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We study the interactions of a static quark-antiquark pair at nonzero temperature using realistic 2þ 1

flavor lattice QCD calculations. The study consists of two parts. The first investigates the properties of
Wilson line correlators in Coulomb gauge and compares to predictions of hard-thermal loop perturbation
theory. As a second step we extract the spectral functions underlying the correlators using four conceptually
different methods: spectral function fits, a hard-thermal-loop-inspired fit for the correlation function, Padé
rational approximation and the Bayesian reconstruction. We find that our high-statistics Euclidean lattice
data are amenable to different hypotheses for the shapes of the spectral function and we compare the
implications of each analysis method for the existence and properties of a well-defined ground state spectral
peak.
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I. INTRODUCTION

Heavy quarkonia, the bound states of a heavy quark and
antiquark are a unique laboratory of the strong inter-
actions. At the same time they constitute a central tool in
the investigation of the primordial state of matter created
in relativistic heavy-ion collisions: the quark-gluon
plasma. In turn elucidating the properties of these strongly
interacting bound states in extreme condition remains a
central focus of experimental and theoretical research (see
Refs. [1–4] for reviews).
Interest in heavy quarkonium in relativistic heavy-ion

collisions erupted with the seminal paper by Matsui and Satz
[5]. Their paper put forward two key ideas. On the one hand
it argues that the formation of the deconfined medium in
heavy-ion collisions will interfere with the binding of the
heavy quarks through color screening and thus prevent the
formation of a bound state. The second idea states that such
an absence of bound states in the medium will lead to a
suppression of quarkonium yields.

In heavy-ion collisions where only a few heavy quark
pairs are produced, the suppression Matsui and Satz
envisioned has been clearly established by experiment
for both charmonium at the RHIC and bottomonium at
the LHC. At increasing energies, where a wealth of heavy
quarks may be produced in the initial state, it has been
observed that quarkonium yields, in particular charmonium
at the LHC, can be replenished. This phenomenon is
attributed to recombination.
The question of whether or how color screening [and in

general the interactions with a (non)thermal medium]
affect the survival of heavy quarkonium states, remains an
open research question. Using lattice QCD simulations it
has so far been established that the free energy of a static
quark-antiquark pair is indeed screened at large separa-
tions (see e.g., Ref. [6] for a recent review). The most
recent lattice analysis of the static QQ̄ free energy shows
that the interactions are screened beyond distances larger
than 0.4=T [7].
Matsui and Satz took the idea of static color screening

and applied it to quarkonium with finite mass constituents.
In fact, their idea of melting from color screening relies on a
nonrelativistic potential picture of quarkonium binding. At
zero temperature such a potential picture has been highly
successful in describing the phenomenology of the ground
and excited states below the open heavy flavor threshold
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(see e.g., Ref. [8]). The lattice calculations of quarkonium
Bethe-Salpeter amplitudes at zero temperature are also
consistent with the potential model [9–13].
The past two decades have seen significant progress in our

understanding of heavy quarkonium systems based on the
concept of effective field theory. Such a systematic approxi-
mation of QCD allows us to clarify the concept of a potential
in the context of heavy (but not static) quarks. At zero
temperature there exist three distinct energy scales: M ≫
Mv ≫ Mv2 with M being the heavy quark mass and v the
relative velocity of the heavy quarks inside the bound state.
By focusing on physical processes involving energies
smaller than M, we may cast the description of the

quark-antiquark pair in terms of nonrelativistic Pauli spinors
(pair creation at the scale M is not explicitly treated but
remains present as a four-fermi interaction). This process of
integrating out the so-called hard scaleM leads to the theory
of nonrelativistic QCD (NRQCD) [14], which is valid at
scales up to Mv. We may further restrict our focus on e.g.,
the binding properties of the heavy quark-antiquark pair at
the ultrasoft scale Mv2, which leads (as long as the same
degrees of freedom as in NRQCD can be identified) to a
theory of color singlet S and octet O wave functions, called
potential NRQCD (pNRQCD) [15]. The Lagrangian of
pNRQCD has the form

LpNRQCD ¼
Z

d3rTr

�
S†
�
i∂0 −

�
D2

2M
þ Vð0Þ

S þ Vð1Þ
S

mQ
þ…

��
SþO†

�
iD0 þ

D2

2M
þ Vð0Þ

O þ Vð1Þ
O

mQ
þ…

��
O

�

þ VAðrÞTr½O†rgESþ S†rgEO� þ VBðrÞTr½O†rgEOþO†OrgE� þO
�
r2;

1

m2
Q

�
þ Llight quarks;gluons:

The singlet and octet fields depend on the label r that
corresponds to the distance between the heavy quark and
antiquark, and the ultrasoft gluon fields depend on the center
of mass coordinate, R of the heavy QQ̄ pair. This theory of
pNRQCD puts the ideas of previous nonrelativistic potential
models on a more solid footing. Its Lagrangian tells us that
the propagation of color singlet and octet d.o.f. depends on
two mechanisms. The first is encoded in the Schrödinger-
like part of the Lagrangian (top line), in which the physics of
the integrated-out gluons appears as Wilson coefficients in
the form of time-independent potential terms V. Note that

the static potentials Vð0Þ
S=O are but the first terms in a

systematic expansion in powers of the inverse rest mass.
In contrast to the naive potential model we see that the
presence of ultrasoft gluons (on the scale Mv2) on the other
hand introduces transitions between the singlet and octet
wave functions, due to the Wilson coefficients VA and VB.
These transitions in general cannot be summarized in terms
of a simple potential and are referred to as nonpotential
effects (see also the discussion in Ref. [1]). The potential
picture thus describes only the lowest order (tree level) of
pNRQCD. Even if we are interested in the static potential

Vð0Þ
S , we therefore have to take care to distinguish between

the concept of a potential (Wilson coefficient of pNRQCD)
and the static energy of the quark-antiquark pair (which
refers to the energy of the lowest lying excitation in its
spectrum).
In some instances, depending on the specific separation

of scales and a level of coarse graining in time, the terms
referred to above as nonpotential terms may be absorbed
into additional time-independent potential terms, allowing
for a simple potential description based on a Schrödinger

equation. E.g., it has been shown that in vacuum if
Mv2 ≪ ΛQCD, the static energy and the potential agree,
i.e., the static energy accessible from lattice QCD corre-
lation functions can be used as a potential [15].
The situation at finite temperature is much more involved,

as additional energy scales come into play. These are related
to the thermal medium and exhibit the hierarchy T ≫ mD ∼
gT ≫ g2T at weak coupling. The thermal physics may both
influence the potential and nonpotential contributions to
pNRQCD. In the context of pNRQCD, one may expect the
medium to modify the potential, but again, this only holds
true for particular scale hierarchies. E.g., when considering
deeply bound quarkonium states with very small spatial
extent, the real part of the potential relevant for their physics
remains effectively Coulombic. In some scale hierarchies the
physics of the singlet and octet transitions may be repre-
sented as additional higher-order contributions to the singlet
potential, leading e.g., to the emergence of an imaginary part
[16–18] related to dissipative effects in the medium.
The static in-medium potential has been studied non-

perturbatively on the lattice via spectral function
reconstruction and model spectral function fits. Based on
the Bayesian reconstruction (BR) method [19] for spectral
reconstruction the static potential has so far been investigated
in quenched QCD [20,21] and in full QCD simulations
based on the legacy asqtad action [22,23]. Recently the
thermal potential has been obtained from APE smeared
Wilson loops in the quenched approximation by means of a
decomposition into parts that are symmetric and antisym-
metric under τ → 1=T − τ; such a decomposition is moti-
vated by hard thermal loop perturbation theory (HTL) [24].
These studies concluded that the real part of the potential
eventually becomes screened in the deconfined phase and
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have identified hints for the existence of an imaginary part
once one simulates above the crossover temperature.
Concurrently the potential has been extracted by fitting
modified HTL spectral functions to Euclidean correlators in
Ref. [25] and deploying a skewed or nonskewed Lorentzian
fit in Ref. [26]. In both cases values for the real part were
obtained that are significantly larger than those extracted via
the direct spectral function reconstruction lying closer to the
T ¼ 0 results.
Concurrent with the development of the effective field

theory (EFT) approach, the past 5 years have seen rapid
progress in understanding the dynamical evolution of heavy
quarkonium in the context of open quantum systems (see
Refs. [1,27–31] for recent reviews). In particular the role of
the imaginary part of the potential has been elucidated and its
relation to wave function decoherence [32,33] highlighted. It
has been shown how a separation of scales in terms of energy
scales is connected to a separation of time scales. Using
different scale separation scenarios (and different time coarse
graining prescriptions), various so-called master equations
for the real-time evolution of the reduced density matrix of
heavy quarkonium in a medium have been derived, revealing
e.g., the subtle interplay between screening and decoherence
in a hot QCD medium.
One central goal, both in the EFT and open-quantum

systems community, is to go beyond the weak coupling
considerations, on which many of the arguments related to
scale separations are based. In order to make progress e.g.,
in the phenomenologically relevant temperature regime just
above the QCD crossover transition, it is therefore neces-
sary to explore whether a potential picture can be estab-
lished nonperturbatively and if so, what the functional form
of such a potential is.
As a starting point we therefore set out in this study to

investigate the interactions of static quark-antiquark pairs at
T > 0 using realistic state-of-the-art lattice QCD calcula-
tions. To this end, in Sec. II we present general consid-
erations on the real-time dynamics of static color sources and
their study from Euclidean lattice simulations. The first part
of our study is presented in Sec. III, where after discussing
the lattice setup in Sec. III A, we investigate the lowest three
cumulants of the correlation function in Sec. III B, and
compare them in Sec. III C to predictions from HTL. In
Sec. IV we present the investigation of the underlying
spectral structure of the correlators using four different
methods: spectral model fits (Sec. IVA), the HTL-motivated
approach (Sec. IVB), Padé rational approximations
(Sec. IVC) and the BR method (Sec. IVD). We conclude
with a discussion in Sec. V.

