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The paper describes a novel structural reliabilitymethod, particularly suitable for

multi-dimensional environmental systems, either measured or numerically

simulated over a sufficient period, resulting in sufficiently long ergodic time

series. This study illustrates the efficiency of the proposed methodology by

applying it to predict extreme wind speeds of a group of selected measured

sites in Southern Norway in the region near the Landvik wind station. It is well

known that wind speeds at different locations are highly non-linear, multi-

dimensional and cross-correlated dynamic environmental responses, which

can be challenging to analyse accurately. Unlike other environmental reliability

methods, the newmethod does not require restarting the simulation each time

the system fails, e.g., in the case of numerical simulation. In the case of

measured environmental system response, an accurate prediction of system

failure probability is also possible, as illustrated in this study. Moreover, in

contrast to classical reliability methods, the proposed method can handle

systems with high dimensionality and cross-correlation between the

different dimensions.

KEYWORDS

reliability, failure probability, environmental system, wind speeds, Southern Norway

Highlights

⁃ A novel environmental reliability method has been developed and applied to wind

speeds data measured in southern Norway

⁃ Accurate multi-state prediction is performed

⁃ Confidence bands are given

Introduction

In many practical situations, it would be useful to improve the accuracy of in situwind

speeds statistical predictions, as wind speeds are the key part of environmental loads

acting on offshore structures and vessels. In this paper, the specific issue of improving

extreme wind speed prediction has been addressed. The latter would typically be possible

if the location in question has a measurement station more or less in the same area where

the recording of wind speed statistics has been going on for several years. In Norway, there
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is a grid of such stations located at, e.g., airports and lighthouses.

This paper has chosen wind speed time series from a group of

selected measured sites in Southern Norway in the region near

the Landvik wind station.

It is generally relatively challenging to calculate realistic

environmental system reliability using conventional theoretical

reliability methods (Madsen et al., 1986; Thoft-Christensen and

Murotsu, 1986; Ditlevsen and Madsen, 1996; Melchers, 1999;

Choi et at. 2007; Eryilmaz and Kan, 2020; Kan et al., 2020; Zheng

et al., 2020). This is usually due to a large number of degrees of

system freedom and random variables governing the responses in

a real environmental system. In principle, the reliability of a

complex environmental system may be accurately estimated

straightforwardly either by having enough measurements or

by direct Monte Carlo simulations (Naess and Leira and

Batsevych, 2009). However, the experimental or computational

cost may be unaffordable for many complex dynamic systems in

which the long-term statistics of their responses can only be

accurately captured using huge data sets. Motivated by the latter

argument, the authors have introduced a novel reliability method

for environmental systems that uses the average conditional

exceedance rate (ACER) method (Naess and Gaidai, 2009;

Gaidai et al., 2020; Gao et al., 2020; Sun et al., 2022) for

statistical extrapolation to reduce either measurement or

computational costs. Extreme value statistics has been a

topical matter for some time now, and there are some

excellent reviews on the topic, see (Hansen, 2020; Majumdar

et al., 2020).

The shortage of previous studies on wind speed predictions is

that most of the existing relevant statistical methods are

unidimensional (1D) or, at most, bivariate (2D). In the case of

multiple measurement locations studied simultaneously, there is

a vital need to develop new efficient reliability methods that can

tackle cross-correlation between different dimensions

(measurements). This study intends to contribute to the latter

research challenge.

Data and methodology

Method

Consider an MDOF (multi-degree of freedom) structure

subjected to random ergodic environmental loadings (stationary

and homogenous), for example, from the surrounding waves and

wind. The other alternative is to view the process as dependent on

specific environmental parameters whose variation in time may be

modelled as an ergodic process on its own. The MDOF structural

response vector processR(t) � (X(t), Y(t), Z(t), . . .) is

measured and/or simulated over a sufficiently long time

interval(0, T). Unidimensional global maxima over the entire

time span (0, T) are denoted as XT
max � max

0≤ t≤T
X(t),

YT
max � max

0≤ t≤T
Y(t), ZT

max � max
0≤ t≤T

Z(t), . . .By sufficiently long

time T one primarily means a large value of T with respect to the

dynamic system auto-correlation time.

