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Abstract: Dynamic Adaptive Streaming over HTTP (DASH) offers adaptive and dynamic multimedia
streaming solutions to heterogeneous end systems. However, it still faces many challenges in
determining an appropriate rate adaptation technique to provide the best quality of experience (QoE)
to the end systems. Most of the suggested approaches rely on servers or client-side heuristics to
improve multimedia streaming QoE. Moreover, using evolving technologies such as Software Defined
Networking (SDN) that provide a network overview, combined with Multipath Transmission Control
Protocol (MPTCP), can enhance the QoE of streaming multimedia media based on scalable video
coding (SVC). Therefore, we enhance our previous work and propose a Dynamic Multi Path Finder
(DMPF) scheduler that determines optimal techniques to enhance QoE. DMPF scheduler is a part of
the DMPF Scheduler Module (DSM) which runs as an application over the SDN controller. The DMPF
scheduler accommodates maximum client requests while providing the basic representation of the
media requested. We evaluate our implementation on real network topology and explore how
SVC layers should be transferred over network topology. We also test the scheduler for network
bandwidth usage. Through extensive simulations, we show clear trade-offs between the number
of accommodated requests and the quality of the streaming. We conclude that it is better to
schedule the layers of a request into the same path as much as possible than into multiple paths.
Furthermore, these result would help service providers optimize their services.

Keywords: algorithm design and analysis; Dynamic Adaptive Streaming over HTTP; MPEG-DASH
standard; scalable video coding (SVC) video streaming

1. Introduction

The continuous and rapid increase of digital multimedia streaming is estimated to comprise 82%
of Internet traffic by 2021 [1]. The proliferation of multimedia streaming devices (e.g., smartphones,
laptops, tablets, gaming consoles, etc.) with wide accessibility to wireless networks plays a
pivotal role in characterizing the increased demand for multimedia streaming over the Internet.
Moreover, the bandwidth capacity for universal Internet access has not grown as the host’s
computing power. The Hypertext Transfer Protocol (HTTP) is used in multimedia streaming
without underlying network support via the Internet Protocol (IP) [2]. HTTP multimedia streaming
provides device fluidity, cache-friendliness, data-agnostic web servers and the ability to avoid
network translation and firewall problems [3]. However, HTTP is based on the Transmission Control
Protocol (TCP). Therefore, having an overhead of about twice the media bit rate compared to the
Real-Time Transport Protocol (RTP) and the User Datagram Protocol (UDP). This leads to delays in
delivering multimedia content and the under-utilization of communication network resources [4].
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Managing multimedia streaming for heterogeneous devices under unreliable network environments
is challenging. Initially, a progressive download technique allowed HTTP applications to download
a complete monolithic multimedia file to the end host using TCP. This results in all clients receiving
the same video despite variations in network bandwidth and their capabilities. An improvement
in progressive downloads resulted in adaptive streaming. In adaptive streaming, the multimedia
file is divided into smaller duration chunks, known as segments. These segments are encoded with
different qualities and transferred to the end host based on their available resources. Access to these
media segments enables HTTP Adaptive Streaming (HAS). In HAS, adaptation is performed at the
receiver end. A receiver estimates its network path conditions and capabilities and requests a different
representation of the similar media encoded at different encoding rates appropriate at a certain point in
time. A single layer video codec such as Advanced Video Coding (AVC) or multi-layer codec, such as
Scalable Video Coding (SVC) can generate multiple media representations [5,6].

HAS represents most internet video traffic based on commercial solutions. This includes HTTP
Live Streaming from Apple [7], smooth streaming from Microsoft [8], HD from Akamai [9], and HTTP
Dynamic Streaming from Adobe [10]. Apart from proprietary alternatives, the Moving Picture
Experts Group (MPEG) in collaboration with 3rd Generation Partnership Project (3GPP) contributed
to the standardization of streaming solutions for the HTTP streaming of MPEG media. This resulted
in Dynamic Adaptive Streaming over HTTP (DASH) or MPEG-DASH [11]. Unlike proprietary
solutions DASH provides an open specification for adaptive streaming over HTTP and leaves the
implementation of the adaptation logic to third parties. The Software Defined Networking (SDN)
paradigm has revolutionized the way we looked at networks by decoupling control and data planes.
A controller centralizes and manages network intelligence in a SDN. This allows external applications
to program the network and simplify network management by developing, implementing, and testing
new algorithms. We already know of the fact that routing plays an important role in enhancing the
network resource utilization. Multiple paths between two systems result in reliable and increased data
throughput. SDN can provide the routing flexibility needed by the network, while Multipath TCP
(MPTCP) can provide multiple paths between two endpoints. MPTCP is an extension of TCP that,
enables the use of different route paths between two nodes in a network. However, transferring packets
across different route pathways can lead to a considerable reorganization of packages, leading to
decreased throughput and the significant usage of CPU resources [12]. However, if MPTCP is utilized
properly, it can enhance throughput, fairness, and robustness by introducing reliability and seamless
fail-over as well as increased network capacity [13].

