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Abstract

We analyze the thermodynamic properties of antiferromagnetic solids sub-
jected to a combination of mutually orthogonal uniform magnetic and staggered
fields. Low-temperature series for the pressure, order parameter and magnetiza-
tion up to two-loop order in the effective expansion are established. We evaluate
the self-energy and the dispersion relation of the dressed magnons in order to
discuss the impact of spin-wave interactions on thermodynamic observables.

1 Motivation

The literature on the thermodynamic properties of antiferromagnets in three spa-
tial dimensions is considerable. Low-temperature representations for the free energy
density, staggered magnetization, and other observables describing quantum Heisen-
berg antiferromagnets have been derived, e.g., in Refs. [1–10]. Various authors have
furthermore discussed how an external magnetic field influences the low-temperature
physics of antiferromagnets (see Refs. [11–21]).

Due to the complexity of the problem, approximations and ad hoc assumptions
are usually made within the microscopic and phenomenological approaches that the
above-mentioned articles are based upon. One particularly popular method to capture
the low-energy physics of antiferromagnets is the spin-wave theory, based on the fact
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that spin waves are the relevant low-energy degrees of freedom. The fact that these
excitations are Goldstone bosons emerging due to the spontaneously broken internal
symmetry O(3)→ O(2), gives us, however, the opportunity to describe antiferromag-
nets in the systematic, model-independent language of effective field theory.

Originally, the effective Lagrangian method was developed for the spontaneously
broken chiral symmetry in quantum chromodynamics that gives rise to the pions,
kaons and the η-particle that constitute the corresponding Goldstone bosons: the
lightest hadronic particles [22, 23]. The method, however, is universal and can be put
to work whenever the phenomenon of spontaneous symmetry breaking takes place –
it is perfectly suited to address condensed matter systems [24, 25], and amounts to a
systematic low-energy (low-temperature) expansion of physical quantities.

Although antiferromagnets in three spatial dimensions have been analyzed with
effective Lagrangians before [26–32], a systematic study of the manifestation of mag-
netic fields in the thermodynamic properties of the system is still lacking – both on the
effective field theory and the conventional microscopic level. In particular, at the level
where the spin-wave interaction becomes relevant in the thermodynamic observables,
no references appear to be available. The present study hence closes a gap that has
existed in the condensed-matter literature.

Recently, antiferromagnets subjected to magnetic fields were studied within the
effective field theory framework, and their partition function was derived up to two
loops, in both two [33] and three [34] spatial dimensions. In the present study, we
build upon these previous works, but our focus is on separating genuine spin-wave
interaction effects from the physics of a free gas of dressed magnons. This requires
explicit evaluation of the magnon self-energy. Once having done so, we analyze the
effect of magnon interactions on a number of physical observables: pressure, staggered
magnetization (the order parameter) and magnetization.

Overall, the effect of the spin-wave interaction that enters at the two-loop level
is very small compared to the dominant contribution due to the noninteracting Bose
(magnon) gas. We observe that the spin-wave interaction in the pressure can be at-
tractive or repulsive, depending on the specific location in parameter space determined
by temperature, as well as magnetic and staggered field strength. If temperature is
raised from T = 0 to a nonzero value T , while keeping magnetic and staggered field
strengths fixed, the order parameter and the magnetization may decrease or increase
as a consequence of the spin-wave interaction. Again, these subtle effects depend on
temperature, as well as on the magnitude of the magnetic and staggered field.

The objective of our present study on antiferromagnetic solids parallels the sit-
uation regarding ferromagnetic solids. After Bloch had derived his famous T 3/2-law
for the spontaneous magnetization [35], condensed matter physicists were struggling
for decades with the important open theoretical question: what is the effect of the
spin-wave interaction on the spontaneous magnetization of a three-dimensional fer-

2



romagnet, and how does the spin-wave interaction manifest itself in other thermody-
namic observables of the system? This question has prompted more than a hundred
references up to date and we believe that we are dealing here with a fundamental
theoretical question also in the context of antiferromagnets.

Regarding ferromagnets, in a rather complicated monumental analysis [36, 37],
Dyson gave the correct answer by showing that the spin-wave interaction first shows
up in a correction term proportional to T 4 in the spontaneous magnetization. On the
other hand, the same answer could be obtained by effective field theory methods in
a much more transparent manner, and higher-order temperature powers in the spon-
taneous magnetization, and thermodynamic observables in general, could be derived
straightforwardly [38, 39].

Here we address and answer the same fundamental open theoretical question for
antiferromagnets subjected to a combination of mutually orthogonal uniform mag-
netic and staggered fields: what is the effect of the spin-wave interaction in the
thermodynamic quantities like free energy density, pressure, order parameter and
(uniform) magnetization? As we demonstrate, the systematic effective field theory
gives a clearcut and simple answer.

It should be pointed out that the staggered field is not devoid of physical signifi-
cance. In fact, as discussed in Ref. [40], the staggered field can be interpreted as an
“effective” anisotropy field that mimics the magnetic anisotropy of the crystal and
points into the direction of the “easy axis” of spontaneous staggered magnetization at
T = 0. For a given antiferromagnetic sample the anisotropy field has a specific value
that can in principle be determined by comparing our effective field theory predictions
with experimental data.

The question is whether the extended Heisenberg model – i.e., the simple isotropic
Heisenberg Hamiltonian with magnetic and staggered field terms incorporated – ac-
curately describes a real antiferromagnetic solid. It is believed that some materials
– like MnF2 and RbMnF3 – indeed are quite realistically captured by the extended
Heisenberg model. Unfortunately, to the best of our knowledge, the available exper-
imental data for these samples1 cannot be directly compared to our findings which
focus on the impact of the spin-wave interaction. As the present study reveals, spin-
wave interaction effects in thermodynamic quantities are very small, such that it is
extremely difficult – maybe impossible – to experimentally detect the manifestation
of the spin-wave interaction in thermodynamic observables in a real antiferromagnetic
sample.2 Deviations from our predictions may also be attributed to effects we have
not considered in our analysis: impurities, spin-orbit couplings, “interference” with
other degrees of freedom like phonons, to name but just a few.