Let X1, . . . , XNX be consequent in time local maxima of the

process X(t) at discrete monotonously increasing time instants

tX1 < . . . < tXNX
in(0, T). The analogous definition follows for

other MDOF response components Y(t), Z(t), . . . with

Y1, . . . , YNY; Z1, . . . , ZNZ and so on. For simplicity, all R(t)
components, and therefore its maxima are assumed to be non-

negative. The aim is to estimate system failure probability,

namely probability of exceedance, accurately

1 − P � Prob(Xmax
T > ηX ∪ Ymax

T > ηY ∪ Zmax
T > ηZ ∪ . . . ) (1)

with

P � ∫∫∫
(ηX, ηY, ηZ , ...)

(0, 0, 0, , ...)
pXmax

T , Ymax
T , Zmax

T , ...(Xmax
T , Ymax

T , Zmax
T , . . . )

dXmax
T dYmax

NY
dZmax

Nz
. . . (2)

being the probability of non-exceedance for critical values of

response componentsηX, ηY, ηZ,...; ∪ denotes logical unity

operation «or»; and pXmax
T , Ymax

T , Zmax
T , ... being joint probability

density of the global maxima over the entire time span (0, T).
In practice, however, it is not feasible to estimate the latter joint

probability distribution directly pXmax
T , Ymax

T , Zmax
T , ... due to its high

dimensionality and available data set limitations. More specifically,

the moment when either X(t) exceeds ηX, or Y(t) exceeds ηY, or
Z(t) exceeds ηZ, and so on, the system is regarded as immediately

failed. Fixed failure levels ηX, ηY, ηZ,...are, of course, individual for

each unidimensional response component of R(t).
Xmax

NX
� max {Xj ; j � 1, . . . ,NX} � Xmax

T , Ymax
NY

� max {Yj ; j � 1, . . . ,NY} � Ymax
T ,

Zmax
Nz

� max {Zj ; j � 1, . . . ,NZ} � Zmax
T , and so on.

Next, the local maxima time instants

[tX1 < . . . < tXNX
; tY1 < . . . < tYNY

; tZ1 < . . . < tZNZ
] in monotonously

non-decreasing order are sorted into one single merged time vector

t1 ≤ . . . ≤ tN.Note that tN � max {tXNX
, tYNY

, tZNZ
, . . . }, N �

NX +NY + NZ + . . . In this case tj represents local maxima of

one of MDOF structural response components either X(t) or Y(t),
orZ(t) and so on. Thatmeans that havingR(t) time record, one just

needs continuously and simultaneously screen for unidimensional

response component local maxima and record its exceedance of

MDOF limit vector ( ηX, ηY, ηZ, ...) in any of its components

X, Y, Z, . . .. The local unidimensional response component

maxima are merged into one temporal non-decreasing vector �R �
(R1, R2, . . . , RN) in accordance with the merged time vector

t1 ≤ . . . ≤ tN. That is to say, each local maxima Rj is the actual

encountered local maxima corresponding to eitherX(t) or Y(t), or
Z(t) and so on. See Figure 1 for an illustration of the vector �R how-to

construction, by means of direct overlapping of two different

dimensional processes A and B into the new process C (i.e. vector
�R) in real time, containing localmaxima of bothA andBdimensional

processes. Finally, the unified limit vector (η1, . . . , ηN ) is

introduced with each component ηj is either ηX, ηY or ηZ and
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so on, depending on which of X(t) or Y(t), or Z(t) etc.,

corresponding to the current local maxima with the running

indexj.

Next, a scaling parameter0< λ≤ 1 is introduced to artificially

simultaneously decrease limit values for all response

components, namely the new MDOF limit vector

( ηλX, ηλY, ηλz, ...) with ηλX ≡ λ·ηX, ≡ λ·ηY, ηλz ≡ λ·ηZ, ... Is

introduced. The unified limit vector (ηλ1, . . . , ηλN ) is

introduced with each component ηλj is either ηλX, η
λ
Yor η

λ
z and

so on. The latter automatically defines probability P(λ) as a

function of λ, note that P ≡ P(1) from Eq. 1. Non-exceedance

probability P(λ) can be estimated as follows:

