
https://doi.org/10.1007/s10596-022-10137-7

ORIGINAL PAPER

Data assimilation with soft constraints (DASC) through
a generalized iterative ensemble smoother

Xiaodong Luo1 ·William C. Cruz2

Received: 12 May 2021 / Accepted: 25 January 2022
© The Author(s) 2022

Abstract
This work investigates an ensemble-based workflow to simultaneously handle generic, nonlinear equality and inequality
constraints in reservoir data assimilation problems. The proposed workflow is built upon a recently proposed umbrella
algorithm, called the generalized iterative ensemble smoother (GIES), and inherits the benefits of ensemble-based data
assimilation algorithms in geoscience applications. Unlike the traditional ensemble assimilation algorithms, the proposed
workflow admits cost functions beyond the form of nonlinear-least-squares, and has the potential to develop an infinite
number of constrained assimilation algorithms. In the proposed workflow, we treat data assimilation with constraints as a
constrained optimization problem. Instead of relying on a general-purpose numerical optimization algorithm to solve the
constrained optimization problem, we derive an (approximate) closed form to iteratively update model variables, but without
the need to explicitly linearize the constraint systems. The established model update formula bears similarities to that of
an iterative ensemble smoother (IES). Therefore, in terms of theoretical analysis, it becomes relatively easy to transit from
an ordinary IES to the proposed constrained assimilation algorithms, and in terms of practical implementation, it is also
relatively straightforward to implement the proposed workflow for users who are familiar with the IES, or other conventional
ensemble data assimilation algorithms like the ensemble Kalman filter (EnKF). Apart from the aforementioned features,
we also develop efficient methods to handle two noticed issues that would be of practical importance for ensemble-based
constrained assimilation algorithms. These issues include localization in the presence of constraints, and the (possible) high
dimensionality induced by the constraint systems. We use one 2D and one 3D case studies to demonstrate the performance
of the proposed workflow. In particular, the 3D example contains experiment settings close to those of real field case studies.
In both case studies, the proposed workflow achieves better data assimilation performance in comparison to the choice
of using an original IES algorithm. As such, the proposed workflow has the potential to further improve the efficacy of
ensemble-based data assimilation in practical reservoir data assimilation problems.

Keywords History matching · Constarined data assimilation · Generalized iterative ensemble smoother · Nonlinear equality
and inequality constraints · Derivative-free optimization

1 Introduction

Data assimilation aims to estimate the quantities of interest
(QoI), e.g., model variables (states and/or parameters),
based on certain sources of information. In a conventional
setting, the sources of information largely come from
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observed data, which are connected to the QoI through
some underlying relations, e.g., in the forms of observation
operators or forward simulators (with possible observation
errors). In real-world problems, additional sources of
information may also be available, e.g., in terms of the
possible ranges of model variables, or certain physical laws
(e.g., mass conservation) that govern the dynamical systems
constituted by the model variables. These additional
sources of information constitute practical constraints, and
data assimilation incorporating both observed data and
available constraints is often referred to as constrained data
assimilation [19] within the community of data assimilation.

A constrained data assimilation problem can be tackled
from different perspectives, which leads to a variety of
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constrained assimilation algorithms [2, 34]. For instance,
certain constrained assimilation algorithms are designed to
handle a given type of constraints, e.g., equality constraints
[19, 35] or inequality constraints [6, 32, 33, 40], or a mixture
of both equality and inequality constraints [1, 14, 18].

There are also different ways of incorporating the con-
straints. For instance, when dealing with equality con-
straints, one may treat the equality-constraint system as a
perfect observation operator without incurring any obser-
vation errors. These constraints are referred to as “perfect
measurements” in [34]. Following this standpoint, one can
combine the equality-constraint system and the original
observation system into an augmented observation system.
In this case, solving the constrained data assimilation prob-
lem boils down to simultaneously assimilate the augmented
observations. Alternatively, one can adopt a two-step pro-
cedure, in which the first step is to estimate the QoI only
based on the observed data, while the second step further
modifies the estimated QoI to better honor the constraints,
e.g., by projecting the estimated QoI obtained at the first
step onto the feasible regions induced by the constraints [13,
14], or by modifying the Kalman-gain-type matrix [14], or
by iteratively refining the list (active set) of model vari-
ables that violate the constraints [32]. Under this setting, it is
equivalent to sequentially assimilating different sources of
information into the QoI. In addition, within the framework
of Bayesian data assimilation, where the QoI are probabil-
ity density functions (PDFs) of model variables, one more
option to account for the constraints is to impose certain
restrictions on the shapes of the prior PDFs, e.g., in terms
of truncated PDFs when dealing with inequality constraints
[20].

When dealing with linear constraints, one can recast
constrained data assimilation as a quadratic programming
problem [18], which can be solved by some general-purpose
numerical optimization algorithms [30]. In addition, con-
strained assimilation algorithms developed from different
perspectives to handle linear constraints may become equiv-
alent under suitable conditions [34]. However, when non-
linearity is present in the constraints, more sophisticated
strategies are needed, similar to the situation of handling
nonlinearity in unconstrained data assimilation problems.
Such strategies include, e.g., the first or second order lin-
earization of a nonlinear-constraint system [13, 15, 35, 42,
44], unscented transform [39, 41], particle approximation
[43], moving horizon estimation [3], iterative approximation
[9], and their combinations.

The focus of the current work is on constrained
data assimilation in reservoir characterization problems.
More specifically, we consider data assimilation with soft

constraints (DASC), in the sense that the constraints will
be incorporated into data assimilation, but an updated
reservoir model resulting from a constrained assimilation
algorithm may not strictly satisfy the constraints in general
[34]. The reason for considering this relaxed setting is a
few fold. First of all, although in certain circumstances
it might be desirable to require that the constraints be
strictly honored, such a requirement is typically satisfied in
assimilation problems with linear constraints, where a two-
step procedure is often adopted, with the last step designed
to honor the constraints.

There are two issues related to this type of two-step
procedures: (1) When a correction method is applied to
enforce the constraints, the optimality of the updated models
obtained at the first (unconstrained) step may be lost, since
there could be a conflict between the optimality criterion
used at the first step and the objective of honoring the
constraints at the second. For instance, if the optimality
criterion is to reduce data mismatch, then by applying the
second correction step, it is likely that the further modified
models may have higher data mismatch than those obtained
from the first step, similar to the situation in [22]; (2)
When nonlinearity is present, it becomes more challenging
to strictly honor the constraints. As aforementioned, a
certain approximation method is often adopted to deal
with the nonlinearity in the constraint system. As such,
approximation errors will typically arise, making updated
model variables difficult to strictly satisfy the original
constraints.

Furthermore, as discussed in [34], in some cases it may
be sensible to only consider soft constraints, e.g., when one
does not have the precise knowledge to accurately describe
the constraint system. As an example, one may consider the
box (or interval) constraints imposed on, e.g., porosity of
a reservoir model. A box constraint like [0, 1] would be
certainly correct, but may not be sharp in general. As such, it
would be reasonable to adopt a narrower constraint interval,
e.g., [10−3, 0.4], based on some prior knowledge (e.g., well
log data). The selection of the lower and upper boundaries,
however, is often heuristic, thus a slight violation of the box
constraint may not cause a problem in practice.

An additional reason for us to consider soft constraints
is its algorithmic convenience, when combining the
ideas of “perfect measurements” and “multi-objective
optimization”, to derive constrained data assimilation
algorithms. With the idea of “perfect measurements”, we
augment the constraint and the original observation systems,
and assimilate all sources of information simultaneously.
In the course of data assimilation, we aim to find model
variables to match all sources of “data” as accurately as
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possible. Nevertheless, as aforementioned, the objective of
matching one particular type of “data” to a good extent may
contradict that of matching another type of “data” well. In
this sense, DASC is similar to a multi-objective optimization
problem. In the current work, however, we do not compute
the Pareto front for the sake of computational efficiency.

Our contributions in this work include the following
aspects: We develop an ensemble-based workflow to simul-
taneously handle generic, nonlinear equality and inequality
constraints based on a recently proposed umbrella algo-
rithm, called the generalized iterative ensemble smoother
(GIES) [23]. This workflow inherits the benefits of
ensemble-based data assimilation algorithms, in terms of
the derivative-free nature and the ability to provide uncer-
tainty quantification to some extent. Unlike the traditional
ensemble assimilation algorithms, our proposed workflow
admits cost functions beyond the conventional form of
nonlinear-least-squares, and in principle allows the devel-
opments of an infinite number of constrained assimilation
algorithms. We recast data assimilation with constraints as a
constrained optimization problem. However, instead of rely-
ing on a general-purpose numerical optimization algorithm
to solve the constrained optimization problem, we derive
an (approximate) closed form for model update, but with-
out the need to explicitly linearize the constraint systems,
in contrast to some recently proposed ensemble-based algo-
rithms (e.g., [13, 15, 44]) to handle nonlinear constraints.
This closed form bears similarities to the model update for-
mula of an ordinary iterative ensemble smoother (IES) [8,
11, 25] applied to unconstrained data assimilation prob-
lems. As such, it becomes relatively easy to transit from
an ordinary IES to the proposed constrained assimilation
algorithms, and the implementation of the proposed algo-
rithms also becomes more straightforward for those who
are familiar with ensemble based assimilation algorithms.
Apart from the aforementioned features, we also develop
efficient methods to handle two noticed issues that would
be of practical importance for ensemble-based constrained
assimilation algorithms. These issues include the implemen-
tation of localization in the presence of constraints, and
the (possible) high dimensionality induced by the constraint
system.

In other words, our proposed DASC workflow (through
GIES) contains the following four features: (1) The ability
to simultaneously handle generic, nonlinear equality and
inequality constraints; (2) No need for explicitly evaluating
the gradients of the constraint systems with respect to the
QoI; (3) The ability to handle high-dimensional constraint
systems; (4) A tailored adaptive localization scheme to
tackle the adverse effects of a small ensemble size, while
taking into account the presence of constraint systems.
These features can be considered as desirable practical

benefits that help promote the applicability of the proposed
DASC workflow to generic constrained data assimilation
problems. To the best of our knowledge, in the literature,
there do not seem to exist ensemble-based, constrained data
assimilation algorithms which simultaneously possess the
above-mentioned features.