1For MnF2 see, e.g., Refs. [41, 42], for RbMnF3 see, e.g., Refs. [43, 44].
2The experimental situation regarding the detection of the spin-wave interaction in the thermo-

dynamic properties of ferromagnets is not better.
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Still, there exists another route to eventually test our effective field theory predic-
tions: future numerical simulations of the “clean” three-dimensional antiferromagnetic
Heisenberg model in presence of staggered and magnetic fields may be cross-checked
against our findings and the validity of our predictions hence be rigorously confirmed.

The article is organized as follows. The two-loop representation for the free energy
density is briefly reviewed in Sec. 2 to set the basis for the subsequent analysis. In
Sec. 3, we then carry out the calculation of the one-loop magnon self-energies, and
of the ensuing interaction part of the free energy density. (An alternative evaluation
of the self-energies is given in appendix B.) Low-temperature series for the pressure,
order parameter, and magnetization – in presence of magnetic and staggered fields –
are derived in Sec. 4. In the same section the thermodynamic behavior of the system
is discussed and illustrated using various figures. Emphasis is put on the impact of
the spin-wave interaction at finite temperature. Finally, in Sec. 5 we conclude.

2 Free Energy Density: Two-Loop Representation

The paradigmatic microscopic description of antiferromagnets is based on the Heisen-
berg model, whose Hamiltonian in the simplest situation, where only the nearest
neighbor spin interactions are taken into account, takes the form

H = − J
∑
n.n.

~Sm · ~Sn −
∑
n

~Sn · ~H −
∑
n

(−1)n~Sn · ~Hs , J = const. , (2.1)

where the summation in the first term extends over nearest neighbor spin pairs on
a bipartite three-dimensional lattice. The exchange constant J < 0 defines the fun-
damental energy scale of the system. The first term is invariant under internal O(3)

rotations, but the remaining terms that involve the magnetic field ~H and the stag-
gered field ~Hs, explicitly break the O(3) symmetry. Provided that these external fields
are weak, the two terms represent small corrections, such that the O(3) symmetry is
still approximate.

The effective field theory analysis of antiferromagnets is crucially based on the
spontaneously broken approximate symmetry O(3) → O(2). It is important to keep
in mind that the validity of the predictions of effective field theory is not limited
to a specific microscopic model such as Eq. (2.1), but applies equally well to any
microscopic system that possesses the same set of symmetries. For the reader’s sake,
we outline here briefly the basic setup of the effective field theory for antiferromagnets;
more details can be found, for instance, in the pioneering work of Leutwyler [24] or
in Ref. [34] whose notation we largely follow.

The starting point of the analysis is the effective Lagrangian (density) at the
leading order of the low-energy, or derivative, expansion,

Leff =
ρs
2
Dµ

~U ·Dµ~U +Ms
~Hs · ~U , (2.2)
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where ~U is the effective spin variable, ρs represents the spin stiffness, ~Hs the staggered
field, and Ms is the staggered magnetization at zero temperature and zero external
fields. The covariant derivative Dµ

~U incorporates the coupling of the spin degrees of

freedom to an external magnetic field ~H. Using Lorentz index notation, it reads

Dµ
~U = ∂µ~U + δµ0

~H × ~U . (2.3)

In this paper, we focus on the special case where the magnetic field ~H and the stag-
gered field ~Hs are mutually orthogonal. The coordinate frame can without loss of
generality be chosen so that

~H = (0, H, 0) , ~Hs = (Hs, 0, 0) . (2.4)

The corresponding classical ground state of the antiferromagnet is found by maximiz-
ing the static, non-derivative part of the effective Lagrangian (2.2). It is easy to see
that the direction of the staggered magnetization order parameter in the antiferro-
magnetic ground state then coincides with the direction of the staggered field, and is
perpendicular to the direction of the magnetic field, 〈~U〉 = (1, 0, 0).

The subsequent evaluation of the partition function or any other observable is
based on a parametrization of the unit vector ~U in terms of its fluctuations U I , U II

around this ground state, which we choose as

~U(x) = (U0(x), U I(x), U II(x)) , where U0 =
√

1− (U I)2 − (U II)2 . (2.5)

The next step is to expand the effective Lagrangian (2.2) in powers of the fluctuation
fields U I , U II . The leading, quadratic part of the Lagrangian gives the tree-level
approximation to the dispersion relations of the two magnon modes,

ωI(~k) =

√
~k2 +

MsHs

ρs
+H2 ,

ωII(~k) =

√
~k2 +

MsHs

ρs
.

(2.6)

Note that only one of the magnons “senses” the magnetic field. Due to the relativistic
nature of the dispersion relations, one can identify the magnon “masses” as

M2
I =

MsHs

ρs
+H2 , M2

II =
MsHs

ρs
. (2.7)

In the absence of external fields, the dispersion relations are identical: both are linear
and ungapped, describing the two degenerate spin-wave branches.

The higher-order terms in the expansion of the effective Lagrangian in U I , U II rep-
resent bare interactions of magnons. With the corresponding Feynman rules, these
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constitute the basic building blocks for a diagrammatical analysis of the thermody-
namics of antiferromagnets using standard techniques of quantum field theory. Here
we merely quote the main result of Ref. [34], the renormalized two-loop free energy
density z of three-dimensional antiferromagnets in presence of the magnetic and stag-
gered fields,

z = z[0] − 1
2
gI0 − 1

2
gII0

− 4H2 +M2
II

8ρs

(
gI1
)2

+
M2

II

4ρs
gI1g

II
1 −

M2
II

8ρs

(
gII1
)2

+
2

ρs
ŝ T 6

+
gI0

32π2ρs

[
4H2

3
− 2e2H

2 +M2
II −

2M4
II

H2
+ 2H2 ln

M2
I

µ2
+

2M6
II

H4
ln
M2

I

M2
II

]
+

gII0
32π2ρs

[
(3 + e1 − 4e2)H2 + 3H2 ln

M2
I

µ2

]
+

gI1
32π2ρs

[
H4

3
+

(
−1

6
+
e1

3
− 4e2

3
+
k1

2

)
H2M2

II + (−2− k1 + k2) M4
II

− 2M6
II

H2
+
H2M2

II

2
ln
M2

I

µ2
+

(
3M4

II

2
+

3M6
II

H2
+

2M8
II

H4

)
ln
M2

I

M2
II

]
+

gII1
32π2ρs

[(
2 + e1 − 4e2 +

k1

2

)
H2M2

II + (k2 − k1)M4
II

+
5H2M2

II

2
ln
M2

I

µ2
+
M4

II

2
ln
M2

I

M2
II

]
. (2.8)

