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Whether, how, and to what extent solutions of Bjorken-expanding systems become insensitive to aspects
of their initial conditions is of importance for heavy-ion collisions. Here we study 1þ 1D and
phenomenologically relevant boost-invariant 3þ 1D systems in which initial conditions approach a
universal attractor. In Israel-Stewart theory (IS) and kinetic theory where the universal attractor extends to
arbitrarily early times, we show that all initial conditions approach the attractor at early times by a power
law while their approach is exponential at late times. In these theories, the physical mechanisms of
hydrodynamization operational at late times do not drive the approach to the attractor at early times, and the
early-time attractor is reached prior to hydrodynamization. In marked contrast, the attractor in strongly
coupled systems is realized concurrent with hydrodynamization. This qualitative difference may offer a
basis for discriminating weakly and strongly coupled scenarios of heavy-ion collisions.
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In a dynamical system, an attractor is the subset of phase
space towhich arbitrary initial conditionswithin the basin of
attraction relax at sufficiently late times. In general, the
attractor is characterized by the competition between
the expansion rate that drives the system towards local
anisotropy, and the isotropizing interaction rate [1].
Attractors are easily found empirically by evolving a set
of different initial conditions (see Fig. 1 for an example).
Recently, such attractors have received attention in the
context of ultrarelativistic heavy-ion collisions. Their form
is of interest for understanding the onset of fluid-dynamic
behavior [2–21] and the origin of the nonthermal fixed-point
behavior in far-from-equilibrium dynamics [1,19,22–25].
For the phenomenology of heavy-ion collisions, these
studies are needed to clarify to what extent different
observables inform us either about the details of the initial
conditions or about the material properties of the system.
Whether an attractor exists at arbitrarily early times

depends on the dynamics that drives the initial conditions to
the attractor. Here we point out that some models under-
going Bjorken expansion do exhibit attractor behavior at
arbitrarily early times while others do not. The existence of
the early-time attractor is a consequence of the longitudinal
expansion at early times which would render heavy-ion
phenomenology insensitive to the unknown details of the
longitudinal structure of the initial state.

Israel-Stewart theory.—In Bjorken-expanding Israel-
Stewart (IS) theory [26] with transverse translational
symmetry, an attractor exists for the ratio of longitudinal
pressure pL over energy density ε,
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Here,τ is the proper time and ϕ≡ 1
3
ε − pL. The time

governing the relaxation to fluid-dynamic constitutive
equations is τR ¼ ð5=aÞðη=ðεþ PÞÞ, where a is a free
parameter, conventionally fixed to a ¼ 1. This is the
timescale on which linearized nonhydrodynamic excita-
tions decay.
We work for a conformal equation of state ε ¼ 3P and

constant specific viscosity η=s ∝ η=ε3=4. The equation of
motion for the ratio x≡ pL=ε (written for convenience in
the rescaled time t ¼ τ=τR) reads
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The limit a → 0 at finite τR is equivalent to an ideal IS
theory with η ¼ 0. In this simplest case, the attractor is the
equilibrium xA ¼ 1=3, and how the attractor is approached
is given by rewriting Eq. (3) in terms of the deviation
δ ¼ x − xA,
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Depending on whether t > δ or t < δ, the approach to the
attractor is governed by the expansion rate (t−1) or by the

interaction rate (independent of t), respectively. At all
times, sufficiently small deviations from the attractor decay
exponentially δ ∼ e−3t=2, which is characteristic for linear-
ized nonhydrodynamic perturbations around thermal equi-
librium [6]. The factor 3=2 arises from the nontrivial time
evolution of the background.
For finite a, Eq. (3) corresponds to the first-order IS

theory, which has two solutions that remain regular for
t0 → 0 with limits limt0→0x�ðt0Þ ¼ ð1=15Þð5� 4