In our previous work [14], we propose a Dynamic Multi Path Finder (DMPF) algorithm that
leverages the properties of multiple paths available in the network to transfer each client request
SVC layers over different paths. Now we propose a DMPF scheduler to maximize QoE and network
bandwidth of DASH streaming using SVC in an SDN environment. A SDN controller runs the
DMPF Scheduler Application module to provide the basic QoE for the clients. The DMPF scheduler
determines the optimal flow paths for customer requests through the use of a holistic network view
provided by the SDN controller. In brief, we can describe the main contributions of the present study:

• Describe SDN-based scheduler application for DASH using SVC
• Consider QoE metrics and bandwidth utilization in the process of designing the architecture of

the proposed scheduler
• Propose a mathematical model which determines the optimal data paths for delivering the

requested video files and the quality adaptation.
• Implement the proposed architecture and evaluate its performance in real network topology.

The rest of this paper is organized as follows—a brief overview of DASH and SVC is provided in
Section 2. We present related work that explores the foundation for multimedia steaming based on SVC
in an SDN environment using multiple connections, in Section 3. We introduce the Dynamic Multi Path
Finder (DMPF) Module which contains DMPF Scheduler and its processing and forwarding modes
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in Section 4. To enhance QoE, we present a mathematical formulation of the problem in Section 5.
Detailed analysis of the performance of the proposed algorithms in given in Section 6. We finally
conclude in Section 7.

2. Background

In this section, we give a brief overview of DASH and SVC.

2.1. Dynamic Adaptive Streaming over HTTP

Dynamic adaptive streaming over HTTP (DASH) is an MPEG standard defining a multimedia
format and description. DASH contains media files divided into small chunks of 2 to 10 s
called segments. Each media file segment is encoded into multiple versions of bit-rate streams
or quality levels. The quality level comprises frame rate (temporal), bit-rate (signal-to-noise) and
resolution (spatial). Details related to different quality levels of media are stored in XML manifest,
known as Media Presentation Description (MPD). One or more Periods are defined in each MPD.
These Periods contain various parts of media, such as video with different viewing angles, various codes
used, audio for different languages, captions, and subtitles. These media parts have some features that
do not change for one Period, (such as sound channels, bit rate, and frame rate) and are arranged in
Adaptation Sets. One or more Adaptation Sets are included in each Period. This allows the clustering
of logically similar multimedia parts. The Adaptation Set comprises a set of representations that
contains interchangeable versions of each media content, such as different resolutions, bit-rates.
For example, the Adaptation Set may contain media parts encoded with the same codec, resolution,
language, and audio channel formats (e.g., stereo or 5.1 channel). The Adaptation Set enables the client
to eliminate a range of multimedia parts that do not meet their requirements. Although a single
representation is sufficient for a playable stream, multiple Representation Sets enable the client to adapt
the media stream to their current requirements for network bandwidth. Over time, the client can
adapt to the resolutions, bit-rates, codecs, and so forth, available in a Period. Figure 1 shows the
detailed logical structure of MPD. The DASH client first obtains the MPD through HTTP standard
complaint GET requests. By parsing the information provided by the MPD, the DASH client chooses
the appropriate encoded alternative based on network conditions and starts content streaming by
selecting segments. MPEG-DASH specification for server defines only MPD and segment formats,
while on the client-side it defines the parsers. The transmission of MPD, media encoding formats
comprising segments, customer behavior for obtaining the segments, adapting heuristics, and playing
content are beyond the MPEG-DASH scope. The size of the segment and the selected encoding
technique define the granularity of the streaming adaptation.