The various quantities appearing therein are defined as follows. The kinematical
functions gIr and gIIr describe the free Bose (magnon) gas and read

gI,IIr (Hs, H, T ) = 2

∫ ∞
0

dρ

(4π)2
ρr−3 exp(−ρM2

I,II)
∞∑
n=1

exp(−n2/4ρT 2) (2.9)

=
1

(4π)2

4
√
πT 4−2r

Γ
(

5
2
− r
) ∫ ∞

0

dx
x4−2r√

x2 + (MI,II/T )2

1

e
√
x2+(MI,II/T )2 − 1

.

Then, the dimensionless function ŝ incorporates the nontrivial part of the free energy
density: the part that cannot be reduced to products of kinematical functions gIr
and gIIr . It is defined by a set of lengthy expressions that will not be needed in the
following. In order not to interrupt the flow of argument, the precise definition is
therefore relegated to Appendix A. Likewise, the zero-temperature part of the free
energy density, z[0], is of no concern to the present paper, and is thus only spelled out
explicitly in Appendix A.

In Fig. 1, we provide a 3D-plot of ŝ. Note that the function ŝ, much like the
kinematical functions gI,IIr , can be expressed in terms of the dimensionless parameters
σH and σ,

σH =
H

2πT
, σ =

√
MsHs

2π
√
ρsT

. (2.10)
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Figure 1: [Color online] 3D-plot of the function ŝ(σ, σH), in terms of the dimensionless
parameters σH = H/(2πT ) and σ =

√
MsHs/(2π

√
ρsT ).

These parameters measure the strength of the magnetic and the staggered fields with
respect to the temperature.

Finally, the quantities e1, e2, k1, k2 are the so-called renormalized next-to-leading-
order (NLO) effective constants. These are pure numbers of order unity,

e1, e2, k1, k2 ≈ 1 , (2.11)

whose actual values depend on the chosen renormalization scale µ via the renormal-
ization group equations

ei(µ2) = ei(µ1) + ln
µ2

1

µ2
2

, ki(µ2) = ki(µ1) + ln
µ2

1

µ2
2

. (2.12)

It should be pointed out that the µ-dependence of the NLO effective constants is
canceled by the µ-dependent logarithms in Eq. (2.8): indeed, the free energy den-
sity, and all thermodynamic observables derived from there, does not depend on the
renormalization scale.
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3 Dressed Magnons and Interaction Free Energy

Density

Naively, one might expect that the first line of our result (2.8) for the free energy
density, that is its one-loop part, corresponds to a gas of free magnons, while all the
rest captures magnon–magnon interactions. That would, however, be premature: the
magnons get dressed by self-energy corrections even at T = 0. Part of the thermal
two-loop free energy density can then be accounted for as the free energy density of
such dressed, yet noninteracting, magnons. Whatever is left can be considered as a
genuine interaction effect.

Such a splitting of the two-loop contributions to the free energy density into free
and interaction parts makes sense not only physically, but also mathematically. It will
namely turn out that the interaction part of the two-loop free energy density is inde-
pendent altogether of the NLO effective constants e1, e2, k1, k2. By the same token,
this interaction free energy density is explicitly independent of the renormalization
scale µ. It is, in fact, determined solely by the leading-order effective Lagrangian (2.2)
that involves the spin stiffness ρs as the only low-energy effective coupling: the ques-
tion, e.g., of whether the spin-wave interaction in the pressure is attractive or repulsive,
can hence be answered rigorously in a model-independent and parameter-free manner.

To see what needs to be done, consider a quasiparticle which, just like our magnons,

has a relativistic dispersion relation with mass M , ω =
√
~k2 +M2. The complete

inverse propagator for such a quasiparticle in imaginary time will take the form

D(k0, ~k) = k2
0 + ~k2 +M2 + Π(k0, ~k) , (3.1)

where Π(k0, ~k) is the self-energy due to quantum corrections. The exact dispersion
relation of the quasiparticle is determined by the position of the pole in D as a function
of frequency k0. In case a mere expansion up to certain fixed order is desired, we can
solve for the pole iteratively. It is then easy to see that the NLO (one-loop) self-energy
ΠNLO gives rise to the following “dressed” dispersion relation,

ω(~k) =

√
~k2 +M2 + ε(~k) , ε(~k) = ΠNLO(k0, ~k)

∣∣∣
k0→−i

√
~k2+M2

. (3.2)

The free energy density of the noninteracting dressed magnons can now be obtained
from the basic formula

zfree = z
[0]
free + T

∫
d3k

(2π)3
ln
[
1− e−ω(~k)/T

]
. (3.3)

Here z
[0]
free is the (temperature-independent) vacuum free energy density. The leading-

order dispersion relation, ω(~k) =
√
~k2 +M2, gives the dominant contribution to the
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Figure 2: Feynman graphs for the magnon self-energies in the d = 3 + 1 antiferro-
magnet up to one-loop order. Filled circles represent vertices from the leading-order
effective Lagrangian L2

eff , the box with the number 4 corresponds to a vertex from
the NLO Lagrangian L4

eff . Loops are suppressed by two powers of momentum.

thermal part of the free energy density, −1
2
g0(M), where the kinematical function g0

is defined in Eq. (2.9). Let us finally expand the function ε(~k) as3

ε(~k) = ε0 + ε1~k
2 . (3.4)

Expanding likewise Eq. (3.3) to first order in ε(~k) then implies that the thermal part
of the free energy density of dressed magnons to NLO is

zTfree = −1

2
g0(M) +

1

2
ε0g1(M) +

3

4
ε1g0(M) . (3.5)

This will be our master formula. All that is left to do is to evaluate the T = 0
self-energies of the magnons on their “mass shell”, that is at k2

0 = −(~k2 +M2).

