
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Zhiming Yuan,
University of Strathclyde,
United Kingdom

REVIEWED BY

Sebastian Solari,
Universidad de la República, Uruguay
Shuangrui Yu,
University of Strathclyde,
United Kingdom
Yuanchuan Liu,
Ocean University of China, China

*CORRESPONDENCE

Lin Du
dulin2929@126.com

SPECIALTY SECTION

This article was submitted to
Ocean Solutions,
a section of the journal
Frontiers in Marine Science

RECEIVED 26 August 2022
ACCEPTED 27 October 2022

PUBLISHED 11 November 2022

CITATION

Xu X, Du L, Zhang Z, Gu J, Xing Y,
Gaidai O and Dou P (2022) A case
study of offshore wind turbine
positioning optimization methodology
using a novel multi-stage approach.
Front. Mar. Sci. 9:1028732.
doi: 10.3389/fmars.2022.1028732

COPYRIGHT

© 2022 Xu, Du, Zhang, Gu, Xing, Gaidai
and Dou. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 11 November 2022

DOI 10.3389/fmars.2022.1028732
A case study of offshore wind
turbine positioning optimization
methodology using a novel
multi-stage approach

Xiaosen Xu1, Lin Du2*, Zhongyu Zhang1, Jiayang Gu1,
Yihan Xing3, Oleg Gaidai4 and Peng Dou5

1Marine Equipment and Technology Institute, Jiangsu University of Science and Technology
Jiangsu University of Science and Technology, Zhenjiang, China, 2College of Maritime and
Transportation, Ningbo University, Ningbo, China, 3Department of Mechanical and Structutral
Engineering and Materials Science, University of Stavanger, Stavanger, Norway, 4College of
Engineering Science and Technology, Shanghai Ocean University, Shanghai, China, 5School of
Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang, China
This investigation maximize the annual energy production (AEP) of a wind farm’s

layout at a specific site using a novel multi-stage approach. The downstreamwind

turbines’ energy production decreases due to the reduced wind speed and

turbulence created by the upstream wind turbines’ wakes. The wake

interference from wind turbines causes the reduction of overall power

efficiency. This paper provides a novel multi-stage strategy for the optimal

layouts generated by heuristic algorithms to address this problem. A comparison

of the proposed multi-stage approach to previous optimization algorithms is

presented to demonstrate its efficiency using three referenced cases and one

potential wind farm in the Gulf of Maine. The results demonstrate that applying the

proposed multi-stage approach increases AEP and decreases computational time

compared to previous research and optimization algorithms, which is crucial for

large-scale offshore wind farm layout design and optimization.

KEYWORDS

gaussian-based wake model, wind farm layout optimization, multi-stage approach,
hybrid optimization methods, offshore wind
Introduction

With a considerable growth of offshore energy production, offshore wind is a

magnificent sustainable energy source. Offshore wind power, or offshore wind energy,

is typically generated by wind farms constructed offshore, usually on the continental

shelf, harvesting wind energy and generating electricity. Offshore wind speeds are

typically stronger than those onshore; therefore, offshore wind power’s contribution to
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electricity supplied is of significant industrial importance.

Relatively low surface roughness of the ocean typically yields

higher mean wind speeds (Xu et al., 2022a; Xu et al., 2022b).

Recent developments in offshore wind turbine design have been

crucial for the efficient generation of renewable energy.

Considering the cost of powerlines and turbine maintenance,

the turbines are normally deployed in wind farms with limited

area. However, the wind field behind the turbines in a wind farm

has a lower mean wind speed and higher turbulence intensity

than the ambient wind field.

Wind turbine wakes have long been an important concern in

wind farms’ design, operation, and control. Generally, the wake

reaches the turbines downwind before completely recovering to

ambient wind conditions. As a result, the power output of the

downwind turbine is lowered while load variability on the

turbines’ structure is enhanced. Wake modelling in a wind

farm is extremely difficult, not only because the evolution and

recovery of a single wake are highly dependent on many

interdependent atmospheric conditions, such as ambient wind

speed, turbulence intensity, wind shear, and stratification; but

also because the wakes from multiple turbines merge laterally

and vertically in a wind farm.

The wake effect reduces the wind speed, creates turbulence,

and may damage the turbines’ blades. The area behind the

turbine affected by the wake is called the wake region

(Renkema, 2007). Numerous modelling methodologies

describe the wake region, ranging from Engineering Wake

Models (EWM) to Computational Fluid Dynamics (CFD). The

CFD models are high-fidelity, and examples include Large Eddy

Simulations (LES) and Reynolds Averaged Navier Stokes

methods (RANS). CFD methods generally demand a

significant amount of computing power and are typically

performed on a supercomputer, which is impossible for

population-based optimization algorithms.