We note that, it is not our intention to show the proposed
DASC workflow outperforms all existing, ensemble-based
constrained data assimilation algorithms. Indeed, when
the gradients of the constraint systems are available,
then one should expect that a constrained assimilation
algorithm exploiting the knowledge of these gradients
perform better than the DASC workflow, if the latter only
uses less accurate, ensemble-based approximations of these
gradients.1 Instead, the main strength of the proposed DASC
workflow is its wider applicability to generic constrained
data assimilation problems, to some of which the existing,
ensemble-based constrained data assimilation algorithms
may not be applicable, due to the potential challenges
in these problems, in terms of, e.g., the type(s) of the
constraints, the availability of the gradients of the constraint
systems, or the dimensionality of the constraint systems,
etc. As an example, the first case study to be presented later
considers equality constraints that involve the histograms
of reservoir models. In that case, it appears challenging
to evaluate the gradients of a histogram with respect to
reservoir model variables. As such, most (if not all) of
the existing, ensemble-based constrained data assimilation
algorithms cannot be directly applied to handle such
equality constraints, yet the DASC workflow works well to
deal with this problem, as will be shown later.

This work is organized as follows. We start from
introducing the basics of the GIES, and then proceed to
explain how the GIES algorithm can be employed to handle
DASC problems. Next, we illustrate the performance of the
proposed constrained assimilation algorithm through one
2D and one 3D case studies. Of particular interest here is
the 3D case study, which contains an inequality-constraint
system whose dimension is twice that of the reservoir model
(in the order of 105). We show that with the efficient
methods to handle the issues of localization in the presence
of constraints and high-dimensional data induced by the
constraints, the proposed constrained assimilation algorithm
works well in this particular case study. This observation
also implies that the proposed algorithm has the potential
to handle real-field reservoir characterization problems with
practical constraints. We conclude the whole work with
some technical discussions and future research directions.

1If the gradients of the constraint systems are available, they can also
be exploited by the DASC workflow. For a hint, readers are referred to
Appendix A of [23].
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2 Generalized iterative ensemble smoother
(GIES) for data assimilation with soft
constraints (DASC)

2.1 Generalized iterative ensemble smoother (GIES)

Suppose that we are given a noisy observation system

do = g
(
mtr

) + ε . (1)

Here, g : Dm → Dd represents a numerical forward
simulator that maps an m-dimensional vector (called model
vector hereafter) mtr ∈ Dm ⊆ R

m to a d-dimensional
element in the observation space Dd ⊆ R

d . The term ε

stands for potential contamination noise that may be present
in the course of acquiring the observations do. Without
loss of generality, we assume throughout this work that the
simulator g is perfect.

Under the above setting, data assimilation (often as an
ill-posed inverse problem) aims to find, through a certain
inversion algorithm, model variables that can match the
observations do reasonably well, which is a notion close to
the idea of ensemble Kalman inversion for inverse problems
[16]. Prior information available for use in the inversion
algorithm includes the numerical simulator g, some initial
guess of mtr , and (often assumed) statistical distribution of
the noise term ε. In practical data assimilation problems,
constraints may also be available as additional sources of
prior information. Throughout this work, we assume that ε

follows a Gaussian distribution N(0,Cd), with zero mean
and covariance Cd.

In reservoir engineering, a class of ensemble-based
algorithms, called iterative ensemble smoothers (IES), e.g.,
[8, 11, 12, 25], are often adopted to tackle reservoir data
assimilation (also known as history matching) problems. In
their practical implementations, most of the IES algorithms
can be related to a certain cost function in the form of
nonlinear-least-squares (NLS). For instance, [25] derived an
IES algorithm by finding, at each iteration step, an ensemble
of Ne reservoir models that approximately minimizes
the average of an ensemble of NLS-type cost functions.
Concretely, suppose that at the ith iteration step, there
already exists an ensemble of model variables Mi ≡
{mi

j }Ne

j=1, where j is the index of ensemble member; and Ne

denotes the ensemble size. Then the IES algorithm in [25]
aims to find a new ensemble of model variables Mi+1 ≡
{mi+1

j }Ne

j=1 at the (i + 1)th iteration step, by solving the
following minimum-average-cost (MAC) problem:

arg min
{mi+1

j }Ne
j=1

1

Ne

Ne∑

j=1

Lj (m
i+1
j |dj ,Mi ), (2)

Lj (m
i+1
j |dj ,Mi ) ≡ 1

2

{(
dj − g

(
mi+1

j

))T

C−1
d

×
(
dj − g

(
mi+1

j

))
+ γ i

(
mi+1

j − mi
j

)T (
Ci
m

)−1 (
mi+1

j − mi
j

)}
.

(3)

The NLS-type cost function Lj (m
i+1
j |dj ,Mi ) is defined in

Eq. 3, where dj is a perturbation of do, drawn as a sample

from the Gaussian distribution N(do,Cd); Ci
m = Si

I
(
Si
I
)T

is the sample covariance matrix induced by the ensemble
Mi at the ith iteration step, where Si

I is a square-root
matrix defined in Eq. 7 later; and γ i is a positive coefficient
that changes over the iteration step, following certain preset
rules [25]. Note that in the course of formulating the MAC
problem, we follow the analysis scheme in [4] and choose
to perturb the observations. One may also adopt a different
setting similar to that in a certain ensemble square root filter
and avoids perturbing the observations, which, however, is
not a topic to be investigated in the current work.

The cost function Lj (m
i+1
j |dj ,Mi ) consists of two

parts:
1

2

(
dj − g

(
mi+1

j

))T

C−1
d

(
dj − g

(
mi+1

j

))
repre-

sents the data mismatch term that computes a weighted
euclidean (�2) distance between the j th perturbed data

dj and the corresponding simulated data g
(
mi+1

j

)
; and

1

2

(
mi+1

j − mi
j

)T (
Ci
m

)−1
(
mi+1

j − mi
j

)
is a regularization

term, which calculates a weighted euclidean (�2) distance
between a model vector mi

j at the ith iteration step and

an updated one mi+1
j at the next iteration step. Under this

choice, the effect of this regularization term is to penalize a
large deviation of mi+1

j from mi
j under a weighted �2 norm.

The MAC problem in Eq. 2 can be approximately solved
through the following IES model update formula [23, 25]:

mi+1
j = mi

j + Ki
(
dj − g

(
mi

j

))
, j = 1, 2, · · · , Ne; (4)

Ki ≡ Si
I(Si

g)
T

(
Si
g(S

i
g)

T + γ iCd

)−1

= Si
I

[(
Si
g

)T

C−1
d Si

g + γ iINe

]−1 (
Si
g

)T

C−1
d ; (5)

m̄i ≡ 1

Ne

Ne∑

j=1

mi
j ; (6)

Si
I ≡ 1√

Ne − 1

[
mi

1 − m̄i ,mi
2 − m̄i , · · · ,mi

Ne
− m̄i

]
;(7)

Si
g ≡ 1√

Ne − 1

[
g

(
mi

1

)
− g

(
m̄i

)
, g

(
mi

2

)
− g

(
m̄i

)
,

· · · , g
(
mi

Ne

)
− g

(
m̄i

)]
, (8)

where INe is a Ne × Ne identity matrix. Note that Eq. 5
contains two equivalent ways of expressing the Kalman-
gain matrix Ki . The first expression is the one often used in
the literature, whereas the second expression can be derived
by applying a certain matrix identity to the first one [23].
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The reason for us to include the second expression in Eq. 5
is that later on, it will become easier for us to see the
similarities and differences between the original IES and
GIES algorithms.

To facilitate the discussion later, we define a generic
square-root matrix

Si
O ≡ 1√

Ne − 1

[
O

(
mi

1

)
−O

(
m̄i

)
,O

(
mi

2

)
− O

(
m̄i

)
,

· · · ,O
(
mi

Ne

)
− O

(
m̄i

)]
, (9)

where O represents a certain operator that maps a model
vector into another domain. The matrix Si

O is a unified
representation of the square-root matrices in Eqs. 7 and 8.
Indeed, for Si

I in Eq. 7, O is reduced to the identity operator
I, such that I (m) = m for a model vector m. Similarly,
for Si

gin Eq. 8, the operator O equals the forward reservoir
simulator g.

The formulation of the MAC problem in Eqs. 2–3
does not take into account constraints of model variables.
As a result, the corresponding model update formulae,
Eqs. 4–8, will not be able to deal with the constraints.
This deficiency exists in most of the IES algorithms in
the literature. As the focus of this work, we will explain
later how the constraints can be naturally handled by
our proposed umbrella algorithm, the generalized iterative
ensemble smoother (GIES), after introducing its basics.

In a recent work, [23] introduces a class of GIES
algorithms. The motivation of [23] is to extend the original
IES algorithm in [25] in such a way that the underlying
cost function Lj (m

i+1
j |dj ,Mi ) goes beyond the form of

NLS in general. To this end, [23] proposes to derive GIES
algorithms by solving the following generalized minimum-
average-cost (GMAC) problem:

arg min
{mi+1

j }Ne
j=1

1

Ne

Ne∑

j=1

Lj (m
i+1
j |dj ,Mi ), (10)

Lj (m
i+1
j |dj ,Mi ) ≡ D

[
T

(
dj

) − T
(

g
(

mi+1
j

))]

+γ i
j R

[
S

(
mi+1

j

)
− S

(
mi

j

)]
. (11)

In Eq. 11, the cost function Lj (m
i+1
j |dj ,Mi ) also

consists of two terms, namely, a data mismatch term with
respect to the distance metric D : Dt ⊆ R

t → [0, +∞),
and a regularization term with respect to the regularization
operator R : Ds ⊆ R

s → [0, +∞). Within the data
mismatch term, a transform operator T : Dd → Dt

is introduced. The presence of T aims to accommodate
the possibility that the observed and simulated data may
be first transformed into another domain (e.g., [26, 36])
before calculating their discrepancies. In a similar way,
within the regularization term, a transform operator S :
Dm → Ds is adopted to take into account the possibility that

the regularization operator may be applied to transformed
model variables (e.g., [5, 17, 21]). In addition, as will
be illustrated in the case studies later, the choice of the
regularization parameter γ i

j in Eq. 11 may depend on both
the iteration step and the ensemble member. This is different
from the situation in Eq. 3, where the regularization
parameter γ i only depends on the iteration step.