The generic topologies of Feynman diagrams that contribute to the one-loop self-
energy are shown in Fig. 2. The calculation itself is a matter of a simple exercise in
graduate-level quantum field theory, and we therefore only quote the main results.
The one-loop (imaginary-time) self-energies of the two magnons are given by

−ρsΠI(k) =

(
M2

I − k2 − 4H2 − 3MsHs

2ρs

)
I0(MI)−

MsHs

2ρs
I0(MII)

+
H2

4π2ε

(~k2

3
− k2

4
− MsHs

2ρs
− 3H2

4

)
3Dependence only on ~k2 follows from rotational invariance. It will be shown below that at NLO,

there are no higher-order terms in the expansion in ~k2.
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+
H2

4π2

∫ 1

0

dx

[
− M̃2

2
+

(
M2

II + ~k2x2 − 3M̃2

2

)(
−γE + ln

4πµ2

M̃2

)]
+ (aIk

2
0 + bI~k

2 + cI) , (3.6)

−ρsΠII(k) =

(
M2

II − k2 − 3MsHs

2ρs

)
I0(MII)−

MsHs

2ρs
I0(MI)−

H2k2
0

8π2ε

− H2k2
0

8π2

∫ 1

0

dx

[
−γE + ln

4πµ2

M2
I + k2x(1− x)

]
+ (aIIk

2
0 + bII~k

2 + cII) ,

where x is a Feynman parameter, ε = 2 − d/2 is the expansion parameter of dimen-
sional regularization,

M̃2 = k2x(1− x) +
MsHs

ρs
+H2x , (3.7)

and we denoted the frequency and momentum collectively as k so that k2 = k2
0 + ~k2.

Moreover, I0 is a zero-temperature momentum integral defined by

I0(M) = µ2ε

∫
ddp

(2π)d
1

p2 +M2
. (3.8)

Finally, aI,II , bI,II , cI,II are counterterms whose values were fixed in Ref. [34] by the
calculation of the two-loop free energy. They are given by

aI = −2

(
2e1H

2 + 2e2H
2 +

k1MsHs

ρs

)
,

aII = −2

(
6e1H

2 + 6e2H
2 +

k1MsHs

ρs

)
,

bI = −2

(
2e1H

2 +
k1MsHs

ρs

)
,

bII = −2

(
2e1H

2 + 2e2H
2 +

k1MsHs

ρs

)
,

cI = −2

(
2e1H

4 + 2e2H
4 +

3k1H
2MsHs

2ρs
+
k2M

2
sH

2
s

ρ2
s

)
,

cII = −2

(
k1H

2MsHs

2ρs
+
k2M

2
sH

2
s

ρ2
s

)
,

(3.9)

where

e1,2 = γ1,2

(
λ+

ē1,2

32π2

)
, k1,2 = γ3,4

(
λ+

k̄1,2

32π2

)
. (3.10)

The numerical coefficients γi are fixed by γ1 = −1
6
, γ2 = 2

3
, γ3 = γ4 = 1. Finally, λ is

a basic divergence that appears in the loop integrals. In dimensional regularization,
it acquires the form

λ =
Γ(−1 + ε)

2(4π)2−ε = − 1

32π2

[
1

ε
+ 1− γE + ln 4π +O(ε)

]
, (3.11)
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where γE ≈ 0.577 is the Euler–Mascheroni constant.

In the next step, we put the self-energies on the mass shell by replacing k2
0 →

−(~k2 + M2
I,II). It also proves convenient to extract the explicit dependence of the

integral over the Feynman parameter on the renormalization scale. Making use of the
auxiliary functions

K1(a, b) = −
∫ 1

0

dx ln
[
a2 − b2x(1− x)

]
,

K2(a, b) =
1

2

∫ 1

0

dx
{[

3a2x2 + b2(1− 3x)
]

ln
[
a2x2 + b2(1− x)

]
−
[
a2x2 + b2(1− x)

]}
,

K3(a, b) = −
∫ 1

0

dx x2 ln
[
a2x2 + b2(1− x)

]
, (3.12)

the on-shell self-energies can be rewritten as

−ρsΠI(~k) =
MsHs

2ρs
[I0(MI)− I0(MII)]− 2H2I0(MI)

+
H2

4π2

(~k2

3
− MsHs

4ρs
− H2

2

)(
1

ε
− γE + ln

4πµ2

T 2

)
+
H2T 2

4π2

[
K2(MI/T,MII/T ) +

~k2

T 2
K3(MI/T,MII/T )

]
+ (aIk

2
0 + bI~k

2 + cI) , (3.13)

−ρsΠII(~k) =
MsHs

2ρs
[I0(MII)− I0(MI)]

+
H2

8π2
(~k2 +M2

II)

[
1

ε
− γE + ln

4πµ2

T 2
+K1(MI/T,MII/T )

]
+ (aIIk

2
0 + bII~k

2 + cII) .

Note that these are linear functions of ~k2, as anticipated in Eq. (3.4). Using these
expressions together with Eq. (3.5) yields the thermal free energy density of non-
interacting dressed magnons. Once subtracted from the full two-loop free energy
density (2.8), this gives the part of free energy density due to spin wave interaction,

zint =
H2

2ρs
(gI1)2 − MsHs

8ρ2
s

(gI1 − gII1 )2 − H2

ρs
X2 + z[0] − z[0]

free , (3.14)

where the two-loop thermal integral X2 is defined by [34]

X2 =

∫
d3~p

(2π)3

d3~q

(2π)3

~k2 +M2

4ωIpω
I
qω

II
k

[
n(ωIp)n(ωIq )

(
1

ωIIk + ωIp + ωIq
+

1

ωIIk − ωIp + ωIq

+
1

ωIIk + ωIp − ωIq
+

1

ωIIk − ωIp − ωIq

)
+ 2n(ωIIk )n(ωIp)

(
1

ωIIk + ωIp + ωIq
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Figure 3: [Color online] 3D-plot of the function X̂2(σ, σH), in terms of the dimension-
less parameters σH = H/(2πT ) and σ =

√
MsHs/(2π

√
ρsT ).