II. GENERAL CONSIDERATIONS

In order to connect the EFT description of quarkonium to
QCD we have to carry out a matching procedure. I.e.,
correlation functions with the same physics content in both
languages need to be identified. Demanding that their values

agree at a certain matching scale allows us to fix the Wilson
coefficients of the effective theory. In the static limit
mQ → ∞, it has been shown that the Wilson loop is the
appropriate QCD quantity which we can identify with the
unequal time correlation function of two color singlet fields
in pNRQCD [15]. The matching condition at the leading
order in the multipole expansion reads [15]

W□ðr; t; TÞ ¼
�
exp

�
ig
Z
□

dzμAμ

��
QCD

≡ hSðr; 0ÞS†ðr; tÞipNRQCD: ð1Þ

The Wilson loop in QCD itself emerges self-consistently
from the static limit of the retardedQQ̄meson correlator. By
matching with different quantities related to the singlet and
octet sectors, the ultimate goal here lies in identifying
individually the potential (VS,VO) and nonpotential contri-
butions (VA,VB,…) that govern the Wilson loop evolution in
Minkowski time.
Let us focus on the singlet sector. Instead of studying the

evolution ofW□ðr; tÞ in the real-time domain, it is advanta-
geous to go over to its Fourier transform

ρrðω; TÞ ¼
Z

dtW□ðr; t; TÞe−iωt: ð2Þ

This Fourier transform, as shown in Ref. [34], also coincides
with the positive definite spectral function of the Wilson
loop. This fact is relevant, as in Euclidean lattice simulations
we do not have direct access to the real-timeWilson loop but
can exploit its spectral function as a bridge between the
imaginary- and real-time domains. The Euclidean Wilson
loop, which we can simulate on the lattice has a spectral
decomposition, housing the same spectral functions as in
Eq. (2), which here is related to the lattice observable by a
Laplace transform

W□ðr; τ; TÞ ¼
Z

dωe−ωτρrðω; TÞ: ð3Þ

We may thus gain insight into the real-time evolution of the
Wilson loop by studying the spectral function encoded in its
Euclidean counterpart. The inversion of Eq. (3) however
constitutes an ill-posed inverse problem, which we will
attack with four different and complementary numerical
strategies in Sec. IV.
At zero temperature in a finite volume the spectral

function consists of a ground state (lowest lying) delta peak
separated by an energy gap from many excited state delta
peaks (hybrid potential, static-light mesons etc.). In the
infinite volume limit some of these excited state contribu-
tions form a continuum. The excited state contributions will
be seen as deviations from a single exponential behavior of
the correlator at small τ. By performing a spectral decom-
position of the nonzero temperature Euclidean time corre-
lator in Eq. (3) in a finite volume by inserting a complete set
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of energy eigenstates one can see that in addition to the
ground state delta peak additional peaks in its proximity will
appear. This is shown in Appendix A. The coefficients of
these additional delta functions are proportional to Boltzmann
factors and therefore, their relative weight will increase with
increasing temperature. Thus, we will see a broadening of the
zero temperature ground state peak. At finite temperature
there will be some additional peaks in the ω region corre-
sponding to excited states, but these will not change the
overall shape of the spectral function significantly, because of
the already large density of states. Therefore, any possible
modifications in that region should not have a significant
effect on the Euclidean correlator. Thus the most interesting
part of the finite temperature spectral function is the position,
Ωðr; TÞ, and the effective width, Γðr; TÞ, of this dominant
broadened peak. Furthermore, as also shown in Appendix A,
the finite temperature spectral function could be nonzero even
for ω ≪ Ωðr; TÞ. We call this part of the spectral function the
low energy tail. Thus we expect that the spectral function of a
static QQ̄ pair should consist of a ground state peak, a high
energy part, which to a good approximation is temperature
independent and the low energy tail.
The goal of this study is modest. Using for the first time

finite temperature lattices with realistic pion masses, we set
out to elucidate the lowest lying peak in the spectral
function. We will refrain from making a quantitative
connection of peak structures in the spectral functions to
Wilson coefficients (VS,VO,VA,VB,…) and solely attempt
to constrain the values of Ωðr; TÞ and Γðr; TÞ as reliably as
possible, given the currently available lattice data.
We also note that the overall form of the spectral function

depends on the choice of our static meson operator, i.e., on
the choice of the spatial part of the Wilson loop. As
mentioned above, on the lattice at finite volume, the spectral
function consists of a sum of delta peaks. Choosing between
e.g., the Wilson loop with straight spatial lines, with
deformed spatial lines, smearing the links from which to
build the Wilson loop or taking instead Wilson line corre-
lators in a particular gauge, such as Coulomb gauge, will
change the amplitudes of the peaks in the spectral function
but not their position. At T ¼ 0 where one encounters well
separated peaks, and only their position is of interest, the
tuning of operators is a common procedure to optimize the
signal to noise ratio in the determination of these peak
positions (see also the discussion in Refs. [35,36]). At finite
temperature, where multiple peaks may congregate around a
dominant central value, the changes introduced in the
envelope of amplitudes by modifying the operator are less
straightforward to predict. However, the position of the
dominant peak and its width should be largely independent
of the choice of the static meson operator. Here we may gain
some intuition e.g., from HTL perturbation theory. It was
shown that in the leading order of HTL perturbation theory
the central position of the lowest lying spectral peak remains
unaffected by the choice of either considering the Wilson

loop or the Wilson line correlator in Coulomb gauge [37]. At
the same time a clear difference was found in the structures
surrounding the lowest lying peak. In quenched QCD an
example has been given in Ref. [1] that while the overall
values of the Wilson line correlator are gauge dependent, its
slope at intermediate imaginary time (thus corresponding to
the position of its dominant lowest lying spectral peak) is
virtually unaffected by the gauge transformation. I.e., there
are indications that the properties of the lowest lying spectral
structure may be extracted in an operator-independent
fashion from Euclidean correlators. On the other hand the
high energy part of the spectral function seems to be strongly
dependent on the choice of operator. The same is true for the
low energy tail of the spectral function at nonzero tempe-
rature; see Appendix A.

III. STUDY OF THE LATTICE
CORRELATION FUNCTION

A. Lattice setup

We performed calculations of Wilson loops and corre-
lators of Wilson lines in Coulomb gauge at nonzero
temperature in (2þ 1)-flavor QCD with a physical strange
quark mass using gauge configurations generated by the
HotQCD and TUMQCD collaborations with the Lüscher-
Weisz gauge action and highly improved staggered quark
action [7,38–43]. The Wilson line correlator is defined by,

Wðr; τ; TÞ ¼ 1

3
hTrðLð0; τÞL†ðr; τÞÞiT ð4Þ

where Lðr; τÞ ¼ expði R τ
0 A4ðr; τ0Þdτ0Þ. We used N3

σ × Nτ

lattices with Nτ ¼ 10, 12 and 16, to control lattice spacing
effects, and Nσ=Nτ ¼ 4 [44]. Previous experience shows
that the aspect ratio Nσ=Nτ ¼ 4 is large enough to control
finite volume effects. The light (u and d) quark mass was set
to ms=20, which in the continuum limit corresponds to a
pion mass of 161MeV. At high temperatures, T > 300 MeV
we also performed calculations with a light quark mass equal
to ms=5, as quark mass effects are expected to be small in
this region. The calculations performed here were part of a
larger campaign by the TUMQCDCollaboration to study the
interaction of static quarks at nonzero temperature and to
extract the strong coupling constant [7,43]. As in the
previous studies the lattice spacing has been fixed using
the r1 scale defined in terms of the static QQ̄ energy at zero
temperature VðrÞ [45]

r2
dV
dr

����
r¼r1

¼ 1: ð5Þ

The values of r1=a as well as the zero temperature Wilson
loops and Wilson line correlators for (2þ 1)-flavor highly
improved staggered quarks (HISQ) configurations have been
determined in Refs. [38,40,42]. We use the parametrization
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given in Ref. [42] to obtain a=r1 and the value r1 ¼
0.3106 fm [46]. Our calculations cover a large temperature
range from as low as 120 MeV to about 2 GeV. This allows
us to perform comparisons to the weak coupling calcula-
tions. The parameters of the calculations, including the
temperature values, the bare gauge coupling β ¼ 10=g2

and the corresponding statistics are summarized in
Appendix B; an account of the zero temperature ensembles
is given there as well. For Wilson loops we used 3D-HYP
smeared links in the spatial direction to improve the signal.
We used zero, one, two, or five steps of HYP smearings. In
what follows we will use the notation Wðr; τ; TÞ for both
Wilson line correlators and Wilson loops.
The Wilson line correlators require multiplicative renorm-

alization. This renormalization corresponds to additive
renormalization of the staticQQ̄ energy at zero temperature.
As in our previous studies with the HISQ action we choose
the renormalization scheme which corresponds to the choice
Vðr ¼ r0Þ ¼ 0.954=r0, with r0 being the Sommer scale
[47]. The renormalization constants corresponding to this
choice were first calculated in Refs. [38,40] for β ≤ 7.825
and later extended to larger β values and also refined using
the result on the free energy of a static quark [7,48]. Here we
use the value of the renormalization constants given in
Table X of Ref. [7] for β ≥ 7.15 and in Table Vof Ref. [48]
for smaller β values.