It is shown in [23] that the GMAC problem defined by
Eqs. 10 and 11 is approximately solved by the following
model update formula (referred to as the GIES algorithm):

mi+1
j = mi

j + K̃i
j∇D

[
T

(
dj

) − T ◦ g
(
mi

j

)]
; (12)

K̃i
j ≡ Si

I
[
Mi

D
(
dj

) + γ iMi
R

(
mi

j

)]−1 (
Si
T ◦g

)T ;
(13)

Mi
D

(
dj

) ≡
(
Si
T ◦g

)T ∇2
D

[
T

(
dj

) − T ◦ g
(
m̄i

)]
Si
T ◦g;
(14)

Mi
R

(
mi

j

)
≡

(
Si
S
)T ∇2

R
[
S

(
m̄i

)
− S

(
mi

j

)]
Si
S , (15)

where, given an operator O and a dummy vector variable x
(and a concrete value of x at x0),

∇O[x0] ≡ ∂O
∂x

∣∣∣∣
x0

;

∇2
O[x0] ≡ ∂2O

∂x2

∣∣∣∣
x0

; (16)

and T ◦ g represents the composition of the transform
operator T and the forward simulator g, such that T ◦
g (m) ≡ T (g (m)) for a given model vector m. Meanwhile,
the definitions of Si

T ◦g and Si
S follow the custom in Eq. 9.

Note that, when applying Eq. 16 to evaluate the
first- and second-order derivatives in Eqs. 12–15, the
operator O corresponds to the distance metric D or
the regularization operator R, and x to an inter-
mediate variable in the transformed data or model
space. As such, when evaluating the derivatives like

∇D
[
T

(
dj

) − T ◦ g
(
mi

j

)]
, ∇2

D
[
T

(
dj

) − T ◦ g
(
m̄i

)]
or

∇2
R

[
S

(
m̄i

) − S
(
mi

j

)]
, there is no need for further eval-

uating the first- or second-order gradient of T ◦ g or S
with respect to model variables (i.e., here one should not
apply the chain rule to compute the total derivatives). Nor-
mally, since one has the freedom to choose the distance
metric D and the regularization operator R, here we assume
that D and R are chosen in such a way that the ana-

lytic forms of the derivatives ∇D
[
T

(
dj

) − T ◦ g
(
mi

j

)]
,

∇2
D

[
T

(
dj

) − T ◦ g
(
m̄i

)]
or ∇2

R

[
S

(
m̄i

) − S
(
mi

j

)]
are

available. If this is not the case, then one can also follow
[23] to find ensemble-based approximations to them.

As an example, in Eq. 11, if both the model and data
transform operators, S and T , respectively, are identity
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operators, and the distance metric D and the regularization
operator R, respectively, satisfy

D (x) = 1

2
xT C−1

d x; x ≡ dj − g
(
mi+1

j

)
, (17)

R (x) = 1

2
xT

(
Ci
m

)−1
x; x ≡ mi+1

j − mi
j , (18)

then the cost functions in Eqs. 3 and 11 coincide. In this
case, with some linear algebra, one has

∇D[dj − g
(
mi+1

j

)
] = C−1

d

(
dj − g

(
mi+1

j

))
; (19)

∇2
D[dj − g

(
m̄i

)
] = C−1

d ; (20)

∇2
R

[
m̄i − mi

j

]
=

(
Ci
m

)−1
. (21)

Inserting Eqs. 19–21 into the model update formulae of
GIES, Eqs. 12–15, one can see that the model update
formulae are reduced to those of the original IES, Eqs. 4–8
[23].

On the other hand, Lj (m
i+1
j |dj ,Mi ) defined in Eq. 11

has a much greater generality/flexibility than that in Eq. 3,
and this forms the basis for us to derive data assimilation
algorithms for DASC problems, as will be shown later. As
an example, [23] considered a sub-class of cost functions in
the form of

Lj (m
i+1
j |dj ,Mi ) = 1

2

(
dj − g

(
mi+1

j

))T

C−1
d

(
dj − g

(
mi+1

j

))

+ γ i
j R

[
S

(
mi+1

j

)
− S

(
mi

j

)]
; (22)

R
[
S

(
mi+1

j

)
− S

(
mi

j

)]
≡ 1

2

Kmix∑

k=1

wk‖Bk

(
Sk

(
mi+1

j

)

−Sk

(
mi

j

))
‖qk
pk

; wk ≥ 0. (23)

In Eq. 22, the data mismatch term,
1

2

(
dj − g

(
mi+1

j

))T

C−1
d

(
dj − g

(
mi+1

j

))
, is the same

as that in the original IES of [25] (cf. Eq. 3 of this work).
However, as Eq. 23 indicates, the regularization term of
Eq. 22 is presented as a mixture of Kmix different sub-

regularization-terms wk‖Bk

(
Sk

(
mi+1

j

)
− Sk

(
mi

j

))
‖qk
pk

,

where wk , Bk and Sk are mixture coefficient, weight
matrix and (model) transform operator, respectively,
associated with the kth sub-term; pk and qk are some
positive real numbers, with the meaning of ‖x‖qk

pk
being

to raise the �pk
norm of a dummy vector x to its qkth

power. It can be shown that the regularization term,
1

2

(
mi+1

j − mi
j

)T (
Ci
m

)−1
(
mi+1

j − mi
j

)
, in the cost func-

tion of the original IES (also cf. Eq. 3) corresponds to the
choice Kmix = 1 and p1 = q1 = 2 [23]. Meanwhile, in
general pk and qk take positive values, and they are nei-
ther required to be any integer numbers, nor be equal to
each other. As such, there could be an infinite number of

possible combinations of the pair (pk, qk), and this fact
already means that in principle one can derive from the
cost function in Eqs. 22 and 23 an infinite number of GIES
algorithms, called �

q
p-GIES hereafter, whose underlying

cost functions would go beyond the form of NLS in general.
For demonstration, [23] investigated a group (up to 30+) of
�
q
p-GIES algorithms, and showed that many of them outper-

formed the original IES of [25] in two numerical examples.
For brevity, we do not provide further information of the
�
q
p-GIES algorithms here, and refer readers to [23] for more

details.

2.2 A GIES-Based Approach to DASC Problems

Here we consider a data assimilation problem with certain
constraints, in which the observation system is the same as
that in Eq. 1, whereas the constraints may consist of both
equality and inequality ones. Without loss of generality, for
a given model vector m, let us suppose that the equality
and inequality constraints, respectively, are described by the
following systems:

feq (m) = 0; (24)

hin (m) ≤ 0; (25)

where both feq (“eq” for equality) and hin (“in” for
inequality) could be some nonlinear vector mappings
in general. For brevity, we also refer to equality and
inequality constraints as EQ-constraints and IN-constraints,
respectively.

As shown in the previous subsection, both the original
IES and GIES algorithms can be derived by solving
certain stochastic optimization problems, but without yet
taking into account possible constraints on model variables.
Following this optimization-theoretic perspective, including
the constraints into data assimilation can then be recast as
some constrained optimization problem. Bearing this notion
in mind, we propose to derive a class of constrained GIES
algorithms by solving the following GMAC problem:

arg min
{mi+1

j }Ne
j=1

1

Ne

Ne∑

j=1

Lj (m
i+1
j |dj ,Mi ); (26)

Lj (m
i+1
j |dj ,Mi ) ≡ Deff

(
mi+1

j , dj

)
+γ i

j R
[
S

(
mi+1

j

)

−S
(
mi

j

)]
;

(27)

Deff

(
mi+1

j , dj

)
≡ Dd

[
Td

(
dj

) − Td

(
g

(
mi+1

j

))]

+ αi
j Deq

[
Teq (0) −Teq

(
feq

(
mi+1

j

))]

+ βi
j Din

[
Tin (0)−Tin

(
hin

(
mi+1

j

))]
.

(28)
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Equations 27 and 28 indicate that the cost function
underlying a constrained GIES algorithm contains an
“effective” data mismatch term and a regularization term.
In contrast to the data mismatch term in the unconstrained
data assimilation problem (cf Eq. 11), however, now
the “effective” data mismatch term needs to incorporate
the impacts of constraints on the assimilation algorithm.
Therefore, in Eq. 28, the “effective” data mismatch term is
in the form of a mixture of three sub-terms, corresponding
to the observation and constraint systems, Eqs. 1, 24 and 25,
respectively. The notations in Eq. 28 are similar to those in
Eq. 11, but with some additional subscripts like “d” (“d”
for data), “eq” and “in” present for distinction of different
sources of information. For instance, Dindex and Tindex ,
index ∈ {d, eq, in}, stand for the distance metric and the
transform operator of respective (observation or constraint)
system.

Without loss of generality, we assign a mixture coef-

ficient of 1 to the term Dd

[
Td

(
dj

) − Td

(
g

(
mi+1

j

))]
,

whereas αi
j and βi

j are mixture coefficients of respec-
tive constraint systems. Since we are dealing with soft
constraints, we do not treat αi

j and βi
j as Lagrange multipli-

ers. Therefore, we do not adopt the Karush–Kuhn–Tucker
(KKT) conditions [30] to choose the values of αi

j and βi
j .

Instead, αi
j and βi

j are treated as scalars that specify the rel-
ative weights of individual data mismatch terms, and their
values will be determined in a way adaptive to the iteration
step and ensemble member, using a criterion similar to that
in [23], which will be illustrated in numerical case studies
later.

