the DC, as shown in Figure 8b. At the same time, a 

positive vortex began to grow and was about to move up, as denoted by the arrow in 

Figure 7. Instantaneous contours of the spanwise vorticity for (a) L/D = 1.56; (b) L/D = 3.7;
(c) L/D = 4.

The spanwise vorticities for L/D = 1.8 at different time steps are shown in Figure 8.
Meyer et al. (2011) [39] suggested a division of the cylinder surface to the following
zones: front (θ = 0

◦∼60
◦
), front-side (θ = 60

◦∼90
◦
), rear-side (θ = 90

◦∼120
◦
) and rear

(θ = 120
◦∼180

◦
) (θ is presented in Figure 9). According to the surface division, front-
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side reattachment regime dominated at L/D = 1.8, as shown in Figure 8a. Three peaks,
including the third and fifth harmonics of St, were observed in the PSD, as shown in
Figure 6b at L/D = 1.8. The first St was connected to the vortex shedding. The multiple
peaks in the PSD were due to the reattachment of the shear layer on the DC. The lower
shear layer of the UC reattached on the upper part of the DC at the front-side surface, as
seen in Figure 8a. Then, the reattached shear layer split into two vortex slices going through
the lower and upper part of the DC. The upper reattached vortex slice went to the upper
side of the DC and further separated from its surface. It did not seem to influence the
negative vortex behind the DC, as shown in Figure 8b. At the same time, a positive vortex
began to grow and was about to move up, as denoted by the arrow in Figure 8b. Then, this
positive vortex would go down to merge the split reattached vortex slice from the UC, as
shown in Figure 8c. This flow pattern also happened with the opposite vortex signs, as
shown in Figure 8d, and this might have been associated with the third harmonic of St, in
Figure 6b.
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Four peaks, including the second, third and fourth harmonics of St, were observed
in the PSD, as shown in Figure 6c at L/D = 2.5. As shown in Section 3.1, CL,rms of the
DC achieved a higher value at L/D = 2.5, compared with L/D = 1.8 and 3. It meant
that the shear layers reattached on the surface of the DC at a smaller θ at L/D = 2.5 in
comparison with that for L/D = 1.8 and 3. Therefore, the flow pattern changed from
front-side reattachment (FSR) to FR at L/D = 2.5. The spanwise vorticities for L/D = 2.5
at different time steps are shown in Figure 10. According to Figure 10a, the shear layer of
the UC reattached on the front surface of the DC at L/D = 2.5 and divided into the upper
and lower vortex slices. The upper vortex slice would interact with the negative vortex
shedding from the DC, as shown in Figure 10b. At the exact same time, a positive vortex
began to grow behind the DC and also moved up to interact with the negative vortex, as
denoted by the arrow in Figure 10b. This interaction between three vortices might have
been associated with the second harmonics of St, as shown in Figure 6c. Then, after the
negative vortex separated, the positive vortex behind the DC went down and merged with
the reattached lower positive vortex slice from the UC, as shown in Figure 10c. The flow
pattern was the same as that shown for L/D = 1.8 and occurred with the opposite vortex
signs, as shown in Figure 7d. Again, this flow pattern was related to the third harmonics
of St.
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At L/D = 3, two peaks, including the third harmonic of St, were observed in the PSD,
as shown in Figure 6e. At L/D = 3, the flow pattern changed from FR to the FSR. This
was indicated by the decreasing CL,rms at L/D = 3 in comparison with L/D = 2.5. The
reason was that at L/D = 3, the shear layers reattached to the surface of the DC at a bigger
θ compared to those at L/D = 2.5 and produced weaker Karman vortices behind it. A
detailed development of vorticity structures for L/D = 3 at different time steps is shown
in Figure 11.
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The lower shear layer of the UC reattached on the front-side surface of the DC, as
presented in Figure 11a. After that, the reattached shear layer split into two into two vortex
slices moving through the lower and upper parts of the DC, as shown in Figure 11b. The
upper vortex slice went upper side of the DC and then separated from its surface. It seemed
that the upper vortex slice did not contribute to the development of the negative vortex
behind the DC, as shown in Figure 11b. Simultaneously, the positive vortex was growing
and moving up, as depicted by the arrow in Figure 11b. Furthermore, the positive vortex
would move down and merge with the lower vortex slice from the reattached shear layer
of the UC, as presented in Figure 11c, and this might have been associated with the third
harmonic of St in Figure 6d. This flow pattern also repeated with the opposite vortex
signs, as shown in Figure 11d. Therefore, the evolution of the flow pattern around tandem
cylinders at L/D = 3 was similar to the development of the vortical structures around UC
and DC at L/D = 1.8.