B. Cumulant analysis of the correlation functions

To understand the main features of our lattice results and
to what extent these can constrain the spectral function of a
static meson it is useful to consider the nth cumulants of the
correlation functions defined as

m1ðr; τ; TÞ ¼ −∂τ lnWðr; τ; TÞ; ð6Þ

mn ¼ ∂τmn−1ðr; τ; TÞ; n > 1: ð7Þ

The first cumulant m1 is nothing but the effective mass,
which at nonzero lattice spacing is defined as

m1ðr; τ; TÞ ¼
1

a
ln

Wðr; τ; TÞ
Wðr; τ þ a; TÞ : ð8Þ

The first cumulant needs an additive renormalization
which is the same as the additive renormalization of static
QQ̄ energy or the free energy. In what follows we will
present the renormalized first cumulant using the known
renormalization constants as discussed above.
Since some of the calculations in the high temperature

region are performed with light quark masses significantly
larger than the physical value we have to make sure that this
does not affect our results. In Appendix B we compare the
calculations performed at ml ¼ ms=20 and ml ¼ ms=5 and
see no light quark mass dependence within statistical errors.
Since we have different Nτ values we can check the size of

the cutoff effects. This is also discussed in Appendix B. The
size of the cutoff dependence turn out to be smaller than our
statistical errors. Because of this we mostly focus our
discussion on Nτ ¼ 12 data. For this data set we have
relatively small statistical errors and a sufficient number of
data points in the Euclidean time direction. When appro-
priate we also show the Nτ ¼ 10 and 16 data.
In Fig. 1 we show the first cumulant from Wilson line

correlators at r ¼ 0.24 fm for β ¼ 7.825 and Nτ ¼ 16, 12
and 10 corresponding to temperatures for T ¼ 306, 408 and
T ¼ 489 MeV, respectively and compared to the zero
temperature first cumulant. At T ¼ 0 the first cumulant
approaches a plateau for τ > 0.2 fm. On the other hand the
nonzero temperature cumulant decreases monotonically. At
small τ the difference between the zero temperature and the
finite temperature first cumulant is very small and increases
monotonically as τ increases. The slope of the first
cumulant increases with increasing the temperature. This
means that the in-medium modifications of the spectral
function are larger at larger temperatures, as expected. For
the lowest temperature, T ¼ 306 MeV the decrease in the
first cumulants is approximately linear in τ around
τ ∼ 1=ð2TÞ, while for the higher temperatures this linear
trend is only seen for smaller τ, corresponding to the
reduction in 1=ð2TÞ.
The small τ behavior of the Wilson line correlators is

dominated by the high omega part of the spectral function.
The high ω part of the spectral function is largely temper-
ature independent, as discussed in the previous section, and
therefore, it is not very interesting from the point of view of
studying the in-medium effects on the static QQ̄ pair. On
the other hand it complicates the analysis and so it would be
nice to get rid of it. Let us assume—following the argu-
ments in Appendix A—that we can decompose the spectral
function as ρrðω; TÞ ¼ ρtailr ðω; TÞ þ ρmed

r ðω; TÞ þ ρhighr ðωÞ,
with ρmed

r ðω; TÞ containing only the spectral structures of
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FIG. 1. The first cumulant calculated at r ¼ 0.24 fm for β ¼
7.825 and Nτ ¼ 64, 16, 12 and 10, corresponding to T ≃ 0, 306,
408 and 489 MeV, respectively. The filled symbols correspond to
the subtracted correlator, while the open symbols to the unsub-
tracted correlator (see text).
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interest, in particular the dominant peak, and ρhighr ðωÞ
describing the well separated UV behavior of the spectral
function. At zero temperature ρmed

r ðω; TÞ is a single delta
function describing the ground state of a static QQ̄ pair for
our choice of static meson operator. Therefore, assuming
that the higher lying peaks are well separated from the
ground state, we may isolate it at T ¼ 0 and subtract it from
Wðr; τ; T ¼ 0Þ. This gives us an estimate for the contri-
bution of the high ω part of the spectral function. Once
evaluated at zero temperature it can be used to subtract off
an estimate of the high omega contribution at T > 0 at the
same value of β. We calculated the first cumulant from the
subtracted correlator and the results are also shown in
Fig. 1. At large τ the subtraction has no effect; however, at
small τ the subtracted first cumulant at T > 0 shows a
weaker τ dependence. At the same time it shows visible
temperature dependence already for small τ’s. At these
small τ values we see an approximately linear τ dependence
of m1 at nonzero temperature with a slope similar to the
τ ∼ 1=ð2TÞ region.
In Fig. 2 we show the subtracted first cumulants at lower

temperatures for two distances, rT ¼ 1=4 and rT ¼ 1=2.
We consider the distances scaled by the temperature since
with increasing temperatures the medium modification of
the correlator will manifest at shorter and shorter distances.
The form of τ dependence of m1 will scale with rT. We see
that for fixed rT the decrease of the first cumulant with τ is
stronger at higher temperatures. Furthermore, this decrease
is larger for larger rT. We again see an approximate linear
dependence of the first cumulants in τ, except for the few
largest τ values. This feature of the first cumulants, which is
a necessary consequence of the existence of the low energy
tail (see Appendix A), will play an important role when
modeling the spectral function of the static meson. We also
point out that the behavior of the first cumulant shown in
Figs. 1 and 2 is similar to the behavior of the bottomonium

first cumulants in NRQCD at nonzero temperature when
extended meson operators are used [49,50].
It is interesting to compare the results of the Wilson line

correlators in Coulomb gauge with the ones obtained from
Wilson loops. Both types of static meson correlators have
been used to obtain the static energy at zero temperature
[38,40,51,52]. The first cumulants forWilson line correlators
and from smeared or unsmeared Wilson loops have been
compared in Ref. [43] for zero temperature. It turned out that
both approach the same plateau value for sufficiently large τ.
At small τ the first cumulants for Wilson loops are
systematically larger than those for the Wilson line corre-
lators. The first cumulants for the Wilson line correlators
approach the plateau at smaller Euclidean time separation
and have smaller errors [43]. In this sense the Wilson line
correlators in Coulomb gauge are very good in projecting to
the ground state, while there are significant excited state
contributions in the Wilson loops. We performed a similar
comparison ofWilson line correlators in Coulomb gauge and
Wilson loops with different levels of HYP smearings for
T ¼ 411 MeV (β ¼ 7.825) and Nτ ¼ 12. As in the zero
temperature case there is a significant difference in the first
cumulants for Wilson loops and Wilson line correlators at
small Euclidean time as in the zero temperature case due to
the excited state contamination, or equivalently due to
ρhighr ðωÞ. Therefore, in Fig. 3 we show the comparison of
the Wilson loops and Wilson line correlators in Coulomb
gauge at two distances, rT ¼ 1=4 and rT ¼ 1=2, in terms of
the subtracted first cumulants. At the smaller distance the
first cumulant from Wilson line correlators and for Wilson
loops with different levels of HYP smearing agree within
errors. For the larger distance, rT ¼ 1=2 the two correlators
agree at small τ, where we see a nearly linear decrease of the
first cumulants, while at large τ, the nonlinear behavior in τ
of the first cumulants depends on the number of HYP
smearings, and is also different for the Wilson line correlator
in Coulomb gauge. Thus the large Euclidean time behavior
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depends on the choice of the static meson operator. This is to
be expected as explained above. The situation is similar to
the case of the bottomonium correlator in NRQCD at
nonzero temperature when different extended meson oper-
ators are used [49,50]. Since the behavior of the first
cumulant at τ close to 1=T depends on the choice of the
static meson operators it is nontrivial to obtain physical
information from Wðr; τ; TÞ in this τ region.
In order to better understand our numerical results on the

first cumulants and see to what extent these can constrain
the spectral function of a static meson it is helpful to
calculate higher cumulants of the correlator. In the follow-
ing we consider the cumulants of the subtracted correlator
as we are interested in exploring the τ dependence caused
by thermal broadening of the dominant peak. To evaluate
higher cumulants we performed fits of the first cumulants
of the subtracted correlator using fourth order polynomials,
and estimated the higher cumulants by taking the deriva-
tives of the resulting polynomial. The results for the second
cumulants for three distances, rT ¼ 1=4; 1=2 and 1 at
several temperatures are shown in Fig. 4 for Nτ ¼ 12. The
errors on the cumulants have been estimated using the

jackknife procedure. Since the second cumulant is negative,
and the square root of the negative second cumulant may be
related to the width, as discussed later, in the figure we
show

ffiffiffiffiffiffiffiffiffi−m2

p
in temperature units. We see that the errors on

the second cumulants increase with decreasing temper-
ature. At short distances, the second cumulant is approxi-
mately constant for small τ and then starts to increase
rapidly with increasing τ. For rT ¼ 1 the almost constant
behavior of m2 is only seen for the highest two temper-
atures. The results for T < 251 MeV are not shown as
these have much larger errors. However, within these large
errors the second cumulant is compatible with a constant at
these temperatures.
In Fig. 5 we show the third cumulant of the Wilson line

correlator, obtained from a fourth order polynomial fit to the
first cumulant m1, as a function of τT in temperature units.
The results are shown for three representative distances,
rT ¼ 1=4, rT ¼ 1=2 and rT ¼ 1. We only show our
findings for the third cumulant for T ≥ 334 MeV as at
lower temperatures the errors are too large to extract
meaningful information from them. Furthermore, for rT ¼
1=4 the errors are already very large for T ¼ 334 MeV. The
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absolute value of the third cumulant increases rapidly with
increasing rT and decreases with increasing temperature.
These features can already be deduced by looking at the
result for the second cumulant. For τT > 0.35 the third
cumulant is negative, while for τ < 0.3 it is positive but small
given the errors. The small positive third cumulant at small τ
is equivalent to having a nearly constant second cumulant.
From Fig. 5 it is clear that estimating the fourth and

higher order cumulants from the present lattice results is
very challenging. This will be important when considering
the parametrization of the spectral function of a static
meson, as the data can only constrain such a limited amount
of parameters. Hence any such parametrization should not
contain more than three or four parameters.

C. Comparison to HTL predictions

At high temperatures, it is expected that the Wilson loops
and the Wilson line correlators in Coulomb gauge can be
described in the weak coupling approach. TheWilson loops
and Wilson line correlators have been calculated at leading
order in HTL [16,37]. The HTL approximation is valid
when r ∼ 1=mD [17], with mD being the leading order
Debye mass in QCD. At distances r ≪ 1=mD this approxi-
mation is not expected to work. In the HTL approximation
the logarithm of the Wilson loop or the Wilson line
correlator can be written as

logWðr; τ; TÞ ¼ −ReVðr; TÞ × τ

þ
Z

∞

−∞

dω
2π

ðe−ωτ þ e−ωðβ−τÞÞ

× ð1þ nBðωÞÞσrðω; TÞ þ const; ð9Þ

where nBðωÞ ¼ ðexpðω=TÞ − 1Þ−1. The spectral function
σrðω; TÞ is related to the HTL spectral functions of the
transverse and longitudinal gluons and is distinct from the
spectral function ρrðω; TÞ. For the Wilson line correlator, it
only depends on the spectral function of the longitudinal
gluons.
The important feature of this correlator is that the static

energy exists,

EHTL
s ðr; TÞ ¼ lim

t→∞
i
∂ logWðr; τ ¼ it; TÞ

∂t
¼ ReVðr; TÞ − iImVðr; TÞ: ð10Þ

At leading order, the real or imaginary parts are given as

ReVðr;TÞ ¼−
g2CF

4π

�
e−mDr

r
þmD

�

ImVðr;TÞ ¼ g2CF

4π
T
Z

∞

0

dz
2z

ðz2þ 1Þ2
�
1−

sinzmDr
zmDr

�
: ð11Þ

The real part of the potential ReVðr; TÞ, in this approxi-
mation, is at leading order identical to the singlet free
energy in Coulomb gauge [16,17]. We observe the τ
dependence in the above correlator consists of linear and
periodic part in τ. This particular τ dependence of the HTL
correlator along with the fact that σrðω; TÞ has a 1=ω
singularity allows us to have a well-defined limit in
Eq. (10). In Sec. IV B, while calculating the static energy
nonperturbatively we will parametrize the correlator as a
combination of linear and periodic parts in τ. The obvious
consequence of a parametrization as in Eq. (9) is that the
first cumulant of Wðr; τ; TÞ is antisymmetric around the
midpoint τ ¼ 1=ð2TÞ.
Since we study the Wilson line correlators in a large

temperature range, including high-temperature values it
makes sense to compare the lattice results with the weak-
coupling ones. Comparison with the HTL perturbative result
is also important since it gives some insight into the general
features of the spectral function and how these features
manifest in the cumulants of the Euclidean time correlator.
Therefore, in Fig. 6 we show the spectral functions corre-
sponding to Wilson line correlators for different r at T ¼
667 MeV in the HTL approximation. Note that we use a
different renormalization prescription compared to Ref. [37]
as well as the two-loop running of the coupling constant with