Figure 1. Structure of Media Presentation Description (MPD).
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2.2. Scalable Video Coding (SVC)

Sending a raw quality video over the Internet consumes enormous network resources.
Various techniques of video compression were considered compressing raw video to a smaller size
without compromising quality. In 2003, AVC was introduced, which compressed/encoded the video
with a specific quality (i.e., resolution, frame rate and signal-to-noise ratio). In contrast, SVC is an
AVC extension that can encode the video in separate layers. If combined, these layers can improve
the overall quality of the video. SVC comprises two layer types: base layer (BL) and enhancement
layer(s) (EL). The SVC media has one base layer and multiple enhancement layers. Figure 2 shows such
segmented layers of the “Representation 2” in Figure 1. The base layer provides the basic quality of the
video. Adding enhancement layers to the base layer can increase the quality of the video. All lower
quality level enhancement layers are needed to decode a higher level EL. SVC enables graceful video
quality degradation compared to AVC by coping with congestion in real time by adding or removing
layers to meet the network capacities of all devices. It also provides the opportunity to serve many
users with heterogeneous devices with an improved QoE [15]. AVC generates multiple versions with
different qualities of the same media that are transferred simultaneously over a network. This is
also called simulcasting, as illustrated in Figure 3. Simulcast forwards several versions of media
with higher qualities to higher bandwidth subscribers and lower qualities to lower bandwidth ones.
Using AVC with DASH (AVC-DASH) to stream multimedia to heterogeneous devices, each segment
will be encoded with different qualities. The multiple storage of these media segments increase the
requirements for storage and network resources use. In AVC-DASH takes decisions are taken at the
end of the segment. Since SVC media comprises layers, it has only one version of each segment,
reliving storage strain on servers. DASH coupled with SVC (SVC-DASH) enables flexible segment
selections as compared to DASH only [16] The granularity of SVC-DASH quality control extends
horizontally over time and vertically over layers.

Video Segment 1

Representa�on 2
1920 x 1080, 11Mb/s

Time

Layer Bitrate

3200 kbps

1700 kbps

1500 kbps

4000 kbps

Enhancement Layer 3

Enhancement Layer 2

Enhancement Layer 1

Base Layer

Video Segment N

Enhancement Layer 3

Enhancement Layer 2

Enhancement Layer 1

Base Layer

Figure 2. Segmented Layers of Scalable Video Coding (SVC).

Simulcas�ng

Resolu�ons/Bitrates

1080p/11Mbps

720p/8Mbps

540p/4Mbps

Formats

H.264

AVC

VP9

TV (High Bandwidth)

TABLET (Medium Bandwidth)

PHONE(Low Bandwidth)

Figure 3. Simulcasting.
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3. Related Work

DASH clients locally implement adaptation techniques without being aware of the complete
network topology. There are three main solutions for optimum adaptation, client-based only,
client-based assisted by a network element, and network-based. Client performs adaptation by
looking at its local parameters which include its buffer size and network capacity in client based
adaption. In the second approach client may be supported by network elements, such as proxy servers.
Central network element is utilized in network based adaptation. In this section we describe the
related work briefly and motivate the advantages of SVC based multimedia streaming using multiple
connections in an SDN environment.

3.1. Advantages of SVC over AVC

A few studies have focused on the comparison of AVC and SVC based streaming. Schwarz et al. [6]
show the bit rate for spatial and SNR scalability increases by 10% for SVC based streaming. However,
the findings of Grafl et al. [17] show that replacing AVC encoded videos with SVC encoded videos
saves up to 50% of the storage space. Another study by Sanchez et al. [18] concluded that SVC results in
improved caching efficiency for HTTP streaming while storing AVC representations leads to spoilage
of the cache capacity. In addition, SVC-DASH needs less buffering compared to AVC-DASH and
improves the quality of Experience (QoE) for client [15]. Famaey et al. [19] use heuristics to evaluate
performance of SVC and AVC based streaming using NS3. They concluded that SVC shows decreased
performance in restricted bandwidths but performs well when using a single connection in a variable
bandwidth environment. Grafl et al. [17] give a detailed objective assessment of SVC with DASH
in mobile environments with various layer setups. They suggest creating a separate SVC stream for
each resolution. This provides a nice balance between the advantages of SVC and its overall coding
overhead. Their important contribution was to validate the bit rate recommendations derived from
industry solutions. Andelin et al. [20] analytically investigated the SVC layer segment selection policy.
It is concluded that policy with diagonal selection is optimal that balances quality variation and quality
score for variable rate while the vertical policy is optimal under fixed bandwidth.

