
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR’S THESIS

Study programme/specialisation:

 Computer Science

The autumn semester, 2022

Open / Confidential

Author:

 Liv Selle Underhaug

Supervisor at UiS:

 Rui Esteves

External supervisor:

 Dan Edvard Halvorsen

Thesis title:

 Using Agile Scrum to Develop a Containerized Asset Management System

Credits (ECTS): 20

Keywords:

Asset Management System, Agile Scrum,
Containerization, .NET, React,
Relational Database

Pages: 93

Stavanger, December 15th 2022

 ii

0.1 Abstract

This thesis describes the process of developing a pilot for an asset management system. The

purpose of this thesis is to demonstrate how to go from a problem to an implemented

solution. The problem is solved by using Agile Scrum, as a project management framework.

Firstly, I have identified the requirements and features of a potential solution. Secondly, I

have created a system architecture specification on how to implement the potential solution.

Finally, I have implemented a full stack application which enables the IT department of

Bouvet to register (assets) and track assets (loans) in a dynamic way. The solution involves a

user interface with a dashboard of the company’s assets and active loans. Moreover,

functionalities to perform operations involving the assets. The frontend communicates with

the backend through a REST API. The backend handles and processes the requests received

from the frontend and communicates with the database. This thesis focusses on how to create

maintainable code with a seamless handover in mind.

Link to source code and documentation on GitHub:

https://github.com/livun/bouvet-asset-hub

Link to project on GitHub Projects:

https://github.com/users/livun/projects/1

https://github.com/livun/bouvet-asset-hub
https://github.com/users/livun/projects/1

 iii

0.2 Acknowledgements

First, I would like to thank my supervisor Rui Esteves, for valuable guidance and expertise

throughout the thesis project.

In addition, I would also like to thank Bouvet for giving me the opportunity to develop and

write my thesis for them. I especially want to thank my supervisor at Bouvet, Dan Edvard

Halvorsen, for valuable advice and support.

 iv

Table of Contents
0.1 Abstract .. ii
0.2 Acknowledgements .. iii
0.3 List of Acronyms and Abbreviations .. vi

1 Introduction .. 1

1.1 Problem .. 1

1.2 About Bouvet ... 1

1.3 Goal .. 2

1.4 Outline of thesis ... 3

2 Background and Theory ... 4

2.1 Technology and Libraries .. 4
2.1.1 Frontend .. 4
2.1.2 Backend .. 6
2.1.3 Database ... 6
2.1.4 Azure Active Directory .. 7
2.1.5 Containerization ... 7

2.2 Agile Scrum ... 8
2.2.1 Theory... 8
2.2.2 Implementation of Agile Scrum ... 10

2.3 Design Principles and Patterns ... 11
2.3.1 Maintainability, Coupling and Cohesion .. 11
2.3.2 Object-Oriented Programming and Functional Programming........................ 11
2.3.3 SOLID .. 12
2.3.4 Design Patterns ... 12

3 Experiment ... 14

3.1 Business Case Specification .. 14
3.1.1 Preparatory Work ... 14
3.1.2 The Planning Phases ... 15
3.1.3 Features and User stories .. 16

3.2 Design, Architecture, and Infrastructure .. 19
3.2.1 Architecture .. 19
3.2.2 Presentation Tier ... 21
3.2.3 Application Tier .. 23
3.2.4 Data Tier ... 24
3.2.5 Security ... 25
3.2.6 Deployment .. 26

3.3 Implementation .. 28
3.3.1 Summary of the Features Implemented .. 30

 v

3.3.2 Backend Development .. 31
3.3.3 Frontend Development ... 47
3.3.4 Database Implementation ... 71
3.3.5 Containerizing the Solution .. 72
3.3.6 Summary of the Pilot .. 75

4 Results ... 76

4.1 Assessing the Use of Agile Scrum and GitHub Projects 76

4.2 Assessing the Pilot ... 77
4.2.1 Limitations and Shortcomings of Implementation ... 77
4.2.2 Assessment of the Implementation ... 80

5 Conclusion .. 81

References .. 82

 vi

0.3 List of Acronyms and Abbreviations

API Application Programming Interface

Azure AD Azure Active Directory

C# Pronounced “See Sharp”

CSS Cascading Style Sheets

EF Core Entity Framework Core

FP Functional Programming

HTML HyperText Markup Language

JS JavaScript

LINQ Language-Integrated Query (C#)

MSSQL Microsoft SQL

OOP Object-Oriented Programming

ORM Object-Relational Mapper

REST Representational State Transfer

SPA Single-Page Application

SQL Structured Query Language

TS TypeScript

TSQ TanStack Query

UI User Interface

 1

1 Introduction

In this chapter I will begin with introducing the problem I was challenged to solve by Bouvet.

I will also introduce the company, relevant work, and the defined goals of the thesis.

1.1 Problem

During the Covid-19 pandemic, Bouvet lent out a significant part of its IT-equipment for

home office use. This resulted in a lack of control and overview on where the equipment was.

There was no procedure or controls for tracking the equipment that was lent out when the

pandemic broke. When the time came for the employees to return to the office, a lot of

equipment was missing. As a result of this, the company identified a need for a better system

that keeps track of its equipment. The pandemic caused extraordinary circumstances and does

not represent the usual way of lending out equipment, but it recognised that the existing

system did not work.

The existing system consists of manually updated Excel spreadsheets. When new equipment

arrives to the office, they must be added to the spreadsheet. When equipment is lent out to

employees, entries are made in the same spreadsheet. This process especially relates to

computers, other types of equipment are not being tracked systematically. Bouvet

emphasized that this system is inefficient, time consuming, manually intensive and does not

include all kind of equipment.

In summary, the problem I am trying to solve, is: “How can Bouvet keep better track of its

equipment?”

1.2 About Bouvet

Bouvet is a Norwegian consultant company, established in 2002, that delivers digital

solutions to its clients. With more than 1800 employees in 17 offices, in Norway and Sweden,

the solutions involve technology, design, communication and project management.

Bouvet Felles assists the Bouvet group with several in-house services. Such as the internal IT

department, which is responsible for all things related to the operation and security of

Bouvet’s environments. The IT department is primarily the client and user of the solution

trying to solve the problem identified in the previous section. Bouvet Felles also has stakes in

the solution, thus making them the client as well. In the next paragraph, I will present why

they have interests in the solution.

 2

Starting from January 1, 2023, Bouvet will implement a new Enterprise Resource Planning

(ERP) system called Xledger. Initially, the system will concern salary and accounting, but it

will also be relevant for my solution. In trying to solve the asset tracking problem, Bouvet

Felles wants an integration towards Xledger, that notifies it when an asset is connected to an

employee. This feature is relevant for cost accounting and saves Bouvet Felles from extra

manual work.

1.3 Goal

The goal of this thesis is to develop a solution for the Bouvet’s IT department, to keep track

of its assets and ease their workload. The solution must reduce the amount of manual work.

To prove this solution, a functional pilot should be implemented. This pilot must be designed

and implemented to allow future extension of functionalities. The project and the code must

be developed using principles that allows an efficient handover to Bouvet.

 3

1.4 Outline of thesis

- Chapter 2 contains the background and theory this thesis is based on.

- Chapter 3 contains the experiment, i.e., how the application was planned, developed,

and deployed.

- Chapter 4 contains the results of thesis.

- Chapter 5 concludes the thesis.

 4

2 Background and Theory

In this chapter I will present the background and theory relevant for this bachelor thesis. I

start by presenting some technologies and libraries that I found necessary to the development

of my application. Then, I elaborate on the theory of Agile Scrum, a framework for project

management often used when developing software. I will also go into how it is used in

project. Finally, principles of design and development are explained.

2.1 Technology and Libraries

When developing an application, there are several technological decisions to be made. For

example: which technology to use when developing the frontend and the backend, how to

store the data, how to take care of security, how the user and possible 3rd party systems

interfaces the application, and how and where the application is deployed. In this section, I

will go through the technology used, in a section 3.2, the justification of these choices will be

made.

2.1.1 Frontend

The frontend is built using the JavaScript framework React, together with libraries as

Material UI and TanStack Query. I will now elaborate on these libraries.

2.1.1.1 React and TypeScript
React1 is a free and open-source JavaScript library for building interactive component-based

user interfaces (UIs). It is one of the most frequently used web framework and it is created

and maintained by Meta, formerly known as Facebook [1]. React is written in JavaScript (JS)

but can also be used with TypeScript2 (TS). TS is a programming language created by

Microsoft. TS is built on JS and adds additional syntax to the JavaScript scripting language.

TS is a strongly and statically typed programming language. Strongly typed means that the

language has strict typing rules and does not allow unrelated types to be converted. Statically

typed implies that the language verifies and enforces the constraints of types on values [2].

All this adds type safety to code. TS comes with its own compiler and compiles to JS, thus

reducing the chances of errors and bugs at run time, catching them at build time. To generate

the boilerplate version of a React TS single-page application (SPA), one can use the

1 React documentation: https://reactjs.org/docs/getting-started.html
2 TypeScript documentation: https://www.typescriptlang.org/docs/

https://reactjs.org/docs/getting-started.html
https://www.typescriptlang.org/docs/

 5

Create React App toolchain. A SPA loads a single web document with all necessary assets

that are required for the application to run, therefore interactions with the page do not require

loading new pages from the server. [3]–[6]

2.1.1.2 MUI – Material UI and MUI X
Material UI3 is a suite of user interface (UI) tools to help create UIs fast. MUI is an

open-source library of free and ready to use React components that implements Google’s

Material Design. Material Design is a design system. Mui X is a library of advance

components with more complex use cases. [7]–[10]

A React component is a reusable piece of code, like a JavaScript function, only it returns

HTML. With components, we can split the UI into independent pieces [11].

2.1.1.3 TanStack Query and Axios
TanStack Query4 is an open-source library that handles state management, caching and data

fetching [12]. TanStack Query can be used together with Axios5, which is an open-source

HTTP client library based on promises. It is used for sending asynchronous HTTP request to

REST endpoints. [13]

HTTP stands for Hyper Text Transfer Protocol and is a client-server protocol for fetching

resources. An HTTP request is a message that contains a method (GET, POST, PUT or

DELETE), a path, headers, a protocol version and possibly a body with data. An HTTP

response contains a status code, which indicates a successful response or not. Furthermore, a

status message, protocol version, headers, and possibly a body with the requested data.

HTTPS is an encrypted version of HTTP, where the S stand for Secure. [14], [15]

3 MUI documentation: https://mui.com/
4 TanStack Query documentation: https://tanstack.com/query/v4/docs/overview
5 Axios documentation: https://axios-http.com/docs/intro

https://mui.com/
https://tanstack.com/query/v4/docs/overview
https://axios-http.com/docs/intro

 6

2.1.2 Backend

The backend is developed using the ASP.NET Core 6 Web API complemented with Entity

Framework Core. I will now present these technologies.

2.1.2.1 ASP.NET Core 6 Web API
The ASP.NET Core 6 Web API6 is a framework for building HTTP services. It is a platform

for building RESTful applications on the .Net Framework with the programming language

C#. A RESTful API uses HTTP request to access and use data, and follows the architectural

constraints of Representational State Transfer (REST). REST provides standards between

physically separated systems, for example a client and a server. [16]–[19]

2.1.2.2 Entity Framework Core
Entity Framework Core7 (EF Core) serves as an Object-Relational Mapper (ORM) which

enables working with a database using .NET objects and Language-Integrated Query

(LINQ). LINQ is querying capabilities in C#. EF Core simplifies the interaction between the

backend application and the database. [20], [21]

2.1.3 Database

Microsoft SQL8 (MSSQL) is a relational database management system. As a database, the

primary functionality of MSSQL is to store and retrieve data [22]. The Structure Query

Language (SQL) is the standard language used to manage a relational database and the data

stored in them [23]. A relational database is a type of database that is optimised for storing

data organised following the relational model. The relational model is developed by Edgar F.

Codd and based on the mathematical set theory. The word relation can be used synonymously

with table. The columns describe the relation’s attributes, and each column can only have

values from one type, such as an integer, string, or a date etc. In the relational model, the

columns order has no effect on the meaning of the data. The row of data in a table is an

instance of a relation. There can only be one value at the intersection of a column and a row,

there are no duplicate rows, and a primary key is a value or combination of values that

6 ASP.NET Core 6 Web API documentation: https://learn.microsoft.com/en-us/aspnet/core/web-
api/?view=aspnetcore-6.0
7 Entity Framework Core documentation: https://learn.microsoft.com/en-us/ef/
8 Microsoft SQL documentation: https://learn.microsoft.com/en-us/sql/?view=sql-server-ver16

https://learn.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/ef/
https://learn.microsoft.com/en-us/sql/?view=sql-server-ver16

 7

uniquely identifies each row, and thus make the row unique. As with the columns, the order

of row is insignificant. [24]

One of the advantages of using the relational model is the use of normalization.

“Normalization is a formal process for deciding which attributes should be grouped together

in a relation” [25, p. 184]. A major purpose of normalization is to reduces data redundancy

[25].

2.1.4 Azure Active Directory

Azure Active Directory9 (Azure AD) is a cloud-based identity and access management

service. It is used to manage authentication (confirmation of identity) and authorization

(permission to access) of users and groups to services and resources. [26]

2.1.5 Containerization

Containerization provides the possibility to run an application on any environment or

infrastructure, independent of host operating system, and does not rely on what is currently

installed on host. A container contains libraries, frameworks, and dependencies necessary to

run the application, as it is a means of packing together software code. [27]

Docker10 is an open-source technology and it is the default container format, providing an

open standard for packing and distributing containerized applications. A Docker Image is a

template with instructions for creating a Docker Container at runtime. Containers are

runnable instances of an image. [28], [29]

9 Azure Active Directory documentation: https://learn.microsoft.com/en-us/azure/active-directory/
10 Docker documentation: https://docs.docker.com/

https://learn.microsoft.com/en-us/azure/active-directory/
https://docs.docker.com/

 8

2.2 Agile Scrum

Agile Scrum is a framework for project management, often used when developing software. I

will now present a summary of one configuration of Agile Scrum according to Vanderjack

[30], and following with an explanation of how it is used in this project.

2.2.1 Theory

One can identify three phases in Agile Scrum. The first and second phase take place at the

start of a new project and can be seen as planning phases. The third phase is an iteration of

steps that are repeated throughout the life of the project and called the agile iteration cycle.

Vanderjack [30] also recognises two distinct roles, specifically the Product Owner (PO) and

the Scrum Master (SM). The PO represents the client who needs a solution, and the SM leads

the developing team through the Agile Scrum phases.

At the first phase of Agile Scrum, the PO and SM work closely to identify the problem and

needs from a solution. In this phase scope is defined and ideas are brainstormed to solve the

problem. The SM and team capture and refines what is requested from the project. These

requirements are written in so-called user stories. A user story is an informal narrative of a

feature from the perspective of an end-user.

At the second phase of Agile Scrum, the backlog of user stories is processed, and the user

stories are decomposed into smaller and more specific user stories, and eventually broken up

into concrete tasks. A task provides information on what to create, and sometimes time

estimates on how long it will take to finish the specific task.

When the two first phases are completed, the last and iterative phase can begin. At this point

the developing of a solution starts. One iteration, also called a sprint, is set to a defined time

frame depending on the size and scope of the project. Each sprint consists of these steps:

- At the first step, the sprint is planned, thus choosing and prioritizing tasks from the

project backlog into a sprint backlog.

- At the second step, the tasks in the sprint backlog are carried out. Designing,

developing, and unit-testing take place.

- At the third step, environment testing happens, thus testing code in combination with

other code modules or even the entire system.