Λnf¼3

MS
¼ 332 MeV [53]. We will use this choice for the

gauge coupling throughout this paper. We see a peak in the
spectral function at ω ¼ ReVðr; TÞ ¼ FSðr; TÞ, which can
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be well described by a skewed Lorentzian for frequencies
around the location of the peak [37]. Far away from the peak
position, the spectral function is described by different
structures, distinct from the Lorentzian.
In general, one has to expect that the nonperturbative

spectral function such as the one calculated on a lattice
contains further structures. In particular, the lattice spectral
function has a large UV continuum part along with a tail at
very low ω. The HTL feature of the lattice spectral functions
could only come from the medium dominated part of the
spectral function (ρmed

r ðω; TÞ). Therefore, we could possibly
see the HTL-like features in the nonperturbative correlator
near the τ ∼ 1=ð2TÞ region if these are sufficiently separated
from any further structures.
We consider the comparison between the lattice and HTL

result for the Wilson line correlator in terms of its first
cumulant, m1. The first cumulant should be sensitive to the
peak position of the spectral functions. In the absence of a
peak width, i.e., when ρmed

r ðω; TÞ ∼ δðω − E0ðrÞÞ, m1

should approach the energy of a static QQ̄ pair E0 at
intermediate τ. It is known that the leading order perturba-
tive result does not provide an accurate description of the
static QQ̄ energy at zero temperature.
For this reason, we naturally expect that at finite temper-

ature nonperturbative real and imaginary parts of the
complex static energy defined through the parametrization
of Eq. (9) will be different from the expressions given in
Eq. (11). Therefore, a nonperturbative investigation of this
complex static energy is very important, which we will
discuss in detail in Sec. IV B.
Furthermore, the static energy needs to be renormalized,

and the renormalization condition used on the lattice is
different from the one in the MS scheme. Connecting these
two renormalization schemes is a nontrivial task. We also
know that the real part of the static energy is given by the
so-called singlet QQ̄ free energy, FSðr; TÞ in the HTL
approximation [17], as discussed above. Therefore, when
comparing the lattice results on m1 to the HTL results we
will assume that the peak position is similar to FSðr; TÞ and
subtract the latter from the first cumulant.

As mentioned above the HTL calculation is not expected
to describe the spectral function at large ω. Therefore, we
should use the subtracted first cumulant when comparing
the lattice and HTL results, or simply ignore the data points
at small τ in the comparison. But the HTL feature in the
correlator could only appear in the data points around
τ ∼ 1=2T, where the effect of this subtraction is small.
We performed a comparison of the lattice results on the

subtracted first cumulant with leading-order HTL calcu-
lations for T ¼ 474 MeV and T ¼ 667 MeV. In the HTL
calculations we used three values of the renormalization
scale μ ¼ πT; 2πT and 4πT. The comparison is shown in
Fig. 7 for T ¼ 667 MeV and four representative distances
rT ¼ 1=4; 1=2; 3=4 and 1. The lattice and the HTL results
for m1 share some qualitative features, namely they
decrease monotonically with increasing τ. This decrease
of m1 with τ around β=2 comes from the fact that the
spectral function is not a delta function but rather a broad
peak (see Fig. 6) and the slope of m1 is loosely related to
the width of the peak.
The HTL curve is antisymmetric with respect to 1=ð2TÞ

over the whole τ range, while the lattice data do not show
the same antisymmetry. This is expected as the lattice
correlator gets contributions from both ρhighr ðω; TÞ and
ρtailr ðω; TÞ. However, as we will see in Sec. IV B, non-
perturbative data are compatible with a small antisymmetric
region around τ ∼ 1=ð2TÞ.
We mentioned earlier that the leading-order HTL results

for the real part of the static energy and the singlet free
energy agree exactly; hence, the corresponding m1 − FS
vanishes at τ ¼ 1=ð2TÞ. However, the lattice result for
m1 − Fs is nonzero at τ ¼ 1=ð2TÞ. This implies that the
real part of the static energy that will be determined in
Sec. IVB must be different from the singlet free energy. The
slope of m1 around τ ∼ 1=ð2TÞ is much larger for the lattice
correlator than for the leading-order HTL curve. This
corresponds to the fact that the nonperturbative imaginary
part determined from the lattice data in Sec. IVB is
significantly different from the expression given in Eq. (11).
The comparison turned out to be similar for

T ¼ 474 MeV. We also performed a comparison between
the lattice and HTL calculations at the highest temperature
available, T ¼ 1938 MeV. Since we do not have the
corresponding zero temperature result, here the comparison
is performed in terms of the unsubtracted cumulants. We see
that also at the highest temperature the lattice data differs
from the perturbative HTL data. The first cumulant calcu-
lated on the lattice has a steeper τT dependence than the
perturbative HTL result even at this very high temperature,
see Fig. 8. This indicates that the imaginary part of the
nonperturbative result is much larger than the counterpart in
the perturbative calculation.
In Fig. 9 we show the comparison of the lattice and HTL

results for the second cumulant, m2 for T ¼ 667 MeV and
three representative distances, rT ¼ 1=4; 1=2 and 1. We
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choose the renormalization scale in the HTL calculation to be
μ ¼ 2πT and vary it by a factor of 2 around this value.
Unsurprisingly, there is no quantitative agreement between the
lattice results and leading-order HTL as already visible from
Fig. 7. The fact that m2 on the lattice is constant at small τ is
due to the subtraction of the UV contribution, while the fact
that m2 is not a constant at large τ is due to the
low-energy tail. Since neither of these are present in the
leading-order HTL result, the mismatch between lattice
and leading-order HTL is particularly pronounced in these
regions.

IV. STUDY OF THE SPECTRAL FUNCTION AND
ITS GROUND STATE PEAK

We will in the subsections of this section make four
different attempts to analyze the lattice results. The four
methods are: fit with a finite width spectral function
(Sec. IVA), fit with the HTL ansatz (Sec. IV B), a Padé fit
(Sec. IV C), and a fit using Bayesian methods (Sec. IV D).
We will outline here the basic idea behind each method
and the pros and cons of each choice, and leave a more
technical description for each subsection. We clearly state
that the first three approaches (Bayesian methods are an
exception) only aim at identifying and parametrizing the
lowest, dominant spectral feature. Thus, the inability of

their results to reproduce the input data over the complete
τ range has to be expected. We stress that this is nothing
unusual: the same applies to almost any analysis of zero-
temperature lattice correlators that may have to leave out
the first few time steps due to not having enough
independent information in this range to fully constrain
the complex UV structure affecting those data. The aim is
to leave it to the reader to judge each method based on the
results put forth in this paper and let them decide which
one they prefer.
The first method used in Sec. IVA is a simple fit, using a

model spectral function with a well defined position and
width. This choice comes from the observation that when one
uses zero temperature results to remove contributions coming
from higher energy excitations, the first cumulant takes a
form that is well approximated by a low order polynomial,
sometimes even that of a straight line. The benefit of this
method is that it gives a precise answer to the question “What
is the position and width of the dominant feature in the
spectral function?” with a fit that works very well, excluding
the first and last point. The downside is that for it to work, the
high energy contributions to the correlator have to be
removed using zero temperature results, a procedure which
might not be well defined. Also the actual shape of the
dominant spectral feature is not determined, but rather only
its position and effective width.
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The second method is in Sec. IV B and uses an ansatz
motivated by HTL to fit in a narrow range around τ ∼ 1=ð2TÞ
to extract physically relevant information. Namely, one
parametrizes the τ dependence around 1=ð2TÞ exactly like
the τ dependence in Eq. (9). In this method the peak position
and peak width can be interpreted as a real and imaginary part
of the thermal static energy. As shown earlier in this paper,
HTL cannot explain the full spectral function. The HTL-
motivated fit only attempts to describe the dominant feature

of the spectral function which is responsible for the thermal
static energy.
The third method used in Sec. IV C is the Padé

interpolation. This approach operates on the Fourier trans-
formed lattice data, instead of directly on the correlator. The
rational interpolation of the Matsubara frequency correlator
is subsequently rotated to real time. In our mock data tests,
this method has shown to give reasonable results for the
position of the peaks, but failed to reliably estimate the
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width of the spectral function. By construction the Padé
approach does not need to reproduce the input data and we
find that the reconstructed spectral function indeed does not
fulfill the original spectral decomposition. The method
requires a high quality of the input data, as it does not
contain a regulator of the statistical noise.
The fourth and last method we use is the Bayesian

reconstruction method described in Sec. IV D, which is
based on Bayesian inference. The basic idea here is to
regularize a χ2 fit with an additional functional, which
encodes how compatible the fitted spectral function is with
prior knowledge one possesses on the spectrum, such as its
positivity. This method is constructed such that it will
always reproduce the Euclidean input data points within
their statistical uncertainty. It has shown to outperform the
maximum entropy method in the reproduction of sharp
peaked features but may suffer from ringing artifacts in the
reconstruction of extended spectral features, and requires
high precision data. However, it was realized that corre-
lators on the finer lattices with an improved gauge action
contain non-negligible contributions with negative weights
that render the BR method inapplicable.

