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ABSTRACT
Capillary waves can be used to measure the fundamental fluid properties such as surface tension as well as, potentially, the viscosity of New-
tonian fluids. This requires the measurement of various wave parameters, mainly wavelength, amplitude, and decay coefficient. However, the
different scales of magnitudes make it a challenging task. Optical methods are well suited to analyze such problems due to their non-intrusive
nature and high dynamic measurement resolution in both space and time. These methods are further categorized as point methods for a
single probe measurement and space–time methods for transient measurement of the complete surface. Dynamic space–time methods are
preferred despite the associated complex post-processing since they enable reconstruction of the wave surface. Some existing methods are
discussed, and an improved method is then proposed to actually solve the associated inverse optics problem. In the method, an axisymmetric
wave surface is re-constructed by analyzing the refracted laser sheet. The assumptions, simplifications, and constraints are taken to be com-
patible with experimental aspects for future validation. It is derived using the fundamental concepts in physics and the only major assumption
of the axisymmetric nature of wave surface. The method exploits the underlying symmetry in the topography, making it more versatile, and
suited for linear and non-linear capillary waves and waves with planar wavefront. The impact of parameters on the final result is determined
through numerical simulations. Very low error (average and maximum) values are observed between reference and reconstructed topography
for damped and undamped wave surfaces with a wide range of curvatures. Optimum values of critical parameters and associated reasoning
are presented.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0107154

I. INTRODUCTION

A wave is defined as a disturbance traveling through a medium.
For fluid media, waves can propagate both in single- and multiphase
flows or at distinct interfaces. Waves that occur on the liquid–air
interface are, thus, known as surface waves. Based on the dominant
force, liquid surface waves are broadly categorized as

● gravity wave,
● capillary-gravity wave, and
● capillary wave.

Since such waves are mostly nonlinear and dispersive, there is
also an interplay, reorganization, and energy transfer between the
various wavelengths, e.g., for wind generated ocean waves (Munk1).

In Fig. 1, the vertical axis represents the relative amplitudes of
ocean wind generated waves. In the highest frequency range of capil-
lary waves associated with wavelengths in the (sub) millimeter range,
there exist equations for the estimation of surface tension and vis-
cosity of a Newtonian fluid (Behroozi2). These equations relate the
fluid properties to wavelength and amplitude attenuation. They are
derived from Navier–Stokes equations by Lighthill3 and from the
law of conservation of energy by Behroozi and Podolefsky.4 Thus,
the measurement of wavelength and amplitude becomes highly
important for the study of capillary waves and their applications.

A classification of wave types along with various methods of
generation and detection of waves is given by Slavchov et al.5 The
methods for measurement of waves are broadly classified as “point”
methods or as “space–time” methods. Various excitation methods
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FIG. 1. Ocean wave classification
according to wave amplitude and wave
period. [Reproduced with minor changes
in the axis labels from W. Munk, “Origin
and generation of waves,” in Proceed-
ings of 1st International Conference on
Coastal Engineering (1950), pp. 1–4.
Copyright 1950 Author(s), licensed
under a Creative Commons Attribution
(CC BY) license.]

can be used to generate moving and standing waves. Then, the mea-
surement of wavelengths and amplitudes are measured either locally
(“point/spot” based) or as a full reconstruction (“space–time”) of
the whole wave surface in a given domain. The space–time meth-
ods provide more data about the wave surface but also require more
post-processing. Optical measurement techniques are well suited
for space–time methods in view of the relatively large amount of
data required. Other advantages of optical techniques are their non-
intrusive nature, their high resolution, and that they can be adapted
both via wave and geometric optics. However, optical techniques
are often associated with highly sensitive and sometimes expensive
experimental setups. Utmost care, prior training, and experience
are needed to use and operate systems that involve high powered
lasers.

Some of the commonly used optical point measurement meth-
ods involve reflection, refraction, diffraction, and interference. A
laser beam is often used as a monochromatic and coherent source
of light. Neighboring consecutive peaks of the wave surface act as
“diffraction grating” and the resulting Fraunhofer diffraction from
the reflected light is used to obtain the wavelength of the wave sur-
face. This is reported by Barik et al.,6,7 Zhu et al.,8 Nikolić and Nešić,9
and Chowdhuri et al.10 This method cannot be used to measure
wave amplitude since the “diffraction grating” density is given by
the wavelength and not much influenced by the amplitude. Saylor11

used the principle of total internal reflection, whereas Palm et al.12

and Saylor and Handler13 used the shift in the single refracted beam
of laser to measure the surface gradient. Behroozi2,14,15 used interfer-
ence of a reference beam and another beam reflecting from the wave
surface in a single mode optic fiber to capture the amplitude. A little
more flexibility was added with a moving probe. Wei et al.16 used a
method based on the lensing effect caused by refraction to obtain the
wavelength of surface waves.