- At the fourth step, the sprint deliverables are demonstrated, to the team and

occasionally the PO.

 9

- At the fifth step, the sprint tasks are declared done by some predefined rules and code

is moved to production. When the code is in production, it is available for people

outside the team. If bugs are identified, they will become new tasks and added to the

backlog.

- At the sixth and last step the sprint retrospective is carried out. The team evaluates

what went well working during the sprint and what areas need to be improved.

Moving on after the iteration steps are completed, the team will start a new iteration with the

evaluation from the retrospective. Alternatively, the project is declared finished. [30]

 10

2.2.2 Implementation of Agile Scrum

I used Agile Scrum as an instrument to carry out the project and fulfil the solution to the

problem presented in section 1.1. My work was integrated in a project where other people

contributed. In the beginning of the project, my technical supervisor Dan Edvard Halvorsen’s

role was PO, where he facilitated the first meetings with the client, Bouvet’s IT department.

Throughout the project I took on the various roles identified in Agile Scrum. My role was PO

when I communicated with the client without Dan. When I facilitated and planned the

project, thus carried out the two first planning phases recognized in previous section, I took

the role as SM. When going through the agile iteration cycle, I had the role as developer.

I used GitHub Projects as a tool for planning and tracking the work of the project. Among its

features, it has a Kanban board. A Kanban board visually shows the status of the work at the

various stages of the project execution. GitHub Projects complement the Agile Scrum way of

developing, allowing the user to add the features and tasks to the Kanban board backlog

stage. More details on how GitHub projects and the last two phases of Agile Scrum were

carried out, will be presented in the third chapter, Experiment.

 11

2.3 Design Principles and Patterns

To develop robust, testable, and maintainable software in a constantly changing environment,

there exist a set of design principles and patterns, to avoid common problems. In this section,

I will first define what is maintainability and some metrics that can be used to uphold the

maintainability. Secondly, I will introduce two paradigms of programming, which are

Object-Oriented Programming and Functional Programming. Thirdly, I will describe the

object-oriented design principles, also known by the acronym SOLID. Lastly, I am going to

introduces a few design patterns I used in this project.

2.3.1 Maintainability, Coupling and Cohesion

Maintainability is defined as “The ease with which a software system or component can be

modified to correct faults, improve performance or other attributes, or adapt to a changed

environment” [31, p. 46].

Low coupling and high cohesion are two metrics that indicates that software is maintainable.

Coupling concerns how modules depend on each other. A module is a code section, thus a

part of a program that is assigned specified functionality. Low coupling means a low degree

of dependency, and high coupling mean high degree of dependency. In code on should strive

for low coupling, thus changes to a module will decrease the impact on other modules.

Cohesion measures the level of how related the element in a module are. The aim is to

achieve high cohesion, which ensures that related code is close to each other. [32], [33]

2.3.2 Object-Oriented Programming and Functional Programming

C# is a type-safe and essentially an object-oriented programming language. Object-Oriented

Programming (OOP) is a software modelling paradigm that is based on objects that has

properties and methods. The property of an object describes it characteristics, and the

methods describe its behaviour. Objects can be used to represent real-world items and

concepts, that interacts to solve problems. A class is a template that defines the objects that

share the same set of properties and methods. Classes are used to instantiate and create an

object. [34], [35]

Functional Programming (FP), as opposed to OOP, is based upon functions, rather than

objects. The software is built upon applying and composing functions. Functions promotes

immutability, meaning the objects state cannot change after its created. There are several

 12

types of function, some of them are, pure functions, where output depends solely on the input

and there are no side effects. A side effect means that the function modifies the context

outside of itself. There are higher-order functions that take other functions as input, and

monads returns a normal value as a wrapped value. [36]

These two ways of programming does not necessarily exclude one another, they can coexist,

and thus also complement each other. The C# language supports functional programming by

using for example LINQ technologies, which is a form of functional programming, and

libraries like language-ext that provides functional programming capabilities to C#. [35],

[37], [38]

2.3.3 SOLID

The SOLID design principles of object-oriented software development were first introduced

by Robert C. Martin in “Design Principles and Design Patterns” [39]. These principles are

used to create simple, understandable, flexible, reliable, and evolvable software [40].

First, S – The Single Responsibility Principle, a class should never have more than one reason

to change. Thus, only have one purpose and thus one responsibility. Second, O – The Open

Close Principle, software entities, classes, modules, and function, should be open for

extension, but closed for modification. Third, L – The Liskov Substitution Principle, “derived

classes should be substitutable for their base classes” [39, p. 8], meaning that a functions that

use a base class, must be able to use a derived instance of a base class. Fourth, I – The

Interface Segregation Principle, client interfaces should be specific, so they do not depend on

interfaces they do not use. Fifth and last principle, D – The Dependency Inversion Principle,

dependencies should target interfaces or abstract classes, not a concrete class. [39]–[41]

2.3.4 Design Patterns

“Design patterns is a general reusable solutions that can be applied to commonly occurring

problems” [35, p. 18]. The mediator pattern, is a behavioural pattern that “defines an object

that encapsulates how a set of objects interacts, reducing their dependency on one another”

[35, p. 65]. It is used for decoupling objects, as the mediator works as a message broker and

the objects only communicate through the mediator object.

In this project I have used the MediatR package, which is a simple mediator implementation

in .NET. This implementation supports request messages, which is dispatched to a single

 13

handler, and notification messages which is dispatched to multiple handlers. The handler

receives and solves the message. [42]

The dependency injection (DI) pattern makes sure modules receives their dependencies,

without needing to know how to create the objects that they depend on. This removes hard-

coded dependencies and leads to a lower degree of coupling in code. DI is accomplished with

creating high-level abstractions of an object, as an interface or a base class. The dependency

must be registered in a service container, which is usually provided by the framework.

Finally, one can inject the service into the class constructor where the object is going to be

used. DI helps developers to uphold two of SOLID’s principles. The Dependency Inversion

Principle, which is about classes being dependent on an abstraction, and the Single

Responsibility Principle, which ensures that the object is only responsible for itself. [43],

[44]

 14

3 Experiment

This chapter will go into details of how the application was planned, developed, and

deployed. First, the business case specification is presented, where the planification process

took place. Next, the design and architecture are described together with the justification of

choices that were made. Lastly, the implementation of application is presented.

3.1 Business Case Specification

Bouvet’s problem in short; keeping track of its assets, was the starting point of creating a

business case specification. From this basis, the steps that were made to undertake this were

first preparatory work to aid problem specification and then the two first phases from Agile

Scrum, identified in section 2.2.2.

3.1.1 Preparatory Work

To prepare for the first phase of Agile Scrum, specifically to identify the problem and the

requirements of a solution, I did research on topics like asset management and inventory

tracking system. The reason of doing this was to get an idea of what keeping track of assets

could entail. I did this to be better prepared for the conversation with the client and to create a

questionnaire to serve as a helper for gaining knowledge on the client’s essential needs.

I focused on two different asset management systems. The first was Asset Panda11 and the

second, an open-source application called Snipe-It12. These two systems gave me input and

knowledge on the concept of asset management. I identified relevant keywords from this

knowledge, that I could use to continue my work. The keywords were dashboard, tagging,

check-in, check-out, categorization, and access control. Based on these keywords I created a

questionnaire with a proposed list of features and explanations of them, that could be a part of

a solution. The questionnaire was used to start the first conversation with the client.

11 https://www.assetpanda.com/
12 https://snipeitapp.com/

https://www.assetpanda.com/
https://snipeitapp.com/

 15

3.1.2 The Planning Phases

Based on the questionnaire, I conducted the first meeting with the client. My role at this point

were PO. My goal was to identify the problem and requirements. The client elaborated on the

challenges of asset management, thus identifying the features needed from the solution. The

key requirements were:

- An automized and streamlined registration of new assets.

- An automized and streamlined lending process.

- A dashboard to manage it all.

- Bonus: An integration towards the external system notifying when assets is connected

to an employee

As mentioned before, the currently existing solution is to manually add new assets to an

Excel spreadsheet, without any other software to automatically track the assets. Based on

these requirements I took the role as SM and identified the features needed to meet these

requirements and after this was done, the second phase of Agile Scrum took place. I wrote

out the user stories, I created sequence diagrams to visualize the features and user stories, and

based on these diagrams the backlog on GitHub Projects was filled with tasks. Fig. 6 displays

an example of a sequence diagram.

To summarize the scrum process at this stage, I have identified a list of requirements and

consequent backlog. Due to the extension of the backlog, I planned to implement a subset

that could work as a functional pilot to demo the concept as part of my academical work.

However, this remaining backlog will be useful for Bouvet in the future at a project

handover.

 16

3.1.3 Features and User stories

In this section I am going to present the features recognized from the requirements mentioned

in the previous section. I have decomposed each feature into one or several user stories. In

the “/docs” directory at GitHub13, there are sequence diagrams linked to the features and user

stories. A user in this scenario is an administrator and user of the asset management solution I

am implementing.

3.1.3.1 Feature: Add new asset
- As a user, I want to do a barcode scan of the serial number of an asset, identify the

serial number, then generate a QR code, print out a label, which I can stick on the

asset, to make it easier to manage that asset.

- As a user, I want to add assets without serial number, with generating a unique id and

QR-code and stick to asset, to make it easier to manage that asset.

3.1.3.2 Feature: View all assets in the system
- As a user, I would like to view all assets in a dashboard, to get an overview of my

assets.

- As a user, I want to see all assets based on category, to easier identify assets in

dashboard.

3.1.3.3 Feature: View a single asset in the system
- As a user, I would like to see a single asset with all its information, to get more

knowledge about the asset.

- As a user, I would like to see who has asset if it is being lent out.

3.1.3.4 Feature: Scan asset and read information
- As a user, I want to scan the asset's QR-code and view its information, to have easy

access to information.

3.1.3.5 Feature: Update and add information to one or more assets at the same time
- As a user, I want to change and add information to an asset.

- As a user, I want to change status on one or multiple assets at once.

- As a user, I want to scan the resource and do simple updates on asset.

13 https://github.com/livun/bouvet-asset-hub/tree/dev/docs

https://github.com/livun/bouvet-asset-hub/tree/dev/docs

 17

3.1.3.6 Feature: Delete a "wrongly added" asset
- As a user, I want to delete assets created by mistake, to make sure assets table is not

populated with unnecessary items.

3.1.3.7 Feature: Deprecate an asset
- As a user, I want to change the status of the asset to be unavailable/not usable, but

still have the asset in the system. I.e., the status should be changed from something to

"discontinued".

3.1.3.8 Feature: Scan asset and lend out to employee
- As a user, I want to scan the asset, choose new loan and a time span, and lend out to

employee.

- As a user, I want to scan the asset, choose “no time limit” and lend out to employee.

- As a user, when an asset is lent out, I want the system to send a notification to

external system to mark the expense on employee, to reduce manual work.

- As a user I want to extend time of loan, to meet employees needs if requested.

3.1.3.9 Feature: Scan asset and extend the loan
- As a user, I want to scan the asset and extend the loan linked to that asset.

3.1.3.10 Feature: Scan asset and hand in loan/asset
- As a user, I want to scan the asset and remove loan from loans table, so that loans

table only have “active loans”.

3.1.3.11 Feature: Add new loan
- As a user, I want to add a new loan manually from the dashboard.

3.1.3.12 Feature: Add loan to history
- As a system, I want the "finished" loan to be removed from “Loans Table” and added

to “LoanHistory Table”.

3.1.3.13 Feature: View all loans
- As a user, I want to view all loans in a table, to get an overview of loans in system.

3.1.3.14 Feature: View one loan
- As a user, I want to view a single loan from table, to see information connected to that

loan.

 18

- As a user, I want to scan an asset and see the active loan connected to asset, to get

easy access on information.

3.1.3.15 Feature: Hand in loan
- As a user, I want to hand in loan from the dashboard.

- As a user, I want to hand in loan from a single loan view.

3.1.3.16 Feature: Extend loan
- As a user, I want to extend loan from the dashboard.

- As a user, I want to extend in loan from a single loan view.

3.1.3.17 Feature: View all loans linked to employee
- As a user, I want to look up employee numbers and get a list of loans connected to

this employee, to get an overview and easier manage employees’ assets.

3.1.3.18 Feature: View loan history
- As a user, I want to see previous loans in a separate table, so that I can removed them

from loans table, but I still could track history.

3.1.3.19 Feature: Add new category
- As a user, I want to add a new category from the dashboard.

3.1.3.20 Feature: Send notification
- As a user, I want there to be an automatic email sent out to the employee when it's

time to return the asset.

3.1.3.21 Feature: Access Control
- As a system, I want the users to be authenticated and authorized to access data and

perform actions.

3.1.3.22 Feature: Notifying Xledger
- As a system, I want there to be sent of an API call to the external system, Xledger

when an employee is connected to a new asset, so that Xledger can automatically do

cost accounting.

 19

3.2 Design, Architecture, and Infrastructure

Before I started coding and implementing the features and user stories I identified during the

business case specification, I had to specify a plan for the system architecture. I will now

present this system architecture specification. Furthermore, I will present the justification for

the decisions that I made, while also assessing some alternatives.

3.2.1 Architecture

My solution follows a three-tier architecture. The first tier is a presentation tier, meaning the

user interface, where an end-user is in contact with the solution. The second is an application

tier, this is the centre of the solution, where the data from the other tiers gets processed. The

third tier is a data tier, also called the database tier, here the data involved in the application

gets managed and stored. The application tier is responsible for the communication, the

presentation tier cannot communicate with the data tier and the other way around. [45]

Fig. 1 displays the proposed architecture diagram. The presentation tier, also called the

frontend, and the application tier, also called the backend, will be deployed in Docker

Containers. I plan to use Bouvet’s own SQL Server to store data. I will register the frontend-

and backend application in Bouvet’s Azure AD resource. Moreover, I will connect to

Xledger’s API to send HTTP requests.

Fig. 1. Architecture diagram.

 20

My presentation tier is a React SPA, the application tier is a ASP.NET Core 6 Web API, and

the data tier, the MSSQL relational database. The three-tier architecture in software

applications is a well-established architecture that assumes independence of the others in

terms of implementation and infrastructure. This is beneficial because a tier can change its

implementation or infrastructure without the need to revise the other two. Also, it can be

developed simultaneously and scaled without impacting the other tiers. [45]

There are many system architecture alternatives. One example is a two-tier architecture, also

known as a client-server architecture. In this example there is no application tier, only a client

tier and server tier. Recall these are also known as the user interface, and database,

respectively. The advantages of this alternative architecture are that is easier to develop and

deploy solutions. Whereas, one of the disadvantages of not having an application tier is that it

could be more difficult to implement business logic and security. [46]

I decided to use the three-tier architecture. This is because the amount of logic the solution

requires, justifies the advantages of a three-tier architecture. The application tier will provide

a more secure solution, as the client will not have direct access to the database. Moreover,

regarding security, I can validate incoming data and add controlled access to my API

endpoints. The three tier-architecture is also well known, easy to understand and familiar to

the company. This allows for an easier posterior integration and modifications by Bouvet. It

makes a good candidate for developing a small application, because the time to have a simple

application up and running is short.

 21

3.2.2 Presentation Tier

HTML, CSS, and JavaScript are the building blocks for web development. HTML is for

providing structure, CSS is for styling, and JavaScript is for enabling interactive webpages.