A. Determination of the ground state peak from
spectral function model fits

In order to constrain the spectral function ρrðω; TÞ from
limited data on Euclidean time correlation functions we need
to assume some functional form for it. As for the analysis
of the cumulants we assume that the spectral function can
be written ρrðω; TÞ ¼ ρtailr ðω; TÞ þ ρmed

r ðω; TÞ þ ρhighr ðωÞ,
where ρhighr ðωÞ is assumed to be the temperature independent
high frequency part of the spectral function and ρmed

r ðω; TÞ
contains the dominant peak structure. Based on general
grounds and EFT arguments it is natural to assume that
ρmed
r ðω; TÞ has a Lorentzian form. However, for a Lorentzian
form the integral in Eq. (3) will not converge at the lower
integration limit. We also do not expect that the Lorentzian
form can describe the spectral function well below
ω ¼ Ωðr; TÞ. This follows from the general properties
of the spectral function discussed in Appendix A. In the
case of the HTL spectral function we have seen that while
around the peak the spectral function appears to be
Lorentzian, different structures dominate the spectral func-
tion far away from the peak, in particular at very low
frequency; see Fig. 6. Thus in addition to the parametrization
of the peak of the spectral function, we also need to
parametrize the behavior of the spectral function at very
low frequency, i.e., the low energy tail. This part of the
spectral function will affect the correlation function at large
values of τ. Unfortunately, we do not have a well motivated
form for this part of the spectral function. Furthermore, for
calculations in finite volume the spectral function is not a
continuous function but a discrete sum of delta functions
with an envelope function of certain shape. For small

volumes as used in the present calculations there could be
significant distortion of the envelope function, since the
number of low lying energy levels and the corresponding
number of δ peaks is quite limited. This is especially the case
for the low ω tail as it extends over a large ω range below the
dominant peak position, including negative ω values.
The information we have on the different structures in

the spectral function is also quite limited. At small τ values
only the first two cumulants can be determined with the
third cumulant being zero within the estimated errors.
Therefore, at small τ the lattice data are only sensitive to
the position and the effective width of the dominant peak,
and a Gaussian form provides a simple parametrization for
this that avoids the convergence problem in Eq. (3). At
larger τ the correlation function is sensitive to the low
energy tail, i.e., the region ω ≪ Ωðr; TÞ. In the previous
section we have seen that in this region the third cumulant
is also nonzero, but cumulants beyond the third one cannot
be constrained by our lattice data. While it would be
tempting to parametrize the low ω tail of the spectral
function by a series of delta functions avoiding any bias, in
practice it is impossible to constrain all the corresponding
parameters. We need to approximate this part of the spectral
function by a single delta function Thus a simple para-
metrization of the Wilson line correlator function consistent
with the above observations is the following:

Wðr; τ; TÞ ¼ APðr; TÞ expð−Ωðr; TÞτ þ ΓGðr; TÞ2τ2=2Þ
þ Acutðr; TÞ expð−ωcutðr; TÞτÞ; ð12Þ

with Acut ≪ AP and ωcut ≪ Ω. The first cumulant corre-
sponding to this form will decrease linearly at small τ,
while exhibiting a nonlinear behavior for large τ as
observed in our lattice results. We performed correlated
fits of our lattice data using Eq. (12) and determined
the parameters AP;Ω;ΓG; Acut and ωcut. The fits describe
the lattice data very well, with the possible exception of the
data at the smallest τ value. The details of these fits are
discussed in Appendix C.
The peak position, Ωðr; TÞ is shown in Fig. 10 as a

function of the distance r for different temperatures. It shows
no temperature dependence and agrees with the zero temper-
ature static energy. The fact that Ω is close to the zero
temperature static energy can be easily understood from
Fig. 1. The subtracted first cumulant at smallest τ is already
close to the zero temperature plateau and shows linear
behavior at small τ. A linear extrapolation naturally gives
the zero temperature static energy. The width of the
dominant peak depends on the specific parametrization of
the spectral function and the Gaussian form has no physical
motivation. A parametrization independent definition of the
effective width could be the width at the half maximum. For
a Gaussian form this means Γ ¼ ΓG

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
. In Fig. 10 we

also show the effective width Γ as a function of the distance,
r at different temperatures. We see that Γ increases with
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increasing r. We also see that when plotted as a function of
rT the effective width in temperature units shows very little
temperature dependence. This is expected at very high
temperature, but not in the temperature range studied by
us. For the other two fit parameters we find that ωcut ≪ Ω
and Acut ≪ AP in accordance with our expectations. The
same parametrization of the spectral function has been used
in the analysis of NRQCD bottomonium correlators at
nonzero temperature [49,50]. It has been observed that
different bottomonium states have thermal width, but no
significant mass shift has been observed. Furthermore, the
thermal width turned out to be larger for higher lying
bottomonium states that have larger size [49,50]. Thus the
thermal modification of staticQQ̄ states and bottomonium is
quite similar. Furthermore, the bottomonium Bethe-Salpeter
amplitudes also do not show large temperature modifications
[13]. Using this result a potential model analysis resulted in a
potential that has a real part which is identical to the zero
temperature static energy [54].

B. Determination of the ground state peak via the
HTL-motivated method

In this section, we will use the method of Ref. [24] to
obtain the position and the width of the dominant peak of
the static QQ̄ spectral function. In this method, the peak
position Ωðr; TÞ and peak width Γðr; TÞ of the dominant
peak are interpreted as the real and imaginary parts of the
thermal static energy Esðr; TÞ. Quantitatively, one assumes
the following limit exists:

Esðr;TÞ ¼ lim
t→∞

i
∂ logWðr; t; TÞ

∂t ¼Ωðr;TÞ− iΓðr;TÞ: ð13Þ

Here, Wðr; t; TÞ is the real-time correlator obtained as the
Fourier transform of the spectral function ρrðr;ωÞ.
Below the crossover temperature Wðr; τ; T ¼ 0Þ∼

expð−ΩτÞ for 0 ≪ τ ≪ 1=T follows from a transfer matrix
argument, and therefore the above limit exists trivially.
However, above the crossover temperature, the existence

of the limit in Eq. (13) is a nontrivial statement whose
consequences are important for various applications like in
open quantum systems [32] or the construction of a vector
current spectral function [55].
The definition of the static energy involves a QQ̄

correlator, whose large-time behavior is governed by the
lowest, dominant feature of ρmed

r ðω; TÞ. As a consequence,
it is sufficient to determine the structure of the dominant
peak of the spectral function to obtain the thermal static
energy. In this HTL-motivated method, we model the
dominant peak of the spectral function such that the above
limit exists.
In Sec. III C we mentioned that for the leading-order

HTL correlator the limit in Eq. (13) exists. We observed
that this is possible because the correlator can be written as
a combination of a part linear in τ and a part periodic in τ,
cf. Eq. (9). Now let us see whether the nonperturbative data
near τ ∼ 1=ð2TÞ could be parametrized by a combination of
periodic and linear parts in τ. Motivated by this we write the
following parametrization of the QQ̄ correlator near
τ ∼ 1=ð2TÞ:

logWðr; τ; TÞ ¼ −Ωðr; TÞτ

þ
Z

∞

−∞
dωΣrðω; TÞðe−ωτ þ e−ωðβ−τÞÞ

þ const: ð14Þ

The condition for the limit in Eq. (13) is then

lim
t→∞

Z
∞

−∞
dωΣrðωÞωðe−iωt − e−ωðβ−itÞÞ ¼ const: ð15Þ

Using the fact that limt→∞ðe−iωt − e−ωðβ−itÞÞ ¼
−2πiωδðωÞ, we observe that the above limit will exist
only if ΣrðωÞ ∼ 1

ω2 as ω → 0.
Without loss of generality we can introduce a factor ð1þ

nbðωÞÞ and write
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FIG. 10. The peak position of the spectral function (left) and the width (right) as functions of the separation r obtained from Gaussian
fits of the Nτ ¼ 12 data.
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Σrðω; TÞ ¼ ð1þ nbðωÞÞηrðω; TÞ: ð16Þ

Since the function ð1þ nbðωÞÞ already contains a factor
of 1=ω, the ηrðω; TÞ should also contain 1=ω at small ω.
Then Eq. (14) becomes,

logWðr;τ;TÞ¼−Ωðr;TÞτ

þ
Z

∞

−∞
dωηrðω;TÞ

expðωτÞþ expðωðβ− τÞÞ
expðωβÞ−1

þ const: ð17Þ

ηrðω; TÞ can only be an odd function ω. The most
general expansion of the function ηrðω; TÞ consistent with
the existence of thermal static energy can then be written as

ηrðω; TÞ ¼
c0ðr; TÞ

ω
þ c1ðr; TÞωþ c2ðr; TÞω3 þ… ð18Þ

We emphasize that Eq. (17) is a completely nonpertur-
bative parametrization. The only information we take from
HTL perturbation theory is the possible τ dependence,
which can give rise to the limit in Eq. (13).
Using this form of ηrðωÞ, the τ dependence of the

integration in Eq. (14) can be computed and we obtain
the following expression for the Wilson line correlator:

logWðr; τ; TÞ ¼ −Ωðr; TÞτ þ c0ðr; TÞ
π

log½sinðπτTÞ�

þ
X∞
l¼1

clþ1ðr; TÞ
π

ð2l − 1Þ!T2lðζð2l; τTÞ

þ ζð2l; 1 − τTÞÞ þ constðr; TÞ: ð19Þ

Using this HTL parametrization it is easy to check that
the limit in Eq. (13) exists and the static energy is given by