St was again about 0.329 for L/D = 3.7, indicating that the flow pattern changed.
Alam et al. (2011) proposed that at Re = 9.7× 103 and Re = 6.5× 104 a bi-stable regime
exists between the FR and co-shedding flows at the distances of 3.5 < L/D < 3.9 and
3.9 < L/D < 4.2, respectively. Therefore, it could be concluded that L/D = 3.7 and 4,
shown in see Figure 7b,c belonged to the bi-stable flow regime as the present investigation
was performed for Re = 3.6× 106. In line with Figure 6e,f, two peaks were observed in
the PSD. The second peak, which was characterized by a small amplitude, was the third
super-harmonic of the first one. The influence of the third super-harmonic was negligible
for L/D = 3.7 and 4.

Figure 12 presents the time-averaged flow streamlines and pressure field. The cavity
flow indicated by the strong recirculation motions appeared in the gap between the two
cylinders, as shown in Figure 12a. The low pressure at the surface of the DC caused
a dramatic change in its CD, which has been explained in Section 3.1. According to
Figure 12b,c, the two recirculation motions behind the DC disappeared, resulting in an
attached flow around the DC for L/D = 1.8 and 2.5. The probable reason was that the high
transverse interactions of the shear layers resulted in a delayed separation point, which
suppressed the two recirculation motions. However, the recirculation bubbles reappeared
for L/D ≥ 3, as shown in Figure 12d–f. A possible reason was that the influence of the UC
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shear layers was not sufficient to influence the separation point in the boundary layer of
the DC. The behaviour of the DC boundary layer became close to that of a single cylinder.
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As a summary, the values of St for different distance ratios are presented in Table 4. At
L/D = 1.56 and 3.7 the value of St was close to that of an isolated cylinder (≈0.329). It was
related to the change of the flow regime, as discussed previously and presented in Table 4.
At L/D = 1.8, this distance ratio created a longer length of the combined tandem structure
which caused a reduction of the St value, compared with that at L/D = 1.56. According to
Table 4, the value of St gradually became close to the value of a single cylinder case with
further enlargement of the distance between the two cylinders.

Table 4. Summary of the St values and different flow regimes.

L/D
St

Flow Regime
UC DC

1.56 0.3357 0.3357 Overshoot
1.8 0.1800 0.1800 FSR
2.5 0.2650 0.2650 FR
3 0.2750 0.2750 FSR

3.7 0.3200 0.3200 Bi-stable
4 0.3650 0.3650 Bi-stable
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3.3. Dynamic Mode Decomposition Analysis

The DMD method proposed by Schmid (2010) [40] was implemented in the present
study to get a good understanding of the spatial distribution of the coherent structures
related to the dominant frequencies, shown in Section 3.2. The method allows approxi-
mation of the flow fields obtained by numerical simulations or experiments using a linear
combination of the DMD modes and further develops a reduced order representation of
the dynamical system as:

Ψ0 = [u1, u2, u3, . . . , uN] ≈ ΦDαVand = [ϕ1, ϕ2, ϕ3, . . . ,ϕN]

α1 . . . . . .
. . . · · · . . .
. . . . . . αN


µ0

1 · · · µN−1
1

...
. . .

...
µ0

N · · · µN−1
N

, (17)

where Ψ0 is a matrix consisting of flow fields ui (i = 1, 2, . . . N) at each time step and
ui stores flow data, such as the flow velocities and pressure at each spatial point; Φ

represents the matrix consisting of the spatial DMD modes ϕi, Dα = diag(α1, . . . , αN)
represents the amplitudes of the corresponding modes within the time span and Vand
denotes the Vandermonde matrix, which contains the temporal variations of each mode
during the investigated time span. Schmid (2010) [26] states that Im(log(µi)/∆t) represents
the frequency and Re(log(µi)/∆t) demonstrates the amplification rate of the mode.