P(λ) � Prob{RN ≤ ηλN, . . . , R1 ≤ ηλ1}
� Prob{RN ≤ ηλN

∣∣∣∣RN−1 ≤ ηλN−1, . . . , R1 ≤ ηλ1
⎫⎬⎭

· Prob⎧⎨⎩RN−1 ≤ ηλN−1, . . . , R1 ≤ ηλ1
⎫⎬⎭

� ∏N
j�2

Prob{Rj ≤ ηλj
∣∣∣∣∣Rj−1 ≤ ηλ1j−, . . . , R1 ≤ ηλ1}

· Prob(R1 ≤ ηλ1) (3)

The following outlines the principle behind a cascade of

approximations based on conditioning. The first approximation

is a one-step memory approximation and thus resembles a

Markov chain approximation. However, it is emphasised that

this first approximation is not equivalent to such an

approximation (Karpa, 2015). In practice, the dependence

between the neighbouring Rj is not negligible; thus, the

following one-step (will be called conditioning level k � 1)

memory approximation is introduced:

Prob{Rj ≤ ηλj
∣∣∣∣∣Rj−1 ≤ ηλj−1, . . . , R1 ≤ ηλ1} ≈ Prob{Rj ≤ ηλj

∣∣∣∣∣Rj−1 ≤ ηλj−1}
(4)

for 2≤ j≤N (will be called conditioning level k � 2). The

approximation introduced by Eq. 4 can be further

expressed as:

Prob{Rj ≤ ηλj
∣∣∣∣∣Rj−1 ≤ ηλj−1, . . . , R1 ≤ ηλ1} ≈ Prob{Rj ≤ ηλj

∣∣∣∣∣
Rj−1 ≤ ηλj−1, Rj−2 ≤ ηλj−2} (5)

where 3≤ j≤N (will be called conditioning level k � 3), and so

on, see (Karpa, 2015). The motivation is to monitor each

independent failure that happened locally first in time, thus

avoiding cascading local inter-correlated exceedances.

Eq. 5 presents subsequent refinements of the statistical

independence assumption. The latter type of approximations

captures the statistical dependence effect between neighbouring

maxima with increased accuracy. Since the original MDOF

process R(t) was assumed ergodic and therefore stationary,

probability pk(λ) ≔ Prob{Rj > ηλj |Rj−1 ≤ ηλj−1, Rj−k+1 ≤ ηλj−k+1}
for j≥ k will be independent of j but only dependent on

conditioning level k. Thus non-exceedance probability can be

approximated as in the Naess-Gaidai method, see (Naess and

Gaidai, 2009; Gaidai et al., 2018; Gaidai et al., 2020; Gao et al.,

2020) where:

Pk(λ) ≈ exp ( −N · pk(λ)) , k≥ 1 (6)

FIGURE 1
Illustration of synthetic �R vector construction (process C), using two different dimensional processes’ local maxima and overlapping them in
real-time.
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Note that Eq. 6 follows from Eq. 1 by

neglectingProb(R1 ≤ ηλ1) ≈ 1, as the design failure probability

is usually very small.

Note that Eq. 5 is similar to the well-known mean up-

crossing rate equation for the probability of exceedance

(Gaidai et al., 2020; Gao et al., 2020; Naess and Gaidai, 2009).

There is evident convergence with respect to the conditioning

parameterk:

P � lim
k ����→∞

Pk(1); p(λ) � lim
k ����→∞

pk(λ) (7)

Note that Eq. 6 for k � 1 turns into the well-known non-

exceedance probability relationship with the mean up-crossing

rate function

P(λ) ≈ exp ( − ]+(λ)T); ]+(λ) � ∫∞

0
ζpR _R(λ, ζ)dζ (8)

where ]+(λ) denotes the mean up-crossing rate of the response

level λ for the above assembled non-dimensional vector R(t)
assembled from scaled MDOF system response (X