The Jensen wake model is one of the most frequently utilized

utilised EWM wake models (Jensen, 1983). The Jensen wake

model (alternatively referred to as the Park model) is developed

by preserving momentum downstream of the wind farm and

ignoring the impact of vortex shedding, which is significant only

in the immediate wake zone. The wake is supposed to grow

linearly downstream, and the velocity of the wake is assumed to

be a function of the downstream distance from the turbine hub

(Wu et al., 2019). Compared with the regular studies normally

optimizing the offshore wind farm layout and two-dimensional

cable routing independently, Wu et al. (2022) synchronized the

optimization of turbine layout and cable routing in three

dimensions by meta-algorithms and the Jensen wake model.

Although the Jensen wake model is only suitable for the far wake

region and has highly uncertain performance, many researchers

use it to predict the wind farm’s power output. Bastankhah and

Porté-Agel (2014) presented a new robust wake model based on
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a Gaussian curve to characterize the wind turbine’s wake velocity

profile. The suggested new wake model agrees well with high-

resolution wind tunnel and LES data.

There are two general approaches to solving the wind farm

layout optimization (WFLO) problem: continuous (search) and

discrete (grid). The discrete approach splits the computing area

into rectangular grids and centres them with wind turbines. The

discrete approach’s solution can be expressed as a binary string,

simplifying the application of discrete-type meta-heuristics. The

high-resolution grid will boost wind turbine location flexibility.

The discrete schemes reduce the search space of the domain with

lower computational costs. The continuous approach is that

wind turbines can occupy any place in the wind farm. Although

the discrete scheme is important for applying discrete

optimization methods, there are no physical constraints that

turbines must be placed in the centres of cells, and the actual

wind farm has no real cells or grids. Also, commercial factors

such as annual energy production (AEP) are usually considered

the optimization objective.

There are several research works published using the discrete

approach. Mosetti et al. (1994) first proposed using a discrete

evolutionary algorithm to solve the wind farm layout optimization

(WFLO) issue. Grady et al. (2005) examined the identical problem

as Mosetti et al. and demonstrated that the findings obtained by

Mosetti et al. were not optimal. Marmidis et al. (2008) conducted a

similar investigation to Mosetti and Grady. Marmidis calculated

the WFLO using a Monte Carlo approach rather than a genetic

algorithm. Eroğlu and Seçkiner (2012) used particle filtering to

address the WFLO in three distinct scenarios. Jiang et al. (2013)

proposed a modified binary differential evolution method for

solving WFLO problems, improving solution quality with less

execution time. Parada et al. (2017) sought to solve the WFLO

problem using a genetic algorithm based on a newly designed

Gaussian-based wake model. Song et al. (2020) used a two-level

strategy to handle the WFLO problem and demonstrated its

efficiency in dealing with large-scale wind farms. Bai et al.

(2022) improved the adaptive genetic algorithm into a single-

player reinforcement learning problem. To minimise the cost of

energy, Ziyaei and the team optimized a non-homogenous wind

farm’s layout by considering two sizes of commercial turbines

with a genetic algorithm (Ziyaei et al., 2022). The group of Wen

adopted the risk management method in solvingWFLO problems

and estimated the risk of AEP variation caused by changing wind

conditions (Wen et al., 2022).

Although the continuous approach was not preferred at the

early stage, it became increasingly popular because of its

advantages. Wan et al. (2012) applied the Gaussian particle

swarm optimization (GPSO) with a local search strategy to the

WFLO problem. The result showed that the GPSO algorithm

generated more electrical power. DuPont et al. (2016) used a

multi-level extended pattern search algorithm on the WFLO, and
frontiersin.org

https://doi.org/10.3389/fmars.2022.1028732
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2022.1028732
the findings demonstrated significant benefits over earlier

extended pattern search approaches. Song et al. (2018) studied

the optimization of the WFLO with multiple hub heights. Higher

power output and lower cost per product were obtained compared

with the genetic algorithm solution. Brogna et al. (2020) compared

eight algorithms for wind farm layout optimization in complex

terrain using a new wake model, and the result showed that

random search (RS) performed the best. Croonenbroeck and

Hennecke (2021) developed a framework with various plugged-

in optimizers, including PSO, genetic algorithm, simulated

annealing and others, and the metaheuristics found convincing

results more frequently than others. Cazzaro et al. (2022)

presented a novel optimization framework to solve the wind

farm area selection problem respectively in macro-scale,

mesoscale and micro-scale design, and their method improved

the profitability by 1.1%.

Generally, heuristic optimization algorithms such as genetic

algorithms (GA), particle swarm optimization (PSO), pattern

search (PS) (DuPont and Cagan, 2012), and simulated annealing

(SA) (Rivas et al., 2009) are widely used to solve complicated

optimization problems because they are robust and easy to

implement. Although heuristic algorithms converge slower

than gradient-based methods, most WFLO studies prefer

heuristic algorithms. The gradient-based optimization

approach frequently encounters difficulty in discovering global

optimum solutions due to the large dimension and nonlinearity

of the design variable space.