A key problem in the DMD method is the selection of a small subset of DMD modes
which can provide a reduced order approximation of the original dynamical system. How-
ever, the contribution of each DMD mode to the dynamic system is difficult to quantify,
due to the lack of information of its energy obtained through the original DMD algorithm.
Therefore, Jovanovic et al. (2014) [40] proposed a sparsity-promoting DMD (SPDMD)
method to select a finite number of dynamically important modes within the time span.
To achieve this, a positive regularization parameter γ is used to maintain a balance be-
tween the approximation error and the number of selected dominant DMD modes. An
optimization problem is solved to obtain the unknown elements of the matrix Dα:

min
α
‖Ψ0 −ΦDαVand‖2

F + γ
N

∑
i=1
|αi|, (18)

where ‖ . . . ‖F is the Frobenius norm of a matrix. Usually, a large value of γ will introduce a
high limitation on the number of non-zero elements in Dα = diag(α1, . . . , αN). Therefore,
the SPDMD algorithm removes the modes which are only of influence for a short time in
the early stages of the time evolution and are damped rapidly and also the modes with
small amplitudes, as reported in Jovanovic et al. (2014) [40]. As a result, the DMD modes
which contribute the most to the dynamic system are retained. Various applications of this
method can be found in Yin & Ong (2020, 2021) [41,42] and Janocha et al. (2021) [35].

The present analysis was performed on the velocity and pressure data obtained in the
computational domain. The number of the snapshots was N = 260 with a time step of
∆tD/U∞ = 0.5 for L/D = 1.8, 2.5 and 3. The distance ratios were chosen to show how the
second and third harmonics of St influenced the mode pattern.

Figure 13 shows the DMD eigenvalues for L/D = 1.8, 2.5 and 3. The modes which
were located inside the unit circle were damped within the temporal evolution of the
dynamical system because of their negative growth rate. Most of the eigenvalues lay on
the unit circle, indicating that they were ‘neutrally stable’ with almost zero growth/decay
rate. This was because of the statistically stationary state of the wake flow, as reported in
Schmid (2010) [26], Jovanovic et al. (2014) [40] and Pan et al. (2015) [43].
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Figure 14 shows the DMD spectra obtained using the DMD algorithm and the modes 

selected by using the SPDMD algorithm. The total number of the selected modes 

Figure 13. The DMD eigenvalues. The black circles denote the eigenvalues obtained using the original
DMD and the red crossings denote the eigenvalues obtained using the SPDMD: (a) L/D = 1.8,
(b) L/D = 2.5, (c) L/D = 3.

Figure 14 shows the DMD spectra obtained using the DMD algorithm and the modes
selected by using the SPDMD algorithm. The total number of the selected modes cor-
responded to Nsp = 7, 9 and 7 for L/D = 1.8, 2.5 and 3, respectively. According to
Figure 14, among the chosen modes, by using the SPDMD algorithm, the most dominant
mode corresponded to the time-averaged flow with a zero frequency. The rest of the modes
determined the large-scale fluctuating flows, which appeared in pairs with positive and
negative oscillation frequencies.
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Table 5 provides the ratios of the energy contribution of the DMD modes selected by
using the SPDMD algorithm to the total energy of the system for L/D = 1.8, 2.5 and 3.
According to Table 5, the SPDMD algorithm allowed the capturing of a few of the most
dominant modes which contained more than 94% of the system energy and almost reflected
the entire spatial distribution of the flow structure in the flow field.
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Table 5. Energy levels of the DMD modes and their respective contributions to the total energy.

L/D
Mode 1 Mode 2 Mode 3

Cumulative Energy, %

1.8 85.70 92.85 95.35
2.5 87.10 93.55 94.02
3 93.60 96.33 98.17

A comparison between the PSD of the CL of the DC and the DMD spectrum was
performed, as indicated in Figure 15. Modes chosen by using the SPDMD algorithm could
correspond well to the different frequency peaks in the PSD. According to Figure 15b, more
modes were required to completely reproduce the dynamic information of the coherent
flow structures in the wake regions behind both UC and DC for distance ratio L/D = 2.5,
due to the flow complexity compared with the other two cases. As has been explained in
Section 3.2, there are strong interactions between the shear layers with large amplitudes of
transverse oscillation behind the UC and DC. Therefore, several peaks were observed in
PSD at L/D = 2.5.
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Figure 15. The DMD modes obtained by the SPDMD algorithm and the PSD ECL for DC: (a) L/D = 1.8;
(b) L/D = 2.5; (c) L/D = 3.