Esðr; TÞ ¼ lim
t→∞

i
logWðr; t; TÞ

∂t ¼ Ωþ ic0T: ð20Þ

From this equation we can identify the imaginary part of
the static energy Γðr; TÞ ¼ −c0T. Furthermore, at large
Minkowski time higher-order terms, l ≥ 1, do not contrib-
ute, i.e., the large Minkowski time behavior ofWðr; t; TÞ is
determined byΩ and c0, which in this case can be identified
with the real and imaginary parts of the static energy.
It has been found in Ref. [24] for quenched QCD with

an unimproved gauge action and large Nτ that with the
expression in Eq. (19), which is motivated from leading-
order HTL perturbation theory, a reasonable number of
data points around τ ∼ 1=ð2TÞ could indeed be described
by the above expression. However, with Nτ ¼ 12 the
number of data points available for fitting near τ ∼ 1=ð2TÞ
becomes small.
If we focus on the narrow region around τ ¼ 1=ð2TÞ, and

if the higher order terms in Eqs. (18) and (19) can be

neglected, we can fit the lattice results on the first moment
with the form

m1ðr; nτ ¼ τ=aÞa ¼ log

�
Wðr; nτ; NτÞ

Wðr; nτ þ 1; NτÞ
�

¼ Ωðr; TÞa −
Γðr; TÞaNτ

π
log

×

�
sinðπnτ=NτÞ

sinðπðnτ þ 1Þ=NτÞ
�
: ð21Þ

We performed fits of our Nτ ¼ 12 lattice data for m1 for
τ=a ¼ 5, 6, 7 using Eq. (21) to determine Ωðr; TÞ and
Γðr; TÞ. The details of these fits can be found in
Appendix C.
A sample fit for both unsubtracted and subtracted data is

shown in Fig. 11. The ansatz also describes some data points
outside the fitting range. The smaller τ and larger τ behavior
are not expected to be described by the above ansatz, as it
only describes the dominant peak of the spectral function. In
Fig. 12 we show Ωðr; TÞ and Γðr; TÞ from these fits as
functions of r at different temperatures. The peak position
Ωðr; TÞ and width Γðr; TÞ for subtracted and unsubtracted
correlators are very close to each other. This is expected
because we only consider τ values around 1=ð2TÞ, where the

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 2  3  4  5  6  7  8  9  10

=7.825
N =12

T=408 MeV

unsubtracted correlatorm
1(

)a
-m

1(
1/

2T
)a

/a

rT=1/4
rT=1/2
rT=3/4

rT=1

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 2  3  4  5  6  7  8  9  10

=7.825
N =12

T=408 MeV

subtracted correlatorm
1(

)a
-m

1(
1/

2T
)a

/a

rT=1/4
rT=1/2
rT=3/4

rT=1

FIG. 11. Sample fit of the lattice result (top) unsubtracted
correlator and (bottom) subtracted correlator to Eq. (21) (see text).
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contribution of the high ω part of the spectral function is
small. The peak position, Ωðr; TÞ shows significant temper-
ature dependence and differs from the zero temperature
potential. The width of the peak, Γðr; TÞ increases with
increasing r. Furthermore, Γðr; TÞ does not scale with the
temperature unlike in the case of Gaussian fits in the
temperature range explored by us. We also find that in
the temperature region studied by us Γðr; TÞ is larger than
the HTL result.
Another widely studied quantity at finite temperature is

the singlet free energy FSðr; TÞ; see e.g., Ref. [7]. As
mentioned above in leading-order HTL perturbation theory,
the singlet free energy and the real part of the static energy
are the same. From Fig. 13 we see that even nonperturba-
tively the difference between Ωðr; TÞ and FSðr; TÞ is very
small, while the difference between the zero temperature
static energy and FSðr; TÞ is even smaller for rT < 0.4 [7].
This is very similar to the findings of the calculations in
quenched QCD, where smeared Wilson loops have been
used [24].
It is straightforward to continue the parametrization of

the Wilson line correlator given by Eq. (19) to Minkowski

time and then calculate the dominant peak of the spectral
function ρmed

r ðω; TÞ,

ρmed
r ðω; TÞ ¼

Z
∞

−∞
Wðr; t; TÞ expðiωtÞdt; ð22Þ

which is plotted in Fig. 14. The dominant peak looks
qualitatively similar to the leading-order HTL spectral
function; see Fig. 6.
We would like to again mention that the spectral feature

ρmed
r ðω; TÞ plotted in the figure is not the full spectral
function ρrðω; TÞ, but rather the dominant peak of
ρmed
r ðω; TÞ due to the thermal static energy. ρmed

r ðω; TÞ is
quite different from the full spectral function ρrðω; TÞ for ω
far away from its peak at Ωðr; TÞ. A similar situation also
arises while calculating the QQ̄ potential in the hadronic
phase. In this case it is well known that the dominant peak
of the spectral function is the Dirac delta function, and this
describes only the plateau region of m1.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(r
,T

)[
G

eV
]

r[fm]

T=151 MeV
T=199 MeV
T=273 MeV
T=334 MeV
T=408 MeV
T=562 MeV
T=667 MeV

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

(r
,T

)/
T

rT

T=199 MeV
T=273 MeV
T=334 MeV
T=408 MeV
T=562 MeV
T=667 MeV

FIG. 12. The peak position (left) and the width (right) from the HTL-motivated method as functions of r at different temperatures. The
open (closed) symbols correspond to real and imaginary parts from the unsubtracted (subtracted) correlator.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

(
(r

,T
)-

F
s(

r,
T

))
/T

rT

T=273 MeV
T=334 MeV
T=408 MeV
T=562 MeV
T=667 MeV

FIG. 13. The difference between the peak position Ωðr; TÞ and
singlet free energy Fsðr; TÞ at different temperatures.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10

T=408 MeV

rm
ed

(
,T

)

 [GeV]

rT=1/4
rT=1/2
rT=3/4

rT=1

FIG. 14. Dominant peak of the spectral function for
T ¼ 408 MeV at various distances from the HTL-motivated
method.

STATIC QUARK-ANTIQUARK INTERACTIONS AT NONZERO … PHYS. REV. D 105, 054513 (2022)

054513-15



The integration in Eq. (22) can be performed exactly [56]
and near the peak, where ρmed

r ðω; TÞ describes the spectral
function reliably, it can be approximated by

ρmed
r ðω; TÞ ≈

ffiffiffi
2

π

r
Γðr; TÞ

ðΩðr; TÞ − ωÞ2 þ Γðr; TÞ2
× jΩðr; TÞ − ωj; Γðr; TÞ ≪ T: ð23Þ

This is expected as we already assumed the limit in Eq. (13)
exists.

C. Determining the ground state peak via the Padé
rational approximation

So far we have used two methods to extract the proper-
ties of the ground state spectral peak, which both required
some form of modeling input. In the spectral fit approach it
amounts to the choice of fitting with a spectral function for
which the second moment is much larger than the higher
moments. A Gaussian shape for the dominant peak and a
number of supporting delta peaks is one possible such
choice. In the Bala-Datta method of Ref. [24] the appli-
cability of a nonstandard spectral representation [see
Eq. (14)] is assumed. Here we attempt to extract the
potential with a model independent approach, based on
the Padé rational approximation. One reason to deploy the
Padé rational approximation is that for the Symanzik gauge
action, the spectral function of theWilson line correlator (or
Wilson loop) is not positive for large ω when the separa-
tion, r is small as discussed in Ref. [43]. Thus Bayesian
approaches designed to operate on positive spectral func-
tions, deployed in the past, may not be reliable on this data
set. We see that at high temperatures and small separation
distances the Bayesian approaches indeed fail when applied
to the raw data.
In the Padé approach we first transform the Euclidean

correlator data into Matsubara frequency space, after which
we carry out a projection of the data onto a set of rational
basis functions, which are then analytically continued.
From the ensuing correlation functions in real-space
frequencies, the spectral functions are obtained by taking
the negative of the imaginary part, drawing on the analytic
properties of the Lehmann representation

Wðr; ω̃n; TÞ ¼
Z

dω
1

ω − iω̃n
ρrðω; TÞ: ð24Þ

The Wilson line correlator is particularly well suited in this
context. Since it does not contain the cusp divergences that
plague the Wilson loop, approximations that exploit ana-
lyticity, such as the Padé approximation, are expected to
work well.
Since the analytic continuation of a Padé approximation

of a lattice correlator is known to require extremely precise
data to yield robust results—often beyond what a lattice

simulation can provide in practice—it has not been com-
monly deployed for spectral function reconstruction so far
(for recent work see e.g., Ref. [57]). In addition it is known
that the Padé approximation does not respect the spectral
representation of the input data (see e.g., Ref. [58]), i.e., the
reconstructed spectral function inserted into Eq. (24) does
not necessarily reproduce the input data.
All direct projection methods, such as e.g., those by

Cuniberti [59], suffer from the fact that, in contrast to the
Bayesian approach, the influence of the data uncertainty on
the projection is not regularized. On the other hand the Padé
method has an advantage over the Bayesian approach in
that it can exploit much more efficiently the smallness of
statistical error bars. In the Bayesian approach, reducing the
statistical uncertainty, while leaving the number of data
points fixed may result in increased ringing artifacts in
practice, an issue that the Padé approximation does not
suffer from in the same manner. And it is the exceptionally
high statistics of the ensembles present in this study that
promise that a meaningful Padé approximation can be
carried out, as we will show in the following.
In this study we implement the Padé approximation in the

form of a continued fraction according to the Schlessinger
prescription [60]. This particular approach amounts to a Padé
approximation in which the polynomial in the denominator
carries at least the same order as that in the numerator or one
higher order, leading to an expression that is able to robustly
reproduce functions that decay at large frequencies, which is
just the case for the Wilson line correlator [37]. Note that it
actually amounts to an interpolation of the data, which in
contrast to a fitted rational approximation does not require us
to carry out a costly minimization. We deploy the approxi-
mation on theWilson line correlators in imaginary frequency
space

Wðr; ω̃n; TÞ ¼
XNτ−1

j¼0

eiaω̃njWðr; ja;TÞ; ω̃n ¼ 2πn=aNτ:

ð25Þ

A representative example is shown in Fig. 15, where we
plot as discrete data points in the top panel the real part
and in the bottom panel the imaginary part of the
correlator at T ¼ 408 MeV (β ¼ 7.825 Nτ ¼ 12) at three
spatial distances r ¼ 0.0387 fm, r ¼ 0.176 fm and
r ¼ 0.296 fm (dark blue to light blue).
Note that the discrete Fourier transform (DFT) applied to

Eq. (25) does not reproduce the continuum Lehmann kernel
but introduces corrections related to both the finite lattice
spacing and available grid size. Since our subsequent
strategy to extract the spectral function will rely on the
continuum form of the Lehmann representation, we need to
compensate for these artifacts, which we do in the spirit of
the tree-level corrections of the lattice artifacts in the static
QQ̄ energy [61], i.e., instead of using the naive Fourier