While it is an option to develop in plain JavaScript, there exist a variety frontend framework

and libraries that are designed to improve the developer experience. A framework is a library

that gives predefined ways of how to build the software. It makes it easier and faster to

develop dynamic and interactive UIs. The code is therefore more scalable and

maintainable. [47]

3.2.2.1 Why React, TypeScript and MUI?
As mentioned, React ranks very high on the list of popular web libraries and enjoys a large

community of supporting developers. React is well documented, and because of its

popularity, there are a vast number of third-party libraries that can be used with React, like

MUI and TanStack Query etc. React has a JavaScript syntax extension called JSX

(TSX when using TypeScript), that allows developers to write HTML directly in React [48].

JSX is one of the reasons that I chose to use React. JSX components makes it easy to create a

dynamic UIs, because I can have logic, HTML and CSS all in the same “.tsx” file. Based on

the use case, I can make the components as dynamic, or as static as I want. A dynamic

component is reusable, whereas a static component is created to have only one job. The

dynamic components can easily be reused in several scenarios, which reduces duplicate code.

Another benefit of using React is the MUI library introduced in section 2.1.1.2. MUI provides

components that are ready and styled "out-of-the-box”. Examples of such components are

grids, buttons, forms etc. This makes it easier to create dynamic layouts, as I do not need to

use time customizing CSS and HTML. Moreover, the components provide complex

functionality. Therefore, as a developer, I can focus on the logic rather than making sure the

webpage looks presentable and user friendly.

There are also other frameworks, for instance Angular, which have many of the same

functionalities as React. When comparing React and Angular, React is mostly used for

building UI-components that display varying data. Angular, on the other hand, is used to

build large complex and feature rich enterprise-grade applications [49]. I decided to use React

because of the benefits listed above. Moreover, the fact that another framework like Angular,

does not provide significant advantages, as they have similar functionalities. In my solution,

React would provide me with the necessary tools to build a dynamic UI fast. Angular

 22

strengths were redundant in this matter, as my solution is neither complex nor especially

large. At Bouvet, there is a high level of expertise in React. Therefore, using React would

also facilities an easier project handover.

I chose to use React with TypeScript (TS), as it adds type-safety. The TS compiler identifies

errors at compile time instead of runtime, making it easier for the developer to debug and find

the source of problems. Moreover, as TS is strongly and explicitly typed, it is easier for the

developer to read and follow the code. Using TS, I was encouraged to avoid all ambiguous

types, i.e., any-types. When working with an API, it is common to create a so-called contract

which specifies request and/or response types. Initially the object received from the API is

JSON formatted, but with TS I am forced to use the specified types, given by the contract. As

explained, it is easier to develop and review the code which has specified types. I used a

generator to get these types to match the backend types, I will elaborate on this later in

section 3.3.3.4.

3.2.2.2 Why Axios and TanStack Query?
I tried to use JavaScript built-in Fetch API to create generic HTTP requests. When using it, I

had to write a lot of boilerplate code to create one generic request. As I am working with an

API with many endpoints, I needed an API client implementation that did not require me to

write a lot of code on each HTTP request. Therefore, I found Axios, which have the same

purpose as Fetch API, but comes with some extra functionality. It comes with automatic

JSON conversion and method aliases, making it is easy to create clean and concise HTTP

requests. Axios can be used alone, but combined with TanStack Query, it provides many

benefits, therefore I chose to use the combination.

TanStack Query (TSQ) caches server data and stores it to a query-key. Therefore, if in the

future the same query is made, the cached data can be used instead of fetching it from the

server. At some point the cache is deleted. This reduces the time it takes to access data and

the amount of requests to the server, hence reducing the network load. TSQ Query makes

mutating data using POST, PUT, and DELETE easy, as it provides call-back functions to

handle every stage of the mutation cycle. Using TSQ with Axios, makes it possible to write

an Axios request in a few lines of code as opposed to the fifteen lines I needed to use with the

Fetch API. A large reason for the reduced complexity is the inbuilt error handling TSQ

provides. TSQ also comes with built-in booleans like isLoading, isSuccess and isError

making it easy to dynamically render the web page.

 23

3.2.3 Application Tier

When choosing a framework for developing the application tier, I first and foremost had to

decide what kind of programming language to use. A compiled language or an interpreted

language. A compiled language is compiled into machine code before it is executed, whereas

an interpreted language is executed line by line without any compilations. As a result, a

compiled language is faster than an interpreted language. When developing, errors will

prevent a compiled language to compile, whereas debugging will not happen before runtime

for an interpreted language. I decided to use a compiled language, because it is faster, and it

improves the developing experience. I will get help from the compiler while debugging, thus

making it easier to remove logical and semantic errors. [50], [51]

I chose to use C#, which is Microsofts own language. C# is a high-level language, meaning

that it is easy to read. As with TypeScript, C# is type-safe and thus come with the same

benefits as TypeScript. An alternative to C# would be Java. Java is developed by Sun

Microsystems and owned by Oracle. As programming languages, C# and Java are similar,

they are both static- and strongly typed object-oriented languages. The decision to use C#

came down to what is the preferred platform for the department I worked for at Bouvet.

Several of Bouvet’s clients request the use of the Microsoft platform. Because C# and the

Microsoft platform is widely used in that department, it was the natural decision to build on

Microsoft’s .Net Framework. Consequently, I used the ASP.NET Core 6 Web API to develop

an API.

ASP.NET Core 6 Web API provides simple and light-weight services and comes with several

advantages. The endpoints come with automatic serialization of classes to JSON, the

policy-based authorization makes it easy to provide access control rules on endpoints and

routes can be defined inline [17]. The Web API comes with built-in support for dependency

injection, which I presented in section 2.3.4. The framework is open-source, allowing growth

in online community, which can provide support and guidance.

 24

3.2.4 Data Tier

During the planning process I identified the data models displayed in the entity-relationship

(ER) diagram in Fig. 2. I had to find a way to store the asset entities and track these asset

entities while employees were lending them. An asset could be lent to many employees, but

only to one at the time. However, an employee could be borrowing many assets at the same

time. Therefore, I identified the need for a loan entity which connected this many-to-many

relationship. Utilizing an ER-diagram helped me with the process of normalizing the data and

identifying which attributes that should be stored together. An ER-diagram can be directly

translated into relations [24].

Fig. 2. Entity Relationship diagram.

The typical use case for the relational data model is when; the data is structured, there is

anticipated minimal changes to the model, the data is simple and transactional, and the

relationships are well defined [52], [53]. Looking at the diagram, my models are simple,

static, and highly based on relationships. A loan has a transactional nature, meaning that there

are several subprocesses that needs to succeed for the transaction to succeed [54]. In this case

for example, creating a loan entity in the database, entail checking availability of asset entity

and changing its status, before proceeding to create the loan entity.

While identifying the models, I contemplated the possibility of using a different model than

the relational model. For example, the document model. The document model reflects the

object format used in application code, and a document database stores data in documents, for

example JSON. This allows for dynamic and evolving data without the need to define a

model in advance but does not support many-to-many relationships between data types.

However, I decided that the relational model was best suited for my solution. [53], [55]

 25

3.2.5 Security

There are two matters to consider when implementing security to my solution. First, the fact

that an admin will have to sign-in to the application in order to view information and perform

actions. The second matter is handling employees and employee information in regards of

lending assets. It would be beneficial for the application to avoid storing sensitive user data,

as comes with extra concerns and responsibility.

Bouvet uses Azure AD in their intranet solution, thus has already an existing directory over

all employees in the company. Therefore, it would be constructive to use this already existing

resource in the company. With Azure AD, I can outsource the sign-in experience and add

conditional access policies in connection with the endpoints in my API. I am also able to

store minimal information in my solution regarding identifying employees that lends assets.

This is useful because storing sensitive person information requires me to consider the

General Data Protection Regulation (GDPR). The only data my solution needs to store is a

key from Azure AD that connects the employee entity to the employee in Bouvet’s directory.

Hence, my solution does not need to store any personal data.

 26

3.2.6 Deployment

To make the application available to use, I had to choose a deployment method. Among the

alternatives I considered, I chose to use containerization, which is often compared to

virtualization. Whereas containers take on the host capabilities, a Virtual Machine (VM)

includes a complete OS. This is visualised in Fig. 3.

Fig. 3. Virtual Machines vs. Containers. Adapted from [56].

One of the main reasons for choosing containers is its portability. As I mentioned in the

section 2.1.5, the container includes all that is needed to run the application. This allows it to

run on Linux, Windows, and Mac OS’s, on virtual machines, on physical servers, on the

cloud etc. The containers are relatively lightweight as compared to virtual machines, in terms

of memory utilization and CPU utilization. The reason a container is lightweight is due to

their separation from the underlying infrastructure and OS. This makes it possible for

multiple containers to run on the same host, but isolated from each other. This isolation

prevents other containers to be affected if one container crashes, or application within them

fail. However, a container is not isolated from the host OS, so vulnerabilities with the host

can impact all containers running on that host. On the other hand, a VM is a standalone

system, which makes it resistant to vulnerabilities of a shared host. Furthermore, a container’s

lightweightness provides fast app start up and shut down. This gives the opportunity to

quickly release new applications and upgrades, thus speeding up the development process. A

VM takes much more time to spin up and it requires more resources. [57]–[60]

A server can run many more containers than VMs, but a VM can also run containers,

meaning that they are not mutually exclusive [61]. Choosing deployment methods depends on

 27

the use case. If there are specific hardware requirements or the need for isolating system

resources and entire working environments, a VM is needed. Containerization is good for

isolating applications, it is easy to manage and fast, and it is therefore a good candidate for

developing web application services. [57], [62]

Based on the comparison of containers and VMs, I chose to use containerization as the

deployment method for my solution. This allowed me to deploy the frontend in one container

and the backend in another. Thus, facilitating an easier handover due to its portability.

Regarding why I chose this technology stack, I would like to emphasise the importance of

maintainability in code. My department at Bouvet holds sufficient knowledge and resources

to continue this project beyond the completion of my thesis. The usage of a familiar

architecture, together with the necessary documentation that I created, and implementation of

these well-known technologies, are all crucial to maintainability and longevity of this project.

 28

3.3 Implementation

At this point, the backlog of tasks was filled and the architecture of my solution was planned.

Therefore, I could begin the third and iterative phase of Agile Scrum, consequently, start

coding and testing. I did not follow the steps of the iteration to the point, hence I did not plan

specific sprints or performed sprint retrospectives. I had to find an approach to the agile

iteration cycle that was practical in my situation, because I was developing alone, and the

timespan of the project was relatively short. First, I decided which features I was going to

implement for the pilot, then I planned the course of action. Fig. 4 displays the Kanban board

filled with tasks and features. The first column of the board is the backlog. This is captured in

the middle of the project.

Fig. 4. Kanban board from GitHub projects.

I decided that to pilot the project, I had to focus on the fundamental role of the application.

Such as the so-called CRUD (create, read, update, and delete) operations. This would create

the foundation for the implementation of these features:

- Feature: Add new asset

Feature: View all assets in the system

- Feature: View a single asset in the system

- Feature: Scan asset and read information

 29

- Feature: Update and add information to one or more assets at the same time

- Feature: Delete a "wrongly added" asset

- Feature: Deprecate an asset

- Feature: Scan asset and lend out to employee

- Feature: Scan asset and hand in loan/asset

- Feature: Add loan to history

- Feature: View all loans

- Feature: View one loan

- Feature: View all loans linked to employee

- Feature: View loan history

To achieve this, I needed to implement a backend that could handle this functionality, a

database to store all the necessary data, and a frontend that could serve as a UI and make it

available for the end-user. Hence, I had to get an ASP.NET Core Web API, MSSQL Server,

and a React App up and running. With this in place, I could first implement all the

functionality to perform CRUD operations in the backend. I used the sequences I created

during the planning phase as templates for the implementation. This is described in section

3.3.2. When the backend was tested and worked, I created the UI with a dashboard, where the

user could perform the actions specified in the features. This is described in section 3.3.3.

I decided that features that implemented scanning was secondary to the other features,

because they could not be implemented until the other features were done. Hence, I decided

to add the QR- and barcode scanning and printing of labels towards the end of the project.

Furthermore I decided that “Feature: Send notification”, “Feature: Access Control”, and

“Feature: Notifying Xledger” was not a priority and necessary for the pilot. I will explain

why I made this decision in section 4.2.1.4.

I will now provide a short summary of the features I have implemented. Then I will go

through the development of the backend, frontend, and database, while presenting code

snippets, functionality, and considerations. All code snippets, tables and figures are retrieved

from the provided source code and documentation in GitHub. Thus, my own work if nothing

else is stated.

 30

3.3.1 Summary of the Features Implemented

With the development of the frontend, backend, and database storage, I have created a pilot

that implements the features mentioned in section 3.3. For an end-user it is now possible to

get an overview of every asset, active loan and previous loans stored to the system. There can

be added new assets and loan, in a manual and automatic way. Moreover, with a QR-scanner,

one can easily identify an asset and its status, and do simple actions. When a loan is handed

in, its removed from loans and added to the loan history.

The frontend is responsible for the user experience, making every functionality available to

the user. The backend handles the requests from the frontend and act on these requests. This

is primarily separated into two main jobs. Either to retrieved data from the database or mutate

data in the database. While describing the implementation of the backend in the next section,

I am also elaborating on the decisions I made to create a maintainable solution.

 31

3.3.2 Backend Development

In this section I will go through the implementation of the backend. As mentioned in the

introduction of this subchapter, the backends role was to perform CRUD operation. The

features with the keyword add, is connected to Create in CRUD. The features with the

keyword view, is connected to Read in CRUD and so forth. Hence, I needed to implement

functionality in the backend that had an API, so that the frontend could communicate with-

and perform HTTP requests to the backend. In needed functionality that performed the task

of retrieving or modifying the requested data. Finally, I needed functionality that stored this

data in a database. I will now present the implementation I developed to perform these tasks.

I will first present how I structured that backend and why. Secondly, I will discuss cohesion

and coupling, while I give an overview of backend. Thirdly, I will go deeper into the

implementation of the backend code, while demonstrating what I did. Finally, I will briefly

mention the testing of the backend.

3.3.2.1 Backend Structure
When implementing the backend, I strived to follow relevant design principles, to create a

backend with high cohesion and low coupling. As mentioned in section 2.3.1, one should aim

to have high cohesion and low coupling to reduce complexity in code and make it more

maintainable. In this section I will present what I did to achieve this.

Initially, I contemplated how to structure the backend. In this matter, I had to consider the

complexity of the backends role. An alternative was to develop the backend based on the

principles of Domain Driven Design (DDD). DDD aims to focus on centring the code around

a business domain where the software will be used. A domain consists of several subdomains,

dividing different parts of business logic. DDD enables high cohesion and low coupling, and

is used to solve complexity in the sense of many different data sources and many different

business goals [63]. The role of my backend was more or less to query and mutate data.

There were no complex business logic and therefore DDD seemed like a redundant choice.

Instead, I chose to implement a simpler layered structure, while focusing on achieving high

cohesion and low coupling. This is shown in Fig. 5, where the arrows shows the

dependencies.

 32

Fig. 5. Backend Assemblies.

3.3.2.2 Low Coupling and High Cohesion
The backend consists of six separate assemblies. An assembly is a collection of resources and

way to separate code, thus making it easier to work with and reuse [64]. In my solution, each

assembly holds parts of code with similar modules. I did this, as an attempt to develop a

loosely coupled backend.

The Contracts and Domain assemblies contain data classes, meaning that they do not hold

any behaviour, hence only state. Contracts contains the data transfer objects (DTOs), which

is an object meant for transferring data between processes, like over the network. Contracts

also contains query and command objects. Queries asks for data, whereas commands mutate

it. These objects are the way the API communicate through the handlers with essentially the

database. More on this in section 3.3.2.5. Domain contains the entities, the data models of the

relations that is stored in the database. The two class libraries do not have any dependencies,

thus promoting low coupling. This is visualised in Fig. 5, where there are no arrows from

Contracts and Domain, only towards.