This paper aims to present a multi-stage method for

optimising wind farm layouts, leading to less space searching

complexity than continuous models and more flexible turbine

positioning than discrete models to obtain a higher AEP with

less computational cost. The discrete model is applied in the first

stage to generate the ‘near-optimal’ solution with less space-

searching complexity. The second stage will use the continuous
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model to refine wind farm layouts obtained from the first stage

solution. A comparative analysis of the proposed multi-stage

approach and other popular optimization methods used in the

WFLO is conducted to validate its effectiveness through several

numerical studies. Three traditional cases and one potential case

located in the Gulf of Maine are chosen to validate the

effectiveness of the proposed multi-stage method.

Offshore wind energy off the coast of Maine is the state’s

largest untapped natural energy resource, with over 156 GW of

potential energy waiting to be exploited. The Gulf of Maine

boasts a higher quality offshore wind resource than most parts of

the United States. The Gulf of Maine is located near densely

populated areas of New England with considerable electrical

demands (Xu et al., 2020). Figure 1 shows the US annual average

offshore wind speeds.
Methodology

There are two components in a general optimization

problem, as shown in Figure 2, an objective function and

constraints. Similarly, a wind turbine layout optimization

problem contains objective functions like LCOE and AEP to

consider the wake effect. The constraints include the wind farm

size, the turbine number, and the minimum distance according

to different wake models. With all those conditions, gradient or

non-gradient based algorithms could be applied to solve the

optimal layout that provides the theoretical best objective value.
WFLO problem formulation

Assuming the wind farm consists of NT wind turbines, the

wind farm layout is defined with the x and y coordinates of the
FIGURE 1

US annual average offshore wind speeds (Computing America’s Offshore Wind Energy Potential, https://www.energy.gov/eere/articles/
computing-america-s-offshore-wind-energy-potential).
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wind turbines, i.e., X = [x1,x2,…,xN], Y = [y1,y2,…,yN]. The

WFLO problem is therefore expressed as a problem of

maximising or minimising an objective function f(X,Y), while

subject to some constraints and requirements on the design

variables. Power output, AEP, levelized cost of energy (LCOE),

net present value or other financial metrics for the wind farm

project are among the most often used objective functions. In

this paper, the objective function is to maximise the total power

output of the wind farm. Boundaries, exclusive zones, and

minimum distance requirements are common constraints in

the WFLO problem.

In order to compare the performance of different solutions,

the objective function and constraints are treated separately. The

constraint condition has priority over the objective value, and

the constraint value of a potential solution is defined as:

gr(z) = (xi − xj)
2 + (yi − yj)

2 − d2min ≥ 0,       ∀ i ≠ j

0 < xi < L

0 < yi < L

j(z i) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oR

k=1 min 0, gr(z)ð Þj j
q

8>>>>>><
>>>>>>:

(1)

where rϵ{1,2,⋯,R}, i,jϵ{1,2,⋯,N}, R = C2
N = N(N − 1)=2 is the

number of position constraints, L is the width of the wind farm,

gr(z) is the constraint value between ith and jth turbines, and

j(zi) is the constraint violation value of a potential solution zi.
Wake model

Numerous studies have been undertaken on multiple wind

turbines’ wake effects and turbulence. Wind turbine wake effect

modelling could be split into analytical models derived from

empirical correlations and models based on computational fluid

dynamics (CFD). CFD methods include Reynolds-Averaged-

Navier-Stokes (RANS) and large eddy simulations (LES).
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However, CFD approaches are too computationally expensive

to be used to optimize wind farm layouts. Analytical wake

models are more appropriate for WFLO problems since they

are less computationally expensive and WFLO demands a large

number of iterations. The two most often used wake models are

the Jensen wake model (Jensen, 1983; Katic et al., 1986) and the

Frandsen wake model (Frandsen et al., 2006).

Recently, Bastankhah and Porté-Agel (2014) showed that a

Gaussian wake model could provide substantially better results

in the full-wake and partial-wake conditions (Ainslie, 1988; Bartl

et al., 2012; Tian et al., 2015). Using a genetic algorithm and

Gaussian wake model, Liu et al. (2021) optimized an offshore

wind farm under actual seabed terrain, considering the cost of

electricity. Guo et al. (2021) developed a WFLO framework

considering the influence of atmosphere stability, normally

neutralised by traditional studies. The Gaussian wake model is

derived from equation (2), which is used to compute the

normalised velocity deficit:

Du
u0

= C(x)exp
−r2

2s 2

� �
(2)

where s is the standard deviation of the Gaussian-profiled

velocity deficit, C(x) is the function of the downstream distance

from the turbine for the velocity deficit in the centre of the wake,

and r is the radial distance from the centre of the wake. C(x) can

be obtained by solving the equation of mass conservation and

energy conservation equation:

C(x) = 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ct
8(s=d0)2

r
(3)

If the wake region is assumed to be a linear expansion, s/d0
can be defined as:

s
d0

= k∗
x
d0

+ ϵ (4)
FIGURE 2

Components of a wind turbine layout optimization problem.
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where k*=∂s/∂x is the growth rate and   ϵ = lim
x!0

(s=d0).
Inserting (3) and (4) into (2), the expression for Gaussian-

shaped velocity deficit is obtained as:

Du
u0

= 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Ctcosg
8(k*x=d0 + ϵ)2

s !