ffiffiffiffiffiffi
5a

p Þ,
respectively. [We note that within IS theory, a is a free
parameter. The choice a ¼ 1 amounts to equating τR to the
second order hydrodynamic coefficient τπ of RTA kinetic
theory. The choice a ¼ 5=16 would instead ensure that the
early-time attractor of IS theory coincides with that of
kinetic theory, x−ðt0Þ ¼ 0]. The solution x−ðtÞ is the
attractor xAðtÞ, while xþðtÞ limits the basin of attraction
from above. While we do not have an analytic solution
x−ðtÞ, the attractor can be expanded at late and early times,
see Supplemental Material [27] for details. The main
finding, see Fig. 2, is that the early-time expansion is a
convergent series that can be analytically continued to
arbitrarily late times using standard techniques, while the
late-time expansion is a nonconvergent, asymptotic Borel-
resummable series. We next discuss the transient dynamics
that evolves generic initial conditions from time t0 towards
the attractor. At late initializations, t0 ≫ 1, this is the well-
known exponential decay of linearized nonhydrodynamic
modes governed by Eq. (4) that, as discussed above, is
determined by the interaction rate, see Fig. 1. Exponential
decays with this timescale have been revealed in Borel
resummations of the late time expansion [6]. In marked
contrast, at early times, Eq. (3) becomes
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and the attractor is approached by a power law
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We emphasize that the timescale of this decay becomes
increasingly rapid and ultimately instantaneous with
decreasing t0 (see Fig. 1). This is the hallmark of a decay
governed by the expansion rate. It is qualitatively different
from what one expects from the decay of nonhydrodynamic
modes, and it forces the decay to the attractor prior to
hydrodynamization.
Higher-order fluid-dynamic models like rBRSSS [31]

amount to replacing in Eq. (2) the relaxation to the first
order constitutive relation (the term 4

3
ðη=sÞ) by relaxation to

the second order one. In general, all additional terms thus
introduced are ∝ ð1=τÞ. As a consequence, the value of the
early-time attractor changes, but the early-time power-law
approach of arbitrary initial conditions towards the attractor
is unaffected.

FIG. 1. Approach to the attractor in different theories. Different
lines correspond to out-of-attractor initializations at different
times t0. Upper and middle panel: For t < 1, the slope of the
approach remains constant on a log-linear scale, indicating that
the time dependence is set by the initialization time t0 and thus
governed by the expansion rate. In contrast, for t > 1, the
approach to the attractor appears on a log-linear scale steeper
and steeper with increasing t, indicating its dependence on the
interaction rate τR which does not depend on t0. Lower panel:
Qualitatively different behavior is seen for N ¼ 4 SYM theory,
where information characteristic of specific initial condition is
lost only at times t ≥ 1, irrespective of how early the system is
initialized.
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Kinetic theory.—Features similar to the above can also
be seen in Bjorken-expanding massless kinetic theory in
the relaxation time approximation (RTA)

∂τf þ v⃗⊥ · ∂ x⃗⊥f −
pz

τ
∂pz

f ¼ −
ð−vμuμÞ

τR
½f − feq�: ð7Þ

Here, the distribution function fðτ; x⃗⊥; p⃗⊥; pzÞ relaxes to
equilibrium feq. It depends on pμ ¼ ðp; p⃗⊥; pzÞ, p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2⊥ þ p2

z

p
, and on the proper time τ; uμ denotes the rest

frame of the energy density and v⃗⊥ ¼ p⃗⊥=p, vz ¼ pz=p
are transverse and longitudinal velocities, respectively. We
work with a conformal relaxation time τ−1R ¼ γε1=4.
For systems with transverse translational symmetry, this

Boltzmann equation can be reduced to a tower of moment
equations [8,18] describing the time evolution of various
integral moments of the distribution function pl≡R
1
−1ðdvz=2Þ

R ð4πdpp3=ð2πÞ3Þfv2lz . Energy density and
longitudinal pressure correspond to the first two moments,
ε ¼ p0, pL ¼ p1. The first two equations in the hierarchy
result in
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where y≡ p2=ε; see Supplemental Material [27] for
further details. The attractor is found among the regular
solutions. Solutions that remain regular for t0 → 0 satisfy
limt0→0x�ðt0Þ¼1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−yð0Þp
. All physical values x ≤ 1

lie within the basin of attraction since xþ > 1. Since
0 < y < x, the attractor at early times is xAð0Þ ¼ 0, and
therefore also all higher moments plð0Þ vanish. At late
times, it follows trivially from Eq. (8) that the attractor
approaches equilibrium, limt→∞xAðtÞ ¼ 1

3
.

The late-time fluid-dynamic expansion of this transport
theory has been computed to high orders [20]. Similar
to IS theory, it is a nonconvergent, asymptotic Borel-
resummable series. Also, similarly, the early-time expan-
sion has a finite radius of convergence and can be
extended to arbitrary late times by standard techniques
(see Supplemental Material [27]).