Similar to the way to derive the �
q
p-GIES algorithms,

the model update formulae, Eqs. 12–15, can be applied
to derive constrained assimilation algorithms, with some
changes to account for the mixture of data mismatch terms.
Specifically, using the analysis in Appendix D of [23], for
the model update formulae in Eqs. 12–15, the following
parts will be reduced to:

∇D
[
T

(
dj

) − T ◦ g
(
mi

j

)]
=

[(
∇Dd

[
Td

(
dj

) − Td ◦ g
(
mi

j

)])T

, αi
j

(
∇Deq

[
Teq (0) − Teq ◦ feq

(
mi

j

)])T

,

βi
j

(
∇Din

[
Tin (0) − Tin ◦ hin

(
mi

j

)])T
]T

; (29)

Si
T ◦g =

[(
Si
Td◦g

)T

,
(
Si
Teq◦feq

)T

,
(
Si
Tin◦hin

)T
]T

; (30)

Mi
D

(
dj

) =
(
Si
Td◦g

)T ∇2
Dd

[
Td

(
dj

) − Td ◦ g
(
mi

j

)]
Si
Td◦g

+αi
j

(
Si
Teq◦feq

)T ∇2
Deq

[
Teq (0) − Teq ◦ feq

(
mi

j

)]
Si
Teq◦feq

+βi
j

(
Si
Tin◦hin

)T ∇2
Din

[
Tin (0) − Tin ◦ hin

(
mi

j

)]
Si
Tin◦hin

. (31)

Inserting Eqs. 29–31 into Eqs. 12–15, we obtain the
following model update formula for DASC problems:

mi+1
j = mi

j + Si
I

[(
Si
Td◦g

)T ∇2
Dd

[
Td

(
dj

) − Td ◦ g
(
mi

j

)]

× Si
Td◦g + αi

j

(
Si
Teq◦feq

)T ∇2
Deq

[
Teq (0)

−Teq ◦ feq
(
mi

j

)]
Si
Teq◦feq

+ βi
j

(
Si
Tin◦hin

)T ∇2
Din

[
Tin (0) − Tin

◦hin

(
mi

j

)]
Si
Tin◦hin

+ γ i
j

(
Si
S

)T ∇2
R

[
S

(
m̄i

)
− S

(
mi

j

)]
Si
S

]−1

×
[(

Si
Td◦g

)T ∇Dd

[
Td

(
dj

) − Td ◦ g
(
mi

j

)]

+αi
j

(
Si
Teq◦feq

)T ∇Deq

[
Teq (0) − Teq ◦ feq

(
mi

j

)]

+βi
j

(
Si
Tin◦hin

)T ∇Din

[
Tin (0) − Tin ◦ hin

(
mi

j

)]]
.

(32)

For reference later, we call algorithms derived from Eq. 32
constrained GIES (C-GIES). Clearly, when no constraint is
considered (e.g., by setting αi

j = βi
j = 0), the C-GIES

will reduce to the GIES algorithms in Eqs. 12– 15. On the
other hand, the impacts of EQ and/or IN-constraints will be
promoted by increasing the values of αi

j and/or βi
j .

In practical data assimilation problems, the distance
metrics Dd , Deq and Din, regularization operator R, and
transform operators Td , Teq , Tin and S in Eq. 32 are chosen
by the users. This implies that in principle there could
also be infinitely many C-GIES algorithms, similar to what
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we have previously mentioned for the �
q
p-GIES algorithms.

In the current work, however, our main objective is not
to show the richness of the C-GIES algorithms. Instead,
we focus more on explaining how the constraints can be
incorporated into data assimilation through a GIES-based
framework, and demonstrating the benefits of including
such constraints. Consequently, in the sequel, we will only
consider a particular C-GIES algorithm which is close to
the original IES algorithm in [25]. In fact, this C-GIES
algorithm will recover the original IES algorithm if there
is no constraint present (e.g., by setting αi

j = βi
j = 0).

Therefore, under this setting, the impacts of the constraints
will become manifest by comparing the performance of this
C-GIES and the original IES algorithms.

Specifically, in the chosen C-GIES algorithm, we let
the distance metric Dd and the regularization operator R
be the same as those in Eqs. 17 and 18, respectively. The
choices of the distance metrics Deq and Din are worthy
of more attention, and will thus be discussed separately
later. Meanwhile, we let Td , Teq , Tin and S all be identity
operators. With these choices, Eq. 32 is reduced to

mi+1
j = mi

j + Si
I

[(
Si
g

)T

C−1
d Si

g + αi
j

(
Si
feq

)T ∇2
Deq

[
0 − feq

(
mi

j

)]
Si
feq + βi

j

(
Si
hin

)T ∇2
Din

[
0 − hin

(
mi

j

)]
Si
hin

+ γ i
j INe

]−1

×
[(

Si
g

)T

C−1
d

[
dj − g

(
mi

j

)]
+ αi

j

(
Si
feq

)T

∇Deq

[
0 − feq

(
mi

j

)]
+ βi

j

(
Si
hin

)T ∇Din

[
0 − hin

(
mi

j

)]]
. (33)

Note that in Eq. 33, 0 − feq
(
mi

j

)
= −feq

(
mi

j

)
and

0−hin

(
mi

j

)
= −hin

(
mi

j

)
. We make the value 0 explicitly

present in the update formula to indicate that 0 is treated as
the perfect measurements in the constraint systems.

Regarding the choice of the distance metric Din for IN-
constraints, essentially we utilize the concept of barrier
function [6, 30]. Suppose that mi

j already satisfies the
IN-constraints, then the idea of barrier function is to
choose a continuous mapping Din in such a way that

Din

[
0 − hin

(
mi+1

j

)]
will output relatively large values

as hin

(
mi+1

j

)
moves closer to the boundary 0, and

that Din

[
0 − hin

(
mi+1

j

)]
will become relatively small if

hin

(
mi+1

j

)
is within the feasible region, but relatively

far away from the boundary 0. In other words, a barrier
function aims to encourage a feasible estimate mi+1

j so that

hin

(
mi+1

j

)
moves away from the boundary, as a way to

honor the IN-constraints. In the current work, we choose the
following form for Din: for a given dummy vector x ≥ 0

(e.g., x = −hin

(
mi

j

)
),

Din (x) = − (log (x + a))T 1len(x). (34)

In Eq. 34, a > 0 is a constant vector in the same size
as x; log (•) is a vector function which applies the natural
logarithmic function to each element of •; and 1len(x) is a
vector whose elements are all equal to 1, and whose length
is the same as that of the vector x. As desired, when any of
the elements of x + a approaches 0, then Din (x) tends to
+∞; On the other hand, if all elements of x+a are relatively
far away from 0, then the value of Din (x) will decrease. The
constant vector a is introduced here for numerical stability,
to prevent possible divisions by zero in Eqs. 35 and 36 later.
The value of a will be specified in numerical case studies
later, when it comes to concrete IN-constraints.

Equation 33 will require us to evaluate ∇Din
[x] and

∇2
Din

[x] at x = −hin

(
mi

j

)
. With some algebra, it can be

shown that, for Din (x) defined in Eq. 34, we have

∇Din
[x] = −1len(x)./(x + a); (35)

∇2
Din

[x] = diag
((
1len(x)./ (x + a)

)∧̇2
)

. (36)

In Eqs. 35 and 36, ./ and ∧̇2 stand for element-wise
division and square operators applied to vectors, such that
1len(x)./(x + a) = [1/(x1 + a1), 1/(x2 + a2), · · · ]T and
(
1len(x)./(x + a)

)∧̇2 = [1/(x1 + a1)
2, 1/(x2 + a2)

2, · · · ]T ,
where xk , ak (k = 1, 2, · · · ) are elements of x and
a, respectively. The diag operator converts a vector to a
diagonal matrix, in such a way that the diagonal elements
of the diagonal matrix are filled in by the elements of that
vector.

For the choice of the distance metric Deq , we adopt a
notion opposite to barrier function. Instead of propelling the

constraint system (hin

(
mi+1

j

)
) away from the boundary 0,

we want Deq to attract the constraint system (feq
(
mi+1

j

)
)

towards 0. For this reason, we call Deq a “channel function”.
In this work, Deq is chosen as follows: for a given dummy

vector x (e.g., x = feq
(
mi

j

)
),

Deq (x) = (log (|x| + b))T 1len(x); (37)

where b is also a constant vector close to zero; |x| and
log (x) are element-wise operators that take the absolute
value, and natural logarithm of a vector x, respectively.
Roughly speaking, Deq (x) will become relatively large if
the element magnitudes of x are big, and tend to decrease
when the element magnitudes of x are reduced. Similar
to Eqs. 35 and 36, it can be shown that, the gradient and
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Hessian of Deq with respect to x in Eq. 37 is given by

∇Deq
[x] = 1len(x)./

(
x + b×̇ sgn (x)

) ; (38)

∇2
Deq

[x] = − diag
((
1len(x)./

(
x + b×̇ sgn (x)

))∧̇2
)

, (39)

where sgn(x) ≡ [sgn(x1), sgn(x2), · · · ]T returns the ele-
ments’ signs of x, and ×̇ denotes element-wise (Hadamard)
product, such that x×̇y = [x1 × y1, x2 × y2, · · · ]T , with xk

and yk (k = 1, 2, · · · ) being the elements of x and y, respec-
tively. In numerical calculations, we follow the custom to set
sgn(0) = 0, which implies that in Eqs. 38 and 39, divisions
by zero will occur at x = 0. To mitigate this potential prob-
lem, in our implementation, we approximate the gradient
and Hessian in Eqs. 38 as follows:

∇Deq
[x] = 1len(x)./

(
x + b×̇ sgn (x) + ε1len(x)

) ; (40)

∇2
Deq

[x] = − diag
((
1len(x)./

(
x + b×̇ sgn (x)

)

+ε1len(x)
)∧̇2

)
, (41)

where ε > 0 is a (relatively small) positive scalar. Again, the
values of b and ε will be specified in numerical case studies
later.

For the distance metrics Din and Deq defined by
Eqs. 34 and 37, respectively, one feature is that their
resulting Hessian in Eqs. 36 and 39 (or (41)) are diagonal
matrices. This feature would be particularly useful if
the corresponding constraint systems are of very high
dimensions (which is the situation in one of our numerical
case studies later). To see this point, let us take the
Hessian ∇2

Din
[x] as an example. Being a diagonal matrix

means that ∇2
Din

[x] can be manipulated as a sparse
matrix, which would consume considerably less computer
memory than a non-diagonal, full Hessian matrix. In
addition, the C-GIES update formula (33) involves certain

matrix products like
(
Si
hin

)T ∇2
Din

[
0 − hin

(
mi

j

)]
Si
hin

.