3.2. Using Multiple Connections for Streaming

Some works have investigated multiple connections in HTTP streaming. Bouten et al. [21]
quantitatively investigate the SVC based HAS live streaming for Live TV in high delay networks. For a
client with limited buffer capacity, they propose a cursor-based SVC client heuristic. A fixed number of
parallel connections and pipeline download of segment layers are suggested to overcome end-to-end
delay problems. Tullimas et al. [22] implement a MultiTCP receiver driven system with multiple TCP
connections in an application layer. The system provides resilience against short-term bandwidth
fluctuations. Their system in congested periods can control and achieve the desired sending rate.
Han et al. [23] propose a multi-path DASH (MP-DASH) streaming framework taking into account
the preferences of the client network interface by strategically scheduling a chunk delivery to satisfy
client preferences, such as preferring WiFi over the cellular connection. Instead of improving the
quality of video streaming with MPTCP, it reduces overall streaming costs. Bradai et al. [24] proposes
a model to improve bandwidth allocation and incentive mechanisms for layered video streaming
in peer-to-peer (P2P) networks using an auction game model. The purpose is to make sure that
neighbouring peers first have a minimum quality level stream, and then the remaining bandwidth is
allocated to the higher layers. This optimization results in efficient use of the bandwidth and improved
video quality.

3.3. SDN Assisted Streaming Using Multiple Connections

In some works, MPTCP in SDN is considered. References [25,26] focus on determining the
appropriate number of SVC layers for transferring across selected streaming paths. The approach
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of [25] is based on priorities that first determines the shortest route N and then sends the video layer
using one of the selected routes. The approach in References [26], on the other hand, uses the optimal
paths rather than the shortest. In addition, since they focus on the UDP protocol, References [25,26]
do not target DASH video streaming. Cetinkaya et al. [27] propose an architecture based on SDN
to improve scalable video streaming efficiency using DASH. They measure their proposed system
against QoE parameters and conclude that for each QoE parameter, traditional shortest-path routing
provides better performance. Determining routing and providing quality adaptation is considered
by few works. Cetinkaya et al. [28] develop an optimization model for maximizing video quality.
In order to select optimal paths for different SVC layers over SDN, they consider the current segment
bit rate, available network bandwidth, path length and competing flows. Herguner et al. [29],
and Barakabitze et al. [30], propose to use routing strategy in an SDN based networks for the routing
of the MPTCP sub-flows to provide QoS/QoE-guaranteed services to DASH clients. Gohar et al. [14],
propose a Dynamic Multi Path Finder (DMPF) algorithm that leverages the properties of multiple
paths available in the network to transfer each client request SVC layers over different paths.
They accommodates maximum requests by DASH clients while utilizing the network bandwidth
efficiently by dynamically adapting to the varying connection characteristics.

3.4. DMPF Algorithm

Several paths between the client and the server are available for communication in a
network topology. Figure 4 shows the schematic communication topology using multi-path TCP
in an SDN environment. By default, all layers are transmitted when a client requests SVC layers using
a single path between the client and the server. The reliability of the connection between the client and
the server reduces if multiple SVC layers are transmitted on a single path. This results in overloading
a single path and under-utilization of multiple paths that are available to transmit multiple SVC layers.
SVC is composed of layers, and each SVC layer can be sent over different routes in a network.
SVC based streaming requires a base layer to view the lowest video representation. Sending each SVC
layer on different paths helps to distribute the network bandwidth load, improved connection reliability
and graceful degradation in view quality. However, it also increases the number of paths found,
path length, bandwidth and computing resources. It is difficult to find an optimal mechanism that can
accommodate the maximum number of client requests with the least use of bandwidth. We propose a
Dynamic Multi Path Finder (DMPF) algorithm in our previous work [14] to forward all requested SVC
layers of each client on a different path in a network.

DASH Server

DASH Client

SDN Controller

N1

N2

N5

N6

N3

N4

N7

Figure 4. Using Multi-path Transmission Control Protocol (TCP) in a Software Defined Networking
(SDN) environment.
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4. System Model

Using multi-path TCP in an SDN environment, this section provides for the simplified operation
of the SVC integrated into DASH. First, we provide a brief description of the DMPF Scheduler Module
and its components in the context of SDN. This is followed by a detailed description of the working of
the DMPF Scheduler Module, its processing and forwarding modes with an example.