Space–time methods with “global imaging” and characteriza-
tion of surface waves are not widely used. Zhang17 used a refracted
light beam to measure the surface gradient along a line. The sur-
face gradient can then be integrated to obtain a surface topography.
The issue of ambiguity in inverse mapping is avoided by using color
coded light beams. Another approach based on comparing an image
of a randomly generated pattern (for a disturbed interface) with a
reference pattern (for an undisturbed fluid interface) is suggested by
Moisy et al.18 A DIC (digital image correlation) algorithm was used
to extract the displacement field at every point in the image, quite

similar to PIV (particle image velocimetry). Numerical integration
of inverse gradient operator was performed to reconstruct the whole
2D surface topology. High curvature values cause the crossing of
refracted rays from the pattern, and this cannot be handled by the
DIC algorithms. This poses a limitation on the surface curvature the
method can reconstruct. Liu et al.19 used complex optical coherence
tomography (OCT) to reconstruct the surface with a small field of
view of 10 × 10 mm2 and a penetration depth of 3.6 mm. Shao et al.20

used a light intensity plot from reflected images to obtain a crude
mapping of wave amplitude of the whole surface. Slavchov et al.5
developed a refraction-based method to reconstruct the complete
surface. This method requires a very regular plane surface wave-
front and relies on prior knowledge of an analytical solution as a
cost function for data fitting.

A new method is proposed in this work to reconstruct the sur-
face of capillary waves along a representative selected straight line
where a “laser sheet” hits the surface. The method was developed to
be included easily in lab sessions of academic institutions and it is
based on very limited and generic assumptions whose validity can
be ensured during the experimental validation. This method can be
classified as partially global (space–time) and is based on inverse ray-
tracing of the refracted “laser sheet,” which is refracted through the
interface and projected down onto a screen. Mathematical formu-
lations and solutions of forward and inverse problems in geometric
optics are explained in depth in this paper.

II. METHODOLOGY
Refraction can be defined as the angular deviation of light rays

when passing from one medium to another. The French mathemati-
cian Pierre de Fermat (1607–1665) put forth his famous principle
based on “least time” to explain this phenomenon.

For a simpler case as shown in Fig. 2, Snell’s law relates the angle
of incidence and the angle of refraction as follows:

sin(Θi)
sin(Θr)

= V1

V2
= μ1,2. (1)

Here, Θi is the angle of incidence, Θr is the angle of refraction, V1
is the velocity of light in medium 1, V2 is the velocity of light in
medium 2, and μ1,2 is the refractive index for the pair of media 1–2.
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FIG. 2. Refraction of light in 2D. (a) Representation of Snell’s law (front view). (b)
Coplanarity of incident ray, refracted ray, and surface normal (side view).

A detailed description of Fig. 2 and derivation of Eq. (1) is
found in Hecht.21 The light rays move toward or away from the nor-
mal based on the refractive index of the media. If the surface is wavy,
the surface normal and, hence, the direction of refracted rays also
change over space and time. The angular deviation depends on sev-
eral factors such as the refractive index of the material, the angle
of incidence, and the direction of the surface normal. Where the
ray may hit a bottom or a screen also depend on the fluid depth.
This well-known phenomenon and simple observation can be used
to exploit the interfacial wave. With sufficient and suitable distance
from the surface to a projection screen, even tiny light ray deviations
can be detected and measured. The surface disturbances caused by
capillary surface waves can then be clearly monitored and measured.
As a historical analog could be mentioned the first optical aided
(“light ray and mirror”) electric galvanometers.

A. Forward problem: Formulation
Consider the surface of a liquid filled cylindrical vessel. Capil-

lary waves can then be generated by external mechanical excitation,
e.g., a thin needle oscillating up and down. Placed at the geometric
center of the vessel, a radial symmetric surface wave can be pro-
duced. The use of a “laser sheet” enables studying light refraction
through the liquid interface. A “laser sheet” is produced by letting
a laser beam be expanded sideways by passing through a cylindri-
cal lens. This method is also used in particle image velocimetry
(PIV) for the study of fluid flow velocity profiles. Now, a continu-
ous laser line is pointing along the surface rather than just through
a single hitting point. The laser sheet assembly can be moved and
oriented in any direction. The light sheet undergoes refraction at
two locations: at the air–liquid interface at the top and then again
at the liquid–glass–air interface at the bottom. The modified laser
sheet exiting the glass bottom is then projected onto a screen placed
below the vessel. To simplify the mathematical analysis, the cylindri-
cal vessel is assumed to be just a passive surface confining the fluid.
Thus, the extra optical refraction caused by glass walls and bottom
is neglected. However, for analysis and interpretation of real exper-
iments, the glass bottom has to be included. The distance from the
bottom of the vessel to the screen determines the optical spread of

the laser sheet. A conceptual setup is shown in Fig. 3. The origin of
the Cartesian coordinate frame is at point o, and vectors represent-
ing the location are shown with dots and vectors representing the
direction are shown with arrows.