The transient dynamics according to which generic
initial conditions approach this attractor shares the main
qualitative features of the IS theory discussed above, see
Fig. 1. At late initializations, t0 ≫ 1, Eqs. (8) and (4)
govern identical exponential decays of linearized non-
hydrodynamic modes. For early times, t0 ≪ 1, the decay
of δ ¼ x − xA to the attractor depends on y, and through y
on the initial conditions of all higher moments. Because
6x > 3y for any system, an approximate solution of the
approach to the attractor can be obtained for a generic
initial condition by neglecting y in Eq. (8) which leads to
the power-law decay δ ∼ t−8=3. Similar reasoning suggests
that y would approach its attractor ∼t−16=3 thus justifying
the above approximation; in fact, the same reasoning gives
for all higher orders plðtÞ=εðtÞ ∝ xðtÞl. These power laws
are easily seen in numerical solutions of Eq. (7) (see
Supplemental Material [27]).
Strongly coupled N ¼ 4 SYM.—The third class of

qualitatively different models of collectivity invoked in
heavy-ion physics is given by strongly coupled quantum
field theories with known gravity duals. Here, we contrast
and compare the early-time dynamics in strongly coupled
N ¼ 4 super Yang-Mills (SYM) theory with the attractor
behavior observed above. The time evolution of pL=ϵ can
be solved for boost invariant initial conditions using
standard methods of holography, i.e., by solving the
five-dimensional Einstein equations with the ansatz for
the line-element

ds2 ¼ −2ρ−2dρdτ − Adτ2 þ S2eBdx2⊥ þ S2e−2Bdξ2; ð9Þ

with ξ the space-time rapidity and ρ the internal fifth
dimension. The initial conditions are specified by the ρ-
dependent function Bðτ0; ρÞ ¼ BAdSðτ0; ρÞ þ B0ðρÞ, with
BAdSðτ0; ρÞ ¼ − 2

3
logðτ0 þ ρÞ the vacuum anti–de Sitter

(AdS) solution; Bðτ; ρÞ, Aðτ; ρÞ, and Sðτ; ρÞ then follow
from the Einstein equations [32]. Unlike in the models
above changing the initial Cauchy data B0ðρÞ amounts to a
choice not only for ðpLðt0Þ=εðt0ÞÞ, but also for all its
derivatives at t0 [3,33]. We therefore study two different

families of initial conditions,BðUVÞ
0 ðρÞ ¼ e−40ρT32ρ5T5 and

FIG. 2. Early-time (red-dashed) and late-time (blue-dashed) expansions of the attractor (black). Orders of the expansions are given
by numbers in the plots. The Padé approximant (green-dashed) extends the early-time expansion to any finite t in systems where the
early-time attractor exists. For N ¼ 4 SYM, gray curves are the specific solutions shown in Fig. 1.
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BðIRÞ
0 ðρÞ ¼ 32ρ5T5, where T is the effective temperature

determined from the energy density. While their functional
form is somewhat arbitrary, they are chosen such that their
initial anisotropy ðpLðt0Þ=εðt0ÞÞ and its first derivative are
equal. They differ qualitatively in that their support is either
localized close to the boundary (UV) or spread out in the
fifth dimension (IR). As an aside, we recall that also kinetic
theory can be initialized with different classes of initial
conditions by varying the values of higher moments
at t0, but all initial conditions approach the same attractor
on a timescale t0, see Supplemental Material [27]. In IS
theory, there are no further degrees of freedom beyond
ðpLðt0Þ=εðt0ÞÞ that can be specified.
Figure 1 shows solutions in which both initial conditions

are evolved from a set of different initialization times t0. In
marked contrast to IS theory and kinetic theory, different
initial conditions do not reach a unique curve on timescale
t0. Rather, information about the initial condition is lost
only at times t ∼ 1, and only on that timescale solutions
converge to a common attractor. By closer inspection of
these results (data not shown) we observe that both for early
initializations t0 < 1 and for late initializations t0 > 1,
differences between solutions show the oscillatory behavior
characteristic for the decay of quasinormal modes (QNM)
[16] that are exponentially damped with timescale τQNM.
These solutions reach a unique attractor only at late times
t > 1. In this sense, only the late time attractor is universal
in N ¼ 4 SYM; this is consistent with Fig. 2 of Ref. [9].

It is curious to note that curves initialized with BðUVÞ
0 ðρÞ

approach the high-order hydrodynamic late-time expansion
[5] significantly earlier than curves initialized with

BðIRÞ
0 ðρÞ, see Fig. 2. The latter initial condition is expected

to give rise to a larger connected two-point function
hTαβTμνi than the former [34]. We believe that this
observation, together with vanishing n-point functions in
the above kinetic theory and in IS theory, should motivate
further research into the relation of higher connected n-
point functions and attractor behavior. This question could
be asked not only in N ¼ 4 SYM, but also in BBGKY
extensions of the Boltzmann equation.
Attractors in boost-invariant 3þ 1D kinetic theory.—