The modes are supposed to display spatial distribution and length scale features of
the flow structures. Figures 16–18 show the spatial structures of velocity modes selected by
the SPDMD method for L/D = 1.8, 2.5 and 3. The streamwise velocities of Modes 1 and 3
revealed a top–bottom mirrored symmetry with respect to the centreline of the cylinders,
while the cross-flow velocities displayed asymmetry. The two velocity components of
Mode 2 showed reverse symmetry properties compared with Modes 1 and 3. In addition,
with the increasing frequency and decreasing amplitude of the higher order modes, the
length scale of the structures became smaller. Especially for Mode 3, the energetic stream-
wise velocity structures were located near the shear layers in the wake regions behind the
UC and DC indicating the oscillating features of the shear layers.



J. Mar. Sci. Eng. 2022, 10, 1501 19 of 25

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 24 
 

 

 

 

 

(a) (b) (c) 

Figure 15. The DMD modes obtained by the SPDMD algorithm and the PSD 𝐸𝐶𝐿
 for DC: (a) 𝐿/𝐷 =

1.8; (b) 𝐿/𝐷 = 2.5; (c) 𝐿/𝐷 = 3. 

The modes are supposed to display spatial distribution and length scale features of 

the flow structures. Figures 16, 17 and 18 show the spatial structures of velocity modes 

selected by the SPDMD method for 𝐿/𝐷 = 1.8, 2.5 and 3. The streamwise velocities of 

Modes 1 and 3 revealed a top–bottom mirrored symmetry with respect to the centreline 

of the cylinders, while the cross-flow velocities displayed asymmetry. The two velocity 

components of Mode 2 showed reverse symmetry properties compared with Modes 1 and 

3. In addition, with the increasing frequency and decreasing amplitude of the higher order 

modes, the length scale of the structures became smaller. Especially for Mode 3, the 

energetic streamwise velocity structures were located near the shear layers in the wake 

regions behind the UC and DC indicating the oscillating features of the shear layers. 

 
 

 

(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 16. The spatial distribution of velocities for 𝐿/𝐷 = 1.8: the streamwise velocity for (a) Mode 

1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3. 

 

 

 

(a) (b) (c) 

Figure 16. The spatial distribution of velocities for L/D = 1.8: the streamwise velocity for (a) Mode 1;
(b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 24 
 

 

 

 

 

(a) (b) (c) 

Figure 15. The DMD modes obtained by the SPDMD algorithm and the PSD 𝐸𝐶𝐿
 for DC: (a) 𝐿/𝐷 =

1.8; (b) 𝐿/𝐷 = 2.5; (c) 𝐿/𝐷 = 3. 

The modes are supposed to display spatial distribution and length scale features of 

the flow structures. Figures 16, 17 and 18 show the spatial structures of velocity modes 

selected by the SPDMD method for 𝐿/𝐷 = 1.8, 2.5 and 3. The streamwise velocities of 

Modes 1 and 3 revealed a top–bottom mirrored symmetry with respect to the centreline 

of the cylinders, while the cross-flow velocities displayed asymmetry. The two velocity 

components of Mode 2 showed reverse symmetry properties compared with Modes 1 and 

3. In addition, with the increasing frequency and decreasing amplitude of the higher order 

modes, the length scale of the structures became smaller. Especially for Mode 3, the 

energetic streamwise velocity structures were located near the shear layers in the wake 

regions behind the UC and DC indicating the oscillating features of the shear layers. 

 
 

 

(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 16. The spatial distribution of velocities for 𝐿/𝐷 = 1.8: the streamwise velocity for (a) Mode 

1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3. 

 

 

 

(a) (b) (c) 

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 19 of 24 
 

 

  

 

(d) (e) (f) 

Figure 17. Spatial structures of velocities for 𝐿/𝐷 =  2.5: the streamwise velocity for (a) 

Mode 1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) 

Mode 3. 

 
 

 

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 18. Spatial structures of velocities for 𝐿/𝐷 = 3: the streamwise velocity for (a) Mode 1; (b) 

Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3. 