The generated capillary waves are not stationary; of course, they
propagate radially out from the excitation center. In the radial sym-
metric case, the wave surface height z is a function of radial position
(r) and time (t). In general, using the Cartesian coordinates x and
y, the wave height z can be represented using a scalar function as
follows:

z = z(x, y, t).

Here, z is the height of the capillary wave.
For purpose of analysis, consider waves “frozen” in time. This

can be ensured experimentally by capturing the images at high
speed and short shutter times. With this assumption, the “forward
problem” of calculating a ray tracing from the light source to the
screen has a unique solution for a given surface at a given time. The
“frozen” surface can now be represented as

z = z(x, y).

The z : R2 → R is converted into f : R2 → R3 as follows:

f⃗ (x, y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z(x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We represent the surface in such a way that it simplifies the
calculation of the surface normal. The position of the laser source
and inclination of the outgoing laser sheet is assumed to be known.
For computational simplicity, the laser sheet is assumed parallel to
the y axis. The “forward problem,” i.e., the propagation of light from
the source to the bottom and the screen is described as follows:

Known parameters:

FIG. 3. Schematic illustration of the experimental setup for calculation of the
forward problem.
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● surface topography (assumed as a model surface) ( f⃗ (x, y)),
● laser location (s⃗o = [xso, yso, zso]T),
● laser sheet inclination (Ψ),
● refractive index of the fluid (μ1,2),
● the undisturbed (no wave) height of the liquid (h), and
● distance between screen and bottom of the vessel (zsc).

Unknown parameters:

● screen coordinates illuminated by the doubly refracted ray
(s⃗c = [xsc, ysc, zsc]T).

Forward problems of this kind, as mentioned above, are
famously known as ray-tracing in the geometric optics and com-
puter graphics community.

B. Forward problem: Solution
The assumptions used for solving the forward problem are as

follows:

1. The liquid is transparent and Newtonian.
2. The complete system is isothermal, thus the liquid has a

constant refractive index.
3. Light rays travel in a straight line while traveling in the same

medium.
4. A laser sheet is used as a light source.
5. Snell’s law governs the refraction of rays at the interface.
6. Only light refraction is considered. We may neglect the effect

of light reflection since the reflected rays from low amplitude
waves will not propagate as secondary rays through the liquid.
Thus, they will not hit the bottom screen.

This problem is solved numerically with a MATLAB script. The
linear laser sheet is discretized as a dense set of individual rays in the
y-direction. As the individual rays hit the surface, they are traced
further through various media and interfaces until they reach the
screen at the bottom.

To calculate the coordinates of the ray-liquid intersection point,
an emitted ray is starting from the laser source (s⃗o) in the given
direction (Ψ). The ray then propagates along its directional unit
vector (êΨ). By definition,

êin,p ≡ êΨ,

and, thus,

p⃗ = (s⃗o + η êin,p). (3)

Here, η is the scale factor, i.e., the ray length from the source to the
interface, and êin,p is the unit vector in the direction of an incident
ray.

The scale factor (η) shown in Fig. 4 corresponds to the
intersection of a ray with the wave surface, which is obtained by
solving,

((p⃗ − f⃗ (x, y)) ⋅ êz) = 0. (4)

Here, p⃗ is the intersection point of an incident ray with the wave
surface and êz is the unit vector in the z-direction (pointing upward).

FIG. 4. Valid solutions of surface intersection point (p⃗) based on wave curvature,
inclination of laser source (Ψ), and initial guess values for solving Eq. (4).

In principle and mathematically, several ray lengths (η) are
possible and “valid” in case of large angle of incidence, or at high
wave curvature. This would be due to multiple intersections as
shown in Fig. 4. However, in real physics, only the “first hit,” i.e., the
shortest ray length, is of importance. To avoid ambiguity, the initial
guess value for the solver is chosen judiciously.

The surface normal vector at the intersection point is evaluated
using the following equation:

n⃗p = (
∂ f⃗
∂x
)∣

p⃗
× (∂ f⃗

∂y
)∣

p⃗
,

n⃗p = −(
∂z
∂x
)î − (∂z

∂y
) ĵ + k̂,

(5)

and then normalized as

n̂p =
n⃗p

∣n⃗p∣
. (6)

Here, n⃗p is the surface normal evaluated at the intersection point
(p⃗); n̂p is the unit vector corresponding to n⃗p; î, ĵ, and k̂ are the unit
vectors along x, y, and z axes, respectively.

Afterward, the angle of incidence is calculated followed by the
angle of refraction using Snell’s law as follows:

θin,p = arccos(n̂p ⋅ (−êin,p)), (7)

θre,p = arcsin( sin(θin,p)
μ1,2

). (8)

Here, θin,p is the angle of incidence at point of intersection (p⃗) and
θre,p is the angle of refraction at point of intersection (p⃗).