� exp −
1

2(k*x=d0 + ϵ)2
z − zh
d0

� �2

+
y − d
d0

� �2� �� �
(5)

where y and z are spanwise and vertical coordinates, zh is the

hub height of the wind turbine, g is the yaw angle. Bastankhah

and Porté-Agel (2014) also proposed the expression for ϵ:

ϵ = 0:2
ffiffiffi
b

p
(6)

where b is a function of the thrust coefficient CT and defined as:

b =
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CT

p
2(1 − CT )

(7)

Niayifar and Porté-Agel (2016) extended Equation (5) by

combining the self-similar Gaussian model with a new wake

superposition procedure, which guaranteed the mass and

momentum conservation of the model. The results showed

reasonably accurate power output prediction with the

measurements and LES results. The equation used in this

paper is as follows (Niayifar and Porté-Agel, 2016):

Du
u0

= 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Ctcosg
8(sysz=d2)

2

s !
� exp −0:5

y − d
sy

 !2 !

� exp −0:5
z − zh
sz

� �2� �
(8)

where sy and sz are standard deviations of the wake deficit in

the cross-stream horizontal and vertical directions. When the

wake of the upstream turbine reaches the downstream turbine,

the velocity deficit varies in different positions in the area

spanned by the rotor. Therefore, the integration over the rotor

area A is important for the determination of the average velocity

deficit Duavg based on the following equation:

Duavg
u0

=
1
A

Z
A

Du
u0

dA (9)

Generally, the wind speed increases with the height, and the

velocity at the height z can be expressed as the power law with a
= 0.14 (IEC 61400-1):

U(z) = U(zr)
z
zr

� �a
(10)

where U(z), U(zr) being the wind speed at height z and the

reference wind speed at height zr respectively.

Several research works regarding the validation of the

Gaussian wake model have been done. The Gaussian wake

model has an acceptable agreement with high-resolution
Frontiers in Marine Science 05
wind-tunnel measurements and the LES data (Bastankhah

and Porté-Agel, 2014). Wang et al. (2022) compared field

measurements with the Gaussian wake model. The result

revealed that the prediction of velocity deficit and wind

farm power production using the Gaussian wake model had

good agreement with the field experiment. The previous

validation research gives the authors confidence in choosing

the Gaussian wake model to predict the AEP of a given wind

farm layout.
Multiple wake modelling

The superposition of the wake model should be considered

in a wind farm because one upstream turbine can affect more

than one downstream. Numerous approaches exist in the

literature for calculating the interference of many wakes. This

paper uses one of the most popular methods (Katic et al., 1986).

The square of the velocity deficit of a mixed wake is assumed to

be the sum of velocity deficits for each wake at the calculated

downstream position. The velocity of the ith turbine ui is

calculated by the following equation:

ui = u0i −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oNT

j=1 (u0j − uij)
2

� �q
(11)

where u0i and u0j are local wind speeds at ith and jth positions

without placing turbines, respectively, NT is the number of

turbines in the wind farm, uij is the wind speed at the wind

rotor of ith turbine in the wake region of the jth turbine.
Annual energy production estimation

To assess the wind turbine’s energy production, the AEP is

used and computed as follows:

AEP = 8760odiovi
p(di, vi)E(di, vi) (12)

where 8760 is the number of hours in one year, di is the wind

direction, and vi is the wind speed. p(di,vi) is the joint probability

of vi and di, which are obtained from the measured buoy data. E

(di,vi) represents the average power production during one hour

under the wind speed and wind direction, considering the

wake loss.

For the Case of Maine in this paper, the objective function is

set to the AEP, and the power curve of the NREL 5 MW

(Jonkman et al., 2009) is applied to convert the incident wind

speed to the power generated under the given wind condition.
The optimization algorithm

optimization encompasses various optimization methods,

each of which has strengths and weaknesses and is best suited
frontiersin.org
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to a particular class of optimization problems. Numerical

optimization strategies, including general-purpose algorithms

(such as the GA and PSO) and particularly designed algorithms,

have been used in the field of the WFLO.

The GA algorithm is a gradient-free optimization method

consisting of three main steps: selection, crossover and mutation.

Selection is choosing and keeping a fraction that may provide

superior results. Following selection, GA will carry out crossover

and mutation in accordance with the associated probabilities. In

order to determine the best candidates, crossover occurs at

random among the chosen people. After crossing, individuals

undergo mutation, which is utilised to broaden their variety in

order to prevent premature convergence.

The PS algorithm is a deterministic search method, using a

set pattern of search directions to locate the best placement

(DuPont and Cagan, 2012). The best evaluation is kept and

compared to each subsequent evaluation over the course of a

pattern search, which is a direct search approach that does not

need evaluating derivatives. The objective function is assessed at

each potential step in the pattern and compared to the best

preceding evaluation, only choosing movements that produce an

increased objective value. The SA algorithm simulates the

metallurgical annealing process, in which a metal’s internal

energy is reduced as it is gradually cooled down by altering its

internal crystal structure (Rivas et al., 2009).