4.1. DMPF Scheduler Module

DMPF Scheduler Module (DSM) runs as an application over the SDN controller. This allows the
DASH clients to stream adaptively over HTTP. In this research study, we assume that DASH client
requests are provided by local HTTP media servers. In Figure 5, we provide a brief description
of the operation of the proposed approach and also illustrate the three-layer SDN architecture
model containing DSM. DSM considers the received requests and available network resources,
for example, link bandwidth, to determine an optimal solution. The DSM consists of three components:
the request analyzer, resource monitor, and flow setup component.

Figure 5. Dynamic Multi Path Finder (DMPF) Scheduler Module in SDN three layered architecture.

4.1.1. Request Analyzer

SDN controller forwards the receiving DASH client request to the Request Analyzer
Component (RAC). RAC collects the received requests from the DASH clients and performs some
pre-processing on the collected requests to prepare them as an input parameter for the DMPF scheduler.
RAC gives important meta-data on the video files in DASH servers. The meta-data includes the
server list, file segments stored, layers, and their properties, such as each layer size and bit rate.
In our work, we consider only the bit rate of each SVC layer.

4.1.2. Resource Monitor

Let’s define graph G = (V, E) before describing the Resource Monitor Component (RMC).
Where V is the set of DASH clients, and HTTP-media servers; and set E represents the edges of G.
RMC uses RESTful APIs to obtain the available bandwidth of the links from the SDN controller.
The measured values are stored in a two-dimensional array B, in which Bij indicates the available
bandwidth between i and j ∈ V. The connectivity among DASH clients and HTTP-media servers
can easily be inferred from B. In fact, this component constructs graph G = (V, E) and the available
bandwidth among the nodes in V.

4.2. DMPF Scheduler

The DMPF scheduler (DS) is at the core of the DMPF scheduler Module (DSM) because it is
responsible to run algorithms. DS collects the buffered requests from the Request Analyzer component
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(RAC) and current network status from the Resource Monitor Component (RMC). The DS selects
a mode for processing and forwarding of requests. When processing requests, DS can process
requests in allLayer or layerWise mode. The DS can forward requests on a singlePath or multiPath
in the request forwarding mode. First, we explain the DS request processing modes. During allLayer
request processing mode, the scheduler accommodates all SVC layers of the current client request and
then accommodates all SVC layers of the next client request. In layerWise request processing mode,
the scheduler incrementally accommodates the SVC layers of each client request. We explain the DS
request processing modes, allLayer, and layerWise with the help of Figure 6.

Figure 6. DMPF scheduler request processing modes.

4.2.1. DMPF Scheduler Processing Modes

In Figure 6, we have two client requests Ri and Rj. Each client request demands multiple
SVC layers. The clients decide the requirement of multiple layers after looking at their playback and
network bandwidth capacity. The client Ri requests two SVC layers BL0 and EL1, while client Rj

requests three SVC layers, BL0, EL1, and EL2. If the DS is configured to be in allLayer processing mode,
then it takes the request Ri and accommodates all of its layers and then processes the next request Rj.
If the DS is configured to be in layerWise request processing mode, then the DS processes the base layer
(BL0) of Ri and Rj first. Next, the DS processes the EL1 of Ri and Rj. Since Ri does not contain EL2 the
DS in layerWise processing mode processes request Rj EL2.

4.2.2. DMPF Scheduler Forwarding Modes

Now we are going to describe the DS request forwarding modes. In the request forwarding mode,
the DS can forward all the SVC layers of the request on a singlePath or each SVC layer on a multiPath.
If the DS is configured to be in the singlePath mode, all the SVC layers of the request will be transferred
to the same path. If the DS is configured to be in multiPath mode, the DS will send all the requested SVC
layers of the client to different paths. When sending a request on a different path in multiPath mode,
we assume that the path is at least one edge different. The forwarding modes of the DS are described in
detail in Figure 4. Figure 4 shows a network topology where one node acts as a DASH client and another
acts as a DASH server. The SDN controller has a view of the entire topology of the network. There is a
possibility of multiple paths that exist between the DASH client and the DASH server. We use Multipath
TCP (MPTCP) to use these multiple paths and send SVC layers on different paths. MPTCP manages
multiple sub-flows which are transferred via multiple paths between the DASH client and the DASH
server. Besides, if DASH client requests three SVC layers, that is, one BL and two EL(s) of a video,
the controller executes the proposed Dynamic Multi Path Finder (DMPF) algorithm. DMPF algorithm
finds three paths and allows the DASH client to create three multi-path TCP sub-flows with the DASH
server. Figure 4 depicts the different paths between the DASH client and the DASH server as black
dotted, red dashed and green dotted-dashed lines. However, the baseline algorithm finds only one path
and transmits all SVC layers on it. Baseline and DMPF algorithm use the Dijkstra’s algorithm to find
paths between the DASH client and the DASH server.
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5. Problem Formulation: Mathematical Model and Algorithm