Figure 19 shows the spatial structures of pressure modes selected by the SPDMD 

method for 𝐿/𝐷 = 1.8, 2.5 and 3. For the pressure distribution of the modes, there were 

positive and negative regions around the two cylinders, indicating a periodic changing of 

forces acting on the cylinders. In the cross-flow direction, if the positive and negative 

regions formed a pair, as indicated by the red circle in Figure 19, it would contribute to 

the lift force at the corresponding frequency of the mode. However, Mode 2 for 𝐿/𝐷 = 1.8 

and 3.0 had similar distribution of the pressure, especially around the DC, as shown in 

Figure 19b,h. It had negative pressure regions around both the two sides, which had no 

contribution to the lift force. Therefore, although Mode 2 was identified by SPDMD, there 

was no peak in the frequency spectra at the second harmonic of St. For 𝐿/𝐷 = 2.5, on the 

contrary, there were both positive and negative pressure regions around the DC, which 

contributed to the lift force at the second harmonic of St. 

  
 

Figure 17. Spatial structures of velocities for L/D = 2.5: the streamwise velocity for (a) Mode 1;
(b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 19 of 24 
 

 

  

 

(d) (e) (f) 

Figure 17. Spatial structures of velocities for 𝐿/𝐷 =  2.5: the streamwise velocity for (a) 

Mode 1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) 

Mode 3. 

 
 

 

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 18. Spatial structures of velocities for 𝐿/𝐷 = 3: the streamwise velocity for (a) Mode 1; (b) 

Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3. 

Figure 19 shows the spatial structures of pressure modes selected by the SPDMD 

method for 𝐿/𝐷 = 1.8, 2.5 and 3. For the pressure distribution of the modes, there were 

positive and negative regions around the two cylinders, indicating a periodic changing of 

forces acting on the cylinders. In the cross-flow direction, if the positive and negative 

regions formed a pair, as indicated by the red circle in Figure 19, it would contribute to 

the lift force at the corresponding frequency of the mode. However, Mode 2 for 𝐿/𝐷 = 1.8 

and 3.0 had similar distribution of the pressure, especially around the DC, as shown in 

Figure 19b,h. It had negative pressure regions around both the two sides, which had no 

contribution to the lift force. Therefore, although Mode 2 was identified by SPDMD, there 

was no peak in the frequency spectra at the second harmonic of St. For 𝐿/𝐷 = 2.5, on the 

contrary, there were both positive and negative pressure regions around the DC, which 

contributed to the lift force at the second harmonic of St. 

  
 

Figure 18. Spatial structures of velocities for L/D = 3: the streamwise velocity for (a) Mode 1;
(b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3.



J. Mar. Sci. Eng. 2022, 10, 1501 20 of 25

Figure 19 shows the spatial structures of pressure modes selected by the SPDMD
method for L/D = 1.8, 2.5 and 3. For the pressure distribution of the modes, there were
positive and negative regions around the two cylinders, indicating a periodic changing
of forces acting on the cylinders. In the cross-flow direction, if the positive and negative
regions formed a pair, as indicated by the red circle in Figure 19, it would contribute to the
lift force at the corresponding frequency of the mode. However, Mode 2 for L/D = 1.8
and 3.0 had similar distribution of the pressure, especially around the DC, as shown in
Figure 19b,h. It had negative pressure regions around both the two sides, which had no
contribution to the lift force. Therefore, although Mode 2 was identified by SPDMD, there
was no peak in the frequency spectra at the second harmonic of St. For L/D = 2.5, on the
contrary, there were both positive and negative pressure regions around the DC, which
contributed to the lift force at the second harmonic of St.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 19 of 24 
 

 

 

(d) (e) (f) 

Figure 17. Spatial structures of velocities for 𝐿/𝐷 ൌ  2.5: the streamwise velocity for (a) 
Mode 1; (b) Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) 
Mode 3. 

 

 

(a) (b) (c) 

 

 

(d) (e) (f) 

Figure 18. Spatial structures of velocities for 𝐿/𝐷 ൌ 3: the streamwise velocity for (a) Mode 1; (b) 
Mode 2; (c) Mode 3 and the cross-flow velocity for (d) Mode 1; (e) Mode 2; (f) Mode 3. 