As shown in Fig. 3, the unit incident vector (êin,p) points down-
ward. Thus, a flipped vector (−êin,p) is used in Eq. (7) to obtain the
desired angle (θin,p) value with respect the to the direction of sur-
face normal (n̂p). Note that the laser sheet inclination angle (Ψ) is
fixed but the angles are calculated in Eqs. (7) and (8) change depend-
ing on the curvature at the point of intersection (p⃗). By referring to
Fig. 2, the direction of the refracted ray is calculated by using the
coplanarity of the incident ray, surface normal, and the refracted ray,

êre,p = α1êin,p + β1n̂p. (9)
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Here, êre,p is the unit vector in the direction of the refracted ray corre-
sponding to incident ray unit vector êin,p at the point of intersection
(p⃗),

êin,p ⋅ êre,p = cos(θin,p − θre,p),
êin,p ⋅ (α1êin,p + β1n̂p) = cos(θin,p − θre,p),
α1 + β1 cos(π − θin,p) = cos(θin,p − θre,p).

(10)

êre,p ⋅ n̂p = cos(π − θre,p),
(α1êin,p + β1n̂p) ⋅ n̂p = cos(π − θre,p),
α1 cos(π − θin,p) + β1 = − cos θre,p.

(11)

A unit vector in the direction of the refracted ray is used here
as an extra constraint to obtain unique values of [α1, β1]T . After
putting Eqs. (10) and (11) in a matrix form, we get

⎡⎢⎢⎢⎢⎢⎣

α1

β1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 − cos(θin,p)
− cos(θin,p) 1

⎤⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎣

cos(θin,p − θre,p)
− cos(θre,p)

⎤⎥⎥⎥⎥⎥⎦
. (12)

Equation (12) will not yield a unique solution in the case where

θin,p = θre,p = 0.

This issue has to be included in the MATLAB script. The
refracted ray is then traced inside the fluid until it hits the bottom of
the vessel. A similar procedure is repeated at the fluid–air interface
to obtain the intersection point (q⃗), the angle of incidence (θin,q),
the angle of refraction (θre,q), and finally the direction of refracted
ray (êre,q). Bottom being a flat surface,

n̂q = êz.

Here, n̂q is the unit surface normal evaluated at the point of
intersection of an incident ray with the vessel bottom.

Subsequently, the refracted ray is traced until it hits the screen
(s⃗c). Ray-tracing simulations for typical wave surface topographies
are presented in Sec. III.

C. Inverse problem: Formulation
Solving the forward problem is important in several ways.

First, it provides insight into the mathematical operations involved
and clarifies the known and unknown parameters for the inverse
problem. We then also obtain data for various input parameter com-
binations, which can be compared with the solution of the inverse
problem (referred to as the true wave shape in Sec. III). Generally,
inverse problems are investigated in two steps:

● existence of a unique solution and
● method of finding that unique solution.

Finding and reconstructing the wave surface topography
requires knowledge of coordinates of surface point (x- and y-
coordinates, i.e., two unknowns) and also associated surface normal
(three unknowns). The number of unknowns in defining surface
points can be reduced by one by assuming that the x-coordinate
(xintercept) of the intersection point of rays and surface is known. As
assumed previously, the use of a laser sheet as a light source parallel

to the y axis reduces this coordinate to just one number. Since this
parameter can be easily measured and controlled, this simplification
is compatible with experimental aspects. Similarly, the number of
unknowns in defining a surface normal can be further reduced by
one by assuming a unit length. Finally we have,

● total unknown parameters: 3 (wave surface y-coordinate,
i.e., one unknown, surface normal direction angles, i.e., two
unknowns),

● total known parameters: 2 (screen x- and y-coordinates),

(unknown parameters) > (known parameters). (13)

Thus, it can be deduced from Eq. (13) that there exist multiple
valid solutions. To define a well-posed problem and obtain a unique
solution from the set of all valid solutions, the axisymmetric nature
of the wave surface is used as a constraint.

In Fig. 5, surface normals can be seen tilting toward/away from
the radius vector (vector pointing from the point of excitation, the
center, toward the point of intersection on the wave surface). Math-
ematically, this means that the surface normals at all points lie in the
plane spanned by the corresponding radius vector and the unit vec-
tor in the z-direction (coplanarity) as explained in Fig. 7. This fact
will be used as a constraint to find the best fit surface normal from a
set of possible solutions.

The schematic experimental setup for the inverse problem is
almost identical to Fig. 3. The point contact between the probe and
the fluid surface shown in the schematic setup ensures the axisym-
metric nature of the wave surface topography. This is also possible
to replicate in experiments, thus making it a valid assumption.

Known parameters:

● screen coordinates illuminated by the doubly-refracted ray
(s⃗c = [xsc, ysc, zsc]T),

● laser location (s⃗o = [xso, yso, zso]T)
or
laser sheet inclination (Ψ),

● height of fluid in quiescent state (h),

FIG. 5. Surface normals for axisymmetric waves tilt toward or away from the exciter
center (top view projection).
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● coordinates of point of excitation (c⃗ = [0, 0, h]T),
● distance between the center and the illuminated line on wave

surface topography along x axis (xintercept),
● refractive index of the Newtonian fluid (μ1,2), and
● distance between the plane of the screen and the bottom of

the vessel (zsc).