Now, we provide a simple analysis of the lowerbound of the required bandwidth on the links
adjacent to a server. For simplicity, we first define a few notations.

• Let S = {0, 1, 2, . . . , s− 1} be the set of s DASH Servers.
• Let E be the set of edges in the network.
• Let R = {0, 1, 2, . . . , r− 1} be the set of r requests.
• Let L = {0, 1, 2, . . . , l − 1} be the set of l layers. 0 means the base layer and 1 means the

enhancemenet layer 1, and so forth.
• Let Q be the set of requests to the servers S.
• Let Qi be the set of requests to a server i
• Let Qe be the set of requests going through an edge e
• Let Ce be the capacity of a link e
• Let fq,k be the required bandwidth of a request q for the layer k. For example, if a request 0 needs

layers only up to 2, then the bandwidth of the layers higher than 2 is 0 such as f0,3 = 0.
• Let bq,k be the flag having value of 0 or 1. When the layer k of a request q is accepted, bq,k = 1.

Otherwise, bq,k = 0. It should be noted that for any k, if bq,k = 0, then bq,k+1 = 0.

• Let di be the degree of a server i.

With this notation, we can formulate the objective of this problem as follows

max ∑q∈Q ∑k∈L bq,k (1)

s.t ∑q∈Qe ∑k∈L fq,kbq,k ≤ Ce, e ∈ E (2)

bq,k+1 = 0, k ∈ {k|bq,k = 0} q ∈ Q, k ∈ L. (3)

Basically, we want to maximize the number of layers accepted to the network with the link
capacity constraint (2) and the SVC layer constraint (3). Thus, for the given set of queries Q, we need
to decide which queries to accept upto which layers.

Intuitively, the bottleneck links are the links adjacent to the servers. We can easily compute the
amount of bandwith needed for a server i.

Bi = ∑
q∈Qi

∑
k∈L

fq,kbq,k. (4)

The worst case is that all the requests in Qi need to use a specific link of a server i.Then, the required
bandwith is Bi, which is likely to be higher than the bandwidth of the link. The best case is when the
traffic is distributed evenly to all the links of the server. Then, each link has the following amount of
traffic.

Avg(Bi) =
∑q∈Qi ∑k∈L fq,kbq,k

di
. (5)

Equation (5) can be written in a different way as follows.

Avg(Bi) =
∑k∈L ∑q∈Qi

fq,kbq,k

di
. (6)

Basically, Equation (5) roughly represents the processing mode of allLayer. For a request q,
we accept all the layers of the request q. On the other hand Equation (6) represents the processing
mode of layerWise. For a layer k, we accept the layer k from all the requests.

Actually, the total required bandwith can be approximated as f × r, where f is the average
required bandwidth of a request and r is the number of requests. This is simply the multiplication of
the average bandwith and the number of requests. A lower bound of the required bandwidth to the
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links adjacent to the servers can be computed as follows. We assume that the requests are distributed
evenly to each of s servers. Thus each server needs f×r

s . Finally, each server has d links. In a best case,
the traffic is evenly distributed to each link. Thus, we have

Average Bandwidth =
f × r
s× d

(7)

The average bandwidth given in (7) is can be considered as the lower bound of the
required bandwidth. In practice, some links may need higher bandwidth and other links may
need lower bandwidth. However, this can be a good indicator to determine how many requests
can be accepted. The detailed algorithm is described in Algorithm 1 by using the notations in Table. 1.

Table 1. Notations.

Notation Description

V The set of OF switches, DASH clients, and HTTP-media servers
D The set of DASH clients
S The set of HTTP-media servers
mc The desirable maximum video quality determined by client c ∈ D
B, bij B is a two-dimensional array where bij shows the available bandwidth between i and j ∈ V
N Total number of nodes in a topology
src A dash client D node in Graph G
dest A server node S in Graph G
Psrc→dest Path from src to dest

Algorithm 1 Dynamic Multipath Finder (DMPF) Core.