The Handlers assembly contains a collection of all mediator handlers. As introduced earlier,

the mediator handlers work as message brokers. They receive a query or a command,

processes it and returns what were requested. The mediator pattern is implemented to

separate the concerns of the different parts in code, thus preventing tight coupling. As

illustrated in Fig. 5, the API is not aware of the Domain and how the data is processed. The

API only communicates with rest of the program through the handlers.

 33

The Data assembly contains the implementation of the ORM, EF Core, and instantiate the

DbContext. The DbContext class is responsible for the interaction with the database. The

Repositories assembly contains a collection of repository classes, which contains methods to

access the database. Each repository class contains methods to get or mutate a specific entity,

thus making these classes highly cohesive because the methods all relate to the same entity

object. The API assembly contains controllers which handles incoming HTTP request. As

with the repository classes, the controller classes are based on the entity they are handling,

thus making these classes cohesive as well.

I use dependency injection (DI) to register all the services in the Handlers-, Data-, and

Repositories assemblies, thus making sure that the are no hard-coded dependencies when the

services are being used.

To summarize this section, I have achieved a low degree of coupling with using DI pattern

and the mediator pattern. Furthermore, I have enabled high cohesion in the modules where

there is more logic, the controller classes, and the repositories classes. Proceeding, I will give

an outline on how the assemblies are connected, and afterwards go into more details on each

assembly and the modules they hold.

3.3.2.3 Connection Between Assemblies
I will now describe how the assemblies are connected, with use of an example. This is all

visualised in Fig. 6.

Fig. 6. Example of a sequence diagram.

When the API receives an incoming HTTP request from the client, it processes the route and

invokes the correct method. Let us say the route is “api/assets/1”. This route is mapped to the

GetAssetById method. The controller method sends of a mediator request, in this case the

 34

GetAssetByIdQuery. The GetAssetByIdQueryHandler receives the request and processes it.

The AssetRepository is dependency injected into the handler’s constructor, thus the handler

can call the relevant Get method to query for asset with id 1, in this example. The DbContext

is dependency injected into the repository’s constructor. The repository can therefore retrieve

the data from the database. Asset with id 1 is returned, first to the handler, then from the

handler to the controller, and finally the client gets its response.

I have now briefly gone through what is happening in the backend. Proceeding, I am going to

elaborate on each part of code.

3.3.2.4 API
The API controllers holds all the endpoints defined in the API specification in Table I.

Table I
The implemented REST API

A controller class handles the incoming HTTP request and returns a response to the request. I

have implemented my controllers according to the REST design principles, which focus on

resources. A resource is an object, data or service that can be access by the client [17]. The

resource is identified by the Uniform Resource Identifier (URI). This is exemplified in Table

I. The table describes all the implemented HTTP requests. I will demonstrate an example of a

controller class and a method that handles a HTTP GET request in Code 1.

 35

Code 1. Example of a controller method (AssetsController.cs).

The route name is defined by the class name, as we can see in line 2 and 3 in the example, the

route becomes “api/assets”. In line 8, I define that I am going to handle a HTTP GET request.

This request returns an ActionResult that contains the HTTP Status code and response object,

which in this case is a list of AssetResponseDto. In Code 2, I am displaying how I can specify

the route when querying based on a parameter. In this example route becomes

“api/assets/{id}”.

Code 2. Example of a controller method whith input parameters (AssetsController.cs)

I have created five API controller classes based on the five different resources one can access

specified in Table I. The methods in the controller classes are approximately the same. They

dispatch a mediator query or command, which is received by corresponding mediator

handler. The controller always returns an ActionResult which contains a DTO. As mentioned

in section 3.2.3, the ASP.NET Web API automatically serialize and deserialize the incoming

and outgoing data. Therefore, I only need to define what I want to receive in the input field of

my controller method, and what I am returning from the controller method.

 36

When returning an ActionResult (line 6-7 in Code 2), I have created a helper method that is

used to evaluate which response is returned to the client. Whether to send an OK result, with

status code 200, or and NotFound/BadRequest with corresponding status codes 404 or 400.

This is decided by functionality of the Option type that I am going to present in section

3.3.2.8. The helper methods are displayed in Code 3.

Code 3. Helper method (ActionResultHelper.cs).

I extracted this helper method because I found myself repeating the lines 5 and 9, of Code 3,

on each method in each controller. Therefore, to avoid duplicate code and make it more

readable, I created a method for it. The downside of extracting these methods is that I have

created a hard-coded dependency on the ActionResultHelper class. Each time I am using the

method, I must instantiate it with the keyword new, which creates high coupling in my code.

This is a good example of a situation where I can use the dependency injection pattern to

decrease coupling. To improve this module, I have added this enhancement as a task to the

backlog.

The API assembly also contains the “Program.cs” file, which is the entry point of the

application and where the application runs from. All services that are used are registered here,

among them are the ones that are used with dependency injection, the DbContext, the

MediatR Service etc.

In “Program.cs” I also had to register the Cross-Origin Resource Sharing (CORS) policy.

CORS authorizes HTTP request from other origins, than which the application is served

from. Usually the same-origin policy, which is a part of browser security, prevent request

from different origins. Adding a CORS policy enables us to control explicitly which

cross-origin request that are allowed. [65]

 37

This had to be done, because the client, i.e., the frontend, is served from another port than the

backend. In Code 4, from line 1 to 10, I create the policy. I have specified which origin, in

my case, which port that is allowed to make request to the backend. Finally, in line 12, I used

the built-in UseCors method to add the policy to the application.

Code 4. CORS policy (Program.cs).

3.3.2.5 Contracts
The DTO’s of the Contracts assembly are data that are being sent to- or retrieved from the

frontend. These objects work as contracts with the client, defining which kind of data and

how the data looks like. DTO’s flattens nested entity objects, thus making them easier to

serialize and use in the frontend. Creating DTO’s helps with decoupling the API from the

assemblies that deals with the database. When using DTO’s I can also decide which

properties of my entity classes I want to expose.

I have used the record type in C#. The record type’s primarily function is to store data, they

are also immutable, as opposed to classes [66]. This gives me the opportunity to define the

DTO’s in a compact way using the positional syntax to define the DTOs properties [67]. I

have displayed this in Code 5.

Code 5. Example of a DTO record (CreateAssetDto.cs).

The Contracts assembly also contains query and command objects that implements the

MediatR’s IRequest interface. As mentioned in section 2.3.4, a request message is dispatched

to the handler. The request describes the query or commands behaviour and its return value.

In Code 6, I demonstrate an example of a query and in Code 7, an example of a command.

 38

Code 6. Example of a Query (GetAssetByIdQuery).

Code 7. Example of a Command (CreateLoanCommand.cs).

The IRequest interface can be used with both classes and records. I decided to use record

when there was none to three parameters. They could be easily instantiated with the

positional syntax or be mapped. Code 2, line 5, shows an example of a request getting

instantiated and dispatched from the controller. When DTO object received from the client

had several parameters like the CreateLoanDto of Code 5, I used a mapper to instantiate the

CreateLoanCommand of Code 7. This is exemplified in line 5 of Code 8. I will explain the

use of mapper in section 3.3.2.8.

Code 8. Example of a POST controller method (LoansController.cs).

The controller method in Code 8 also demonstrated how the received DTO is defined in the

input parameter in line 3.

 39

3.3.2.6 Domain
In the Domain assembly, I have defined the entity models that my application is built on.

These classes describe how the data is stored in the database. Fig. 7 displays the class

diagram.

Fig. 7. Class diagram.

All entity classes inherit from the base class Entity, this is demonstrated with arrows. The

classes with the white diamonds represent an aggregation relationship, meaning that the

objects exist independently, but one object contains the other. The classes with black

diamond represent a composition relationship, meaning that the life of the object depends on

the other object, thus it is owned. [68]

The reason that I have used composition in my entity classes is to have the possibility to

reuse classes or change them, especially in the developing stage. Composition allows me to

deal with complex objects and make the code more readable. I can also validate each class

independently, making sure I do not violate the single responsibility principle. This would

have happened if I were to create a validator for the whole class and validated based on

different criteria.

 40

The Notification entity from Fig. 2 is not part of the initial data model. The notification

feature based on this entity was not implemented in the pilot. I will elaborate on this in

section 4.2.1.4.

3.3.2.7 Data
In have implemented a model with EF Core. A model consists of a context object and entity

classes.

Code 9. How the model is created (DataContext.cs).

The DataContext implements EF Core’s DbContext class. The context represents a session

with the database and is dependency injected where the database needs to be accessed. In

Code 9, line 5, the database is created if it does not already exist. In line 7-8 I define the

tables in the database based on the entity classes from the Domain assembly. Since I use

enumeration types in the AssetEntity class, I need to configure them as strings and not

integer. This happens from line 12-16. From line 17, I seed the model with data, this is

removed from the example. These two last actions are not necessary, but convenient when

developing and debugging the application.

 41

To use EF Core with MSSQL Server, I have register and configure the DataContext model

with the database provider and a connection string. This is displayed in Code 10.

Code 10. Registration of DataContext (Program.cs).

For demonstration purposes of the pilot, I have stored the connection string in

“appsettings.json”. This is not how it is done in production, nor necessarily in development

because it exposes the secret information. I have used Visual Studios Secrets Manager during

development, thus not exposing any app secrets to the public. When moving into production I

can use implementations like Docker Secrets or Azure Key Vault, which is tools to store

sensitive data.

At this point the context is ready to be used in the application.

 42

3.3.2.8 Handlers
When a controller has dispatched a mediator request message, it is a handler’s job to receive

and process the request. There must be one handler per command or query. The handlers are

approximately similar. They all receive a repository dependency and a mapper dependency in

the constructor, following the DI pattern. Code 11 displays an example of a handler.

Code 11. Example of a Command Handler (CreateAssetCommandHandler.cs).

Depending on the nature of the handler, they contain more or less logic. Common for all

handlers that processes commands, are that they map the command object to an entity object,

then the relevant repository method is called. The returned entity object is then mapped to a

DTO and returned to the controller. A query handler is simpler. It calls the relevant repository

method, map the received entity object to a DTO and returns it to the controller.

During this process I use three implementations to make the code more reusable, readable,

and compact. I use the Option type of language-ext, the AutoMapper package and some

predefined predicates delegates.

The Option type is used each time I return something from the handlers or the repositories,

except from the controllers. The Option type is taken from functional programming and

encapsulates an optional value. Either the type is a Some and contains a value, or it is a None

and empty. I use this to avoid returning nulls in my code. Having to deal with nulls in code

increases complexity, is error prone, and makes the code less readable. Using the Option type

requires me to think about potential issues in compile time rather that runtime. This makes

 43

debugging easier. When an object is returned from the handler, I wrap the object in the

Option type.

The AutoMapper library helps me to automatically map one object to another and omits the

parameters that are not common between the objects. It also has implementation for mapping

nested objects to flat ones, and the other way around. To use AutoMapper I must register a

mapping profile for each object I want to map. This is displayed in Code 12. The nested

object must be first, and the ReverseMap allows us to map both ways.

Code 12. Example of a Mapper Profile (MapperProfiles.cs).

In Code 13, I register the AutoMapper services, thus making it available for use via DI. The

automatic mapping dramatically reduces lines of code, compared to writing the mappers

myself. I considered where to do the mapping between the entity objects and the DTO’s, the

query objects, and the command objects. One alternative was to do the mapping in the

controllers, whereas the other alternative was to do it in the handlers. In decided to do the

mapping in the handlers, as I did not want to expose the entity objects to the API assembly. I

concluded that it provided me with the opportunity to keep low coupling in code.

Code 13. Registration of the AutoMapper service (Program.cs).

The predicate delegates are methods that check if a parameter meets a set of criteria, which is

type of a HOF used in functional programming [69]. The delegate takes one input parameter

and returns a Boolean. Code 14 displays an example of a predicate delegate wrapped in an

expression. I had to wrap the predicate delegate in an expression, to have the opportunity to

set the criteria in which the comparison is made. In Code 14, the delegate parameter is the

AssetEntity, and the criterion is the input parameter id.

 44

Code 14. Example of a predicate delegate (AssetsPredicates.cs).

These predefined delegates are used with the LINQ queries in the repositories. This allows

me to reuse the repositories Get method, based on which value I am querying with. I will

explain more on this in the next section.

3.3.2.9 Repositories
The repositories assembly consist of services that implement methods to access data in the

database. I have created one repository class per entity object I want to access from the client.

This is the AssetEntity, LoanEntity, CategoryEntity, and LoanHistoryEntity. These repository

methods are collected in classes so that they can easily be reused. They also prevent handlers

from violating the Single Responsibility Principle, as its responsibility is to process the

request message received, and not deal the with database.

Each repository implements its own specific interface, and holds the CRUD methods

necessary for that entity, thus implementing only what is needed. This enforces the Interface

Segregation Principle, making the class only depend on an interface they actually use. The

DataContext is dependency injected into the repository’s constructor, thus the database is

available to query on or do other mutations. Code 15 is an example of a Get method.

Code 15. Example of a repository method (AssetRepository.cs).

As explained in section 3.3.2.8, I have use predicates to make some repository method

reusable. This Get method receives a predicate delegate in the input field. I do a LINQ query

with this predicate, and return the queried data. As with the handler, the return is wrapped in

 45

the Option type. If the query returns a null, the null gets wrapped in the Option type and

becomes a None. However, if the query returns an object, it gets wrapped as a Some.

Code 16 display how a registered the repositories, making them available to be dependency

injected into the handlers.

Code 16. Registering the repositories for dependency injection (Program.cs).

As mentioned previously, the backends main role, working as an API, is to implement CRUD

operations. I have attempted to create backend that carries out this role, while ensuring

principles are upheld. Thus, implementing the DI pattern and the mediator pattern, which

promotes loosely coupled code. Each module in code in responsible for a single task,

enforcing the single responsibility principle, thus tightly connected to high cohesion. The

reason for making all these decisions is maintainability. Proceeding from the implementation

of the backend, I am going to look briefly on the testing I carried out.

 46

3.3.2.10 Testing
As mentioned in the introduction of this chapter, I intended to develop a backend that could

perform CRUD operations. Based on Table I and the multiple sequence diagrams14, I created

all the elements necessary to perform the first round of testing. Testing is a part of the Agile

Scum iteration and important part to make sure code is working as it is intended.

I used the SwaggerUI tool which is a web UI that allows one to test each method in my

controllers. The tool uses the OpenAPI specification, which is a description of the APIs

capabilities [70]. ASP.NET Core Web API implements middleware that generates the

OpenAPI specification. The SwaggerUI tool allowed me to manually test every endpoint,

which can be helpful in a development process and while debugging. Moreover, I

implemented integration tests, that automatically tested all my endpoints. While doing

changes to the code, I could easily check if any test failed and why. Thus, making it easy to

debug and find the source of problems.

This concludes the section about the backend implementation. I will now move on to the

implementation of the frontend.

14 https://github.com/livun/bouvet-asset-hub/tree/dev/docs/sequence-diagrams

https://github.com/livun/bouvet-asset-hub/tree/dev/docs/sequence-diagrams

 47

3.3.3 Frontend Development

In this section I will go through the implementation of the frontend. As with the backend, I

had to understand what the frontends job were in the features I was implementing. It has

essentially two jobs. The first is to provide the user with a dashboard, where assets, loans,

loan history, and categories can be viewed. Secondly, to provide the user with the

opportunity to perform actions on these resources, hence adding, editing, and deleting. Thus,

the UI needed tables for the dashboards and forms to perform these actions.