Unknown parameters:

● wave surface topography cross-section (z(xintercept , y)).

Interestingly, the knowledge of either the laser location (s⃗o) or
the laser inclination (Ψ) is required for solving the inverse problem.
The reason for this is explained after Eq. (18). We choose the latter as
this makes the placement of the laser source easier and more flexible
in an experimental setup.

D. Inverse problem: Solution
In addition to assumptions used in the solution of the for-

ward problem, the following assumptions are used while solving the
inverse problem:

1. Wave surface topography is axisymmetric.
2. Laser sheet hits the wave surface parallel to y axis and x-

coordinate of the location where rays that hit the wave surface
(xintercept) have one value.

3. The origin of the Cartesian coordinate frame is at point o in
Fig. 3.

For the inverse problem, a ray is imagined to travel from a point
on the screen toward the laser source as shown in Fig. 6. This changes
the perceived directions of incident and refracted rays accordingly.
Initially, the wave surface is approximated as flat. Thus, the deviation

FIG. 6. 2D schematic of inverse problem solution. Point c⃗ is the excitation cen-
ter. The reconstruction is, as here for a start, assuming a flat surface. However,
the reconstructed surface normals are found to be inclined, so these are used
for constructing the whole wavy surface by integration. See the text for more
explanation.

in the ray path can be assumed to be caused solely by the chang-
ing the direction of surface normals. This problem is also solved
numerically with a MATLAB script. The laser sheet line segment
impinging on the flat fluid surface is discretized, and this results
in nodes (p⃗i) along the y-direction (Figs. 3 and 5). The discretized
element size (dy)must be chosen accordingly considering the trade-
off between accuracy and computation time. The choice of element
size is observed to have a significant effect on the computation time
(Sec. III D). The whole inverse problem then reduces to finding the
unique direction of the unit surface normal at a given discretized
node for which a ray starting at a given point on screen ends up
following a path toward the source of the laser sheet after the two
interface refractions. As explained in Sec. II C, several valid solutions
to this problem are possible, depending on the laser sheet inclination
and the wave steepness. This means that for each point on screen
(s⃗c), a valid direction of unit surface normal (n̂i) is obtained cor-
responding to each discretized node (p⃗i) on the fluid surface. From
all identified solutions, the unique solution is chosen by applying the
constraint of axisymmetry. After this, the cross-section of the wave
surface is reconstructed.

Note that the inverse modeling starts with the assumption of an
initial flat fluid surface in Fig. 6. Consider coordinates of a point on
screen (s⃗c = [xsc, ysc, zsc]T) and ith discretized node on the assumed
flat surface (p⃗i = [xintercept , yi, h]T). It can be clearly seen in Fig. 6
that the point of intersection of a ray (travelling “backward” toward
p⃗i from s⃗c) with bottom of vessel (q⃗i = [xq, yq, 0]T) is calculated
using Fermat’s principle of least time mentioned in Sec. II. The total
time taken by a ray to travel from s⃗c to p⃗i is given by

τ = ∣(q⃗i − s⃗c)∣
V1

+ ∣(p⃗i − q⃗i)∣
V2

. (14)

Here, τ is the total time taken by a ray to travel from s⃗c to p⃗i, V1 is
the velocity of light in air (constant), and V2 is the velocity of light
in fluid (constant).

After substituting Eq. (1) in the above equation and rearrang-
ing, we get

τV2 =
∣(q⃗i − s⃗c)∣

μ1,2
+ ∣(p⃗i − q⃗i)∣. (15)

Since the z-coordinate of q⃗i is known, minimum travel time is
ensured by solving for the remaining two unknowns i.e., x- and y-
coordinates (xq and yq) as follows:

arg min
q⃗i

( ∣(q⃗i − s⃗c)∣
μ1,2

+ ∣(p⃗i − q⃗i)∣). (16)

Here, q⃗i is the intersection of the ray with vessel bottom.
Now, the surface normal (n̂i) at p⃗i is calculated so that the ray

coming from the screen (s⃗c) follows the path toward the source of
the laser sheet (s⃗oi). Consider a dummy vector (l⃗ i) representing the
refracted ray (travelling from p⃗i toward s⃗oi) that points in the same
direction. Since the rays from the laser source travel parallel to the
x-axis, l⃗ i is defined as
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FIG. 7. Finding the best fit surface normal corresponding to a given point on the
interface using the coplanarity constraint.

l⃗ i = σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin(Ψ)
0

cos(Ψ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Here, σ is the scalar factor (=1 for simplicity).
If the position of the laser source is known, then the same vector

is represented as

l⃗ i = s⃗oi − p⃗i. (18)

It can be verified that Eqs. (17) and (18) are just scaled versions
of each other and, thus, are equivalent. Since l⃗ i is a proxy for the
refracted ray pointing toward the laser source, there is no need to
know the location of the laser source (s⃗o) for further analysis.