Would an early-time attractor, if it exists, leave observable
imprints? If so, this could provide a tool for disentangling
qualitatively different microscopic candidate theories of
weakly or strongly coupled quark gluon plasma. With this
motivation, we now ask which aspects of the attractor
behavior are accessible in collisions with a finite transverse
extent and realistic transverse gradients. We focus on the
kinetic theory (7) as it possesses an early-time attractor. We
have solved Eq. (7) for realistic initial transverse profiles
[35]. Because the early-time approach to the attractor is
governed by the longitudinal expansion rate, breaking the
translational symmetry in the transverse directions can
change the 1þ 1D picture only to the extent to which

transverse gradients are not negligible compared to the
longitudinal one. Therefore, at sufficiently early initializa-
tion, independent of the transverse geometry and for all
transverse positions r, arbitrary initial conditions in 3þ 1D
evolve towards the 1þ 1D attractor. In contrast, the late-
time evolution of the attractor does depend on the trans-
verse profile of energy and transverse momentum.
These features are realized in boost-invariant 3þ 1D

solutions of Eq. (7), initialized with a Gaussian transverse
energy profile with central energy density ε0 and r.m.s.
radius R, see Fig. 3. For early initialization time τ0, keeping
ε0τ0 fixed, Eq. (7) can be rescaled such that the evolu-
tion depends on only one dimensionless combination
of model parameters, the opacity γ̂ ¼ γR3=4ðε0τ0Þ1=4 ¼
ðγ3ε3=40 R3t0Þ1=4, see Refs. [35,36]. The opacity of a system
increases with coupling strength (γ), transverse system
size (R), and initial central energy density (ε0); physical
collision systems were estimated to correspond to a range
of opacities, γ̂ ≲ 2 for proton-nucleus collision, 2≲ γ̂ ≲ 4
for semiperipheral PbPb collisions and somewhat higher
values in central PbPb collisions [35].
The physical time in Fig. 3 is rescaled by a position- and

time-dependent relaxation time τ−1R ðτ; rÞ ¼ γεðτ; rÞ1=4.
Therefore, for a system in which energy density decreases
faster than ∝ τ−4 due to transverse expansion, the relation
between physical and rescaled time is not monotonic; this is
the reason t decreases for sufficiently late τ in the finite-γ̂
curves of Fig. 3. Moreover, because of this rescaling, the
deviation of the r ¼ 0 attractor from the 1þ 1D one, and
the deviation of the attractor at finite r from the one at r ¼ 0
arise solely from the radial expansion. For fixed γ̂, the r
dependence is remarkably mild. Low orders in the early-
time expansion are seen to be sufficient to describe systems
characterized by values of γ̂ that are within experimental

FIG. 3. RTA attractor of Bjorken-expanding 3þ 1D kinetic
theory for collision systems of different opacity γ̂ and three
different transverse positions r ¼ 0; R, and 2R. The 1þ 1D
attractor (black line) corresponds to the limit of infinite opacity;
the thin lines correspond to early- and late-time approximations,
as in Fig. 2. The black crosses denote the point on the attractor
where the physical time reaches τ ¼ 2R after which the system
has decoupled [35].
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reach. What Fig. 3 makes abundantly clear is that what
remains universal across collision geometries is not the
late-time attractor but the early-time attractor. That is, what
remains universal is what follows from early-time dynam-
ics and not what follows from hydrodynamization.
In summary, we have studied the early-time behavior of

qualitatively different models of collectivity applied to
heavy-ion collisions. In some cases (N ¼ 4 SYM), the
attractor exists only at late times, and hydrodynamization
and the loss of information about specific initial conditions
are concurrent. The approach to the late-time attractor is
then governed by the exponential decay of linearized
nonhydrodynamic modes [2,16]. In other cases (IS and
kinetic theory) a unique attractor extends to arbitrarily early
times and thus specific information about the initial
condition is lost well before hydrodynamization. We find
that in this latter case, a qualitatively different power-law
approach to the attractor is operational far from equilib-
rium. It is expansion driven rather than interaction driven. It
is also noteworthy that in this respect, IS theory at any value
of η=s resembles RTA—the prototype of a weakly coupled
system—rather than the prototypical strongly coupled
system of N ¼ 4 SYM.
One of the main challenges in heavy ion phenomenology

is to elucidate the inner workings of the quark gluon
plasma, and in particular, to discriminate between weakly
and strongly coupled plasma models in which a quasipar-
ticle picture exists or does not exist, respectively. The
qualitative difference stated here between the early-time
dynamics of strongly coupled (N ¼ 4 SYM), compared to
both kinetic theory and IS theory, deserves attention since it
may help to make this distinction.
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