With ∇2
Din

[
0 − hin

(
mi

j

)]
in the form of a diagonal matrix,

the matrix products can be simplified,2 which also implies
reduced computational costs. On the other hand, it should
be noted that in general, there could be many good choices
for Din and Deq , while those defined by Eqs. 34 and 37
may not necessarily be the optimal ones. Investigating the
optimal forms of Din and Deq is beyond the scope of the
current work, and is thus not further considered hereafter.

2For instance, for a vector x and a matrix A ≡ [a1, a2, · · · ], where ak

(k = 1, 2, · · · ) are the column vectors of A, then it can be shown that
diag (x)A = [x, x, · · · ] ×̇A = [

x ×̇ a1, x ×̇ a2, · · ·
]
, where ×̇ stands

for element-wise (Hadamard) product.

2.3 Localization in the C-GIES algorithm

As aforementioned, one of the core ideas used in this work
to derive constrained assimilation algorithms is the notion of
“perfect measurements” [34], where the constraint systems
are treated as forward observation operators without any
measurement errors. In the context of ensemble data
assimilation, localization is an auxiliary technique often
adopted to mitigate the problem of ensemble collapse
and strengthen the performance of assimilation algorithms
[7, 10, 28]. When applying localization to “perfect
measurements” from the constraint systems, however, there
are two issues worthy of special attention.

One issue is that the “perfect measurements” might
not possess any physical locations, such that (physical)
distance-based localization methods [7, 10] may not be
applicable. In fact, as one may notice in the C-GIES
update formula (32), or its special case (33), in gen-

eral it is the gradients ∇Dd

[
Td

(
dj

) − Td ◦ g
(
mi

j

)]
,

∇Deq

[
Teq (0) − Teq ◦ feq

(
mi

j

)]
and

∇Din

[
Tin (0) − Tin ◦ hin

(
mi

j

)]
that contribute to model

updates, similar to the role of normalized data residual

C−1
d

[
dj − g

(
mi

j

)]
in the original IES algorithm algo-

rithm (cf. Eqs. 4 and 5).3 As such, for the umbrella GIES
algorithm or its descendant C-GIES algorithm for DASC
problems, in general it would be more appropriate to
exploit the gradients of respective observation or constraint
systems, rather than the locations of observations, for
localization.

Another problem is that even though the number of real
observations (e.g., production data) may not be big, the
dimensions of the constraint systems could be very high.
As an example, one may consider box constraints imposed
on all petro-physical parameters distributed on reservoir
gridblocks, which is the experiment setting to be adopted in
one of the case studies later. In large scale history matching
problems, a straightforward application of the conventional
localization technique would thus consume a huge amount
of computer memory, since it involves a matrix (called
tapering matrix hereafter) in the dimension of model size by
effective data size, where by “effective data size” we mean
the number of real measurements plus the dimensions of
constraint systems.

3In fact, it can be shown that C−1
d

[
dj − g

(
mi

j

)]
is the gradient of

the particular choice of data mismatch term D
(
dj − g

(
mi+1

j

))
=

1

2

(
dj − g

(
mi+1

j

))T

C−1
d

(
dj − g

(
mi+1

j

))
in the original IES algo-

rithm.
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To simultaneously tackle the aforementioned two prob-
lems, namely, (1) localization based on information of gra-
dients, rather than physical locations of real and “perfect”
measurements; and (2) localization involving big models
and big effective data induced by constraints, there are two
possibly strategies. One strategy is to follow the recent
work of [37], which extends correlation-based Kalman-
gain type localization [24, 28] to correlation-based local
analysis. In the context of C-GIES, one can compute
the sample correlations between an ensemble of reser-
voir models and the corresponding ensemble of terms

related to the gradients (∇Dd

[
Td

(
dj

) − Td ◦ g
(
mi

j

)]
,

∇Deq

[
Teq (0) − Teq ◦ feq

(
mi

j

)]
and/or ∇Din

[Tin (0)−
Tin ◦ hin

(
mi

j

)]
). Using the information of these corre-

lations would eliminate the need for physical locations
and render a few additional practical advantages, e.g., the
ability to handle both non-local observations and the spatial-
temporal characteristics of observations, see the elabora-
tions in [24, 28]. Meanwhile, local analysis can be employed
to tackle the issue of big model and big datasets. Instead
of performing a single global update, local analysis con-
ducts a series of local updates, each of them only involving a
small number of model variables and effective data that are
grouped based on the computed sample correlations [37].

Another practical strategy is still based on correlation-
based Kalman-gain localization. To deal with the presence
of big datasets in localization, however, we do not directly
handle the big datasets themselves. Instead, we follow the
idea in [29] and project the big datasets onto certain ensem-
ble subspaces. After projections, we apply correlation-based
localization to terms related to the projected gradients, e.g.,(
Si
g

)T

C−1
d

[
dj − g

(
mi

j

)]
,
(
Si
feq

)T ∇Deq

[
0 − feq

(
mi

j

)]
,

and
(
Si
hin

)T ∇Din

[
0 − hin

(
mi

j

)]
in Eq. 33. All these pro-

jected gradients are column vectors in the dimension of
Ne × 1, with Ne being the ensemble size, hence the sizes
of projected gradients are independent of the dimensions of
the original gradients. One more issue to notice here is that
in Eq. 33, the term

Fi
j ≡

[(
Si
g

)T

C−1
d Si

g + αi
j

(
Si
feq

)T ∇2
Deq

[
0 − feq

(
mi

j

)]

Si
feq + βi

j

(
Si
hin

)T ∇2
Din

[
0 − hin

(
mi

j

)]
Si
hin

+ γ i
j INe

]
d−1

(42)

in general depends on individual ensemble members mi
j .

To separate the effects of observed data and constraints
on model updates, at each iteration step i, we choose to
multiply all the projected gradients by this matrix factor Fi

j

(in the dimension of Ne × Ne), and then use the ensemble

of the following products (all in the dimension of Ne × 1)

Ai
d,j ≡ Fi

j

(
Si
g

)T

C−1
d

[
dj − g

(
mi

j

)]
; (43)

Ai
eq,j ≡ Fi

j

(
Si
feq

)T ∇Deq

[
0 − feq

(
mi

j

)]
; (44)

Ai
in,j ≡ Fi

j

(
Si
hin

)T ∇Din

[
0 − hin

(
mi

j

)]
, (45)

together with the ensemble of reservoir models mi
j (for

j = 1, 2, · · · , Ne) to compute three sets of correlation
fields, denoted by Ci

d , Ci
eq and Ci

in (all in the dimension
of m × Ne), respectively. Then following the previous work
[24, 28], we can construct three tapering matrices, denoted
by Ti

d , Ti
eq and Ti

in (all in the dimension of m × Ne), based

on Ci
d , Ci

eq and Ci
in. These tapering matrices are applied

to the model update formula (33), such that the model
update formula with correlation-based localization reads as
follows:

mi+1
j = mi

j +
(
Ti

d×̇Si
I
)
Ai

d,j + αi
j

(
Ti

eq×̇Si
I
)
Ai

eq,j

+βi
j

(
Ti

in×̇Si
I
)
Ai

in,j . (46)

In the current work, we adopt the projection-based strat-
egy to implement correlation-based Kalman-gain localiza-
tion, as this requires minimal changes of the C-GIES update
formula in Eqs. 32 or 33, in contrast to the strategy based
on correlation-based local analysis. Throughout this work,
we use the localization scheme, labeled as RndShfl-GC, in
[24] to construct the tapering matrices Ti

d , Ti
eq and Ti

in. For
brevity, however, we skip the details of RndShfl-GC, and
refer readers to [24] for more information.

3 Numerical results

3.1 DASC problem in a 2D case study

3.1.1 Experiment settings of the 2D case study

This section focuses on illustrating the performance of
the chosen C-GIES algorithm, (33), in a 2D channelized
reservoir characterization problem, which was investigated
in the previous work [23]. The size of the 2D reservoir
model is 45 × 45, in terms of the number of gridblocks.
The unknown parameters of the reservoir model contain
x-dimensional permeability (PERMX) distributed on all
reservoir gridblocks, whereas other parameters (e.g., poros-
ity) are assumed to be known. As such, the total number of
parameters to be estimated in this 2D case study is 2025.

Figure 1 indicates the reference PERMX map, where
the positions of 8 injectors (I1 – I8) and 8 producers
(P1 – P8) are marked. The reference model contains two
facies, sand and shale, with their corresponding PERMX
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Fig. 1 Reference model used in
the 2D synthetic case study, with
well positions marked by white
ellipses. Well names (in green)
starting with the letter “I” stand
for injection wells, while those
with the letter “P” for
production wells

values being 10000 md and 500 md, respectively. The
reference reservoir model is simulated using ECLIPSE©

100 black oil simulator, with a total simulation time of 3800
days. The production data generated during the first 1900
days (history-matching period), including well oil/water
production rates (WOPR/WWPR) from 8 producers, and
well bottom-hole pressures (WBHP) from 8 injectors, are
used to history-match an ensemble of reservoir models,
whereas the corresponding production data during the
second 1900 days (forecast period) are reserved to cross-
validate the performance of different history matching
algorithms. The total numbers of production data during
history matching and forecast periods are both 240. To
mimic the situation in practical history matching problems,
we add (zero-mean) Gaussian white noise to all the
production data during the history matching period. The
standard deviations (STDs) of the noise in both WOPR and
WWPR data are 0.2236 m3/day, while those of the noise in
WBHP data are 0.2646 bar. On the other hand, during the
forecast period, no noise is added to the production data.

An ensemble of 100 PERMX maps is generated by the
SNESIM algorithm [38] to initialize ensemble-based history
matching algorithms. Figure 2 shows the mean and STD
maps of the initial ensemble.

In this case study, we consider one IN- and one EQ-
constraint systems. The IN-constraint system imposes a box
constraint on the range of the PERMX value mk on the kth
gridblock (k = 1, 2, · · · , 2025), such that 100 md ≤ mk ≤
15000 md. This box constraint then leads to the following
IN-constraint system

100 − mk ≤ 0; (47)

mk − 15000 ≤ 0, (48)

for k = 1, 2, · · · , 2025. As a result, the dimension of the
IN-constraint system is 2 × 2025 = 4050.