Before going into details of how I achieved this, I will first discuss some decisions I made

regarding design. Secondly, I am going to explain some core elements of creating a frontend

with React and how it was structured. Thirdly, I will elaborate on some of the building blocks

of my frontend application, hence the use of TS, the modules necessary to communicate with

the backend, and the use of styled MUI components. Finally, I will describe how I used these

building blocks to implement the different aspects of the user interface.

3.3.3.1 Design Decisions
When planning how I was going to design and create the user interface, I had to think about

the end-users and whom they were. The solution is made primarily for Bouvet’s

IT department. They are used to work with Excel spreadsheet, various kinds of software and

hardware, and possess a high level of technical skills. Given that the intended user is

technology proficient, I focused on giving the user the most expressive options. This can be

overwhelming for the average user, however this is not prioritized given the nature of the

intended user. I will elaborate on this when I go into details about the table component in

section 3.3.3.6

In the planning phase of Agile Scrum I created wireframes in Figma, which is a tool for

design prototyping. A wireframe is a blueprint of the UI, providing a simple visual guide of

how the web application can look like and can be connected [71]. Fig. 8 displays the basic

layout of the UI in the browser.

 48

Fig. 8. Wireframe browser view.

I wanted there to be a dashboard were all the data could be displayed. Furthermore, a simple

menu to access the different parts of the webpage. When adding the features that entailed

scanning, I needed some sort of Mobile view, this is displayed in Fig. 9. Eventually this

functionality could be its own independent mobile app, which could enhance the user

experience, thus was out of the scope of this project. Therefore, I planned that the Mobile

view would get its own route, where the layout and placement of components was especially

planned for use from a smart phone.

 49

Based on these wireframes, I proceeded with the development process.

3.3.3.2 The Core Elements of the Frontend
As I described in section 2.1.1.1, the frontend is developed using the React library. A React

app consists of several components, denoted by TSX. Which essentially is a collection of

functions. These functional components call each other inside of their body. A component

calling another is often indicated by a parent- and its child component. Before going into

details on the components that make up my frontend, I want to briefly explain how the React

code eventually runs in the browser and how I achieved this using a boilerplate.

In the first step, all the source code which consist of multiple TSX files, is translated by

Babel. Babel is JS compiler that translates TSX to a specific version of JavaScript that can

reliably run in the browser. The next step in the process is the bundling, where all the newly

translated JS files are compressed by Webpack, which is a module bundler, into a few files.

Finally, these files are now able to run on a JS engine in the browser. [72], [73]

Fig. 9. Wireframes of Mobile view.

 50

I generated a boilerplate version of the React frontend with Node Package manager (NPM),

The package manager helps me install and configure external JS modules. NPM makes

sharing modules of code easy [74]. This boilerplate code comes configured with Babel and

Webpack, and the basic structure of a runnable application. The frontend boilerplate holds the

“index.tsx” which is the entry point of the application. The entirety of the application content

is generated within this file. It is in the “index.tsx” where I get the reference point to the

HTML and mount the App component. The App component is the outmost component, hence

it does not reside in another component. App holds all the components of the frontend and

renders them based on routing.

I have made a distinction between the components that deals with the views and routing, and

the component that are rendered inside these views. From now, this is denoted by views

(components) and components. Moreover, a view is unique, but a component can be reused.

A view is rendered based on routing and nests several components inside it. In the

source code, the views are collected in the “views” directory, and the components in the

”components” directory. In addition, there are an “api”-, a “config”-, and an “utils”-

directory. I made this distinction to make the frontend code clear and organized. I will get

back to these directories in a later section.

To add routing, I used the NPM package react-router-dom. All packages that my frontend

application depends resides in the “package.json” file. Code 17 displays how I wrap the App

component in the BrowserRouter module. This is done, to make routing available in every

component inside of App.

Code 17. Adding modules to the frontend (index.tsx).

The registration of routes is done in the App component. This is displayed in Code 18. Every

route is indicated by the keyword path in line 2 to 7. The keyword element tells which view is

being rendered on each path. I have wrapped each view in the Main component, which is a

 51

reusable layout component I made to make sure the layout stays the same on each view in the

browser.

Code 18. Registering routes (App.tsx).

The Mobile view does not implement the Main component, as its layout is created

specifically for use on a mobile.

3.3.3.3 Utilizing TypeScript
In section 3.2.2.1 I wrote about why I chose to use TS. Mainly because it adds type-safety

and is explicitly typed. When using TS, one should explicitly add types to each variable in

code. But to really utilize TS’s strength, and make code readable and predictable, I created

my own types and interfaces. Hence, I created interfaces of objects I used throughout the

code. Interfaces is also useful when working with props.

Props can be any JS value, like objects and functions etc. When creating a functional

component, we can define the props as function arguments. Props is how we pass data from a

parent component to a child component. The child component thus renders based on this

data. [72]

When passing several parameters as props to a component, creating an interface of these

values makes the code more readable and neater. Thus, I have defined interfaces for several

of the props I am passing throughout my components. This is not done in every component,

as I realized while I was writing the frontend that this could be beneficial. I have therefore

added this enhancement of frontend code as task to the backlog.

As I also mentioned in section 3.2.2.1, that TS makes writing the client code easier. The

DTOs of the backend that defines how the retrieved data looks like, must be matched by

types in the frontend. When doing this, I am in control of how the data looks like, thus

making it easier to create components that uses these datatypes. I will now go into details on

how I created these contract types.

 52

3.3.3.4 Generating Client Types
To interact with the backend, I had to create an API client. This is the code which holds the

HTTP requests and types. When interacting with an API with many endpoints it can be useful

to generate the API client automatically to make the development process faster and prevent

mistakes. One can do this with many open-source API client generators. They use the

OpenAPI specification I mentioned in section 3.3.2.10. I attempted to do this myself with

Acacode’s TypeScript API generator library15. The API client that was generated by Acacode

was difficult to implement, as the code did not appear and work as needed, especially

considering error handling. To make sure that the client worked as needed, I decided to write

it myself. More on this in the next section. However, I used Acacode and the OpenAPI

specification to generate the client-types. These types work as contracts with the backend, as

I introduced in section 3.2.2.1. The “_generated” directory holds “api-types.ts”, “build-

api.ps1” and “swagger.json”. When I run the PowerShell script in the terminal, a file called

“api-types.ts” is generated based on the OpenAPI specification in “swagger.json”. This was

convenient while developing. If I changed my DTOs during the development process, I could

generate new and updated types with this script. This did not affect the API client I wrote

myself, as long as I did not change the names on the DTO’s in the backend.

3.3.3.5 Implementing Axios and TanStack Query
With the client-types in place, I implemented an API client with the Axios as I mentioned in

section 3.2.2.2. In Code 19, I configured the Axios client with the URL and port of my

backend. While developing, this is set to localhost, but would be changed to the URL of the

server where the application is hosted in a production environment.

Code 19. Configuring Axios API client (apiClient.ts).

Furthermore, I implemented four generic Axios HTTP request, one GET, one POST, one

PUT, and one DELETE in “api/genericAxios.ts”. These were used to perform the CRUD

operations necessary to fulfil the features I was implementing. Code 20 displays examples of

15 Acacode documentation: https://github.com/acacode/swagger-typescript-api

https://github.com/acacode/swagger-typescript-api

 53

the generic GET and POST. I did not write any error handling in these methods, as TSQ

handles this for me. The methods only need to return the data from the response.

Code 20. Generic Axios HTTP requests (genericAxios.ts).

From these generic functions, I created specific functions, with the specific endpoints

according to the resources in Table I. To provide a structure similar to the backend, I

separated the specific functions based on the resource they were requesting for. Code 21

shows two examples of specific HTTP request.

Code 21. Examples of specific Axios HTTP requests (assetApi.ts).

The getAssetByIdFn uses the generic get-function I made. The postAssetsFn uses the generic

postItem-function I made. When creating these specific methods, the input and output is

based on the generated client-types, I introduced in the previous section. Thus, every HTTP

request is bound to the contract defined in the backend.

I found my implementation more transparent and easier to work with, as opposed to the

generated client I attempted to use first. This is because I separated the requests based on the

resource I was working with, and the generic functions could be reused. Moreover, when I

implemented it with TSQ it enhanced the developer experience.

While Axios performs the HTTP request, TSQ is used for handling the lifecycle of the

request and the data. I have introduced the benefits of using it in section 3.2.2.2, I will now

explain how I implemented it.

 54

TSQ is configured in “config/queryClient.ts” and wraps App in “index.tsx”, as showed in

Code 17, line 3 and 7. This is done to make the module available in every component in the

frontend application. The two methods I have used from TSQ is useQuery and useMutation.

The first is for querying and retrieving data and is always used with a HTTP GET. The latter

is for mutating data, and is used with an HTTP -POST, -PUT or -DELETE. Code 22 present

an example of useQuery.

Code 22. Example of useQuery (Loan.tsx).

Since using TS, I define the expected object to be queried. This is done in line 2, and is either

an array of LoanResponseDto or an Error. In the input field, I specify the query-key loans,

and which HTTP request method I will use the retrieve the data. In line 1, I use object

destructuring, which is a way to unpack an object into individual variables [75]. This is

useful because I can decide which properties of the object I want to use and be explicit about

it. I often use destructuring when I unpack the props received in a component. How I use the

variable destructured from useQuery will be described in section 3.3.3.7. Code 23 present an

example of useMutation.

Code 23. Example of useMutation (AddItemsFab.tsx).

The mutation from the example is created to add a new asset, thus the postAssetsFn is used. If

the mutation fails, I can explicitly decide what happens next. In this example an AlertBar

component gets rendered to notify the user about the error. However, if mutation is a success,

I can use query invalidation to mark data as stale. As I described previously in section

3.2.2.2, TSQ caches the queried data on the query-key. When data is mutated, there is

new- or changed data in the backend. I must therefore make sure that the frontend data is

aligned. If a query on the invalidated query-key is being rendered, it will be re-fetched in the

 55

background. In Code 23, it was added a new asset, thus the query-key assets becomes invalid

because the frontend data is out-of-date.

The implementation of Axios and TSQ provides me the opportunity to seamlessly

communicate with the backend. The TSQ useQuery and useMutation is used in every

component where data is involved. Before presenting how I used the several building blocks

to create the implemented the user interface, I am going to elaborate on the use of MUI

components.

3.3.3.6 Utilizing MUI Components
All my views and components use at least one MUI component. As I mentioned in section

3.2.2.1, the components are styled and ready to use. It is important to differentiate the

components that I have created, and the MUI components. MUI provides components that

already holds a lot of HTML and CSS. This means that how they behave and how they look

are already defined. I can tweak these configurations to adapt the components to my need.

However, the components I have made, consist of several MUI components, to make up the

whole layout and functionality of it. My components also hold data provided from the API,

they hold the logic of what happens when forms are filled or buttons are clicked, and the

conditional rendering. The MUI components work as building blocks of the layout, design,

and functionality of my components. Hence my components work as building blocks of the

web page and hold everything together.

The MUI X DataGrid component have an important function in my frontend application.

When I wanted to create dashboards that displayed all assets, active loans, and previous

loans, I needed tables that could hold a large amount of data and still be fast. The DataGrid

component provides me with this quality, and other functionality relevant to the dashboard.

I have created a component called DataGridTable. This component is made reusable, hence I

can reuse it in several views: Assets, Loans, LoanHistory, and Categories. Code 24 displays

how I have added and configured the DataGrid MUI component in my DataGridTable

component. The most important configuration is in line 2 and 4. Rows holds the data that is

injected to the table. The data that is displayed in these tables are the DTOs retrieved from the

API, for example an array of AssetResponseDto.

Columns holds the GridColDef, which is how the columns are defined in the table. A

GridColDef is an array that consists of a column definition per column in the table.

 56

Code 24. Configuration of DataGrid MUI component (DataGridTable.tsx).

To make DataGridTable reusable, I must dynamically create the column definitions based on

the object type that the table is displaying. If the object has dates, I want them to be displayed

in a certain format etc. Therefore, I made two files in my utils directory,

“columnFormatProviders.ts” and “ColumnFormatter.tsx”. The first is a collection of methods

that formats each field in an object type. This is exemplified in Code 25, where I have made a

formatter that creates a column definition when the type of the object field is a string. The

“filter” of line 2, checks if the object is indeed a string, and returns a Boolean.

Code 25. Example of a formatter method (columnFormatProvidors.ts).

The second, the ColumnsFormatter component uses the object type that is going to be

displayed in the table. Then maps through the array of formatter functions on each object

field. It returns a column definition for that field if the filter is true. Finally, the component

returns an array of all necessary column definitions, a complete GridColDef.

 57

There are advantages of dynamically defining how the data in the columns of a DataGrid

should look like. I do not need to do any changes to the component if a DTO changes in the

backend, thus changing the data structure. Moreover, it is reusable, therefore preventing me

from writing duplicate code. There are also advantages of using MUI X DataGrid, as I

mentioned previously. It has some built-in functionalities that among other things provides

sorting and filtering on each column. This is quite useful, as I do not need to create these

functionalities myself. Some of my planned features was automatically achieved with this

functionality. An example is the “Feature: View all loans linked to employee”. With filtering,

I can achieve this directly in the table without the need for creating a separate view and table.

This functionality is displayed in Fig. 11.

The MUI X DataGrid is an advanced component which provided me an easy implementation

of the dashboard. I have also used several other MUI components implement a coherent user

interface. I have used Box, Grid and Stack to create layout. I have used Buttons, Textfields,

and Dialogs to create forms for user input. The SnackBar, Alert, and CircularProgress

components is used for giving feedback to the user. The Menu and SpeedDial components are

used to create the navigation components. All these components are building blocks of my

components, as I mentioned previously.

Next, I will elaborate on how I used these building blocks to create the views and

components that make up the UI.

3.3.3.7 Views: Assets, Loans, LoanHistory and Categories
These views implement the DataGridTable component. The Asset, Loans and LoanHistory

views are implemented similarly, due to the purpose, specifically to provide a dashboard that

displays data. With these views I implemented and enabled these features:

- Feature: View all assets in the system

- Feature: Update and add information to one or more assets at the same time

- Feature: View all loans

- Feature: View all loans linked to employee

- Feature: View loan history

 58

An example of a dashboard is shown in Fig. 10.

Fig. 10. Example of a dashboard.

Essentially what we see here is a table of all assets, hence an array of the AssetResponseDto

is visualised. The checkboxes allow you to select all the assets, except from those which have

the status Unavailable. When a checkbox is active, a form in the top right corner of table is

rendered, and you can change the status of several assets at once. This form is not visualised

in Fig. 10, as there are no active checkboxes. Each row in the table has buttons that link to

actions, eventually these links lead to a view of the specific asset. I will elaborate on this

view in the next section. This is similarly implemented in the Loans view. Fig. 11 display the

Loans view with the filtering functionality in action.

Fig. 11. The Loans view with filtering in action.

 59

Code 26 displays an example of how I created the Assets view component. This component

gets rendered by routing, as explained in section 3.3.3.2. In line 2 and 3, I use TSQ to retrieve

data, as described in section 3.3.3.5. Then I display other components based on conditional

rendering. I will now go through what is happening in line 5 to 10 in Code 26. There are

several checks based on the Booleans received and destructured from the query. First the

reusable CircularLoader component I have created is displayed while we are waiting for the

data to be retrieved. If an error occurs, the NotFound component renders. If data is retrieved,

thus isSuccess is true, the DataGridTable is rendered. The data retrieved from the query is

passed as a prop to DataGridTable which renders the table as described in section 3.3.3.6.