Using the coplanarity mentioned in Fig. 2, the surface normal
(n̂i) lies in the span of incident ray and (dummy) refracted ray,

n̂i = α2
̂(q⃗i − p⃗i) + β2

̂(l⃗ i − p⃗i).

Here, n̂i is the surface normal corresponding to p⃗i.

Surface normal that satisfies Snell’s law is obtained by solving
for α2 and β2 as follows:

θin,i = arccos−n̂i ⋅ ̂(q⃗i − p⃗i), (19)

θre,i = arccos(n̂i ⋅ l̂ i), (20)

arg min
α2 , β2

∣μ1,2 sin θin,i − sin θre,i∣. (21)

The flipped vector (−n̂i) is used in Eq. (19) to obtain the desired
angle (θin,i) value with respect the to the direction of the surface
normal. Since all scalar multiples of n̂i are a valid solution, the unit
surface normal is used in Eqs. (19) and (20), which ensures unique
values of α2 and β2.

A ray of light starting from a point on the screen (s⃗c) and
passing through points q⃗i and p⃗i will follow a path toward the cor-
responding laser source location (s⃗oi) only for a unique surface
normal direction (n̂i) as calculated in Eq. (21). We obtain these valid
unit surface normals for all points on the surface of wave (p⃗i) cor-
responding to the single point on the screen (s⃗c). Out of these, the
desired points (p⃗i and q⃗i) and associated surface normal (n̂i) is cho-
sen by invoking the axisymmetric assumption about the nature of
the waves. The coplanarity of the unit surface normal, radius vec-
tor, and the unit vector in the z-direction (located at the center) is
used as a filter (Fig. 5). For a valid solution, the vector of the projec-
tion of n̂i on the xy plane must be collinear with the corresponding
radius vector (p⃗i − c⃗) (Fig. 7). The following shows one of the ways
to quantify the error in the alignment:

arg min
p⃗i , n̂i

∣((̂p⃗i − c⃗) × êz) ⋅ n̂i∣. (22)

Here, c⃗ is the vector for the coordinates of center, i.e., point of
excitation.

FIG. 8. Numerical simulation of the forward problem of undamped surface wave (the wave amplitude here and in later plots is exaggerated for better visualization). (a)
Oblique front view. (b) Front view toward the laser sheet.
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TABLE I. List of parameters with base values.

Parameter Value Unit

Ψ 0 deg
λ 5 mm
a 0.5 mm
xintercept −0.5 mm
dy 0.25 mm
k 0 ⋅ ⋅ ⋅
h 5 mm
μ1,2 1.33 ⋅ ⋅ ⋅
zsc 150 mm

Thus, based on the coplanarity requirement, Eq. (22) is used to
find the best fit. This algorithm is repeated for all subsequent points
on the screen to reconstruct the corresponding points on the surface
and associated surface normals. Now, the resulting surface normals
suggest a non-flat surface that contradicts previous approximation
as expected.

As suggested, the output of Eq. (22) is unit surface normals,
whereas surface normals are required for the reconstruction of the
surface [Eqs. (23)–(25)]. It can be easily observed in Eq. (5) that the
length of the surface normals can be recovered by taking a reciprocal
of the k̂ coefficient of the unit surface normal as follows:

∣n⃗i∣ =
1

(n̂i ⋅ êz)
. (23)

FIG. 9. Effect of Ψ on the reconstructed cross-section of wave topography. (a) Ψ = 0○. (b) Ψ = 10○. (c) Ψ = 20○.
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This length value is then used to scale the unit surface nor-
mals, which yields the actual surface normal values. The surface
gradient in the y-direction is obtained by taking the ĵ coefficient
of Eq. (5). Thus, we get the actual gradient in the y-direction
as follows:

∂z
∂y
= −(n̂i ∣n⃗i∣) ⋅ êy. (24)

Here, êy is the unit vector in the y-direction.

To recreate the cross-section of this non-flat surface topog-
raphy, numerical integration (Simpson’s 1/3rd method) and cubic
interpolation (for intermediate values) are carried out in the
y-direction as follows:

z(x = xintercept , y) = ∫
y=y2

y=y1

∂z
∂y

dy. (25)

Here, y1, y2 are the y-axis limits of the illuminated line segment
on the wave surface and dy is the distance between successive
discretized nodes in the y axis.

FIG. 10. Effect of wave parameters of undamped wave on the reconstructed cross-section of wave topography. (a) λ = 0.5 mm, a = 0.5 mm, dy = 0.025 mm, k = 0. (b)
λ = 15 mm, a = 0.05 mm, dy = 0.25 mm, k = 0.

FIG. 11. Effect of wave parameters of damped wave on the reconstructed cross-section of wave topography. (a) λ = 0.5 mm, a = 0.5 mm, dy = 0.025 mm, k = −0.5. (b)
λ = 15 mm, a = 0.05 mm, dy = 0.25 mm, k = −0.5.
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FIG. 12. Effect of xintercept on the reconstructed cross-section of wave topography. (a) xintercept = 0 mm. (b) xintercept = −0.5 mm. (c) xintercept = −5 mm.