The EQ-constraint system aims to impose a constraint on
the shape of the histogram of an estimated PERMX map.
To this end, we assume that the ratio of sand and shale
facies in the reference PERMX map (cf Fig. 1), hence the
corresponding histogram, is (roughly) known (e.g., based on
well log data). The first row of Fig. 6 shows the histogram
of the reference PERMX map and that corresponding
to the mean of the initial ensemble of PERMX maps.
During history matching, we compare the histogram of each
estimated PERMX map to that of the reference PERMX
map bin by bin. For a quantitative comparison, in each bin,
we count the number of permeability values falling into that
bin, while the total number of bins is 50. For convenience of

Fig. 2 Mean (left) and STD (right) maps of the initial ensemble of PERMX maps
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discussion later, we denote by mref the reference PERMX
map, and by SH the operator that transforms a generic
PERMX map m (m = [m1, m2, · · · , m2025]T ) to a set of
numbers, through the steps: PERMX map → histogram →
number of permeability values in each bin. Following this
setting, the EQ-constraint system is composed as follows:

SH (m) − SH

(
mref

) = 0, (49)

whereas the dimension of the EQ-constraint system equals
the number of bins of a histogram (50 in this case). Here, we
note that due to the possible conflict with other objectives
(e.g., that of reducing data mismatch), these EQ-constraints
may not be strictly satisfied during the history matching
process. Nevertheless, as will be shown later, the presence
of these EQ-constraints does tend to help improve the
performance of history matching.

Here we compare the performance of a few IES
algorithms. The base case for comparison is the original IES
algorithm (cf Eqs. 4–8) combined with a simple truncation
strategy to handle a box-constraint mlb ≤ mk ≤ mub (k =
1, 2, · · · , 2025 in the current case study), where mlb (=
100) and mub (= 15000) represent lower and upper bounds,
respectively, for a model variable mk . With the truncation
strategy, whenever an mk estimated by the original IES
algorithm is less than mlb, then we set mk = mlb; Likewise,
whenever an estimate mk is larger than mub, then we set
mk = mub. For reference later, the base-case algorithm is
referred to as O-IES.

The other algorithms in comparison include the C-GIES
algorithms (cf. Eq. 33) that take into account the IN-
constraints (47–48) and/or the EQ-constraints (49). For
distinction later, we refer to these algorithms as C-GIES-
IN, C-GIES-EQ and C-GIES-(IN+EQ), respectively. By
“C-GIES-IN”, we mean that the C-GIES algorithm only
deals with the IN-constraint system. Similarly, the C-GIES-
EQ algorithm only considers the EQ-constraint system, and
the C-GIES-(IN+EQ) algorithm takes into account both
constraint systems. Note that all these three types of C-GIES
algorithms are also equipped with the truncation strategy,
such that the differences of history-matching performance
among these IES algorithms would reflect the impacts of the
constraints incorporated through our proposed framework.

The C-GIES algorithms based on Eq. 33 require to
determine the weight coefficients αi

j , βi
j and γ i

j at each
iteration step. In the current work, we follow the strategy in
[25], and set αi

j as follows:

αi
j = w1 trace

((
Si
g

)T

C−1
d Si

g

)
/ trace

((
Si
feq

)T ∇2
Deq

[
0 − feq

(
mi

j

)]
Si
feq

)
, if with EQ-constraints; (50)

αi
j = 0, if without EQ-constraints, (51)

where w1 is a positive constant not too far away from 1,
and the trace operator calculates the trace of a matrix. The
rationale behind Eq. 50 is that when the EQ-constraint
system is present, we want its influence on model update,

in terms of trace

((
Si
feq

)T ∇2
Deq

[
0 − feq

(
mi

j

)]
Si
feq

)
, to

be comparable to that of the data mismatch, in terms of

trace

((
Si
g

)T

C−1
d Si

g

)
. The value of βi

j is determined in a

similar way, as follows:

βi
j = w2 trace

((
Si
g

)T

C−1
d Si

g

)
/ trace

((
Si
hin

)T ∇2
Din

[
0 − hin

(
mi

j

)]
Si
hin

)
, if with IN-constraints; (52)

βi
j = 0, if without IN-constraints, (53)

where w2 is another positive constant not too far away from
1. The values of (w1, w2) adopted for the four algorithms in
comparison, namely, O-IES, C-GIES-IN, C-GIES-EQ and
C-GIES-(IN+EQ), can be found in Table 1.

As for the regularization parameter γ i
j , it is calculated as

follows:

γ i
j = wi

3 trace

((
Si
g

)T

C−1
d Si

g + αi
j

(
Si
feq

)T ∇2
Deq

×
[
0 − feq

(
mi

j

)]
Si
feq + βi

j

(
Si
hin

)T ∇2
Din

×
[
0 − hin

(
mi

j

)]
Si
hin

)
/Ne. (54)

Note that in Eq. 54 we have used the fact that trace
(
INe

) =
Ne, where wi

3 is a positive scalar that adaptively changes
over the iteration step. Following [25], we let w0

3 = 1,
wi+1

3 = 0.9 × wi
3 if the average data mismatch over

ensemble members (to be defined later) at the (i + 1)th
iteration step is lower than that at the ith iteration step;
otherwise, we set wi+1

3 = 2 × wi
3. During history

matching, the maximum number of the iteration steps for all
algorithms is 50, but the iteration process may stop earlier, if
the change of the average data mismatch values during two
consecutive iteration steps is less than 0.01%.

The use of the distance metrics Din and Deq also requires
to specify constants a, b and ε, cf. Eqs. 34–41. In the
experiments, we set a = b = 0.1 × 1 and ε = 0.001.

To cross-validate the performance of history matching
algorithms, we adopt the following two measures, namely,
forecast data mismatch and root mean square error (RMSE).
Data mismatch uses a weighted �2

2 metric in the data
space to measure the distance between the observed and
the simulated data. Given an ensemble Mi = {mi

j }Ne

j=1
of reservoir models, a forward reservoir simulator g and
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Table 1 Performance of the four history-matching algorithms in the
2D case study. The performance is measured in terms of data mismatch
(mean ± STD) during the forecast period, and RMSE (mean ± STD),

which are computed using the ensembles of reservoir models at the
final iteration steps

History-matching data mismatch Forecast data mismatch RMSE of PERMX Values of

(mean ± STD) ×103 (mean ± STD) ×103 (mean ± STD) ×103 (w1, w2)

Initial ensemble 5.7936 ± 2.2513 7.5940 ± 3.7789 5.2665 ± 0.4404 (N/A, N/A)

O-IES 2.2367 ± 0.8683 (−61.3936%) 5.2670 ± 2.5087 (−30.6426%) 4.5398 ± 0.3245 (−13.7985%) (0, 0)

C-GIES-EQ 2.3015 ± 0.9678 (−60.2751%) 4.5766 ± 2.2940 (−39.7340%) 4.4773 ± 0.3036 (−14.9853%) (1, 0)

C-GIES-IN 2.5579 ± 1.0900 (−55.8496%) 5.1431 ± 2.1756 (−32.2742%) 4.4380 ± 0.2916 (−15.7315%) (0,1)

C-GIES-(IN+EQ) 2.1575 ± 0.6781 (−62.7606%) 4.0826 ± 1.2078 (−46.2391%) 3.9053 ± 0.1863 (−25.8464%) (0.5, 0.5)

For comparison, the quantities with respect to the initial ensemble are also included, and the relative changes of the average quantities between
the initial and final ensembles are provided in separate parentheses. In addition, we note that the values of (w1, w2) are not applicable (N/A) to
the initial ensemble

the observed field dataset do, an ensemble Ξ(Mi ) of data
mismatch values is computed as follows:

Ξ(Mi ) ≡
{
	i

j |	i
j =

(
do − g

(
mi

j

))T

C−1
d

(
do − g

(
mi

j

))}Ne

j=1
,

(55)

where Cd is the observation error covariance matrix
associated with the dataset do (also cf. Eq. 3 and the
corresponding text for the definition of Cd ).

Similarly, RMSE adopts a (scaled) �2 metric in the model
space to examine the distance between the reference and
the estimated reservoir models. Given an m-dimensional
reference model mref and an ensemble Mi = {mi

j }Ne

j=1

of reservoir models, an ensemble Ω(Mi ) of RMSE is
calculated as follows:

Ω(Mi ) ≡
{

ζ i
j |ζ i

j = ‖mi
j − mref ‖2√

m

}Ne

j=1

. (56)

3.1.2 Numerical results of the 2D case study

Table 1 reports the data mismatch values (mean ± STD)
during both history-matching and forecast periods, and
RMSE values (mean ± STD), with respect to both the initial
ensemble, and the final ensembles obtained by four history-
matching algorithms: O-IES, C-GIES-IN, C-GIES-EQ and
C-GIES-(IN+EQ). The values of the pair (w1, w2) used by
these history-matching algorithms are also listed therein.
In comparison to the initial ensemble, all four algorithms
are able to achieve better history-matching performance,
in terms of both lower forecast data mismatch and RMSE
values. In addition, compared with the base-case O-IES
algorithm, the three C-GIES algorithms achieve enhanced
performance, by exploiting either EQ-constraints or IN-
constraints, or both. As a matter of fact, in this particular
case study, it is the C-GIES-(IN+EQ) algorithm with both
types of constraints that achieves the best performance
in terms of both forecast data mismatch and RMSE,
manifesting the benefits of incorporating both types of
constraints into history matching through the proposed
workflow.