The PSO algorithm is a population-based, global and

stochastic optimization algorithm inspired by the social

behaviour of bird flocking and fish schooling developed by

Kennedy and Eberhart (1995). The PSO algorithm ’s

computational code is simple to construct and only requires a

few input parameters. Additionally, the PSO algorithm is

computationally efficient and well-suited for addressing

complicated problems. GPSO was first proposed by Krohling

(2004) to improve the convergence and was then applied to the

WFLO by implementing the DE algorithm (Price, 2013) at the

end of each iteration (Wan et al., 2012).

Another PSO-fmincon multi-stage method is also

implemented to compare its performance with the proposed

greedy-RS multi-stage approach. PSO is firstly adopted for the

WFLO, and the optimized solution of PSO is used as the initial

solution for fmincon. A gradient-based optimization tool called

fmincon is also applied to case studies. Fmincon is an

optimization toolbox in MATLAB which uses a finite

difference method to find gradients. It is able to find a

constrained or non-constrained minimum of several variables

at an initial estimate. Since the fmincon is a gradient-based

method, it has a relatively strong local search ability (the ability

to find local optimal solutions). In this paper, the ‘interior-point’

is chosen as the algorithm in the fimincon toolbox, and the finite

difference type is set to ‘forward’ to estimate gradients.

Table 1 shows the characteristics of nine optimization

methods used in the case study.
Frontiers in Marine Science 06
Multi-stage approach

The effectiveness of using the greedy algorithm in solving

WFLO has been validated in previous studies (Chen et al., 2013;

Chen et al., 2016). This paper selects the greedy algorithm as the

first-stage method. The steps of the greedy algorithm are

listed below:
1. The wind farm is organised into distinct grids, and each

grid is assigned a unique number.

2. Add a turbine at the center of the empty grid cell with

the best fitness value.

3. Try to place a wind turbine in each empty grid cell and

calculate the fitness value.

4. Add the turbine at the centre of the grid with the best

fitness value. When multiple grids with the same fitness

value exist, the grid cell with the least number is picked

for placement.

5. If the number of wind turbines in the domain is

identical to the specified number, the greedy algorithm

will terminate. Otherwise, it will return to step 3 and

continue the procedure.
According to the greedy algorithm developed in the previous

study (Chen et al., 2013), the greedy algorithm contains the

locating and adjusting stage. It is shown that the adjusting stage

improves the optimized result a little with a lot of computational

costs. Since the greedy algorithm is not a population-based

optimization method, the cost of the greedy algorithm is much

smaller. Therefore, the greedy algorithm only considers the

locating strategy in this paper since the discrete grid stage

aims to provide a ‘near-optimal ’ solution with fewer

computational costs.

For the next stage, the meta-heuristic RS algorithm is

chosen. The RS algorithm was first introduced by Feng and

Shen (2015), and RS algorithm is easy and effective to implement

by using a large amount of randomness to escape the optimal

local solution and search for the optimal global solution. The
TABLE 1 Nine optimization methods implemented in the case study.

Name Solution size Gradient Multi-stage

fmincon Single Yes No

GA Population No No

GPSO Population No No

Greedy&RS Single No Yes

PS Single No No

PSO Population No No

PSO & fmincon Population-Single Hybrid Yes

SA Single No No

Greedy Single No No
f
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basic idea of the RS algorithm is to randomly choose and move a

wind turbine from its position to a new position iteratively. The

new positions are accepted if the moves lead to better fitness

values. Otherwise, the new positions are rejected. Details and

pseudo code of the RS algorithm are referred to in the reference

(Feng and Shen, 2015). The main disadvantage of the RS

algorithm is its performance in the initial search stage due to

its randomness. However, the greedy algorithm can provide a

relatively good solution with only a few computational costs,

accelerating the RS algorithm’s speed. Figure 3 shows the

flowchart of the proposed multi-stage method.
Simulation results

In order to verify the effectiveness of the proposed algorithm,

three cases are investigated and compared with the previous

studies (Grady et al., 2005; Parada et al., 2017). The

characteristics of Grady’s study are as follows:
Fron
Case 1 A constant wind speed with a single incident wind

direction.

Case 2 A constant wind speed with variable wind directions.

Case 3 Various wind speeds and wind directions.