+
1

ωIIk − ωIp + ωIq
+

1

−ωIIk + ωIp + ωIq
+

1

−ωIIk − ωIp + ωIq

)]
, (3.15)

where ~k = −(~p+ ~q) and we have for the sake of brevity used the shorthand notation

ωI,IIp =
√
~p2 +M2

I,II , n(x) =
1

ex/T − 1
. (3.16)

In analogy to the sunset function ŝ, in Fig. 3 we provide a 3D-plot of the normalized
two-loop thermal integral X̂2 defined by

2X̂2 =
ρs
T 6

(
− H2

ρs
X2

)
. (3.17)

Eq. (3.14) is our main result, on which the following discussion of interaction
effects in various physical observables is largely based. While Eq. (3.14) has been ob-
tained within the momentum-space approach, in Appendix B we derive an alternative
representation for the two-loop free energy density using coordinate-space techniques.

4 Low-Temperature Series

The effective field theory expansion of the free energy density, Eq. (2.8), is valid at low
temperatures and in weak external fields. More precisely, the quantities T,H,Hs have

12



to be small compared to a characteristic scale inherent in the underlying microscopic
system. In the present case of the Heisenberg antiferromagnet, the thermal scale is
given by the Néel temperature TN . The actual definition of low temperature and weak
field is somewhat arbitrary. To be concrete, here we choose

T, H, MII(∝
√
Hs) . 0.4 TN . (4.1)

The question then is how TN is related to the exchange integral J that defines the non-
thermal microscopic scale in the Heisenberg Hamiltonian (2.1). To that end we utilize
the one-loop effective result, Eq. (4.12), for the order parameter Ms as a function of
temperature in the absence of external fields,

Ms(T ) = Ms

(
1− 1

12ρs
T 2

)
. (4.2)

Setting Ms(T ) = 0, we obtain an approximate connection between TN and the spin
stiffness,

TN ≈ 3.5
√
ρs . (4.3)

According to Ref. [28], for the simple cubic S = 1
2

antiferromagnet that we choose as
a representative system, we have4

ρs ≈ 0.37 |J |2 , (4.4)

such that
T, H, MII(∝

√
Hs) . 0.4 TN ≈ 1.4

√
ρs ≈ |J | . (4.5)

To depict the low-energy behavior of the system, it is convenient to choose the
dimensionless parameters t,mH ,m,

t ≡ T
√
ρs
, mH ≡

H
√
ρs
, m ≡

√
MsHs

ρs
. (4.6)

These ratios are then all to be smaller than one for the effective theory to be valid,
and measure the temperature and field strength with respect to the microscopic scale
J . Of course, the actual value of J depends on the specific antiferromagnetic sample.
Typically, the order of magnitude of J is in the meV-range (see, e.g., Ref. [45]).

4.1 Pressure

If the system is homogeneous, the temperature-dependent piece in the free energy
density determines the pressure,

P = z[0] − z , (4.7)

4The square of the leading-order effective coupling constant F , used in Ref. [28], corresponds to
the spin stiffness: ρs = F 2 (see Ref. [26]).
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where z[0] is the vacuum energy density. The structure of the low-temperature ex-
pansion becomes explicit by rewriting the kinematical functions gr in terms of the
dimensionless functions hr as

g0(m,mH , t) = T 4 h0(m,mH , t), g1(m,mH , t) = T 2 h1(m,mH , t) , (4.8)

with the result

P (T,Hs, H) = p̂1 T
4 + p̂2 T

6 +O(T 8) ,

p̂1(T,Hs, H) = 1
2
(hI0 + hII0 ) .

(4.9)

We refrain from listing the lengthy expression for the coefficient p̂2: up to an overall
minus sign, it corresponds to lines 2–8 in the representation for the free energy density,
Eq. (2.8). The dominant contribution (order T 4) refers to the free Bose gas, while the
spin-wave interaction sets in at the T 6-level.

However, not all T 6-contributions in p̂2 are related to the spin-wave interaction,
as explained in the previous section. The interaction part of the free energy density
is given by Eq. (3.14). To explore the impact of the interaction on pressure, we define
the dimensionless ratio

ξP (T,Hs, H) =
Pint(T,Hs, H)

PBose(T,Hs, H)
=
p̂int2 T 6

p̂1T 4
, (4.10)

that captures the sign and strength of the spin-wave interaction with respect to the
leading free magnon gas contribution. The coefficient p̂int2 refers to the purely inter-
action part, given by Eq. (3.14).

In Fig. 4 we show ξP for four values of temperature t = {0.02, 0.05, 0.10, 0.30}.
The plots illustrate that the effect of the interaction – compared to the free magnon
gas contribution – is very small. At lower temperatures, the spin-wave interaction
may be attractive or repulsive in the parameter domain we consider, depending on
the actual values of the magnetic and staggered field. While at lower temperatures
the repulsive region dominates, at more elevated temperatures, as Fig. 4 suggests,
the interaction becomes purely attractive. Note that, in the absence of the magnetic
field, there is no interaction contribution at two-loop order, in agreement with earlier
studies [28].

4.2 Order Parameter

The staggered magnetization (order parameter) is given by the derivative of the free
energy density with respect to the staggered field,

Ms(T,Hs, H) = −∂z(T,Hs, H)

∂Hs

. (4.11)

14



Figure 4: [Color online] Impact of the spin-wave interaction on pressure – quantified
by ξP (T,Hs, H) – of d = 3 + 1 antiferromagnets subjected to magnetic and staggered
fields. The temperatures are t = {0.02, 0.05, 0.10, 0.30} (top left to bottom right).
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Figure 5: [Color online] Antiferromagnets subjected to mutually orthogonal stag-
gered and magnetic fields at the temperatures t = 0.05 (upper panel) and t = 0.30
(lower panel). Left: Full temperature-dependent part of the staggered magnetization
MT

s (T,Hs, H). Right: Impact of the genuine spin-wave interaction on the staggered
magnetization – quantified by ξMs(T,Hs, H).