1: Input: G, src, dest, N
2: Output: Ŝ
3: N: Total number of requested layers
4: Ŝ→ φ // To store N paths for N layers from src to dest
5: Psrc→dest = 0 // To save a path from src to dest
6: while Psrc→dest == NULL do

7: Psrc→dest = Dijkstra(src, dest, G)
8: if Psrc→dest FOUND then

9: Check Shortest Path Edges Capacity
10: if Psrc→dest edge(s) are overUtilized then

11: FIND overUtilized edge of Psrc→dest
12: REMOVE overUtilized edge(s) of Psrc→dest from G
13: Psrc→dest == NULL
14: else

15: ˆS(l) ← Psrc→dest
16: REMOVE edges of Psrc→dest from G
17: UPDATE path counter value l ++
18: UPDATE G
19: LOG Request Accepted
20: else

21: LOG Request Rejected
22: RETURN Psrc→dest

6. Evaluation

We analyze the performance of the proposed algorithms in this section by examining different
parameters that is, number of different layers accepted/rejected, bandwidth utilization, and so forth.
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We create a network model of client and servers for evaluation. The model includes a topology
of a hundred (100) nodes with two hundred (200) edges. The average topology degree is four (4).
The topology is generated using BRITE topology generator [31]. In the evaluation model, ten (10)
nodes act as a server, and remaining nodes act as a client. The bandwidth for the client is ten megabits
per second (Mbps) and for the servers, its hundred Mbps. All client media requests are randomly
generated which includes the selection of video resolution and its layers. We use four SVC layers with
different resolutions in SVC-DASH based streaming. The SVC layers include one base layer (BL0) and
three enhancement layers (EL1, EL2, EL3). The bit-rate recommendations for SVC layers with different
resolutions from 1920 × 1080 to 640 × 360, are shown in Table 2, which are based on Reference [17].
For extensive analysis, five typologies are generated for the simulations.

Table 2. Scalable Video Coding (SVC) layers bit-rate recommendations derived from industry solutions.

SVC Layers Bitrate [kbps]

Resolution Base Layer EL1 EL2 EL3

1920× 1080 4000 1500 1700 3200

1280× 720 1500 1250 2050 3000

960× 540 1200 775 725 800

640× 360 600 390 510 575

We evaluate our algorithms with the combination of DS modes that is, processing and forwarding.
The two DS modes outcome can be analyzed under four categories as follows:

• allLayers-multiPath: Send all the client requested SVC layers on different paths.
• allLayers-singlePath: Send all the client requested SVC layers on a single path.
• layerWise-multiPath: Send each client requested SVC layers on a different path.
• layerWise-singlePath: Send each client requested SVC layers on a single path.

Now we compare the number of layers accepted by DS with the combination of processing
and forwarding modes. It is evident from Figure 7, that scheduler in allLayer processing mode
accommodates maximum number of layers as compared to scheduler in layerWise processing mode.
Moreover, it also reveals that the number of requests accommodated in singlePath forwarding mode is
higher as compared to multiPath forwarding mode.
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Figure 7. SVC Layers accepted.

We further analyze our DS by looking into the total number of layers rejected in Figure 8. It can be
clearly seen that the scheduler in singlePath forwarding mode rejects less number of layers as compared
to the scheduler in multiPath forwarding mode. However, Figures 7 and 8 do not provide the complete
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picture of individual layer types rejected, therefore we look briefly at Figures 9 and 10, that provide
statistics on types of layers rejected.
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Figure 8. SVC Layers rejected.
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Figure 9. Base Layer rejected.
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Figure 10. Enhancement Layer rejected.

Figure 9 shows the scheduler in allLayer processing mode rejects base layers. Moreover, none of
the base layers are rejected when the scheduler is in layerWise processing mode. If a base layer is
rejected the remaining layers are not accommodated therefore, a base layer rejection is equivalent
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to a client request rejection. The base layers are not rejected in layerWise processing mode because
the scheduler incrementally accommodates all client requests that is, the base layer of all clients are
accepted first, then enhancement layer one, and so on. However, the number of rejected requests
for enhancement layers bumps up, for the scheduler in layerWise processing mode, as shown in the
Figure 10, which is intuitive. The reason for this is because the maximum number of base layers have
already saturated the server links for the scheduler in layerWise processing mode.