Case 4 Windfarm layout optimization at the Gulf of Maine

using real measured data.
Case 1, Case 2 and Case 3 are compared with Grady’s and

Parada’s results, and Case 4 is the potential wind farm located in

the Gulf of Maine. The wind farm size in Case 1 to Case 3 is

2000 m × 2000 m, the rotor diameter of the wind turbine is 40 m,
tiers in Marine Science 07
and the hub height is 60 m. The details of each scenario are

described in each subsection.
Case 1: Constant wind speed of 12 m/s
with a fixed wind direction (blowing from
the north)

In Grady’s research, the Jensen model is applied to model the

wake loss, and the wind farm is divided into 10 × 10 discrete

grids (cell width of 200 m). The wind turbines are only allowed

to move in the center of the grid, and a binary-coded genetic

algorithm is used to solve the optimization problem. The

Gaussian-based wake model (GWM) is a function of the

downstream distance, hub height, and radial distance. Parada

applies the GWM to the simulation, and the GWM is used to

calculate the wake loss in this paper. The number of wind

turbines in Case 1 is set to 30. Compared with previous

studies on the discretisation of the wind farm, all optimization

methods except the greedy algorithm used in this paper are

implemented to optimize turbines’ positions in continuous

search space. Since the wind turbines are only placed at the

centre of the grid for the discrete method, the effective domain of

the wind farm is 1800 m × 1800 m. Therefore, the computational

domain is set to 1800 m × 1800 m so that the optimization can

be compared with previous studies using the discrete method.

Parada uses a more refined grid (20 ×20), but the actual

computational domain is enlarged to 1900 m × 1900 m. For

Case 1 to Case 3, the power generation of one turbine is

calculated by the following equation (Grady et al., 2005;

Mittal, 2010):
FIGURE 3

Flowchart of the proposed multi-stage method.
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P = 0:3u3 (13)

Wind farm efficiency is defined as:

h = o
N
1 Pi

NP0
(14)

where P0 is the ideal power generation without wake loss.

100 independent runs are performed for each algorithm

except for the fmincon. The fimincon runs with 200 different

initial schemes because it is a gradient-based algorithm and

might fall into local optimal solutions. Table 2 shows the

comparison results of maximum optimization solutions with

previous studies. Figure 4 presents the boxplot of power

efficiency of different algorithms, and Figure 5 compares the

best layout schemes by different optimization algorithms. The

whisker length of the boxplot in this paper is specified as 1.5

times the interquartile range. And quantile values are defined as

25th and 75th percentiles of the data.

Grady and Parada obtain the same wind farm layout

scheme using the GA algorithm with 10 × 10 grids but

different wake models. It should be noted that the values

shown in Table 2 are calculated by using the Jensen wake

model. It shows that the layout evaluated by GWM obtains a

higher power than the Jensen wake model. This is mainly

because the velocity deficit recovers faster in the wake region

when using GWM in this case. The boxplot indicates that the

multi-stage method of PSO and fmincon has the best

performance for Case 1, and the layout with 4.29% more

power is obtained than solutions generated by discrete GA

and greedy algorithms. However, the standard deviation (low

variance in the results of different runs) of the PSO-fmincon

multi-stage method is not the best among all algorithms, which

shows that the results of the hybrid optimization are

inconsistent. The power output of the proposed greedy-RS

method has the highest average value with a relatively small

deviation among all optimization methods. This might be due

to the randomness of the RS algorithm so that the proposed
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method is likely to find the global optimal solution. GPSO and

PS also have relatively good performance with a small standard

deviation. Although fmincon has a fast convergence speed,

fmincon is one of the two worst methods because it is a

gradient-based method and relies on the quality of the

starting solutions so that it may fall into a local maximum.

Therefore, diverse initial solutions are necessary for gradient-

based methods like fmincon.

Figure 5 demonstrates that the layout solutions generated by

discrete GA and greedy algorithms tend to locate turbines evenly

within the domain of the wind farm. On the other hand, the

layout solutions obtained by the continuous scheme seem to

locate turbines at the boundary of the wind farm terrain.
Case 2: Constant wind speed of 12 m/s
with variable wind directions

Case 2 is a more complicated scenario with 36 evenly

distributed wind directions, and the wind speed is 12 m/s. The

number of turbines is set to 39 to compare with the results of

previous studies. Figure 6 presents the boxplot of different

algorithms’ results, indicating that fmincon is unsuitable for

the Case 2 scenario. This is primarily because the objective

function of Case 2 is more sophisticated so that the gradient-

based fmincon is unable to obtain the optimal global solution,

and the result of fmincon is sensitive to the initial solution. It also

demonstrates that the PSO-fmincon multi-stage can hardly

improve the result of the PSO, which indicates that optimal

solutions of the PSO reach the optimal local solution while

gradient-based methods like fmincon are unable to jump out of

the local best value. The multi-stage greedy-RS still performs

best considering the optimal solutions and standard deviation,

followed by PS and GPSO. GA, SA, and fmincon are the top

three worst algorithms in Case 2. The greedy algorithm used in

the first stage provides a relatively good solution for the second
TABLE 2 Comparison of global best solutions of different algorithms.

Studies Power (MW) hbest (%) havg (%) hworst (%)

Grady et al. (2005) 14.79 (14.31) 95.07 (92.02) – –

Parada et al. (2017) 14.79 95.07 – –

fmincon 15.40 99.01 98.32 95.39

GA 15.35 98.73 98.41 98.18

GPSO 15.39 98.98 98.84 98.65

Greedy & RS 15.40 99.02 98.95 98.80

PS 15.38 98.91 98.78 98.67

PSO 15.37 98.86 98.64 98.30

PSO & fmincon 15.42 99.15 98.72 98.37

SA 15.16 97.47 96.92 96.23

Greedy 14.79 95.07 – –
fro
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stage, which leads to the phenomenon that the power output of

the worst optimal solution from the greedy-RS is higher than the

average power outputs of other algorithms.