DIBYENDU BALA et al. PHYS. REV. D 105, 054513 (2022)

054513-16



frequencies ω̃n, we instead assign the Matsubara correlator
data points to the eigenvalues of the discrete frequency
operator

ω̃n → ωn ¼ 2 sin

�
πn
Nτ

�
=a: ð26Þ

The ωn absorb the distortion of the frequency Brillouin zone
in the UV and we may interpret the correlator as being
expressed otherwise in its continuum form (we have checked
that taking into account the DFT artifacts improves the
stability of the Padé extraction using mock data). The
deployment of the corrected frequencies also means that
our correlators are plotted on nonequidistant frequency
values in Fig. 15.
With the Wilson line correlators not being symmetric in

Euclidean time, their discrete Fourier transform is in
general complex valued. The complex data along the
corrected imaginary frequencies ωn is interpolated by a
continued fraction CNτ

of the form

CNτ
ðr; iω; TÞ

¼ Wðr;ω0; TÞ
1þ

a0ðr; TÞ½ω − ω0�
1þ

a1ðr; TÞ½ω − ω1�
1þ

…
aNτ−2ðr; TÞ½ω − ωNτ−2�

1þ aNτ−1ðr; TÞ½ω − ωNτ−1�: ð27Þ

For better readability the above continued fraction is
expressed in the following way: each subsequent level of
the continued fraction, instead of being written in the
denominator of the preceding term, is listed as a separate
fraction to the left. The expression 1þ in the denominator
therefore indicates that the following fraction should be
considered the next level of the continued fraction; con-
cretely A

1þ
B
1þC≡ ðA=ð1þ ðB=ð1þ CÞÞÞÞ.

The complex coefficients are determined recursively by
demanding that the rational approximation exactly repro-
duces the input data at each available frequency, leading to
the following prescription:

alðr;TÞðωlþ1−ωlÞ

¼−


1þal−1ðr;TÞ½ωlþ1−ωl−1�

1þ
al−2ðr;TÞ½ωlþ1−ωl−2�

1þ �� �

� � � a0ðr;TÞ½ωlþ1−ω0�
1− ½Wðr;ω0;TÞ=Wðr;ωlþ1;TÞ�

�
: ð28Þ

Applying this formula directly to complex valued imagi-
nary frequency data amounts to a generalization of the
resonances via the Padé method used e.g., in Ref. [62] to
nonsymmetric correlators in Euclidean time. The evalu-
ation of a continued fraction is prone to the accumulation
of rounding errors, which is why we compute the ai’s
with at least 30-digit accuracy. This need for accuracy is
independent of the amount of noise present in the
underlying data and is a well known drawback of direct
projection methods [59]. The outcome of the interpola-
tion, based on a subset of eight input data points (the
seven positive Matsubara frequency data points and the
one at the smallest negative available frequency), is
shown as solid colored lines in Fig. 15. Substituting in
the continued fraction the Euclidean frequencies by their
Minkowski counterparts CNτ

ðr; iω; TÞ → CNτ
ðr;ω; TÞ we

explicitly implement the analytic continuation.
There are two equivalent ways to proceed. We may either

compute the spectral function from CNτ
ðr;ω; TÞ via the

real-time relation

ρrðω; TÞ ≈ −
1

π
Im½CNτ

ðr;ω; TÞ� ð29Þ

and carry out a similar analysis as that in previous studies
based on Bayesian spectral reconstructions. In that
approach we locate the lowest lying peak structure in

FIG. 15. Discrete Fourier transform of the T > 0 Wilson line
correlators at T ¼ 407 MeV (β ¼ 7.825, Nτ ¼ 12) at three
spatial separation distances r ¼ 0.03872 fm, r ¼ 0.1758 fm
and r ¼ 0.2964 fm. The top panel shows its real part, while
the lower panel its imaginary part as colored symbols. The solid
lines denote the Padé approximation based on eight data points,
which is subsequently used in the analytic continuation.
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ρrðω; TÞ and fit it with a skewed Lorentzian, embedded in a
polynomial background of the form derived in Ref. [63]

ρrðω; TÞ

∝
jΓðr; TÞj cos½Reσ∞ðr; TÞ� − ðΩðrÞ−ωÞ sin½Reσ∞ðr; TÞ�

Γðr; TÞ2 þ ðΩðrÞ−ωÞ2
þ c0ðr; TÞ þ c1ðr; TÞðΩðr; TÞ−ωÞ
þ c2ðr; TÞðΩðr; TÞ−ωÞ2… ð30Þ

On the other hand we may ask whether the information
encoded in the dominant spectral peak may be read off
from the real-time correlator directly in a more simple
fashion. Indeed the peaks of the spectral function are but a
projection of the pole structure of the underlying corre-
lation function. Since we are in possession of the rational
function approximation of the correlator, we can compute
the pole structure explicitly from the roots of the poly-
nomial in the denominator. The number of poles present,
obviously depends on the degree of the Padé interpolation,
but we find that varying the number of input points does
not change the fact that one of the poles lies significantly
closer to the real frequency axis than all other poles. This
pole in turn leads to the dominant peak structure seen
in the spectral function. We have checked that both
approaches give numerically consistent results for the
position and width of the dominant spectral peak structure
and therefore in the remainder of the study will analyze
the spectrum directly via the poles.
In order to ascertain, whether the Padé approximation is

a viable method for the exploration of spectral structures in
practice we must assess its reliability in a realistic test
scenario. To this end we carry out mock data tests based on
HTL correlation functions. We deploy as a starting point
the ideal correlators computed for T ¼ 667 MeV, discre-
tized on Nτ ¼ 12 points. This ideal data is distorted by
Gaussian noise. Here 1000 samples of the correlator are
generated, such that their mean exhibits constant relative
uncertainties of either ΔD=D ¼ 10−2 or ΔD=D ¼ 10−3.
Since the data in our lattice study is precise down to the
subpercent level, the choice of one-percent relative error
corresponds to a worst case scenario for the Padé analysis,
while the one-per-mille error represents the best-possible
scenario.
We carry out the Padé interpolation and pole analysis

based on a selection of eight noisy input data points,
starting with the correlator at positive Matsubara frequen-
cies. We have checked that adding or removing two data
points does not significantly change the results, as well as
that a reordering of the data points in the construction of
the continued fraction does not have any relevant effects.
Note that when adding more and more data points in the
construction of the Padé approximation, it will eventually
become unreliable. The reason is that the redundancy
of the Matsubara input data (symmetry of Re½W�,

antisymmetry of Im½W�) requires subtle cancellations to
take place in the continued fraction. We found that if we
use Nτ=2þ 2 data points for the approximation, the
position of poles does not change beyond statistical
errors with addition or removal of one more data point.
Thus, the optimal choice for stability was found when
using Nτ=2þ 2 data points.
The real and imaginary parts of the dominant pole are

plotted in the top and bottom panels of Fig. 16 respectively
as colored data points. The analytically known values for
the peak positionΩ and its width Γ are shown as gray solid
lines. The error bars here arise from a combination of
jackknife uncertainty, the differences in changing the
number of data points by one or two, as well as the
reordering in the construction of the continued fraction.
The HTL Padé pole analysis is very encouraging in that

even under the adverse circumstances of the relatively
large statistical uncertainty of ΔD=D ¼ 10−2 it allows us
to recover the position of the dominant peak well within
uncertainties. For ΔD=D ¼ 10−3 the results are spot on.
In Fig. 17 we have also computed several spectral

functions for ΔD=D ¼ 10−3. We can see that the peak
position is very well estimated. As expected the

FIG. 16. Extraction of spectral position Ω and width Γ of the
dominant peak, based on hard thermal loop mock data for
dD=D ¼ 10−2 and dD=D ¼ 10−3 for T ¼ 667 MeV. The error
bars are obtained from jackknife resampling.
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determination of the spectral width Γ on the other hand is
much more difficult and for the small number of data
points present here (Nτ ¼ 12), the results are not yet
robust at ΔD=D ¼ 10−2 and tend to significantly under-
estimate the true value even for ΔD=D ¼ 10−3. Thus for
the application to actual lattice data we will focus on
extracting Ω in the following.
Having checked the limitations of the Padé method in a

nontrivial realistic test case, we proceed to apply it to our
HISQ lattice data. We have carried out the pole analysis for
Padé interpolations based on different numbers of input
data points. On Nτ ¼ 12 lattices the results are unaffected
by changing between seven to eleven input points and we
arbitrarily decide to show the results based on eight. The
uncertainty budget represented by the error bars includes
the jackknife errors, as well as variation due to changes in
the ordering when composing the continued fraction.
For the Nτ ¼ 12 lattices we investigated, the Padé

interpolation yields one dominant pole close to the real
axis manifesting itself as a well-defined skewed Lorentzian
peak in the spectral function, as shown in Fig. 18.
Following the same procedure as in the HTL mock data
test, we can read of the real-part of the pole as Ω plotted in
Fig. 19 and the imaginary part as Γ shown in Fig. 20. As the
HTL mock data analysis suggests that a reliable
reconstruction of the potential’s imaginary part is not
possible even with smaller errors than what we presently
have from the lattice, we present the values of Γ recon-
structed from the lattice data simply for completeness. We
have carried out the analysis on both the subtracted and
unsubtracted correlators (see Sec. III B) and found that the
subtracted correlators are computed to a statistical precision
which unfortunately is not high enough for the Padé
approximation to extract the value of Γ with even statistical
reliability.
The values the Padé analysis yields for Ω on the HISQ

Wilson line correlators are similar to the results obtained
from the model spectral function fits deployed in Sec. IVA.
We find that the values do not show any significant changes
over a large temperature range.

FIG. 17. Representative selection of spectral functions ex-
tracted from hard thermal loop ideal data for dD=D ¼ 10−3 at
r ¼ 0.09, 0.11 and 0.27 fm respectively using Padé (colored
lines) vs the analytic HTL result (gray lines).

FIG. 18. Representative spectral functions obtained from the
Padé interpolation at T ¼ 407 MeV (β ¼ 7.825 Nτ ¼ 12) for
different separation distances. A single well defined peak
structure of skewed Lorentzian form emerges from the analysis.