This is the numerical integration of an inverse gradient oper-
ator along only one direction (y-axis). Even though running the
algorithm for a sequence of points on the screen yields correspond-
ing points on the surface of the fluid, they are not necessarily
sequential. Hence, sorting of data according to the y-coordinate is
mandatory because sequential information about the surface nor-
mals is required for the numerical integration. The resulting surface
topography will be shifted in the z-direction due to lack of initial
condition (constant of integration). Although these data are suffi-
cient for the purpose of our studies, the initial condition might be
obtained by integrating the wave surface topography to match the
initial volume of the vessel. For simplicity of comparison, the initial
value from the solution of the forward problem is used in Sec. III.

The complete reconstruction of the wave surface height profile
is carried out by measuring the distance (radius) of point p⃗i from the
center of the waves (c⃗) and then assigning the corresponding z value
to all points lying on the same radius, creating an axisymmetric wave
surface.

III. RESULTS AND DISCUSSION

The methods for solving the forward and inverse problems
are validated using numerical simulations. Even though the forward
problem is not the focus of this paper, the results of the simulation
for two different waveforms (damped and undamped) are presented
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FIG. 13. Effect of dy on the reconstructed cross-section of wave topography. (a) dy = 0.1 mm. (b) dy = 0.25 mm. (c) dy = 1.0 mm.

below. Since the amplitude of capillary waves in real situations falls
off with increasing radius, one example each of a wave with damped
and undamped wave surface is considered. The lensing effect due to
the surface curvature is observed in Fig. 8.

TABLE II. Error values for the reconstructed cross-section of wave topography with
different values of Ψ.

Error

Ψ (Deg) Average (%) Maximum (%)

0 0.07 0.22
10 3.68 10.93
20 9.22 23.48

Various parameters that might affect the error values in the
reconstruction of the cross-section of capillary wave surface topog-
raphy in the inverse problem solution are mentioned in Table I. The
wave topography considered for this analysis is

z(x, y) = h + a cos(2πr
λ
)ekr. (26)

Here, h is the fluid depth, a is the amplitude of the surface wave,
r =
√

x2 + y2, λ is the wavelength of the surface wave, and k is the
attenuation constant (k ≤ 0).

The base values of parameters for the simulation are shown in
Table I. To gauge the effect of each parameter at a time, others are
kept at base value during the analysis (except for the case of the effect
of wave parameters). These effects of varying one parameter at a time
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FIG. 14. Coordinates of the inter-
section of laser sheet with the
wave surface for different inclina-
tion angles (Ψ). (a) Ψ = 0○. (b)
Ψ = 20○.

are analyzed in the following sections. The reference analytical sur-
face obtained from Eq. (26) is referred to as “true shape” in Figs. 9–12
and 13.

A. Effect of laser sheet inclination (Ψ)
It is clear from Table II and Fig. 9 that the inversion reconstruc-

tion error increases with increasing laser sheet inclination Ψ . The
reason for this is that, at a higher inclination angle, even neighbor-
ing laser sheet rays do not necessarily hit the wave surface at the same
x-coordinate value due to the curvature of the surface (Fig. 14). This
causes a deviation from the assumption made for solving the inverse
problem, i.e., that all the laser sheet rays hit the surface at a single x-
coordinate (xintercept) (Sec. II D). The errors induced by these effects
are referred to as “error values.”

B. Effect of wave parameters
The amplitude of surface capillary waves drops with increasing

distance (Fig. 3) from the excitation center. There are two reasons
for that: (1) specific energy loss by energy spread over a longer wave-
front circumference and (2) viscous damping. Thus, it is required to
verify the proposed method for both high and low values of the cur-
vature (a/λ), and for both damped and undamped waves [Eq. (26)].
The results shown in Table III, Figs. 10 and 11 confirm that the
proposed method works for all axisymmetric surfaces, damped and
undamped.

Different values of dy are used to resolve the simulated wave
of λ = 0.5 mm and a = 0.5 mm. It is clear from Table III that the
proposed method works quite well for waves with a wide range of
λ/a ratios (1–300).

C. Effect of x intercept

xintercept is the distance along the x-axis between the point of
excitation and the illuminated line where the laser sheet hits the wave
surface (Fig. 3). In view of symmetry, only xintercept values on one side
of the point of excitation are considered.

There is a substantial difference in the error values in cases
of xintercept = 0 mm and xintercept = −0.5 mm as seen in Fig. 12 and
Table IV. For xintercept = 0 mm and Ψ = 0○, all the surface normals

(even though pointing in different directions) lie in the same plane.
This results in the “amplification” (as mentioned in Sec. II A) in that
same plane (Fig. 15). This causes an overlap of rays, which results
in the loss of unique solution for the inverse problem. This behav-
ior is caused by all surface normals lying on the same plane and is
not expected for other values of Ψ. It can be seen in Fig. 16 that
xintercept values close to 0 mm capture the amplitude data of larger
surface areas. Thus, optimally, xintercept should be positioned close to
the wave exciter.