Table 3 presents the global best solutions using different

methods, and it indicates that GPSO, greedy-RS, and PS obtain

2.22% higher power output than Grady’s study and 0.62% more
Frontiers in Marine Science 09
than Parada’s result. Figure 7 compares the wind farm layout

using proposed methods and previous studies’ results. Major

optimized solutions tend to locate turbines in the outmost zone

of the computational domain. In contrast, the results obtained

from fmincon and SA have more turbines located in the central

area of the wind farm.
FIGURE 5

Comparison of optimization results of different algorithms for Case 1.
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FIGURE 4

Boxplot of wind farm efficiency using different optimization methods.
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Case 3: Variable wind speeds and
wind directions

Case 3 has variable wind speeds and wind directions. The

number of wind turbines in Case 3 is identical to that in Case 2.

In Case 3, the wind speeds of 12 m/s and 17 m/s are

predominant, especially between 280° and 360°, as shown in

Figure 8. Figure 9 presents the boxplot of the results of different

algorithms, and the optimization result is similar to the one

obtained in Case 2. Greedy-RS, PS, and GPSO remain the top

three best methods in handling Case 3 scenarios. The difference

in power output increment of the greedy-RS is more obvious in

Case 3, which reveals the robustness of the proposed multi-stage.
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Due to the multiple wind speeds and wind directions, the

complexity of the optimization problems increases and the

advantage of the greedy-RS is prominent in Case 3.

Table 4 compares the global best solutions of different

algorithms and shows that the high complexity of the wind

scenario leads to more minor improvements in power output

than in previous studies. The wind farm efficiency of PS

improves by 1.01% higher power output than Grady’s study

and 0.62% than Parada’s result. Figure 10 compares the wind

farm layout using proposed methods and previous studies’

results. It can be seen that layouts generated by greedy-RS

have approximately 82% of turbines located in the outermost

area of the wind farm, while layouts generated by PS and GPSO
TABLE 3 Comparison of global best solutions of different algorithms.

Studies Power (MW) hbest (%) havg (%) hworst (%)

Grady et al. (2005) 18.59 (17.22) 91.95 (85.17) – –

Parada et al. (2017) 18.89 93.31 – –

fmincon 18.96 93.88 92.21 90.01

GA 18.94 93.67 93.61 93.32

GPSO 19.00 93.99 93.88 93.76

Greedy & RS 19.00 93.98 93.94 93.90

PS 19.00 93.98 93.87 93.80

PSO 18.99 93.91 93.81 93.62

PSO & fmincon 18.99 93.92 93.82 93.64

SA 18.89 93.43 93.13 93.03

Greedy 18.94 93.70 – –
fro
FIGURE 6

Boxplot of wind farm efficiency using different optimization methods.
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FIGURE 8

Wind rose for Case 3.
FIGURE 7

Comparison of optimization results of different algorithms for Case 2.
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have approximately 74% and 71% of turbines located in the

outermost zone.
Case Maine: Wind farm layout
optimization at the Gulf of Maine

The proposed offshore wind farm in the Gulf of Maine and

the location of the Gulf of Maine is shown in Figure 11. The site

is on the Northeast coast of the United States and the southeast

coast of Canada, whose north latitude is 43.72 and west

longitude is 69.33. The Gulf of Maine contains considerable

offshore wind power potential. New England Aqua Ventus I, the
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first commercial floating wind project in the US, was set up in

the Gulf of Maine. The wind farm covers an area of 28.00 km2

(5.93 km × 5.93 km) and consists of 46 wind turbines. Figure 12

shows the wind rose plot obtaining data from Buoy E01

(NERACOOS, https://www.neracoos.org/) from January 2003

to December 2018.

The target turbine model of the wind farm is the NREL 5

MW wind turbine, and Table 5 presents the parameters of the 5

MW wind turbine. The power curve is applied to compute the

power generation at a given wind speed (Jonkman et al., 2009).

Figure 13 presents the boxplot of wind farm efficiency using

different optimization methods. The first notable result is that

the optimal result of SA becomes quite unstable as fmincon. As
TABLE 4 Comparison of global best solutions of different algorithms.