Code 26. Example of a View component (Assets.txs).

The AddItemsFAB component is also rendered in these four views. This is a component that

handles adding new items and uses the TSQ useMutation function described in section

3.3.3.5. I will elaborate on this component after I have described the other views.

The Categories view also uses the DataGridTable, but the purpose of the component is

different from the other mentioned. This view displays all the categories available with the

opportunity to edit and delete these items. It also renders an DataGridTable of assets, based

on the selected category. Fig. 12 displays how this looks like.

 60

Fig. 12. The Categories view.

 61

3.3.3.8 Views: Asset and Loan
The Asset and Loan view displays a single asset or a single loan, correspondingly. These

views are dynamically routed denoted by the “assets/:id” and “loans/:id” routes, as is

displayed in Code 18. In the Asset view, one can edit and delete the asset based on its status.

In the Loans view, one can extend or hand-in a loan. With these views I implemented and

enabled these features:

- Feature: View a single asset in the system

- Feature: Update and add information to one or more assets at the same time

- Feature: Delete a "wrongly added" asset

- Feature: Deprecate an asset

- Feature: Add loan to history

- Feature: View one loan

- Feature: Hand in loan

- Feature: Extend loan

Fig. 13 displays an example of the Asset view and the Loans view.

In Fig. 13(a) the edit button changes the state on the form from being inactive to active. All

icon buttons used, make use of a MUI component called Tooltip. This provides a helper text

when hovering these buttons, allowing us to read which action the icon represent.

Fig. 13. Illustration of UI. (a) The Asset view. (b) The Loan view.

 62

The icon buttons, renders a MUI Dialog component, which is a window that appears in front

of the content, disabling everything else until action is made. I have used dialogs almost

every time I ask the user to perform an action. This will be exemplified in section 3.3.3.9.3.

3.3.3.9 Components
I have already mentioned several components I have created, that make up the views of the

UI. The DataGridTable component, I presented in section 3.3.3.6, serves a substantial role in

the UI. The other reusable components I have made are the CircularLoader, NotFound,

AlertBar, and Main. The three first are components that provides information to the user. The

latter is presented in section 3.3.3.2. I will not go into detail on the two first as they are

self-explanatory. However, because the AlertBar is used extensively throughout the UI, this

will be presented.

3.3.3.9.1 AlertBar
The AlertBar uses the MUI components SnackBar and Alert. SnackBar is a temporarily

popup in the bottom left corner and Alert displays a short message and is coloured on severity

of message. Used in combination, I have made a AlertBar that pops up every time a mutation

is successful or not, with a message to the user. To make it reusable I use props to provide

severity and a message. If there is an error, it renders red and if it’s a success it renders green.

Fig. 14 displays an example of the AlertBar.

Fig. 14. The AlertBar component displaying a successfull message.

3.3.3.9.2 FullMenu
The FullMenu component consist of the MUI components AppBar and Drawer. The AppBar

serves as a header and Drawer is used for navigation. It can be opened and closed on action

from user. I wanted to use a side navigation to makes sure I had enough space for the all the

routes. Moreover, enough space if I wanted to add several routes.

3.3.3.9.3 AddItemsFAB
The AddItemsFAB, mentioned in section 3.3.3.7, uses the MUI component SpeedDial. FAB

is abbreviated from Floating Action Button, and that is essentially how it appears, in the

lower right corner in the views that also display the dashboard. Add Items describes its role,

 63

specifically to add new items, hence an asset, a loan, or a category. Fig. 15 displays the

AddItemsFAB.

Fig. 15. Illustration of an active FAB.

The action buttons render a form in a dialog, introduced in section 3.3.3.8. The dialog and the

FAB floats independently from the rest of the layout. This provides an easy implementation

with other components as it does not affect them or the layout. Fig. 16 display a dialog with a

form that is used to add new loan.

Fig. 16. Illustration of the Add Loan dialog.

With this component I implemented and enabled these features:

- Feature: Add new asset

- Feature: Add new loan

- Feature: Add new category

 64

The solution requirements presented in section 3.1.2, essentially asked for a dynamic way to

add new assets and loans. This is described in the features and the user stories that entails

scanning. Regardless, I wanted to add a manual way to add new items as well, because the

functionality is more or less the same, except from the scanning. I will now continue with the

implementation of the Mobile view, which provides the dynamic way to add assets and loans.

 65

3.3.3.10 The Mobile View
As presented in section 3.3.3.1, I decided to add a view in my frontend created specifically to

be used from a mobile. The Mobile view uses the components in the “components/mobile”

directory. The features that this view implements are:

- Feature: Add new asset

- Feature: Scan asset and read information

- Feature: Scan asset and lend out to employee

- Feature: Scan asset and extend the loan

- Feature: Scan asset and hand in loan/asset

To dynamically add new assets I wrote out some user stories in section 3.1.3.1, that I want to

repeat as they provides elaborate descriptions on how I should implement the adding of new

asset.

1. As a user, I want to do a barcode scan of the serial number of an asset, identify the

serial number, then generate a QR code, print out a label, which I can stick on the

asset, to make it easier to manage that asset.

2. As a user, I want to add assets without serial number, with generating a unique id and

QR-code and stick to asset, to make it easier to manage that asset.

To meet the requirements of the first user story, I needed to implement a barcode-scanner, a

function that created QR-codes and an implementation towards a label writer. The second,

was implemented in the previous section, except from the label writing. The other features

required an implementation of a QR-scanner.

3.3.3.10.1 Barcode Scanner
I used the NPM package html5-qrcode16 together with a React implementation of this module

“HTML5QrCodePlugin/Html5QrcodePlugin.jsx”17. I placed the module in my “src”

directory and created a wrapper component HTML5QrWrapper to inject this module into my

NewAssetMobile component. This module allowed me to scan barcodes and QR-codes, with

the mobile camera and from uploading an image. The drawback of using this package, was

that scanning from mobile camera took some time, and gave unstable results. The quality and

size of the barcode was important. Nevertheless, taking a photo and uploading it worked fine.

16 html5-qrcode documentation: https://github.com/mebjas/html5-qrcode
17 Html5-qrcode-React documentation: https://github.com/scanapp-org/html5-qrcode-react

https://github.com/mebjas/html5-qrcode
https://github.com/scanapp-org/html5-qrcode-react

 66

I decided to use this module for the pilot and for demonstration purposes but added an

enhancement of this feature as a task to the backlog.

3.3.3.10.2 QR Service and Label Printing
The purpose of generating a QR-code was to print it using a label printer. Therefore, when I

add a new asset, a Globally Unique Identifier (GUID) connected to that new asset is created.

As it is unique, it is used to generate a QR-code with the NPM package node-qrcode18. The

GUID gets stored in the database, and when a QR-label is scanned, I can retrieve the asset on

the GUID.

In the “utils/Qr-service.tsx” I have started this implementation. However, due to hardware

requirements not yet available at development time, I could not complete it. The label printer

was not available, hence I could not implement the printing of the generated QR-code, neither

the sending of the QR-image to the label printer. These missing functionalities were added as

a new feature to the backlog. Nevertheless, I decided that I could implement the remaining

functionalities: to store the asset to the database, to create the GUID, and to generate the

QR-code.

3.3.3.10.3 QR Scanner
Before starting to implement the barcode scanner, I had already created the QRScanner

component. This could not read barcodes, hence I had to implement a barcode scanner. The

QRScanner component is implemented with the NPM packages jsQR19 and React Webcam20.

Code 27 displays the scan function which perform the scanning and reading of the identified

QR-code in image. The React Webcam activates the camera on a phone, then the video

retrieved is drawn in a HTML Canvas element. Then the jsQR method is called with the

image data received from the canvas. This method reads and identifies the QR-code. The

requestAnimationFrame is a built-in JS function that runs the scan function in a loop until it

has identified a QR-code. The scan method is called when the component is rendered. The

component returns the identified QR-code to its parent component.

18 node-qrcode documentation: https://github.com/soldair/node-qrcode
19 jsQR documentation: https://github.com/cozmo/jsQR
20 React Webcam documentation: https://github.com/mozmorris/react-webcam

https://github.com/soldair/node-qrcode
https://github.com/cozmo/jsQR
https://github.com/mozmorris/react-webcam

 67

Code 27. The Scan method of QR-Scanner (QRScanner.tsx).

As opposed to the barcode scanner, the QRScanner component worked well at identifying

QR-codes, hence I did not want to discard this component before I eventually had a scanner

that performed better and did both QR and barcode reading. The drawback of this component

is the use of the NPM packages and the built-in JS function drawImage. I will elaborate on

this in section 4.2.1.1. Consequently, this is also added as a task to the backlog as a possible

enhancement.

Having these modules in place, I could continue to implement the Mobile view. Fig. 17,

display the actions possible to make from the Mobile view. Either do a QR- scanning or

adding a new asset, when clicking the QR-icon button or clicking the plus-icon button,

correspondingly.

 68

Fig. 17. Illustration of the menu in the Mobile view.

3.3.3.10.4 Add Asset
When choosing to add an asset, the NewAssetMobile component is activated. This holds the

HTML5QrWrapper component, which makes barcode scanning possible. When decoded text,

hence a serial number, is identified, it is returned to NewAssetMobile. Furthermore, the

component opens a dialog, asking the user to confirm that the serial number identifies is

correct. If not, the HTML5QrWrapper is activated, and the user can perform a new scanning.

If it is correct, a dialog with a form opens and user can set the asset type and save it to the

database. As I have elaborated on earlier, useMutation handles this process. Fig. 18

demonstrates how to add a new asset from the Mobile view.

 69

3.3.3.10.5 Scanning Asset
When choosing to scan an asset, the MobileActions component is activated. This holds the

QRScanner component, which makes QR scanning possible. When there is an identified

GUID retrieved from the QRScanner, a useQuery is called to retrieve the asset and

furthermore another query for the loan on that asset, if there exists one. Code 28 displays the

loanQuery with the enabled flag activated in line 5. This means that the query is inactive and

will not execute before an asset is retrieved and a assetId exist.

Code 28. Example of useQuery with "enabled" activated (MobileActions.tsx).

When MobileActions have received the asset and potentially a loan, the user now has several

options. If there is no loan and the asset status is set to available, the user can create a new

loan with that asset. On the other hand, if the asset status is unavailable and there exist a loan,

the user can choose to extend or hand in the loan. Fig. 19 displays these options.

Fig. 18. Illustration of barcode scanner. (a) The scanning window using the HTML5QrWrapper.
(b) Confirmation of barcode scan dialog. (c) Add asset form dialog.

 70

With the implementation of the NewAssetMobile and MoibleActions component, I have

fulfilled the feasible requirements of the user stories. These implementations come with

several limitations. I will address the limitation and shortcomings of my pilot in section 4.2.1.

However, before doing so, I will continue with describing the database implementation and

the containerization of the solution.

Fig. 19. Illustration of possible actions after a QR scan has identified an asset. (a) Information window of an
available asset. (b) New loan dialog. (c) Information window of an unavailable asset.

 71

3.3.4 Database Implementation

In section 3.3.2.7, I described how I implemented the data model with the ORM tool EF

Core. When using an ORM, it is not necessary to create any data access code except from the

LINQ queries in the repositories classes I presented in section 3.3.2.9. The LINQ queries gets

translated to SQL by the database provider implemented with the ORM. Fig. 20 displays the

data model of the database.

FK

FK

FK

FK

FK

Fig. 20. Data Model diagram.

 72

3.3.5 Containerizing the Solution

I am going to describe how I have arranged for the application to run using Docker

Containers. As described in section 2.1.5, a Docker Image is necessary to create a Docker

Container. Hence, I needed three images, one for the database, one for the frontend, and one

for the backend. While I wanted to use Bouvet’s own server to store the data in production, I

did not have access to this while developing. Therefore, I decided to use a Docker Container

for the MSSQL Server. To do this I used the MSSQL Server image which is available at

Microsoft Artifact Registry21. The images for the frontend and the backend are built from a

Dockerfile, which resides in the root folder together with the entry-points of the applications.

A Dockerfile is a text document with instructions on how to build the application. The

Dockerfile for the backend is generated by Visual Studio IDE, which is a programming tool

from Microsoft. The Dockerfile for the frontend is inspired from the Medium article by

Mwila [76]. One of the Dockerfile commands is FROM, which specifies the parent image.

The following commands are based on this parent image [77]. In my case the parent images

hold the frameworks and runtimes needed to build and run the applications I have created.

These parent images resides in a registry, which is a repository of images [77]. Microsoft has

its own registry, as mentioned previously. There is also a default registry that can be browsed

on Docker Hub. Hence, when creating a container instance from an image, we do not need to

install any frameworks, libraries, or dependencies. It is all contained in the container.

To create container instances from these images, I used the Docker Compose tool. This tool is

used for defining and running a multi-container application. I have created a

“docker-compose.yml”22 file, which is a configuration file, were I have defined the three

services of the solution.

When defining a service, there are several steps involved. Defining the image, the container

should depend on. Defining from where the image should be built if it does not exist, nor is

from a registry. Defining the ports (HOST_PORT : CONTAINER_PORT), volumes and

environment variables. The Docker Compose tool sets up a network for all the services by

default, that means that the services are reachable by all the containers on that network. The

containers communicate inside the network on the container-ports. If they are reachable from

the outside, the host-port is also defined. [78]

21 https://mcr.microsoft.com/
22 https://github.com/livun/bouvet-asset-hub/blob/dev/src/docker-compose.yml

https://mcr.microsoft.com/
https://github.com/livun/bouvet-asset-hub/blob/dev/src/docker-compose.yml

 73

When defining the database service, I have defined which image it depends on, this image

already exists in the Microsoft Artifact Registry. When the compose file is eventually

executed, it pulls that image from the registry. I also define two environment variables, a

password, and the ACCEPT_EULA=Y, which is to confirm acceptance of a licensing

agreement. This is necessary to use the MSSQL server image. The last thing I must define for

the database, is the Docker Volume. This is to persist the data stored in the database if the

container is deleted and must be rebuilt. This volume is connected to a physical location on

the host.

In the Docker Compose file, I must add the Docker Volume and define it to be an external

volume. Before executing the compose, I must create this volume. This is all explained in the

“README.md” on GitHub23.

When defining the frontend service, I define the image the container is going use. Then, I

define that the image must be built, and where to find the Dockerfile to build this image.

Finally, I define which port the frontend is accessible from.

When defining the backend service, this process is similar to defining the frontend service.

The process differs on three aspects. Firstly, there are two ports defined, instead of only one.

One for HTTP and one for HTTPS. Secondly, the backend is defined to depend on the

database, whereas the frontend does not depend on any other services. The dependency

implies that the container instance of the backend must be created after the container instance

of the database. This defined order of creation is due to the fact that when the backend is

built, it is configured to connect to an existing database. Lastly, there is a certificate defined,

as opposed to the frontend where I do not define any certificates. The certificates are

necessary for hosting over HTTPS, which is the default for ASP.NET Core. I have used the

dotnet dev-certs tool for using a self-signed certificate for development and hosting on

localhost [79].

When all the services and volumes are defined in the Docker Compose file, I can execute it.

To do this I need a software named Docker Desktop, which includes the Docker Engine and

the Docker Compose tool. The Docker Engine consists of the technology that builds and

containerizes the application [80].