. In the cross-flow direction, if the positive and negative regions formed a pair, as 
indicated by the red circle in Figure 19, it would contribute to the lift force at the 
corresponding frequency of the mode. However, Mode 2 for 𝐿/𝐷 ൌ 1.8  and 3.0 had 
similar distribution of the pressure, especially around the DC, as shown in Figure 19b,h. 
It had negative pressure regions around both the two sides, which had no contribution to 
the lift force. Therefore, although Mode 2 was identified by SPDMD, there was no peak in 
the frequency spectra at the second harmonic of St. For 𝐿/𝐷 ൌ 2.5, on the contrary, there 
were both positive and negative pressure regions around the DC, which contributed to 
the lift force at the second harmonic of St. 

  
 

(a) (b) (c) 

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 20 of 24 

(d) (e) (f) 

(g) (h) (i)

Figure 19. The spatial structures of the pressure of Mode 1, Mode 2 and Mode 3 for 𝐿/𝐷 =

1.8, 2.5 and 3: (a) Mode 1, 𝐿/𝐷 = 1.8, (b) Mode 2, 𝐿/𝐷 = 1.8, (c) Mode 3, 𝐿/𝐷 = 1.8; (d) Mode 1, 

𝐿/𝐷 = 2.5, (e) Mode 2, 𝐿/𝐷 = 2.5, (f) Mode 3, 𝐿/𝐷 = 2.5, (g) Mode 1, 𝐿/𝐷 = 3, (h) Mode 2, 

𝐿/𝐷 = 3, (i) Mode 3, 𝐿/𝐷 = 3. 

By using the extracted dominant DMD modes, a reduced-order representation of the 

flow field could be reconstructed. The snapshots of the vorticity at ∆𝑡𝐷/𝑈∞ = 280 for the

original numerical simulations and reconstructed flow fields are presented in Figure 20 

for 𝐿/𝐷 = 1.8, 2.5 and 3. The DMD mode shapes, with their corresponding amplitudes 

and frequencies, obtained by the SPDMD algorithm were used to create the reduced-order 

representations. The velocity and pressure at a point (𝑥, 𝑦) and 𝑡 =  𝑡𝑛 were reconstructed 

by:

𝑢(𝑥, 𝑦, 𝑡𝑛) =  ∑ 𝛼𝑖𝜑𝑖(𝑥, 𝑦)𝜇𝑖
𝑛−1

𝑁𝑠𝑝

𝑖=1

, (27) 

𝑝(𝑥, 𝑦, 𝑡𝑛) =  ∑ 𝛼𝑖𝜑𝑖(𝑥, 𝑦)𝜇𝑖
𝑛−1,

𝑁𝑠𝑝

𝑖=1

 (28) 

where 𝑁𝑠𝑝 is the total number of SPDMD modes. As shown in Figure 20, in comparison 

with the original flow fields, it was evident that the SPDMD method could successfully 

reconstruct the main flow features, although the investigated flow was complicated at a 

high Reynolds number. The reconstructed flow field had some differences in the wake

region of the DC for 𝐿/𝐷 = 2.5, where there were strong interactions of shear layers in the

flow, as shown in Figure 20d. The noisy structures in the reconstructed wake flow behind

the DC could be removed by including more DMD modes. 

Figure 19. The spatial structures of the pressure of Mode 1, Mode 2 and Mode 3 for L/D = 1.8, 2.5 and
3: (a) Mode 1, L/D = 1.8, (b) Mode 2, L/D = 1.8, (c) Mode 3, L/D = 1.8; (d) Mode 1, L/D = 2.5, (e) Mode
2, L/D = 2.5, (f) Mode 3, L/D = 2.5, (g) Mode 1, L/D = 3, (h) Mode 2, L/D = 3, (i) Mode 3, L/D = 3.