The reason for this choice is to capture a maximum amount
of wavefronts in order to reduce the reconstruction error. This is
particularly important since the amplitude attenuates quite rapidly
in actual fluids (Fig. 11).

TABLE III. Error values for the reconstructed cross-section of wave topography with
different values of wave parameters.

Error

Average Maximum
Wave type λ (mm) a (mm) (×10−2%) (×10−2%)

Undamped (k = 0) 0.5 0.5 10.85 21.17
Undamped (k = 0) 15 0.05 0.71 1.33
Damped (k = −0.5) 0.5 0.5 4.28 10.73
Damped (k = −0.5) 15 0.05 1.71 42.17

TABLE IV. Error values for the reconstructed cross section of wave topography with
different values of xintercept .

Error

xintercept (mm) Average (%) Maximum (%)

0.0 323.75 563.26
−0.5 0.07 0.22
−5.0 0.05 0.37
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FIG. 15. Numerical simulation of the forward problem for xintercept = 0 mm, i.e., crossing the exciter center, and Ψ = 0○, i.e., vertical laser sheet. (a) Oblique front view. (b)
Front view toward the laser sheet.

FIG. 16. The position of xintercept deter-
mines which wavefronts can be recon-
structed: While still inside the dark-
ened circle, wavefronts do not cross
the laser sheet. Thus, they will not be
projected onto the bottom screen until
they move further out to cross the laser
line. (a) xintercept = −5 mm. (b) xintercept =

−15 mm.

D. Effect of size of discretized element (dy)
Sensitivity studies of the results with respect to domain

discretization are essential in numerical simulations. Frequently,
we see a trade-off between computation time and error val-
ues (Table V). The errors reduce quite drastically from dy
= 1.0 mm to dy = 0.25 mm with a significant increase in the com-
putation time. On the contrary, we see no significant improvement

TABLE V. Error values for the reconstructed cross section of wave topography with
different values of dy.

Error

Average Maximum
dy (mm) Computation time (s) (%) (%)

0.1 466 0.06 0.12
0.25 89 0.07 0.22
1.0 5 16.17 92.10

in the error values from dy = 0.25 mm to dy = 0.1 mm, while also
introducing a substantial jump in computation time.

Even for coarse discretization, the inverse solution matches
quite well with the ground truth in the middle part (Fig. 13). The
error seems to be concentrated near peaks and valleys of the wave
where the curvature value is high.

E. Effect of other variables
Other variables include the height of fluid (h), the distance of

screen from the bottom (zsc), and the refractive index (μ1,2). These
variables are dictated by experimental feasibility and their role is
limited to causing the “amplification” of the surface disturbances
(Fig. 8). Moreover, they have no significant impact on the error val-
ues. These parameters are more important experimentally where the
effective resolution of the points on the screen is critical.

IV. CONCLUSION
The capillary waves are characterized by very small values of

amplitude, which makes it difficult to measure using intrusive meth-
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ods. A non-intrusive method based on geometric optics is proposed
to reconstruct the wave surface with very high accuracy. In this
method, a laser sheet illuminates a wave surface and refracts by
a varying degree based on the direction of the local surface nor-
mal (curvature). The forward problem is defined and solved to
trace the rays of light following Snell’s law. The data of refracted
laser sheet are then used as an input to the inverse problem to
obtain correct surface normals. This method exploits the axisym-
metric nature of the wave surface to filter out the best fit surface
normal from the available solutions for a given point on the inter-
face to reconstruct the cross-section of the wave surface. Both
forward and inverse problems are defined with reasonable assump-
tions, and solved numerically to obtain an excellent agreement in
reference analytical (true shape) and reconstructed wave surfaces.
This method can work with swapped positions of laser source and
screen, and prove to be useful in studying axisymmetric surfaces in
general.

Equations and assumptions used in the solution method are
clearly explained. A parametric study is performed to understand
the effects of various parameters on the error values in the recon-
struction. Laser sheet inclination (Ψ) and the distance between the
center and the illuminated line on wave surface topography along
the x-axis (xintercept) have a larger impact on the final result. Ψ = 0○

and xintercept → 0 mm are found to be the optimum values. The grid
sensitivity study yields the usual trade-off between computation time
and error values. Since the errors for coarse discretization are con-
centrated at the peaks and valleys of the wave surface cross-section,
the minimum grid discretization seems to be related to the min-
imum curvature value of the wave. Both damped and undamped
wave surface topographies with different curvature values are stud-
ied to obtain fairly accurate results. This makes the method viable
for experimental validation, which is being investigated in an ongo-
ing work. The method seemed to work equally well for waves with
larger curvatures with the optimum values of parameters.
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