23 https://github.com/livun/bouvet-asset-hub/blob/dev/README.md

https://github.com/livun/bouvet-asset-hub/blob/dev/README.md

 74

To configure the Docker Compose for production and to be hosted on the web, there are a

few more steps that needs to be completed. As for the pilot, I decided to keep this process out

of the scope of the project, due to a restricted timeframe. Nevertheless, it is now possible to

run the application with Docker Compose. It creates three containers, which can run on the

local network, communicate, and demonstrate the solution.

 75

3.3.6 Summary of the Pilot

This section concludes the implementation of the pilot. I have thoroughly described how I

decided to execute the implementation of the features identified in the Agile Scrum planning

phases. I have developed a backend that interacts with a database, and a frontend. This is all

described in section 3.3.2, 3.3.3, and 3.3.4. I have also elaborated on the use of Docker as

deployment method. This pilot has its limitations and shortcoming, which I will describe in

section 4.2.1 of the Results chapter. Moreover, I made use of the backlog while developing

and moved the features and tasks along the Kanban board to visualise and organise the

development process.

In the next chapter I will discuss the results of this project and assess the accomplishment of

the proposed goals.

 76

4 Results

In this chapter I will present the results of my thesis. I will first assess the use of Agile

Scrum, thus how I planned the solution and facilitated for a handover. Finally, I am going to

discuss the outcome of the implementation, hence the pilot and its limitation. I will assess if

the initial goal of thesis was achieved.

4.1 Assessing the Use of Agile Scrum and GitHub Projects

I have presented how I have used Agile Scrum throughout the thesis. This project

management framework provided me with the necessary instruments to plan and execute the

pilot. GitHub Projects provided me with the tools to carry out Agile Scrum, as I used it to

organize and visualise the backlog. To create a comprehensive and complete solution, the use

of the Agile Scrum methodology was very convenient and helpful. The two planning phases

resulted in the requirements, features and user stories presented in section 3.1.3. The most

challenging part of planning was deciding which features I should prioritize for the pilot. This

was the first step of the agile iteration cycle. I believe that the scope of the implemented

features became too large. I think that I could have achieved a more maintainable and

deployed solution, but with fewer functionalities if I had been more cautious in this first step.

I will continue this assertion when discussing the results of the pilot, after I discuss the

handover.

The use of Agile Scrum and GitHub Projects facilitated for an easier handover. The project is

thoroughly documented and developed with the handover in mind. GitHub projects contains a

backlog filled with feature, tasks, and enhancements. This will be made available for the

handover team. The backlog distinguishes on requirements necessary to complete the

solution, and the enhancements. The implementation of Azure AD, the integration towards

Xledger and the label printing is required. While better scanning functionalities etc., are

enhancements. I have also focused on creating maintainable code with the handover in mind,

I believe this is achieved specifically in the backend implementation. This deemed to be more

challenging in the frontend, due to the limitations of the packages used and the scope of the

pilot. Nevertheless, the project is made ready for a handover, where the necessary

information will be provided.

 77

4.2 Assessing the Pilot

As mentioned in the previous section, I believe that I could have done a better job at planning

which features to implement for the pilot. This is primarily because of how the Mobile view

was implemented. While some features were not possible to implement because of hardware

requirements, the quality and maintainability of the Mobile view features are not satisfactory.

In the next section, I will discuss the limitations and shortcoming of the implementation.

Hence, the Mobile view, frontend components and the lack of validation. I will also elaborate

on how the features not implemented limits the pilot. After discussing the limitations, I will

conclude with an assessment of the pilot.

4.2.1 Limitations and Shortcomings of Implementation

I am first going to address the use of NPM packages, the limitations of the Mobile view and

other components. Secondly, I will elaborate on the lack of validation, on the client side and

server side. Finally, I will mention how the features that are not implemented limits the pilot.

4.2.1.1 NPM and the Mobile View
Use of the NPM packages in the Mobile view comes with several limitations, as I have

already mentioned in section 3.3.3.10. Maintainability is also important when developing the

frontend, as well as the backend. When using NPM packages, it is important to be aware of

the packages’ vulnerabilities and overall health. Snyk Advisor24 is an open-source tool that

gives packages a health score from 1 to 100, based on security, popularity, maintenance, and

community [81]. The tool is used to check the health score of the implemented packages. The

packages used in the Mobile view, have mediocre health scores. This is primarily because

they are no longer being maintained. The use of these packages affects the maintainability of

my frontend application negatively.

Furthermore, the implementations of scanners impose a limitation to the solution. The

QRScanner component uses the built-in JS function drawImage, mentioned in section

3.3.3.10.3. There is not support for this method in Safari on IOS. Regardless, the QRScanner

is supported in other bowsers on a mobile, i.e., Chrome or Firefox. The html5-qrcode

package, does is not provide an optimal solution, because of its unstable results. Therefore, I

24 https://snyk.io/advisor/

https://snyk.io/advisor/

 78

have added tasks in my backlog to enhance these features, with a suggestion to create a

scanner that handles both QR-codes and barcodes.

4.2.1.2 Frontend Components
Several of the non-reusable frontend components got very big and complex. This affects the

code readability and maintenance. Therefore they should have been split into several reusable

components. Which prevents me from writing duplicate code and is therefore a more efficient

way to develop. When I saw that the components got big and complex, I did not have time to

improve them. Therefore, I have added this enhancement of the frontend components as a

task to the backlog.

4.2.1.3 Validation
I have not implemented validators in the backend, nor have I implemented user feedback on

the forms in the frontend. This was not implemented due to time constraints. When it comes

to validation in the backend, this is important for security and data accuracy. Thus,

preventing malicious users from submitting invalid data. Moreover, making sure that the

retrieved data matches the expected data and conforms to defined business rules. One

example from my solution is a validation of the Interval class. A validator should have

ensured that the stop date was after a start date. As ASP.NET Core Web API has built-in

encoding, it automatically validates the incoming data against the excepted data. If it is not a

match, the request returns a Bad Request. Nevertheless, I have added a task to the backlog to

implement business rule validators.

When it comes to frontend validation, this is useful for the user experience, and to reduce the

load on the backend. The forms have restrictions added to them, but there is no information

feedback to the user, if something is wrong. This is a limitation because it reduces the user

experience. Hence this enhancement is added as a task to the backlog.

4.2.1.4 The Features Not Implemented
A limitation regarding security is the fact that I chose to not implement Azure AD in the

pilot. Azure Ad provides security to the system, as it authorizes and authenticates the users.

As the functionalities of this system is created for the IT department and Bouvet, it should

therefore only be accessible for them. Hence an implementation of Azure AD is a

requirement. I decided that to pilot the solution, and to showcase the functionalities, it was

 79

not imperative to implement Azure AD. Nevertheless, it must be implemented before it is sat

in production.

Another feature I decided to not implement for the pilot, is the integration towards Xledger.

This does not necessarily limit the solution, but it should be integrated as it is an important

requirement for the scope of a finished solution. This feature lowers the workload on the

IT department, and make sure that every aspect of asset tracking is thought of. The reason for

not implementing this feature during the pilot, was that not all required information about the

Xledger’s API, was available to me during the development phase. This made it impossible to

fulfil and thus out of the scope of the pilot.

As mentioned in section 3.3.3.10.2, hardware requirements prevented me from finishing the

feature that involved sticking a label to a new asset that was added. This feature is very

important, as forms the basis for easy identification and handling of a single asset. Without

the labels, this becomes very cumbersome.

The last feature I did not implement, was the notification feature, reminding the lender to

return its loan. I decided that this feature was out of scope regarding the time frame I had to

develop the pilot. This feature also holds an important part of a finished solution as with the

Xledger integration. To implement this feature, I would have created a new service in the

backend, that essentially had two jobs. First to check the database daily for loans that were

reaching its expiration date. Secondly, to send an email to notify the lender when it is time to

hand in the asset. This feature remains in the backlog, along with the other features that were

not implemented.

When addressing these limitations, I have mentioned several times that the backlog contains

these missing features and enhancements as tasks. This is done to provide an easier handover

of the project. I have discussed the handover in section 4.1.

 80

4.2.2 Assessment of the Implementation

The goal of the thesis was presented in section 1.3, which initially was to help Bouvet keep

track of its assets and ease the workload on the IT department. In section 3.3.1 I have

summarized the features implemented in the pilot. The pilot demonstrates a solution that

meets the initial goals at some level, but as discussed in the previous sections, also has its

shortcomings. An important part of the result is the identification of requirements and

features of said solution. While the pilot has not achieved every requirement, this is not its

main objective. The pilot demonstrates a large range of functionalities improving and

enhancing the asset tracking experience. It reduces the amount of manual work, by

implementing an automatic way to register new assets. In the past the registration of new

assets has been maintained manually with entries in Excel spreadsheets. The implementations

of features involving loans also enhances the asset tracking, as there now exist specific

functionality for this. A finalized solution will provide a more efficient way to keep track of

the assets in the company.

 81

5 Conclusion

In this thesis I have demonstrated the process of developing a pilot for an asset management

system for Bouvet. The results demonstrate the importance of planning, whereas it provided

me with a clear overview of what to develop and how to facilitate the handover. The pilot has

revealed some limitations which I have elaborated on in section 4.2.1. As expected, the pilot

does not include all the implemented functionalities that are required for production. These

are described in my backlog as well as the documentation necessary for an easy handover. As

long as my backlog is implemented, the implemented solution gives Bouvet a tool for better

keeping track of its assets, and thus eases the workload on the IT department.

 82

References

[1] Stack Overflow, ‘Developer Survey 2022’, Jun. 2022 [Online]. Available:
https://survey.stackoverflow.co/2022/. [Accessed: Nov. 12, 2022]

[2] K. Devaki, ‘Statically v. dynamically v. strongly v. weakly typed languages’, Educative:
Interactive Courses for Software Developers. [Online]. Available:
https://www.educative.io/answers/statically-v-dynamically-v-strongly-v-weakly-typed-
languages. [Accessed: Nov. 12, 2022]

[3] MDN Web Docs, ‘SPA (Single-page application)’, Sep. 21, 2022. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Glossary/SPA. [Accessed: Oct. 30, 2022]

[4] Meta Platforms Inc., ‘Glossary of React Terms’, React. [Online]. Available:
https://reactjs.org/docs/glossary.html. [Accessed: Oct. 30, 2022]

[5] Meta Platforms Inc., ‘Static Type Checking’, React. [Online]. Available:
https://reactjs.org/docs/static-type-checking.html. [Accessed: Oct. 30, 2022]

[6] Microsoft, ‘What is TypeScript?’ [Online]. Available: https://www.typescriptlang.org/.
[Accessed: Oct. 30, 2022]

[7] Google, ‘Introduction’, Material Design. [Online]. Available:
https://m2.material.io/design/introduction. [Accessed: Nov. 12, 2022]

[8] MUI, ‘Material UI - Overview’. [Online]. Available: https://mui.com/material-
ui/getting-started/overview/. [Accessed: Nov. 12, 2022]

[9] MUI, ‘Move faster with intuitive React UI tools’. [Online]. Available: https://mui.com/.
[Accessed: Nov. 12, 2022]

[10] MUI, ‘MUI X - Overview’. [Online]. Available: https://mui.com/x/introduction/.
[Accessed: Nov. 12, 2022]

[11] Meta Platforms Inc., ‘Components and Props’, React. [Online]. Available:
https://reactjs.org/docs/components-and-props.html. [Accessed: Nov. 12, 2022]

[12] T. Linsley, ‘Overview, TanStack Query Docs’, TanStack. [Online]. Available:
https://tanstack.com/query/v4/docs/overview. [Accessed: Nov. 15, 2022]

[13] Axios, ‘Getting Started’. [Online]. Available: https://axios-http.com/docs/intro.
[Accessed: Nov. 15, 2022]

[14] MDN Web Docs, ‘An overview of HTTP’. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview. [Accessed: Dec. 04,
2022]

[15] MDN Web Docs, ‘HTTPS’. [Online]. Available: https://developer.mozilla.org.
[Accessed: Dec. 04, 2022]

[16] S. Chauhan, ‘Difference between ASP.NET MVC and ASP.NET Web API’,
DotNetTricks, Sep. 04, 2022. [Online]. Available:

 83

https://www.dotnettricks.com/learn/webapi/difference-between-aspnet-mvc-and-aspnet-
web-api. [Accessed: Oct. 30, 2022]

[17] Microsoft, ‘ASP.NET Web APIs’, Microsoft, Oct. 26, 2022. [Online]. Available:
https://dotnet.microsoft.com/en-us/apps/aspnet/apis. [Accessed: Oct. 30, 2022]

[18] Red Hat, Inc., ‘What is a REST API?’, May 08, 2020. [Online]. Available:
https://www.redhat.com/en/topics/api/what-is-a-rest-api. [Accessed: Oct. 30, 2022]

[19] Codecademy, ‘What is REST?’ [Online]. Available:
https://www.codecademy.com/article/what-is-rest. [Accessed: Dec. 06, 2022]

[20] Microsoft, ‘Language-Integrated Query (LINQ) (C#)’, Oct. 13, 2022. [Online].
Available: https://learn.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/linq/. [Accessed: Oct. 30, 2022]

[21] Microsoft, ‘Entity Framework Core’, May 25, 2021. [Online]. Available:
https://learn.microsoft.com/en-us/ef/core/. [Accessed: Oct. 30, 2022]

[22] Microsoft, ‘Databases’, Nov. 19, 2022. [Online]. Available:
https://learn.microsoft.com/en-us/sql/relational-databases/databases/databases.
[Accessed: Dec. 14, 2022]

[23] P. Loshin and J. Sirkin, ‘Structured Query Language (SQL)’, TechTarget, Feb. 2022.
[Online]. Available:
https://www.techtarget.com/searchdatamanagement/definition/SQL. [Accessed: Dec.
13, 2022]

[24] J. L. Harrington, Ed., Relational Database Design Clearly Explained, Second Edition.
San Diego: Academic Press, 2002 [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9781558608207500003

[25] V. Vidhya, Database management systems. Oxford, England: Alpha Science
International Ltd., 2016.

[26] Microsoft, ‘What is Azure Active Directory?’, Sep. 15, 2022. [Online]. Available:
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-
whatis. [Accessed: Oct. 22, 2022]

[27] Red Hat, Inc., ‘What is containerization?’, Apr. 08, 2021. [Online]. Available:
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization.
[Accessed: Oct. 23, 2022]

[28] Docker Inc., ‘Docker overview’, Docker Documentation, Oct. 28, 2022. [Online].
Available: https://docs.docker.com/get-started/overview/. [Accessed: Oct. 30, 2022]

[29] Microsoft, ‘Kubernetes vs Docker’, Azure Microsoft. [Online]. Available:
https://azure.microsoft.com/en-us/solutions/kubernetes-vs-docker/. [Accessed: Oct. 30,
2022]

[30] B. Vanderjack, The Agile Edge: Managing Projects Effectively Using Agile Scrum, First
Edition. New York: Business Expert Press, 2015.

 84

[31] ‘IEEE Standard Glossary of Software Engineering Terminology’, IEEE Std 61012-1990,
pp. 1–84, 1990, doi: 10.1109/IEEESTD.1990.101064.

[32] I. Montiel, ‘Low Coupling, High Cohesion’, Clarity Hub, Sep. 17, 2018. [Online].
Available: https://medium.com/clarityhub/low-coupling-high-cohesion-3610e35ac4a6.
[Accessed: Nov. 25, 2022]

[33] G. Wright, ‘Module’, TechTarget. [Online]. Available:
https://www.techtarget.com/whatis/definition/module. [Accessed: Nov. 26, 2022]

[34] C. Giridhar, Learning Python Design Patterns - Second Edition: Leverage the Power of
Python Design Patterns to Solve Real-World Problems in Software Architecture and
Design. Birmingham: Packt Publishing Ltd., 2016.