Studies Power (MW) hbest (%) havg (%) hworst (%)

Grady et al. (2005) 34.04 (32.04) 93.25 (86.32) – –

Parada et al. (2017) 34.17 93.62 – –

fmincon 34.27 93.88 91.58 89.56

GA 34.26 93.84 93.57 93.34

GPSO 34.34 94.08 94.06 93.92

Greedy & RS 34.38 94.20 94.18 94.16

PS 34.39 94.20 94.07 93.92

PSO 34.33 94.05 93.91 93.73

PSO & fmincon 34.33 94.05 93.91 93.73

SA 34.19 93.66 93.48 93.28

Greedy 34.32 94.02 – –
fro
FIGURE 9

Boxplot of wind farm efficiency using different optimization methods.
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expected from the previous three cases, greedy-RS, PS, and

GPSO are still the top three methods in optimising Case

Maine. Table 6 compares optimal solutions of different

algorithms, and it is apparent that the discrete greedy

algorithm has the fastest convergence speed with a relatively

good optimal result. Only greedy-RS and PS have average fitness

values of over 926 GW, and the time cost of PS is slightly better

than greedy-RS. The average best AEP enhancement of the

greedy-RS method is evident compared with other

optimization methods. The second-stage RS algorithm shows

the effectiveness of searching the global optimal solution if a
Frontiers in Marine Science 13
relatively good init ial solut ion is provided by the

greedy algorithm.

It should be noted that the time considered in this paper is

the CPU time of running optimizations on a desktop with the 3.8

GHz Ryzen 9 3900x and 32 GB of RAM. The time cost of all

algorithms is normalised by the computational time of the PSO.

Figure 14 presents the time cost versus AEP with different

optimization methods. It indicates that the greedy algorithm

and fmincon have the fastest convergence speed. The greedy-RS

multi-stage approach and PS have the top two performances

concerning optimal solutions and time costs, followed by GPSO
FIGURE 11

Proposed location of the offshore wind farm (left) and the location of the Gulf of Maine (right). https://www.noaa.gov/, https://www.
tradeonlytoday.com/environmental-issues/study-finds-gulf-of-maine-is-getting-warmer).
FIGURE 10

Comparison of optimization results of different algorithms for Case 2.
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and PSO. Figure 15 compares the optimization results of

different algorithms for Case Maine. The layouts still seem to

be irregular and scattered, and approximately 60% of the wind

turbines are placed in the outermost domain of the wind farm.
Conclusion

This paper proposes a new multi-stage approach by

combining both discrete and continuous schemes, maximising

the advantages and bypassing disadvantages of individual

algorithms for different stage’s purposes. The first stage’s goal is

to obtain a good initialised solution for the following optimization

with small computational costs. Therefore, the discrete greedy

algorithm is ideal in the first stage since it is less computationally

expensive than population-based methods like PSO. In the second

stage, RS is preferred due to its outstanding performance in

finding globally optimal solutions, which has been proven in

previous studies (Feng and Shen, 2015; Brogna et al., 2020). The

main disadvantage of RS, however, is the relatively expensive

computational cost at the first stage because the feasible region is

too large to research randomly. In this case, the greedy algorithm

becomes a remedy of RS in solving WFLO.
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To demonstrate the effectiveness of the greedy-RS multi-

stage approach, a comparative analysis of optimization

methods is conducted by studying three typical wind cases

and one potential wind farm case. The results show that

greedy-RS has good robustness regarding the low standard

deviations and computational costs. It also indicates that

fmincon is not ideal at the second stage because it is a

gradient-based method, and local optimization results will be

easily obtained. Continuous search space gives rise to a more

efficient wind farm than a discrete computational domain.

GPSO presents relatively good and stable results compared

with PSO, but the robustness of GPSO is still inferior to the

greedy-RS multi-stage approach.
TABLE 5 Parameters of the 5 MW wind turbine.

Name of parameters Value

Diameter of the turbine (m) 126

Hub height (m) 90

Cut-in velocity (m/s) 3

Rated velocity (m/s) 11.4

Cut-out velocity (m/s) 25
frontie
FIGURE 12

Wind rose used to present wind climatology at the Gulf of Maine.
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In summary, a new multi-stage approach is presented, and

a systematical study of different optimizations provides

references for selecting proper algorithms in WFLO. The

developed multi-stage RS method shows promising results,

which provides valuable insight into selecting appropriate

optimization methods in the WFLO. Further work will
Frontiers in Marine Science 15
thoroughly test the robustness of the proposed method by

implementing different wake models and considering more

real-life wind farm projects. More test cases will be carried out

to consider errors in the AEP estimation introduced by

different fidelities wake models and the potential errors in

the wind climate.
FIGURE 13

Boxplot of wind farm AEP using different optimization methods.
FIGURE 14

Time cost versus AEP with different optimization methods.
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FIGURE 15

Comparison of optimization results of different algorithms for Case Maine.
TABLE 6 Comparison of optimal solutions of different algorithms.

Studies AEPbest (GW) AEPaverage (GW) AEPworst (GW) Time cost

fmincon 925.6 916.1 901.5 0.02

GA 918.0 915.8 913.5 9.68

GPSO 926.5 925.8 925.1 1.10

Greedy&RS 926.4 926.3 926.2 0.44

PS 926.5 926.1 925.8 0.38

PSO 925.9 925.3 924.7 1.00

PSO & fmincon 925.9 925.3 924.7 1.01

SA 925.4 917.7 878.7 3.75

Greedy 925.1 N/A N/A 0.004
fro
NA, not applicable.
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