Its low-temperature expansion amounts to

Ms(T,Hs, H) = Ms(0, Hs, H) + m̂1T
2 + m̂2T

4 +O(T 6) ,

m̂1(T,Hs, H) = −Ms

2ρs
(hI1 + hII1 ) ,

(4.12)

where the spin-wave interaction enters at the next-to-leading order (T 4). The zero-
temperature staggered magnetization Ms(0, Hs, H) involves interaction as well as non-
interaction pieces.

It is again convenient to measure the effect of spin-wave interactions by a dimen-
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sionless ratio,

ξMs(T,Hs, H) =
Ms,int(T,Hs, H)

|Ms,Bose(T,Hs, H)|
=
m̂int

2 T 4

|m̂1|T 2
, (4.13)

defined relative to the free Bose gas contribution. In Fig. 5 we provide plots of
ξMs(T,Hs, H) for the temperatures t = {0.05, 0.30}. In addition, for the same two
temperatures, we depict the full temperature-dependent staggered magnetization,

MT
s (T,Hs, H) = m̂1T

2 + m̂2 T
4 . (4.14)

As one expects, the quantity MT
s (T,Hs, H) is negative: the value of the order pa-

rameter drops when temperature is raised from T = 0 to a nonzero value T – while
keeping Hs and H fixed. Interestingly, the ratio ξMs(T,Hs, H) is mainly positive in
the entire parameter region mH ,m ≤ 0.4. In a plain language, this implies that if
temperature is raised from T = 0 to a nonzero value T – while keeping Hs and H
fixed – the value of the staggered magnetization increases on account of the spin-wave
interaction.

4.3 Magnetization

The magnetization is given by the derivative of the free energy density with respect
to the magnetic field,

M(T,Hs, H) = −∂z(T,Hs, H)

∂H
. (4.15)

The low-temperature expansion takes the form

M(T,Hs, H) = M(0, Hs, H) + m̃1T
2 + m̃2T

4 +O(T 6) ,

m̃1(T,Hs, H) = −HhI1 .
(4.16)

As for the order parameter Ms, the spin-wave interaction in the magnetization sets
in at order T 4.

In Fig. 6, on the left-hand sides, we show the full temperature-dependent magne-
tization,

MT (T,Hs, H) =
m̃1T

2 + m̃2 T
4

ρ
3/2
s

, (4.17)

for the temperatures t = {0.05, 0.30}.5 As one would expect, MT takes negative
values in the whole parameter region we depict: when the magnetic and staggered
field strengths are kept fixed, the magnetization drops as temperature increases from
T = 0 to nonzero T .

Remarkably, as illustrated on the right-hand sides of Fig. 6, the sign of the quantity

M int
T (T,Hs, H) =

m̃int
2 T 4

ρ
3/2
s

, (4.18)

5Normalization by ρ
3/2
s guarantees that MT (T,Hs, H) is dimensionless.
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Figure 6: [Color online] Antiferromagnets subjected to mutually orthogonal staggered
and magnetic fields at the temperatures t = 0.05 (upper panel) and t = 0.30 (lower
panel). Left: Full temperature-dependent part of the magnetization MT (T,Hs, H).
Right: Impact of the genuine spin-wave interaction on the magnetization – quantified
by M int

T (T,Hs, H).
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that only measures the effect of the spin-wave interaction, may take positive values.
This indicates that if temperature is raised from T = 0 to a nonzero value T – while
keeping Hs and H fixed – the value of the magnetization increases as a consequence of
the spin-wave interaction. But it should be emphasized that these effects are rather
subtle: the spin-wave interaction – measured by M int

T (T,Hs, H) – is very weak.

5 Conclusions

Antiferromagnets subjected to magnetic and staggered fields can be addressed straight-
forwardly with the systematic effective Lagrangian method. Starting from the two-
loop representation of the partition function, we have discussed the low-temperature
behavior of d = 3 + 1 antiferromagnets in a configuration of mutually orthogonal
external magnetic and staggered fields.

To have a clear picture of what “interaction” means in the free energy density –
and any other thermodynamic quantity derived from there – we have evaluated the
self-energy of the two magnons up to one-loop order. This then allowed us to extract
their dispersion relations and to rewrite the free energy density in terms of the dressed
magnons. In particular, all next-to-leading-order low-energy constants (whose values
are a priori unknown) can be absorbed into the dispersion relations of the dressed
magnons. The remaining terms at the two-loop order then correspond to the spin-
wave interaction which is fully fixed by the leading order effective constant ρs: the
spin stiffness.

We have explored the effect of the spin-wave interaction on various thermodynamic
quantities as a function of external magnetic and staggered fields. As it turns out,
the interaction in the pressure is small and may be attractive or repulsive. If temper-
ature is raised from T = 0 to a nonzero value T – while keeping the staggered and
magnetic field strengths fixed – the order parameter and magnetization may decrease
or increase on account of the spin-wave interaction. The latter observation is rather
counterintuitive.

A Auxiliary Expressions for Two-Loop Free En-

ergy Density

In this appendix, we collect the necessary definitions to make the expression (2.8) for
the renormalized two-loop free energy density self-contained. The zero-temperature
part of the free energy takes the explicit form

z[0] = −MsHs −
ρs
2
H2
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+
H4

64π2

(
−1

2
+ ln

M2
I

µ2
+
ē1

3
− 4ē2

3

)
+
H2MsHs

64π2ρs

(
−1 + 2 ln

M2
I

µ2
− 2k̄1

)
+
M2

sH
2
s

64π2ρ2
s

(
−1 + ln

M2
I

µ2
+ ln

M2
II

µ2
− 2k̄2 − 2k̄3

)
(A.1)

+
1

1024π4

(
c6,0

H6

ρs
+ c4,1

H4MsHs

ρ2
s

+ c2,2
H2M2

sH
2
s

ρ3
s

+ c0,3
M3

sH
3
s

ρ4
s

)
− H2

128π4ρs
MIM

3
II

∫ ∞
0

dxR(x,MII/MI) .