While looking at the results from Figures 9 and 10 we can conclude that the scheduler with allLayers
processing mode rejects the request of new clients at the cost of accommodating maximum request
layers of clients it has accepted. Therefore, assigning priority to the client requests that are already
accepted. Moreover, the scheduler in layerWise processing mode gives priority to accepting a maximum
number of client requests. In simpler words the scheduler in allLayers processing mode accommodates
fewer client requests as compared to the scheduler in layerWise mode, but provides the accepted
clients with a maximum number of SVC layers. Therefore, allLayers results in higher video quality
for each client. However, the scheduler in layerWise processing mode accommodates the maximum
number of client requests as compared to the scheduler in allLayers mode, but provides the accepted
clients with a minimum number of SVC layers. Therefore, the scheduler in layerWise results in basic
video quality for each client. But what makes the analysis interesting is the bandwidth consumption of
scheduler configured in different forwarding and processing modes, as seen in Figure 11.

 0

 20

 40

 60

 80

 100

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

6,
00

0

7,
00

0

8,
00

0

S
e

rv
e

r 
N

e
tw

o
rk

 B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n
 (

%
) 

Number of Requests

allLayers-multiPath
allLayers-singlePath
layerWise-multiPath

layerWise-singlePath

Figure 11. Server network bandwidth utilization.

Figure 11 shows the network bandwidth utilization for the scheduler configured with different
processing and forwarding modes. Scheduler with allLayer processing mode accommodates the
maximum number of layers as seen from previous results. However, the bandwidth utilization for
scheduler in allLayer and layerWise processing mode is similar. The reason for similar bandwidth is
due to the forwarding modes of the scheduler. When the scheduler is in singlePath forwarding
mode all requests are placed on one path depending on the processing mode of the scheduler.
However, when the scheduler is in multiPath forwarding mode all requests are placed multiple
paths depending on the processing mode of the scheduler. when the scheduler is in multiPath
forwarding mode, the first path found is usually the shortest path. Finding another path usually results
in a longer path, therefore more bandwidth of links is utilized. We can also see in Figure 11 that around
eighty percent of the paths that are connected to the servers are utilized while accommodating around
five thousand requests. In order to accommodate the remaining client requests, maximum number
of requests are rejected due to the server paths being saturated. Therefore, the server paths cannot
accommodate the remaining layers of the requests. This results in sharp curve for the rejected number
of layers as seen in Figures 8–10. Therefore, we can conclude from this that the network operators can
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utilize eighty percent of the server bandwidth for accepting client requests and the remaining twenty
percent for network diagnostics, forwarding or switching.

We finally look at our last graph which shows the total number of paths found by the scheduler,
as shown in Figure 12. It is obvious that sending each SVC layer on different paths will result in finding
more number of paths.
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Figure 12. Number of paths found to accept requests.

7. Conclusions

In this work, we present a DMPF scheduler that uses multi-path TCP (MPTCP) to transmit
different Scalable Video Coding (SVC) layers, over Moving Picture Experts Group (MPEG) Dynamic
Adaptive Streaming over HTTP (DASH) standard in software defined network (SDN). The DMPF
scheduler has advanced forwarding and processing modes. The processing modes are categorized
into allLayer and layerWise. The forwarding mode consists of singlePath or multiPath.

We compare the combination of different DMPF scheduler processing and forwarding modes of
the DMPF schedular and dive deep into identifying which mode combination yields the acceptance
of the maximum number of client streaming requests and identify the trade-offs associated with
the combination. We find that allLayers-multiPath mode results in accepting the maximum number of
SVC layers after allLayers-singlePath mode. However, both of these modes do not accommodate the
maximum number of clients. Therefore, both modes focus more on providing the maximum number of
enhancement layers to each client request. Therefore, the quality of experience of the client is improved.
Moreover, layerWise-multiPath and layerWise-singlePath modes accept the maximum number of client
requests as they do not reject base layers. However, they reject enhancement layers therefore providing
each client with a basic representation of the video. We see that layerWise processing mode is slower
and more time consuming as compared to allLayer processing mode. Moreover, we also conclude that
it is wise to use eighty percent of the capacity of the paths connected to the DASH server to accept
client requests. The remaining twenty percent of the capacity can be used for network diagnostics,
forwarding and switching and so forth.
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