By using the extracted dominant DMD modes, a reduced-order representation of the
flow field could be reconstructed. The snapshots of the vorticity at ∆tD/U∞ = 280 for the
original numerical simulations and reconstructed flow fields are presented in Figure 20
for L/D = 1.8, 2.5 and 3. The DMD mode shapes, with their corresponding amplitudes



J. Mar. Sci. Eng. 2022, 10, 1501 21 of 25

and frequencies, obtained by the SPDMD algorithm were used to create the reduced-order
representations. The velocity and pressure at a point (x, y) and t = tn were reconstructed by:

u(x, y, tn) =
Nsp

∑
i=1

αi ϕi(x, y)µn−1
i , (19)

p(x, y, tn) =
Nsp

∑
i=1

αi ϕi(x, y)µn−1
i , (20)

where Nsp is the total number of SPDMD modes. As shown in Figure 20, in comparison
with the original flow fields, it was evident that the SPDMD method could successfully
reconstruct the main flow features, although the investigated flow was complicated at a
high Reynolds number. The reconstructed flow field had some differences in the wake
region of the DC for L/D = 2.5, where there were strong interactions of shear layers in the
flow, as shown in Figure 20d. The noisy structures in the reconstructed wake flow behind
the DC could be removed by including more DMD modes.
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Figure 20. A comparison of instantaneous contours of the spanwise vorticity of original simulation
and reconstructed flow field using SPDMD modes: (a,b) L/D = 1.8; (c,d) L/D = 2.5; (e,f) L/D = 3.

Figures 21 and 22 show the time histories of the lift and drag coefficients of the UC
and DC obtained by the numerical simulations and the reduced-order representations. It
can be seen that the reduced-order representations with a considerably small number of
modes could correctly reproduce the time histories of the lift and drag coefficients. Thus,
the frequencies and amplitudes of the dominant DMD modes, which contributed the most
to the dynamics, were obtained accurately by the SPDMD algorithm.
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Figure 22. Time histories of (a–c) the DC lift coefficient and (d–f) drag coefficient obtained by the
simulation results and reconstructed by using the selected DMD modes for L/D = 1.8, 2.5 and 3:
(a,d) L/D = 1.8; (b,e) L/D = 2.5; (c,f) L/D = 3.

4. Conclusions

The flow around two tandem cylinders with different horizontal offsets of L/D = 1.56,
1.8, 2.5, 3, 3.7 and 4 was investigated numerically at a Reynolds number of 3.6 × 106.
The 2D URANS equations with a standard k − ω SST turbulence model were solved.
Verification and validation studies were performed for the flow past a single cylinder
and showed that the present numerical model could provide satisfying results compared
with the previously published data. Then, the numerical model was used to study the
hydrodynamic characteristics of tandem cylinders subjected to high Re incoming flow.
Analysis of instantaneous flow structures, hydrodynamic coefficients, St and vortical
structures were demonstrated in the present study. In addition, the SPDMD algorithm
was implemented to extract dominant modes which contributed the most to the inherent
dynamics, and to construct a reduced-order representation of the flow field. The main
conclusions can be summarized as follows:
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1. With the increasing L/D, flow structures at Re = 3.6 × 106 changed in terms of
overshoot, FSR, FR, FSR and bi-stable. This relates to the reattachment point of the
separated UC shear layers to the surface of the DC.

2. The lower vorticity slice of the reattached shear layer to the surface of the DC con-
tributed to the evolution of the positive vorticity behind the DC. It explains the
existence of the third super-harmonic for the cases considered. However, the second
harmonic observed in the spectra of the lift forces was only for the case of L/D = 2.5.
This relates to assistance of the upper vorticity slice of the reattached shear layer to
the development of the negative coherent structure behind the DC.

3. The values CL,rms, CD and St were influenced by L/D such that CD decreased with
a decreasing L/D between two cylinders and achieved a negative value for the DC
at L/D = 1.56. The negative CD value corresponded to a low pressure at the front
surface of the DC caused by the cavity flow between UC and DC at L/D = 1.56.
Increasing amplitudes of CL fluctuation were found at L

D = 2.5, and this relate to
FR flow, which causes significant interaction of shear layers. At L/D ≥ 1.8, the
reattachment flow regime (FR) dominated. It creates a longer after-body length of the
combined UC and DC body leading to a sudden reduction of the St value.

4. The SPDMD algorithm was used to extract a few dominant modes which contributed
the most to the flow dynamics. It was found that Mode 2 for L/D = 1.8 and 3 did
not contribute to the lift force. Therefore, there was no peak in the frequency spectra
of the lift force at the second harmonic of St for these two cases, although Mode 2
was identified by using SPDMD. In addition, the reduced-order representations of the
flow field, which consist of the finite SPDMD modes number, can correctly reconstruct
the wake flow at the investigated high Reynolds number.
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