The first two lines give the zero- and one-loop contributions to the free energy, re-
spectively. The rest represents the two-loop free energy, evaluated first in Ref. [34].
The numerical coefficients ci,3− i

2
appearing therein are defined by

c6,0 =
1

4
− γE

6
+

1

6
ln 4π − 2

3
ln
M2

I

µ2
− ln2 M

2
I

µ2
+ ē2

(
1

3
+ 2 ln

M2
I

µ2

)
,

c4,1 =
11

4
+

13γE

6
− 5γ2

E −
π2

6
+

11

6
ln 4π − 4 ln 2 + 8γE ln 2− 4 ln2 2

− 13

3
ln
M2

I

µ2
− 3

2
ln2 M

2
I

µ2
+

(
2ē1

3
+ k̄1

)
ln
M2

I

µ2
+

2ē2

3

(
1 + 2 ln

M2
I

µ2

)
,

c2,2 =
23

8
+

49γE

12
− 15γ2

E

2
− π2

4
+

23

12
ln 4π − 6 ln 2 + 12γE ln 2− 6 ln2 2 (A.2)

− 14

3
ln
M2

I

µ2
+ 2(γE − ln 2) ln

M2
I

M2
II

− 3

2
ln2 M

2
I

µ2
+ 2 ln

M2
I

µ2
ln
M2

II

µ2

+ ē1

(
−1

6
+

2

3
ln
M2

I

µ2
+ ln

M2
II

µ2

)
+ ē2

(
1− 2

3
ln
M2

I

µ2
− 4 ln

M2
II

µ2

)
− k̄1 ln

M2
I

M2
II

+ 2k̄2 ln
M2

I

µ2
,

c0,3 = − 1

2
ln2 M

2
I

M2
II

− 2(k̄1 − k̄2)

(
ln
M2

I

µ2
+ ln

M2
II

µ2

)
.

Finally, the last line of Eq. (A.1) is the only contribution that cannot be evaluated
in a closed form, and is rather given by a simple one-dimensional integral, defined
in terms of a residuum R(x, α) in an asymptotic expansion of a product of modified
Bessel functions of the second kind,

[K1(x)]2K1(αx) =
1

α

1

x3
+

(
α

2
+

1

α

)
lnx

x
e−x

2

+

[(
−1

4
+
γE

2

)
α +

(
−1

2
+ γE − ln 2

)
1

α
+
α

2
ln
α

2

]
1

ex − 1

+R(x, α) . (A.3)

In order to complete the definition of the thermal part of the free energy den-
sity (2.8), we need to specify the dimensionless function ŝ. The dimensionful combi-
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nation 2
ρs
ŝ T 6, appearing in Eq. (2.8), is defined by a subtracted integral,

s =
2H2

ρs

(∫
T

d4xT +

∫
T \S

d4xU +

∫
S

d4xV −
∫
RD\S

d4xW

)
, (A.4)

where the individual contributions read [34]

T = G
I
∂0G

I
∂0G

II
+ ∆I∂0G

I
∂0G

II
+G

I
∂0∆I∂0G

II
+G

I
∂0G

I
∂0∆II ,

U = ∆I∂0G
I
∂0∆II + ∆I∂0∆I∂0G

II
+G

I
∂0∆I∂0∆II + ∆I∂0∆I∂0∆II ,

V = ∆I

[
∂0G

I − x0

(
3

2
gI0 +M2

I g
I
1

)]
∂0∆II + ∆I∂0∆I

[
∂0G

II − x0

(
3

2
gII0 +M2

IIg
II
1

)]
+

[
G
I − gI1 +

1

4
(x2 − 3x2

0)gI0 −
1

2
x2

0M
2
I g

I
1

]
∂0∆I∂0∆II , (A.5)

W = ∆Ix0

(
3

2
gI0 +M2

I g
I
1

)
∂0∆II + ∆I∂0∆Ix0

(
3

2
gII0 +M2

IIg
II
1

)
+

[
gI1 −

1

4
(x2 − 3x2

0)gI0 +
1

2
x2

0M
2
I g

I
1

]
∂0∆I∂0∆II + ∆I∂0∆I∂0∆II .

Here ∆(x) and G(x) are the zero-temperature and finite-temperature parts of the
thermal propagator of a free massive relativistic particle,

G(x) = ∆(x) +G(x). (A.6)

Finally, the symbol T in Eq. (A.4) denotes the domain of integration in thermal field
theory in d = D − 1 spatial dimensions, that is the torus S1 × Rd. The small sphere
S near the origin is cut out in order to regulate the ultraviolet divergences, and the
final result of integration is independent of the size of the sphere.

B Alternative Evaluation of Magnon Self-Energy

In this appendix we sketch an alternative evaluation of the self-energy for the two
types of magnons at the one-loop level. In contrast to the calculation carried out
in the main text, we will show how to find the self-energies using coordinate-space
techniques. The relevant Feynman graphs for the two-point function are depicted in
Fig. 2. The leading contribution to the two-point function τI,II(x− y) is given by the
dimensionally regularized propagator ∆I,II(x− y),

τ 4a
I,II(x− y) = ∆I,II(x− y) =

∫
ddk

(2π)d
eik(x−y)

k2
0 + ~k2 +M2

I,II

, (B.1)

respectively for the magnon with mass MI or MII . The individual pieces that yield
corrections to ∆I,II(x− y) are

τ 6a
I (x− y) =

[
−
(
MsHs

4ρ3
s

+
H2

ρ2
s

)
∆I(0) +

MsHs

4ρ3
s

∆II(0)

] ∫
ddk

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

I )
2 ,
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τ 6a
II (x− y) =

[
MsHs

4ρ3
s

∆I(0)− MsHs

4ρ3
s

∆II(0)

] ∫
ddk

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

II)
2 ,

τ 6b
I (x− y) =

[
(k2 − k1)

M2
sH

2
s

ρ4
s

+ (1
2
k1 − 2e1)

MsHsH
2

ρ3
s

+
2e2H

4

ρ2
s

] ∫
ddk

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

I )
2 ,

+
2e2H

2

ρ2
s

∫
ddk

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

I )
2 k

2
0 ,

τ 6b
II (x− y) =

[
(k2 − k1)

M2
sH

2
s

ρ4
s

+ (1
2
k1 − 2e1 − 2e2)

MsHsH
2

ρ3
s

] ∫
ddk

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

II)
2 ,

+
4(e1 + e2)H2

ρ2
s

∫
ddk

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

II)
2 k

2
0 ,

τ 6c
I,II(x− y) = 0 , (B.2)