ηX
, Y

ηY
, Z

ηZ
,

. . .).
Rice’s formula gives the mean up-crossing rate in Eq. 8

with pR _R being joint probability density for (R, _R)with _R being

time derivativeR′(t), see (Rice, 1944). Equation 8 relies on the

Poisson assumption, which is that up-crossing events of high λ

levels (in this paper, it is λ≥ 1) can be assumed to be

independent. The latter may not be the case for narrow

band responses and higher level dynamical systems that

exhibit cascading failures in different dimensions,

subsequent in time, caused by intrinsic inter-dependency

between extreme events, manifesting itself in the

appearance of highly correlated local maxima clusters

within the assembled vector �R � (R1, R2, . . . , RN).
In the above, the stationarity assumption has been used. The

proposed methodology can also treat the non-stationary case. An

illustration of how the methodology can be used to treat non-

stationary cases is provided as follows. Consider a scattered

diagram of m � 1, ..,M sea states, each short-term sea state

having a probabilityqm, so that∑M
m�1qm � 1. The corresponding

long-term equation is then:

pk(λ) ≡ ∑M
m�1

pk(λ, m)qm (9)

with pk(λ, m) being the same function as in Eq. 7 but

corresponding to a specific short-term sea state with the

number m.

Model introduction

The Naess-Gaidai extrapolation model (Naess and Moan,

2013; Gaidai et al., 2022; Xing et al., 2022; Xu et al., 2022) is

briefly introduced as it will be used as a basis for the failure

probability distribution tail extrapolation. The method assumes

that the class of parametric functions needed for extrapolation in

the general case can be modelled similarly to the relation between

the Gumbel distribution and the general extreme value (GEV)

distribution. The above introduced pk(λ) as functions are often
regular in the tail, specifically for values ofλ approaching and

exceeding1. More precisely, for λ≥ λ0.The distribution tail

behaves similar to exp{−(aλ + b)c + d} with a, b, c, d being

suitably fitted constants for suitable tail cut-on λ0value.

Therefore, one can write;

pk(λ) ≈ exp{ − (akλ + bk)ck + dk}, λ≥ λ0 (10)

Next, by plotting ln{ln(pk(λ)) − dk} versus ln(akλ + bk),
often a nearly perfectly linear tail behaviour is observed. It is

useful to do the optimisation on the logarithmic level by

minimising the following error function F with respect to the

four parametersak, bk, ck, pk, qk:

F(ak, bk, ck, pk, qk) � ∫λ1

λ0

ω(λ){ln(pk(λ)) − dk + (akλ + bk)ck}2dλ,
λ≥ λ0

(11)
withλ1being a suitable distribution tail cut-off value, namely the

largest response value, where the confidence interval width is still

acceptable. Optimal values of the parameters ak, bk, ck, pk, qk
may also be determined using a sequential quadratic

programming (SQP) method incorporated in the NAG

Numerical Library (Numerical Algorithms Group, 2010).

The weight function ω can be defined as

ω(λ) � {ln CI+(λ) − ln CI−(λ)}−2with (CI−(λ), CI+(λ)) being a

confidence interval (CI), empirically estimated from the

simulated or measured dataset, see (Gaidai et al., 2020; Gao

et al., 2020; Naess and Gaidai, 2009). When the parameter c �
lim

k ����→∞
ck is equal or close to 1, the distribution approaches to

the Gumbel distribution.

For any general ergodic process, the sequence of conditional

exceedances over a threshold λ can be assumed to constitute a

Poisson process. However, in general, a non-homogeneous one.

Thus, for levels of λ approaching 1, the approximate limits of a

p-% confidence interval (CI) of pk(λ)can be given as follows:

CI±(λ) � pk(λ)(1 ±
f(p)���������������(N − k + 1)pk(λ)

√ ) . (12)

with f(p) being estimated from the inverse normal

distribution, for example, f(90%) � 1.65, f(95%) � 1.96.

With N being the total number of local maxima assembled

in the analysed vector �R.

Note that the authors have successfully verified the

accuracy of the Naess-Gaidai extrapolation model in

previous years for a large variety of one-dimensional

dynamic systems (Gaidai et al., 2020; Gao et al., 2020;

Naess and Gaidai, 2009; Sun et al., 2022).
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Data introduction

This section intends to illustrate the efficiency of the above-

described methodology, utilising the method to predict the

extreme wind speeds at a group of selected measured sites in

Southern Norway near the Landvik wind station. The five wind

measurement locations are Landvik, Kjevik, Lindesnes Fyr, Lista

Fyr and Oksøy Fyr. Their measured daily highest daily wind cast

speeds are defined as five environmental system components

(dimensions) X, Y, Z, . . ., thus constituting an example of a

five-dimensional (5D) environmental system. The definition of

design values is problem-specific and has to be appropriately

considered by the end-user. As an example for this paper, the

unidimensional design value for each dimension, i.e., the value in

which the wind speed is unacceptable at each location, is chosen

as twice the maximum daily highest daily wind cast speed during

the observation period 2010-2020 for each of the five selected

wind measurement locations.