Table 2 Values of barrier and channel functions (cf. Eqs. 34 and 37) in the 2D case study, evaluated with respect to the initial ensemble, and the
final ensembles obtained by the O-IES, C-GIES-IN, C-GIES-EQ and C-GIES-(IN+EQ) algorithms

Value of barrier function (for IN-constraint system) Value of channel function (for EQ-constraint system)

(mean ± STD) ×104 (mean ± STD)

Initial ensemble - 3.3269 ± 0.0217 - 100.6942 ± 27.6959

O-IES - 3.1669 ± 0.0903 (+4.8093%) 149.2952 ± 14.7206 (+ 248.2659 %)

C-GIES-EQ - 3.1696 ± 0.0662 (+4.7281%) 144.5890 ± 17.1123 (+ 243.5922 %)

C-GIES-IN - 3.2240 ± 0.0895 (+3.0930%) 150.9701 ± 13.4692 (+ 249.9293 %)

C-GIES-(IN+EQ) - 3.2427 ± 0.0522 (+2.5309%) 157.7672 ± 6.8273 (+ 256.6795%)

As in Table 1, the relative changes of the average values of barrier and channel functions between the initial and final ensembles are provided in
separate parentheses
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Fig. 3 Box plots of data mismatch during the history-matching period (left column) and corresponding RMSE values (right column) at different
iteration steps of the O-IES, C-GIES-IN, C-GIES-EQ and C-GIES-(IN+EQ) algorithms
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Fig. 4 Profiles of WOPR in P2 (left column) and WWPR in P4 (right
column) in the 2D case study. In each sub-figure, the orange curve
stands for the production data generated by the reference reservoir
model without observation errors; the red dots for noisy observations
used for history matching; the blue curves for the simulated production
data using the ensembles obtained at the last iteration steps of the
O-IES, C-GIES-IN, C-GIES-EQ and C-GIES-(IN+EQ) algorithms;
and the green vertical dashed line separates the history-matching and
forecast periods

Similarly, Table 2 shows the values (mean ± STD) of
barrier and channel functions (cf. Eqs. 34 and 37), with
respect to the initial ensemble, and the final ensembles
obtained by the four history-matching algorithms. Note
that these function values are calculated only at the post-
history-matching stage, and are not utilized during history
matching. Compared to the initial ensemble, one can see
that the final ensembles obtained by the four history-
matching algorithms end up with higher barrier and channel
function values, which is different from the situation in
Table 1, wherein the final ensembles achieve lower data
mismatch values. This contrast suggests that reducing data
mismatching and enforcing EQ- and/or In-constraints could
be conflicting objectives. On the other hand, by comparing
the base-case algorithm with the three C-GIES algorithms,
the benefits of incorporating EQ- and/or In-constraints
through the proposed workflow will be better appreciated.
For instance, after incorporating the EQ-constraints, one
can see that the channel function values of the C-GIES-
EQ algorithm tend to be noticeably lower than those of
the O-IES algorithm; Likewise, after incorporating the IN-
constraints, the barrier function values of the C-GIES-IN
algorithm also tend to be lower than those of the O-IES
algorithm. A more complicated situation happens in the
C-GIES-(IN+EQ) algorithm, wherein the barrier function
values, as expected, tend to be lower than those of the O-
IES algorithm, but the channel function values, surprisingly,
tend to be higher than those of the O-IES algorithm. A
possible explanation to this situation is that in this particular
case study, the objective of honoring the box-constraints
may also conflict with the objective of changing the shape
of a histogram.

For further illustration, Fig. 3 presents the box plots of
data mismatch values (left column) computed using the
ensembles of reservoir models at different iteration steps of
the O-IES, C-GIES-IN, C-GIES-EQ and C-GIES-(IN+EQ)
algorithms; and the corresponding RMSE values (right
column) at different iteration steps. As one can see from
these plots, both data mismatch and RMSE values tend to
decrease as the iteration process goes on. In consistency
with the results in Table 1, it is the last ensemble obtained
by the C-GIES-(IN+EQ) algorithm that tends to achieve the
lowest RMSE values.

Figure 4 shows the production-data profiles, with respect
to WOPR in P2 and WWPR in P4. The forecast production
data (blue curves) are computed using the final ensembles
of the four history-matching algorithms. Overall, for WOPR
in P2, the forecast production data generated by the four
history-matching algorithms match the reference (orange
curve) reasonably well. For WWPR in P4, however, higher
data mismatch is spotted. Among the four history-matching
algorithms, the C-GIES-(IN+EQ) algorithm has the best
performance, as is reported in Table 1.
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Fig. 5 Mean PERMX mps of the final ensembles obtained by the four history-matching algorithms in the 2D case study. For comparison, the
reference PERMX map and the mean map of the initial ensemble are re-plotted here

In Fig. 5, we report the mean PERMX maps of the
final ensembles obtained by the four history-matching
algorithms, as well as the reference PERMX map and
the mean map of the initial ensemble. All these four
algorithms do not perform well in term of preserving the
connectivities of the channel bodies, although all of them
appear to be able to capture the main geological structures
in the reference map. The history-matching performance
is expected to be further improved by adopting a certain
more sophisticated model re-parameterization strategy, e.g.,
through deep unsupervised learning [5]; or by incorporating
into the cost function (e.g., in Eq. 11) a more suitable
regularization term [23]. Either investigation, however, is
beyond the scope of the current work.

Finally, Fig. 6 compares a set of histograms calculated
from the reference PERMX map, the mean maps of the
initial ensemble and the final ensembles obtained by the
four history-matching algorithms. In line with the results in
Table 2, the histogram of the C-GIES-(IN+EQ) algorithm
appears to be more different from the others, e.g., apart from
the two modes located at the correct values 500 and 10000
(as in the reference histogram), that histogram has two
additional peaks with substantial heights whose locations
are inconsistent with those in the reference histogram. In
contrast, the histograms of the O-IES, C-GIES-IN, and C-
GIES-EQ algorithms roughly have bi-modal distributions,
and exhibit more similarities to those of the reference
PERMX map.
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Fig. 6 Histograms of the mean PERMX maps with respect to the initial ensemble and the final ones obtained by the four history-matching
algorithms. The histogram of the reference PERMX map is also included for comparison

3.2 DASC problem in a 3D case study

3.2.1 Experiment settings of the 3D case study

In the second numerical example, we apply IES algorithms
to the Brugge benchmark case [31], in which the reservoir
model is 3D, in the dimension of 139 × 48 × 9. Therefore,

there are 60048 gridblocks in total, and 44550 of these
gridblocks are active. The parameters to be estimated
include x-, y- and z-dimensional permeability values
(denoted by PERMX, PERMY, PERMZ, respectively) in the
scale of natural logarithm, and porosity values (denoted by
PORO) distributed on these 44550 active gridblocks. Hence,
the total number of unknown parameters is 4 × 44550 =
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178200. In this particular case study, the histograms of
the parameters do not appear to provide much information
of the geological structures, and it does not seem to be
realistic to assume that we know the histograms of the
reference reservoir model. As such, here we do not consider
histogram-based equality constraints as in the previous 2D
example. Instead, we only consider a set of box constraints
imposed on PERMX, PERMY, PERMZ and PORO values.
Specifically, for PERMX values, the box constraints are
that −4 ≤ ln(mpermx) ≤ 9.2, where ln is the natural
logarithmic function, mpermx represents the PERMX value
on an active gridblock; Similarly, the box constraints for
other types of petro-parameters are −4 ≤ ln(mpermy) ≤
9.2; −7 ≤ ln(mpermz) ≤ 6.9 and 0.07 ≤ mporo ≤ 0.3.
As a result, the IN-constraint system is almost the same as
that in the 2D case system, except that the lower and upper
bounds, and the dimensionality are different. In the current
case study, the dimension of the IN-constraint system is
2 × 178200 = 356400, twice the reservoir-model size. To
handle the high dimensionality of the IN-constraint system,
the diagonal form of the Hessian matrix in Eq. 36 proves
to be particularly useful for reducing the consumption
of computer memory, otherwise it becomes prohibitively
expensive to directly manipulate the Hessian matrix in the
dimension of 356400 × 356400 (which requires around 900
GB memory in MATLAB©).

The initial ensemble of reservoir models is taken from the
Brugge benchmark dataset, which contains 104 ensemble
members. One of the members is chosen as the reference
model to generate observed production data at 20 producers
(labeled as BR-P-1, BR-P-2, ..., BR-P-20, or simply as P1,
P2, ..., P20) and 10 injectors (labeled as BR-I-1, BR-I-2, ...,
BR-I-10, or simply as I1, I2, ..., I10). The production period

is 10 years, and for history matching we use the following
types of production data reported at 20 time steps: well oil
production rates (WOPR) and water cuts (WWCT) from the
20 producers, and the bottom hole pressures (WBHP) from
all 30 wells. As a result, the total number of production data
is 1400. The production data are contaminated by a certain
amount of zero-mean Gaussian white noise. For WORP and
WWCT data, the STDs of the noise components are 10%
of the magnitudes of the pure production data generated by
the reference model. In case that the magnitude of a data
point is zero, then the STD is set to be 10−6 instead, to avoid
the possible issue of devision by zero when calculating data
mismatch values. On the other hand, for WBHP data, the
STDs of the noise components are all set to 1 bar. In this
case study, we use all available data for history matching,
so there is no forecast period. As such, we adopt RMSE for
performance cross-validation.

In the sequel, we compare the performance of two
history-matching algorithms. One algorithm is the original
IES, but combined with the truncation strategy to honor
the box constraints. This algorithm is again referred to as
O-IES, as in the 2D case study. Another algorithm is a C-
GIES with the IN-constraint system induced by the box
constraints. Following the custom in the 2D case study, this
algorithm is referred to as C-GIES-IN, and we note that here
the C-GIES-IN is also equipped with the truncation strategy.