τ 6d
I (x− y) =

2H2

ρ2
s

∫
ddk

(2π)d
ddq

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

I )
2

1

q2
0 + ~q2 +M2

I

(k0 − q0)2

(k0 − q0)2 + (~k − ~q)
2

+M2
II

,

τ 6d
II (x− y) =

2H2
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s

∫
ddk

(2π)d
ddq

(2π)d
eik(x−y)

(k2
0 + ~k2 +M2

II)
2

1

q2
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I
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(k0 − q0)2 + (~k − ~q)
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+M2
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ddq
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2
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dα Id/2−2α ,∫
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](
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dα Id/2−1
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Γ(2− d/2)
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∫ 1

0

dα Id/2−2α2

(B.3)

and
I = α(1− α)p2 + αm2

1 + (1− α)m2
2 , (B.4)

the integration over momentum q in τ 6d
I,II(x − y) is straightforward in dimensional

regularization. The various contributions can be merged into the physical two-point
function τI,II(x− y) by expanding its denominator as

τI,II(x− y) =

∫
ddk

(2π)d
eik(x−y)

k2
0 + ~k2 +M2

I,II +XI,II

(B.5)

=

∫
ddk

(2π)d
eik(x−y)

k2
0 + ~k2 +M2

I,II

[
1− XI,II

k2
0 + ~k2 +M2

I,II

+O(X2/D2)

]
,
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where
D = k2

0 + ~k2 +M2
I,II (B.6)

is the inverse free propagator in momentum space. The quantity XI,II corresponds to
higher-order corrections of the dispersion relation. Up to next-to-leading order in the
momentum expansion, XI,II is fixed by the expressions (B.2).

Taking the physical limit d → 4, ultraviolet singularities emerge as poles in the
Γ-function contained in τ 6d

I,II(x−y) [see Eq. (B.3)], as well as in τ 6a
I,II(x−y) [on account

of ∆I(0) and ∆II(0)]. Likewise, the NLO effective constants e1, e2, k1, k2 showing up
in τ 6b

I,II(x − y), become divergent in the limit d → 4. We will, however, not delve
into details here, because the renormalization procedure concerning the two-point
function is standard and completely analogous to the procedure regarding the free
energy density, outlined in much detail in Ref. [34]. We just spell out the essential
result, namely, that the various subdivergences contained in the above representations
for the two-point function cancel, and that the resulting dispersion relations for the
two magnons at one-loop order are free of singularities. They amount to

ω2
I = ~k2 +M2

I + αIk
2
0 + βI ,

ω2
II = ~k2 +M2

II + αIIk
2
0 + βII ,

(B.7)

with coefficients

αI =
1
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+
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− 1

8π2ρs
H2 log

M2
I

µ2
,

βII =
1

96π2ρs
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(2e1 − 8e2 + 3k1)H2M2
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II
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. (B.8)

These provide an explicit realization of the NLO dispersion relations (3.2). It should
be stressed that the µ-dependence of the renormalized NLO effective constants e1, e2,
k1, k2 – see Eq. (2.12) – is canceled by the µ-dependent logarithms in Eq. (B.8): the
dispersion relations – much like the free energy density – do not depend on the renor-
malization scale µ. These cancellations provide a nontrivial check of the calculation.

We can now isolate the piece in the free energy density that refers to the spin-
wave interaction. On the one hand, we have calculated the purely noninteracting part
zfree via Eq. (3.3) using the dressed magnons. On the other hand, in Sec. 2, we have
provided the full two-loop representation z for the free energy density, Eq. (2.8), that
includes both the interacting and noninteracting part. The purely interaction part is
given by the difference

zint = z − zfree , (B.9)

that amounts to

zint = − 4H2 +M2
II

8ρs
(gI1)

2
+
M2

II

4ρs
gI1g

II
1 −

M2
II

8ρs
(gII1 )

2
+

2

ρs
ŝ T 6

+
1

32π2ρs
(CI0gI0 + CII0 gII0 + CI1gI1 + CII1 gII1 ) + z[0] − z[0]

free .

(B.10)

The coefficients accompanying the kinematical functions read

CI0 =
H8 − 3H2

IIM
6
II − 2M8

II

H2(H2 +M2
II)

2 +
2H4M3

II

√
4H2 + 3M2

II

(H2 +M2
II)

3 arctan
MII√

4H2 + 3M2
II

+
2H4M3

II

√
4H2 + 3M2

II

(H2 +M2
II)

3 arctan
2H2 +M2

II

MII

√
4H2 + 3M2

II

+
M4

II(−3H8 + 6H4M4
II + 6H2M6

II + 2M8
II)

H2(H2 +M2
II)

3 log
M2

I

M2
II

,

CII0 = 6H2 −
6H2

√
4H2 + 3M2

II

MII

arctan
MII√

4H2 + 3M2
II

,

CI1 =
2H8 + 6H2M6

II − 7H4M4
II − 24H2M6

II − 12M8
II

6H2(H2 +M2
II)

(B.11)

+
H2M5

II

√
4H2 + 3M2

II

(H2 +M2
II)

2 arctan
MII√

4H2 + 3M2
II

+
2H4M3

II

√
4H2 + 3M2

II

(H2 +M2
II)

2 arctan
H2 +M5

II

MII

√
4H2 + 3M2

II
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+
M4

II(2H
8 + 13H6M2

II + 20H4M4
II + 14H2M6

II + 4M8
II)

2H4(H2 +M2
II)

2 log
M2

I

M2
II

,

CII1 = 4H2M2
II − 4

√
4H2 + 3M2

II arctan
MII√

4H2 + 3M2
II

.

This is an alternative expression for the result given in Eq. (3.14) of the main text.
Note that the next-to-leading-order effective constants and the µ-dependent loga-
rithms have been absorbed into the noninteracting magnon free energy density by
redefining the dispersion relations as described above. In particular, the absence of
the (a priori) unknown NLO effective constants e1, e2, k1, k2 in Eq. (B.11) means that
our result regarding the impact of the spin-wave interaction is parameter-free.
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