[35] K. Singh, A. Ianculescu, and L.-P. Torje, Design Patterns and Best Practices in Java: A
Comprehensive Guide to Building Smart and Reusable Code in Java. Birmingham:
Packt Publishing Ltd., 2018.

[36] S. Wlaschin, Domain Modeling Made Functional: Tackle Software Complexity with
Domain-Driven Design and F#. Sebastopol: The Pragmatic Programmers, LLC, 2018.

[37] P. Louth, ‘C# Functional Programming Language Extensions’. Oct. 30, 2022 [Online].
Available: https://github.com/louthy/language-ext. [Accessed: Oct. 30, 2022]

[38] Microsoft, ‘Functional programming vs. imperative programming - LINQ to XML’,
Sep. 15, 2021. [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/standard/linq/functional-vs-imperative-programming. [Accessed: Oct. 30,
2022]

[39] R. C. Martin, ‘Design Principles and Design Patterns’, www.objectmentor.com, p. 34,
Jan. 2000.

[40] B. Gantulga, N. Munkhtsetseg, D. Garmaa, and S. Batbayar, ‘Using Five Principles of
Object-Oriented Design in the Transmission Network Management Information’, in
Advances in Intelligent Information Hiding and Multimedia Signal Processing,
Singapore, 2020, pp. 325–333.

[41] H. Singh and S. I. Hassan, ‘Effect of solid design principles on quality of software: An
empirical assessment’, Int. J. Sci. Eng. Res., vol. 6, no. 4, 2015.

[42] A. Patel, ‘Use MediatR in ASP.NET or ASP.NET Core’, .NET Hub, Aug. 03, 2021.
[Online]. Available: https://medium.com/dotnet-hub/use-mediatr-in-asp-net-or-asp-net-
core-cqrs-and-mediator-in-dotnet-how-to-use-mediatr-cqrs-aspnetcore-5076e2f2880c.
[Accessed: Nov. 26, 2022]

[43] Microsoft, ‘Dependency injection in .NET’, Nov. 18, 2022. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection.
[Accessed: Nov. 26, 2022]

[44] T. Janssen, ‘Design Patterns Explained – Dependency Injection with Code Examples’,
Stackify, Jun. 19, 2018. [Online]. Available: https://stackify.com/dependency-injection/.
[Accessed: Nov. 26, 2022]

 85

[45] IBM Cloud Education, ‘What is Three-Tier Architecture’, IBM, Sep. 16, 2021.
[Online]. Available: https://www.ibm.com/cloud/learn/three-tier-architecture.
[Accessed: Nov. 03, 2022]

[46] P. Ndemo, ‘2 and 3 Tier Architecture’, Medium, Jun. 16, 2020. [Online]. Available:
https://medium.com/@paulndemo/2-and-3-tier-architecture-4a473e5ced3d. [Accessed:
Nov. 15, 2022]

[47] MDN Web Docs, ‘Introduction to client-side frameworks’, Oct. 28, 2022. [Online].
Available: https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-
side_JavaScript_frameworks/Introduction. [Accessed: Nov. 15, 2022]

[48] Meta Platforms Inc., ‘Introducing JSX’, React. [Online]. Available:
https://reactjs.org/docs/introducing-jsx.html. [Accessed: Nov. 15, 2022]

[49] H. Dhaduk, ‘Angular vs React: Which JS Framework your Project Requires?’, Simform
- Product Engineering Company, Feb. 16, 2021. [Online]. Available:
https://www.simform.com/blog/angular-vs-react/. [Accessed: Dec. 06, 2022]

[50] FreeCodeCamp, ‘Interpreted vs Compiled Programming Languages: What’s the
Difference?’, Jan. 10, 2020. [Online]. Available:
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/.
[Accessed: Dec. 09, 2022]

[51] GeeksforGeeks, ‘Difference between Compiled and Interpreted Language’, Mar. 26,
2020. [Online]. Available: https://www.geeksforgeeks.org/difference-between-
compiled-and-interpreted-language/. [Accessed: Dec. 09, 2022]

[52] Ambitious Systems, ‘Relationships decide the best data model fit’, Feb. 16, 2021.
[Online]. Available: https://ambitious.systems/relationships-influence-data-model-fit.
[Accessed: Nov. 16, 2022]

[53] P. Xavier, ‘Data Models Revealed’, Medium, Jun. 11, 2022. [Online]. Available:
https://towardsdatascience.com/data-models-revealed-how-to-choose-the-right-model-
647f19469b89. [Accessed: Nov. 16, 2022]

[54] R. Grischenko, ‘Data Modeling Techniques Explained’, Mighty Digital, Oct. 15, 2021.
[Online]. Available: https://www.mighty.digital/blog/data-modeling-techniques-
explained. [Accessed: Nov. 16, 2022]

[55] Integrant, ‘When to Use SQL vs. NoSQL’. [Online]. Available:
https://techblog.integrant.com/when-to-use-sql-vs-nosql. [Accessed: Nov. 16, 2022]

[56] K. Clark and C. Jackson, ‘The true benefits of moving to containers’, IBM Developer,
Sep. 10, 2020. [Online]. Available: https://developer.ibm.com/articles/true-benefits-of-
moving-to-containers-1/. [Accessed: Nov. 17, 2022]

[57] I. Buchanan, ‘Containers vs Virtual Machines’, Atlassian. [Online]. Available:
https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms.
[Accessed: Nov. 17, 2022]

 86

[58] Aqua Security, ‘Container Advantages: 7 Reasons to Adopt a Containerized
Architecture’, Cloud Native Wiki by Aqua. [Online]. Available:
https://www.aquasec.com/cloud-native-academy/docker-container/container-
advantages/. [Accessed: Nov. 17, 2022]

[59] IBM Cloud Education, ‘Containerization’, IBM, May 15, 2019. [Online]. Available:
https://www.ibm.com/in-en/cloud/learn/containerization. [Accessed: Nov. 17, 2022]

[60] Future Techno India, ‘Deployments on Containers’, Medium, Aug. 09, 2021. [Online].
Available: https://futuretechnoindia.medium.com/deployments-on-containers-
aa2353b15cff. [Accessed: Nov. 17, 2022]

[61] Aqua Security, ‘Docker Containers vs. Virtual Machines’, Cloud Native Wiki by Aqua.
[Online]. Available: https://www.aquasec.com/cloud-native-academy/docker-
container/docker-containers-vs-virtual-machines/. [Accessed: Nov. 17, 2022]

[62] N. Janetakis, ‘Virtual Machines vs Docker Containers: a Comparison’, CircleCi, May
16, 2018. [Online]. Available: https://circleci.com/blog/virtual-machines-vs-docker-
containers-a-comparison/. [Accessed: Nov. 17, 2022]

[63] S. Miteva, ‘The Concept of Domain-Driven Design Explained’, Microtica, Jul. 03,
2020. [Online]. Available: https://medium.com/microtica/the-concept-of-domain-
driven-design-explained-3184c0fd7c3f. [Accessed: Nov. 25, 2022]

[64] Microsoft, ‘Assemblies in .NET’, Sep. 08, 2022. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/standard/assembly/. [Accessed: Nov. 26, 2022]

[65] R. Anderson and K. Larkin, ‘Enable Cross-Origin Requests (CORS) in ASP.NET Core’,
Microsoft, Jun. 03, 2022. [Online]. Available: https://learn.microsoft.com/en-
us/aspnet/core/security/cors. [Accessed: Nov. 27, 2022]

[66] J. Miskovic, ‘Class vs Record: Difference between class and record type in C#’,
josipmisko.com, Oct. 20, 2022. [Online]. Available: https://josipmisko.com/posts/c-
sharp-class-vs-record. [Accessed: Nov. 27, 2022]

[67] Microsoft, ‘Records (C# reference)’, Oct. 07, 2022. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record.
[Accessed: Nov. 27, 2022]

[68] J. Trivedi, ‘Association, Aggregation and Composition’, C# Corner, Jan. 12, 2022.
[Online]. Available: https://www.c-sharpcorner.com/uploadfile/ff2f08/association-
aggregation-and-composition/. [Accessed: Nov. 27, 2022]

[69] A. Saini, ‘C# | Predicate Delegate’, GeeksforGeeks, Apr. 04, 2019. [Online]. Available:
https://www.geeksforgeeks.org/c-sharp-predicate-delegate/. [Accessed: Nov. 28, 2022]

[70] Microsoft, ‘ASP.NET Core web API documentation with Swagger / OpenAPI’, Nov.
10, 2022. [Online]. Available: https://learn.microsoft.com/en-
us/aspnet/core/tutorials/web-api-help-pages-using-swagger. [Accessed: Nov. 28, 2022]

[71] T. Gemayel, ‘How to wireframe’, Figma, Aug. 12, 2019. [Online]. Available:
https://www.figma.com/blog/how-to-wireframe/. [Accessed: Nov. 29, 2022]

 87

[72] ‘Glossary of React Terms – React’. [Online]. Available:
https://reactjs.org/docs/glossary.html. [Accessed: Nov. 29, 2022]

[73] M. Abdelmogoud, ‘How the browsers understand JavaScript’, Medium, Sep. 27, 2019.
[Online]. Available: https://medium.com/@mustafa.abdelmogoud/how-the-browsers-
understand-javascript-d9699dced89b. [Accessed: Nov. 29, 2022]

[74] npm, Inc., ‘About npm’, npm. [Online]. Available: https://www.npmjs.com/about.
[Accessed: Nov. 29, 2022]

[75] MDN Web Docs, ‘Destructuring assignment’, Oct. 31, 2022. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment. [Accessed:
Nov. 30, 2022]

[76] L. Mwila, ‘Build a Multi-Container Docker Application with Docker Compose with a
React, Node, and Postgres App’, Medium, Jul. 30, 2020. [Online]. Available:
https://levelup.gitconnected.com/build-a-multi-container-application-with-docker-
compose-460f6199ef3c. [Accessed: Dec. 04, 2022]

[77] Docker Inc., ‘Glossary’, Docker Documentation, Dec. 01, 2022. [Online]. Available:
https://docs.docker.com/glossary/. [Accessed: Dec. 04, 2022]

[78] Docker Inc., ‘Networking in Compose’, Docker Documentation, Dec. 01, 2022.
[Online]. Available: https://docs.docker.com/compose/networking/. [Accessed: Dec. 04,
2022]

[79] Microsoft, ‘Hosting ASP.NET Core image in container using docker compose with
HTTPS’, Nov. 27, 2022. [Online]. Available: https://learn.microsoft.com/en-
us/aspnet/core/security/docker-compose-https. [Accessed: Dec. 04, 2022]

[80] Docker Inc., ‘Docker Engine overview’, Docker Documentation, Dec. 01, 2022.
[Online]. Available: https://docs.docker.com/engine/. [Accessed: Dec. 04, 2022]

[81] Snyk Ltd., ‘Snyk Open Source Advisor’, Snyk Advisor. [Online]. Available:
https://snyk.io/advisor. [Accessed: Dec. 03, 2022]

	0.1 Abstract
	0.2 Acknowledgements
	0.3 List of Acronyms and Abbreviations
	1 Introduction
	1.1 Problem
	1.2 About Bouvet
	1.3 Goal
	1.4 Outline of thesis

	2 Background and Theory
	2.1 Technology and Libraries
	2.1.1 Frontend
	2.1.1.1 React and TypeScript
	2.1.1.2 MUI – Material UI and MUI X
	2.1.1.3 TanStack Query and Axios

	2.1.2 Backend
	2.1.2.1 ASP.NET Core 6 Web API
	2.1.2.2 Entity Framework Core

	2.1.3 Database
	2.1.4 Azure Active Directory
	2.1.5 Containerization

	2.2 Agile Scrum
	2.2.1 Theory
	2.2.2 Implementation of Agile Scrum

	2.3 Design Principles and Patterns
	2.3.1 Maintainability, Coupling and Cohesion
	2.3.2 Object-Oriented Programming and Functional Programming
	2.3.3 SOLID
	2.3.4 Design Patterns

	3 Experiment
	3.1 Business Case Specification
	3.1.1 Preparatory Work
	3.1.2 The Planning Phases
	3.1.3 Features and User stories
	3.1.3.1 Feature: Add new asset
	3.1.3.2 Feature: View all assets in the system
	3.1.3.3 Feature: View a single asset in the system
	3.1.3.4 Feature: Scan asset and read information
	3.1.3.5 Feature: Update and add information to one or more assets at the same time
	3.1.3.6 Feature: Delete a "wrongly added" asset
	3.1.3.7 Feature: Deprecate an asset
	3.1.3.8 Feature: Scan asset and lend out to employee
	3.1.3.9 Feature: Scan asset and extend the loan
	3.1.3.10 Feature: Scan asset and hand in loan/asset
	3.1.3.11 Feature: Add new loan
	3.1.3.12 Feature: Add loan to history
	3.1.3.13 Feature: View all loans
	3.1.3.14 Feature: View one loan
	3.1.3.15 Feature: Hand in loan
	3.1.3.16 Feature: Extend loan
	3.1.3.17 Feature: View all loans linked to employee
	3.1.3.18 Feature: View loan history
	3.1.3.19 Feature: Add new category
	3.1.3.20 Feature: Send notification
	3.1.3.21 Feature: Access Control
	3.1.3.22 Feature: Notifying Xledger

	3.2 Design, Architecture, and Infrastructure
	3.2.1 Architecture
	3.2.2 Presentation Tier
	3.2.2.1 Why React, TypeScript and MUI?
	3.2.2.2 Why Axios and TanStack Query?

	3.2.3 Application Tier
	3.2.4 Data Tier
	3.2.5 Security
	3.2.6 Deployment

	3.3 Implementation
	3.3.1 Summary of the Features Implemented
	3.3.2 Backend Development
	3.3.2.1 Backend Structure
	3.3.2.2 Low Coupling and High Cohesion
	3.3.2.3 Connection Between Assemblies
	3.3.2.4 API
	3.3.2.5 Contracts
	3.3.2.6 Domain
	3.3.2.7 Data
	3.3.2.8 Handlers
	3.3.2.9 Repositories
	3.3.2.10 Testing

	3.3.3 Frontend Development
	3.3.3.1 Design Decisions
	3.3.3.2 The Core Elements of the Frontend
	3.3.3.3 Utilizing TypeScript
	3.3.3.4 Generating Client Types
	3.3.3.5 Implementing Axios and TanStack Query
	3.3.3.6 Utilizing MUI Components
	3.3.3.7 Views: Assets, Loans, LoanHistory and Categories
	3.3.3.8 Views: Asset and Loan
	3.3.3.9 Components
	3.3.3.9.1 AlertBar
	3.3.3.9.2 FullMenu
	3.3.3.9.3 AddItemsFAB

	3.3.3.10 The Mobile View
	3.3.3.10.1 Barcode Scanner
	3.3.3.10.2 QR Service and Label Printing
	3.3.3.10.3 QR Scanner
	3.3.3.10.4 Add Asset
	3.3.3.10.5 Scanning Asset

	3.3.4 Database Implementation
	3.3.5 Containerizing the Solution
	3.3.6 Summary of the Pilot

	4 Results
	4.1 Assessing the Use of Agile Scrum and GitHub Projects
	4.2 Assessing the Pilot
	4.2.1 Limitations and Shortcomings of Implementation
	4.2.1.1 NPM and the Mobile View
	4.2.1.2 Frontend Components
	4.2.1.3 Validation
	4.2.1.4 The Features Not Implemented

	4.2.2 Assessment of the Implementation

	5 Conclusion
	References