Figure 2 presents wind measurement locations according to

the Norwegian Meteorological Institute, 2021. The blue circle

indicates the area of interest. The daily largest wind cast speed at

the Landvik location during the years 2010–2020 is shown in

Figure 3.

X → X

ηX
, Y → Y

ηY
, Z → Z

ηZ
, . . . (13)

FIGURE 2
Wind speed measurements locations according to Norwegian Meteorological Institute. The blue circle indicates the area of interest.

FIGURE 3
Daily largest wind cast speed at Landvik location during the years 2010–2020 (Norwegian Meteorological Institute, https://seklima.met.no/). In
order to unify all five measured time series X, Y , Z,. The following scaling was performed.
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making all five responses non-dimensional and having the same

failure limit equal to 1.

Next, all the local maxima from five measured time series are

merged into one single time series by keeping them in time non-

decreasing order: �R � ({X1, Y1, Z1, . . .}, . . . , {XN,YN,ZN, . . .})
with each set {Xj,Yj,Zj, . . .} being sorted according to non-

decreasing times of occurrence of these local maxima.

Figure 4 presents an example of the non-dimensional

assembled vector �R, consisting of assembled local maxima

of raw daily largest wind cast speed data. The failure

probability distribution tail extrapolation was performed

towards 100 years return period. Note that vector �R does

not have physical meaning on its own, as it is assembled of

completely different response components. The index j is just

FIGURE 4
Left: unscaled raw daily largest wind cast speed data [m/sec], Right: scaled non-dimensional assembled 5D vector �R.

FIGURE 5
Extrapolation of pk(λ) towards critical level corresponding to 100 years return period (indicated by a star) and beyond,k � 6. The extrapolated
95% CI is indicated by dotted lines.
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a running index of local maxima encountered in a non-

decreasing time sequence.

Figure 5 presents extrapolation according to Eq. 9 towards

failure state with 25 years return period, which is 1, and

somewhat beyond, λ � 0.15 cut-on value was used. The dotted

lines indicate extrapolated 95% confidence interval according to

Eq. 10. According to Eq. 6, p(λ) is directly related to the target

failure probability 1 − P from Eq. 1. Therefore, in agreement with

Eq. 6, the system failure probability, 1 − P ≈ 1 − Pk(1) can be

estimated. Note that in Eq. 5,N corresponds to the total number

of local maxima in the unified response vector �R. The

conditioning parameterk � 4 was found to be sufficient due to

occurrence of convergence with respect to k; see Eq. 6. Figure 5

exhibits a relatively narrow 95% CI; the latter is due to a

substantial amount of data used in this study, namely the

recent 10 years of continuously measured data.

As demonstrated, while being novel, the above-described

methodology has a clear advantage in efficiently utilising the

available measured data set. This is due to its ability to treat

system multi-dimensionality, as well as being able to perform

accurate extrapolation based on a relatively limited data set.

Conclusion

Classic reliability methods dealing with time series do not

have the advantage of dealing efficiently with systems possessing

high dimensionality and cross-correlation between different

system responses. The key advantage of the introduced

methodology is its ability to study the reliability of high-

dimensional non-linear dynamic systems.

This paper studied the Norwegian highest largest wind cast

speeds data set, in the region near Landvik wind station, observed

during the recent decade 2010-2020. A novel environmental

reliability method was applied to predict the occurrence of

extreme winds in the area of interest within the time horizon of

the next 100 years. It is shown that the proposed method produced a

reasonable confidence interval. Thus, the suggested methodology

may become an appropriate tool for various non-linear dynamic

systems reliability studies. Both measured and numerically simulated

time series responses can be analysed. Further, unlike other reliability

methods, the new method does not require restarting numerical

simulation each time it fails, for example, in the case of Monte Carlo

simulations. Finally, the suggestedmethodology can be used in awide

range of engineering areas of applications. [Andersen and Jensen,

2014, Ellermann, 2008, Falzarano et al., 2012, Su, 2012.
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