Since there is no EQ-constraint system involved, the
weight coefficient w1 (cf. Eq. 50) is set to 0; the weight
coefficient w2 (cf. Eq. 52) associated with the IN-constraint
system is set to 5; and the weight coefficient wi

3 (cf. Eq. 54)
will adapt to the iteration steps, following the same rule as in
the 2D case study. During history matching, the maximum
number of the iteration steps for O-IES and C-GIES-IN

Table 3 Performance of the two history-matching algorithms in the Brugge case study. The performance is measured in terms of RMSE (mean ±
STD), which are computed using the ensembles of reservoir models at the first and final iteration steps

Initial ensemble O-IES C-GIES-IN

Data mismatch 3.6232 × 109 ± 1.4900 × 1010 (3.9616 ± 2.9947) × 107(−98.9066%) (7.0091 ± 5.5507) × 106(−99.8065%)

Value of barrier −3.4172 × 105 ± 6.6936 × 103 −3.4217 × 105 ± 5.9683 × 103 −3.4258 × 105 ± 3.9202 × 103

function (−0.1317%) (−0.2517%)

RMSE (PERMX) 1.6585 ± 0.3827 1.4167 ± 0.2545 (−14.5794%) 1.4119 ± 0.2284 (−14.8689%)

RMSE (PERMY) 1.6612 ± 0.3794 1.4198 ± 0.2515 (−14.5317%) 1.4133 ± 0.2244 (−14.9229%)

RMSE (PERMZ) 2.0077 ± 0.4096 1.8054 ± 0.3101 (−10.0762%) 1.7636 ± 0.2916 (−12.1582%)

RMSE (PORO) 0.0302 ± 0.0025 0.0280 ± 0.0025 (−7.2848%) 0.0285 ± 0.0028 (−5.6291%)

RMSE (all together) 1.5450 ± 0.3362 1.3498 ± 0.2344 (−12.6343%) 1.3327 ± 0.2103 (−13.7411%)

Other quantities reported here include data mismatch during history matching, and the value of barrier function (in the form of mean ± STD),
with respect to both the initial and final ensembles (and as in the tables of the previous case study, we also include the relative changes of these
quantities in parentheses). For RMSE, the values are calculated with respect to PERMX, PERMY, PERMZ (in the scale of natural logarithm),
PORO, and the combination of all these variables, respectively
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Fig. 7 Box plots of data mismatch and RMSE values at different iteration steps of the O-IES (left column) and the C-GIES-IN (right column)
algorithms, in the Brugge benchmark case study
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Fig. 8 Profiles of WBHP in P2, WOPR in P11, and WWCT in P12
in the 3D case study, with respect to the O-IES (left column) and C-
GIES-IN (right column) algorithms, respectively. In each sub-figure,
the orange curve stands for the production data generated by the

reference reservoir model without observation errors; the red dots for
noisy observations used in history matching; the blue curves for the
simulated production data using the ensembles obtained at the last
iteration steps of the O-IES and C-GIES-IN algorithms
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Fig. 9 Reference PERMZ map on Layer 2 of the reservoir model, and mean PERMZ maps with respect to the initial ensemble, and the final
ensembles obtained by the O-IES and C-GIES-IN algorithms

algorithms is 10, but these algorithms may stop earlier if
the change of the average data mismatch values during two
consecutive iteration steps is less than 0.01%.

3.2.2 Numerical results of the 3D case study

Table 3 examines the values of data mismatch, barrier
function of the IN-constraint system, and RMSE (separate
for PERMX, PERMY, PERMZ, PORO, and also the
combination of all model variables), with respect to both

the initial ensemble, and the final ensembles obtained by
the O-IES and C-GIES-IN algorithms. All these quantities
are reported in the form of mean ± STD. In comparison
to the values of data mismatch, barrier function and RMSE
of the initial ensemble, those of the final ensembles tend
to be lower, indicating that the performance is improved
by using either history-matching algorithm, and that in this
particular case study, it is possible to simultaneously reduce
both data mismatch and barrier function values during
history matching. In comparison to the O-IES algorithm,

Fig. 10 As in Fig. 9, but for PORO maps on Layer 2
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the C-GIES-IN algorithm tends to result in lower data
mismatch and barrier function values (meaning that the
box constraints are better honored). In terms of RMSE, the
C-GIES-IN algorithm leads to lower (average) estimation
errors for PERMX, PERMY and PERMZ, but slightly
higher errors for the estimation of PORO. The overall
RMSE (by putting all model variables together) induced by
the C-GIES-IN algorithm also tends to be smaller than that
of the O-IES algorithm.

Next, Fig. 7 shows the box plots of data mismatch and
RMSE values of PERMX, PERMY, PERMZ and PORO
at different iteration steps of the O-IES and C-GIES-IN
algorithms. In both history-matching algorithms, all the
examined quantities tend to decrease as the iteration step
increases. As can be expected from the results in Table 3,
in comparison to the O-IES algorithm, the C-GIES-IN
algorithm leads to lower data mismatch and RMSEs of the
estimated permeability values, but results in slightly higher
errors in the estimated porosity values.

Moreover, Fig. 8 reports the profiles of some production
data, including WBHP in P2, WOPR in P11, and WWCT
in P12. As can be seen there, in general, the forecast
production data of the C-GIES-IN algorithm (right column)
tend to match the observed data better than the O-IES
algorithm (left column) does.

For an inspection on the reservoir models, Figs. 9 and
10 show the reference and mean PERMZ and PORO maps,
respectively, on Layer 2. In comparison to the mean PERMZ
map of the initial ensemble, more substantial differences
can be found in the mean PERMZ map of the final
ensemble, obtained by either the O-IES or the C-GIES-
IN algorithm. In contrast, the differences among the mean
PORO maps of the initial and final ensembles appear less
noticeable. The possible reason behind this observation is
that in this particular case study, the changes of permeability
values are more sensitive to production data than the
changes of porosity values, as also noticed in the previous
work [26]. On the other hand, by comparing the final mean
PERMZ and PORO maps to those of the reference model,
one can see that the resemblances of the final estimations
to the reference maps may not be satisfactory. One can
improve the estimation quality by introducing additional
sources of information, e.g., 4D seismic data, into history
matching (see, for example, [27, 28]), which, however, is a
topic beyond the focus of the current work.

4 Discussion and conclusion

This work presents an ensemble-based workflow to handle
data assimilation with soft constraints (DASC). The main
idea here is to treat both equality- and inequality-constraint

systems as some perfect observation operators, and then
augment these constraint and the original observation
systems. Under this setting, DASC aims to simultaneously
assimilate multiple sources of information into model
variables. From the optimization-theoretic perspective,
DASC can be recast as a generalized minimum-average-
cost (GMAC) problem, in which the cost function contains
a data mismatch term that consists of three discrepancy
sub-terms, induced by the original observation system,
the equality-constraint system, and the inequality-constraint
system, respectively. The generic GMAC problem can be
approximately solved by the generalized iterative ensemble
smoother (GIES), and in the context of constrained data
assimilation, it leads to a constrained GIES (C-GIES)
algorithm, where we choose the square of a weighted
�2 norm in the regularization term of the cost function.
Although not investigated in the current work, in principle
one can develop infinitely many C-GIES algorithms by
adopting a different regularization term, following the
example of the class of �

q
p-GIES algorithms in [23]; or in a

similar way, by changing the distance metrics Dd , Deq and
Din or the transform operators Td , Teq and Tin in the data
mismatch term (cf. Eq. 28).

The presence of constraints leads to two potential
issues in practice. One is regarding the possible high
dimensionality induced by the constraints, and the other
is about localization for the constraint systems. To tackle
the first issue, we propose to choose the distance metrics
Deq and Din in such a way that the resulting Hessians are
diagonal matrices. To deal with the second issue, we apply
correlation-based adaptive localization to the terms related
to the projected gradients, which leads to some tapering
matrices in the dimension of model size by ensemble size,
and is useful for handling a large amount of “effective” data,
from either the original observation system, or the constraint
systems, or both.

We then apply the proposed C-GIES algorithm to one 2D
and one 3D case studies. The numerical results indicate that
properly incorporating the constraints does help improve
the performance of data assimilation. In particular, the
experiment settings of the 3D example are close to those of a
real field case study, and we have observed that the proposed
C-GIES algorithm is able to efficiently handle both the
issues of high dimensionality induced by the constraint
systems, and localization for the constraint systems, while
achieving reasonably good performance. This implies that
the proposed C-GIES algorithm has the potential to be used
in real field case studies.

Finally, we bring up two remaining open problems in this
line of research. One problem is how to optimally allocate
relative weights to the discrepancy sub-terms with respect to
the original observation system and the constraint systems,
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respectively; and the other is that, at a higher level, how to
choose an optimal cost function to deduce a suitable GIES
or C-GIES algorithm for a given data assimilation problem.

Acknowledgements The authors would like to thank two anonymous
reviewers for their valuable and constructive comments and sugges-
tions. XL acknowledges financial support from the Research Council
of Norway (RCN) through the Petromaks-2 project DIGIRES (RCN
no. 280473) and the industrial partners AkerBP, Wintershall DEA,
Vår Energi, Petrobras, Equinor, Lundin and Neptune Energy; WC
acknowledges financial support from the National IOR centre of
Norway (RCN no. 230303), which is funded by the RCN and indus-
try partners ConocoPhillips, Aker BP, Vår Energi, Equinor, Neptune
Energy, Lundin, Halliburton, Schlumberger, and Wintershall Dea. We
would also like to thank Schlumberger for providing academic licenses
to ECLIPSE©

Funding Open Access funding provided by NORCE Norwegian
Research Centre AS.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Albers, D.J., Blancquart, P.A., Levine, M.E., Seylabi, E.E., Stuart,
A.: Ensemble kalman methods with constraints. Inverse Probl.
35(9), 095007 (2019)

2. Amor, N., Rasool, G., Bouaynaya, N.C.: Constrained state
estimation-a review. arXiv:1807.03463 (2018)

3. Brembeck, J.: Nonlinear constrained moving horizon estimation
applied to vehicle position estimation. Sensors 19(10), 2276
(2019)

4. Burgers, G., van Leeuwen, P.J., Evensen, G.: On theanalysis
scheme in the ensemble Kalman filter. Mon. Wea. Rev. 126,
1719–1724 (1998)

5. Canchumuni, S.W., Emerick, A.A., Pacheco, M.A.C.: History
matching geological facies models based on ensemble smoother
and deep generative models. J. Pet. Sci. Eng. 177, 941–958 (2019)

6. Chada, N.K., Schillings, C., Weissmann, S.: On the incorporation
of box-constraints for ensemble Kalman inversion. Found. Data
Sci. 1(4), 433 (2019)

7. Chen, Y., Oliver, D.S.: Cross-covariances and localization for
enKF in multiphase flow data assimilation. Comput. Geosci. 14,
579–601 (2010)

8. Chen, Y., Oliver, D.: Levenberg-Marquardt forms of the iterative
ensemble smoother for efficient history matching and uncertainty
quantification. Comput. Geosci. 17, 689–703 (2013)

9. De Geeter, J., Van Brussel, H., De Schutter, J., Decréton, M.:
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