FIG. 19. Ω as a function of separation distance for different
temperatures obtained from a Padé pole analysis onNτ ¼ 12. The
figure on the top is obtained by using the unsubtracted correlator
and the figure on the bottom is obtained using the subtracted
correlator.
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In Fig. 21 we pick out the results at T ¼ 407 MeV for a
closer inspection. We plot Ω, based on the subtracted and
unsubtracted Euclidean correlator Padé analysis at T > 0
(orange and dark blue data points), along with the T ¼ 0
static energy (light blue data points) and the color singlet
free energy. The results obtained are in stark contrast to
those of the method by Bala and Datta, in which at
temperatures inside the quark-gluon plasma (QGP) phase
one does observe a deviation from the linear rise present in
the hadronic phase. Our Padé results appear also in stark
contrast to previous analyses of the spectral functions of
Wilson lines from both quenched [19,21] and dynamical
QCD [22,23] based on Bayesian methods. There a dis-
cernable change of Ω with temperature was found, more
similar to the results of the HTL-motivated method in this
study. A previous Padé analysis of a subset of the HISQ
data was discussed in Ref. [64]. That analysis showed
relatively large uncertainties, arising from the fact that less
statistics was available and that the improved frequencies

were not deployed. Within its sizable uncertainties, these
results were consistent with the Bayesian studies but within
2σ would also encompass the result obtained here.

D. Determining the ground state peak via
Bayesian reconstruction

The last type ofmethods to be deployed in the study of the
Wilson line spectral function are Bayesian spectral recon-
structions. While the most well known variant, the maxi-
mum entropy method [65] faces challenges, as it does not
easily reproduce Lorentzian structures encoded in peaks, the
more recently developed BR method [19] has been
deployed successfully in the extraction of such structures,
both from mock data as well as from lattice QCD data.
All Bayesian methods exploit Bayes’ theorem

P½ρjD; I� ∝ P½Djρ; I�P½ρjI� ¼ exp½−Lþ αSBR�; ð31Þ

to systematically regularize the inversion problem. They
amend the simulation data D by additional so called prior
information I. The posterior probability P½ρjD; I� for a test
function ρ denotes the probability for ρ to be the correct
spectrum, given simulation data and prior information,
which in turn is written as the product of the likelihood
P½Djρ; I� and prior probabilityP½ρjI�. The former states how
compatible ρ is with the simulation data, and is nothing but
the usual quadratic distance functional used in χ2 fitting

L ¼ 1

2

XNd

i;j¼1

ðDi −Dρ
i ÞC−1

ij ðDj −Dρ
jÞ: ð32Þ

HereCij denotes the standard unbiased covariancematrix. It
is amended by the prior probability P½ρjI� ¼ exp½αSBR�,
which acts as a regulator to the many flat directions of the
likelihood functional

SBR ¼
Z

dω

�
1 −

ρðωÞ
mðωÞ þ log

�
ρðωÞ
mðωÞ

��
: ð33Þ

The function mðωÞ denotes the default model and by
definition corresponds to the correct spectrum in the
absence of data. In this work, we choose to use a default
model, which implements a 1=ω falloff at large frequencies
asmðωÞ ∝ 1=ðaω − aωmin þ 1Þ.When estimating the error
budget for the spectral features we include the variation
between results based on different default models,
including the constant one, as well as m ∝ ω;ω2 and
m ∝ 1=ðaω − aωmin þ 1Þ2.
In the original formulation of the BR method, the

hyperparameter α, which weighs the influence of prior
information and data is marginalized from the posterior by
assuming no knowledge of its values P½α� ¼ 1 so that

P½ρjD; I;m� ∝ P½Djρ; I�
Z

∞

0

dαP½ρjm; α�P½α�: ð34Þ

FIG. 20. Width Γ as a function of separation distance for
different temperatures obtained from Padé pole analysis for
Nτ ¼ 12. The analysis is done using unsubtracted correlators.

FIG. 21. Comparison of extracted Ω using subtracted and
unsubtracted correlators using Padé pole analysis with the T ¼
0 effective mass and color singlet free energy at T ¼ 408 MeV
(β ¼ 7.825, Nτ ¼ 12).
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In this study we deploy a different handling of α, namely
we tune the hyper parameter such that the likelihood takes
on the value L ¼ Nτ=2. This procedure is similar to
applying the Morozow criterion in classic regularization.
The motivation for this choice is to avoid very large or very
small values of α to contribute to the end results, as would
be the case when integrating over P½α� ¼ 1. In turn the
occurrence of ringing artefacts is expected to be dimin-
ished. In the present study no significant differences
between different choices of α handling were found.
After specifying the likelihood and prior, we numerically

search for the most probable spectrum in the Bayesian sense
by locating the unique extremum of the posterior
P½ρjD; I;m� via a quasi-Newton optimization algorithm,
the Limited Memory Broyden–Fletcher–Goldfarb–Shanno
method. In practice we resolve the spectrum along Nω ¼
1000 points in a frequency interval of ωa ¼ ½0∶15�. We take
into account all Euclidean data points except at τ ¼ 0 and
τ ¼ 1=T. This in particular excludes the point from which
the color singlet free energies are defined.
In previous studies it has been observed that the BR

method is well suited to extract strongly peaked spectral
features with high accuracy. On the other hand, if only a
small number of data points are available Oð10Þ, the
regulator SBR is unable to avoid ringing artifacts in the
reconstruction if the encoded spectrum contains broad
structures. Improving the regulator functional to retain
its resolving capability, while preventing ringing is a work
in progress (see e.g., Ref. [66]).
We can benchmark the reliability of the spectral

reconstruction at high temperatures by using the nontrivial
mock data computed in HTL similarly as for the Padé
reconstruction. In this case we add Gaussian noise with
constant relative error ΔD=D ¼ κ ¼ const directly to the
Euclidean data and supply it to the reconstruction algorithm.
As shown in Fig. 22 we find that for the worst case test with
κ ¼ 10−2, we are able to reproduce the position of the lowest
lying peak with higher precision than what the Padé method
allows us to do. For the width Γ, the BR results at κ ¼ 10−2

are equally disappointing as with the Padé method. However
if we go to the best case scenario of κ ¼ 10−3, the BRmethod
shows its strength in being able to much more closely recover
the correct imaginary part compared to the Padé method.
It is important to note that in none of the HTL mock data

tests have we encountered any signs of ringing artifacts.
This combined with the fact that the imaginary part of the
HTL potential is reproduced well, implies that the BR
method is well suited for reconstructing positive definite
spectral functions. A representative selection of recon-
structed spectral functions obtained with the BR method
from HTL mock data is shown in Fig. 23.
At low temperatures, e.g., at T ¼ 151 MeV, the

Euclidean correlators do not yet show signs of positivity
violation (i.e., we obtain effective masses that are monotonic
in Euclidean time) and the BR method succeeds in

reconstructing their spectral function. By construction, the
result reproduces the input Euclidean data points within their
statistical errors. A selection of these spectra for r ¼ 0.32,
0.64, 0.96 and 1.28 fm is shown in Fig. 24 (solid dark blue to

FIG. 22. Extraction of Ω and width Γ for hard thermal loop
ideal data for dD=D ¼ 10−2 and dD=D ¼ 10−3 for T ¼
667 MeV using the BR method. The error bars are obtained
from jackknife resampling.

FIG. 23. A selection of spectral functions extracted from hard
thermal loop data for dD=D ¼ 10−3 r ¼ 0.01, 0.09, 0.11 and
0.27 fm respectively (dark blue to light blue) using Bayesian
reconstruction vs the analytic result (solid gray).
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lighter blue) compared to the outcome of the Padé
reconstruction (gray solid).
We find important differences between the two

approaches. The BR method reconstructions, as expected
from the effective mass analysis, show a single well defined
lowest lying peak. Towards the origin that peak rapidly
decays in an exponential fashion, which is qualitatively
similar to the behavior observed in HTL spectral functions.
In contrast the Padé reconstruction assigns significant
weight to the low frequency region. This difference is
among the reasons, why the spectral function of the Padé
reconstruction does not fulfill the spectral decomposition of
the original Euclidean data, a known drawback of the Padé
reconstruction method.
At larger frequencies than its maximum, the BR spectral

function shows a tail, which eventually behaves as the
underlying default model, i.e. ∝ 1=ω for our main choice.
We have checked that changing the default model to
different powers α as m ∝ ωα does not change the peak
structure significantly. The central peak obtained by the BR
method agrees in position with the Padé result at small
distances. At larger distances the Padé method finds a bump
that is broadened considerably and assumes its maximal
value at a higher frequency than the BR spectra peak.
Let us compare Ω obtained from the Padé pole analysis

(magenta) and the skewed Breit-Wigner fit of the BR spectral
reconstruction (light blue) in Fig. 25. In addition we provide
the values of the peak position Ω at T ¼ 0 in green. Since
T ¼ 151 MeV still lies close to the crossover transition, the
effect of the medium on the static potential is expected to be
weak. We find this intuition reflected in the agreement
between the zero temperature static energy and the BR result
for Ω. Interestingly all three results agree up to around
r ¼ 0.3 fm. However as we consider larger distances we find
that the Padé reconstruction shows a systematic tendency to
lie above the zero temperature static energy. The effect
becomes significant around r ¼ 0.5 fm and remains visible

up to r ¼ 0.85 fm, beyond which the signal of the T ¼ 0
static energy is lost. The BR result lies much closer to the
T ¼ 0 effective masses over the whole range of distances.
The success of the BR reconstruction at T ¼ 151 MeV

tells us that the data is compatible with a dominant skewed
Breit-Wigner peak structure in the spectral function. At
higher temperatures the BR method cannot be reliably
applied to the extraction of spectral functions from the raw
correlators, due to the presence of nonpositivity in the
underlying spectral functions. At T ¼ 407 MeV, for exam-
ple, the effective masses at small distances show expli-
citly nonmonotonic behavior [7]. However, the spectral
density may not be positive definite even if the effective
masses decrease monotonically. We see that also at inter-
mediate distances, the BR method fails to converge
successfully.
While in principle we could proceed by investigating the

UV-subtracted finite temperature correlators, we have found
that the statistical uncertainties introduced by the T ¼ 0
subtraction dominate over those inherent in the T > 0 data,
thus preventing us from a precision analysis of the spectral
function at higher temperatures.

V. CONCLUSIONS

In the first part of the study we have investigated the
Wilson line correlation functions obtained from the numeri-
cal simulations directly in imaginary time. We computed the
first three cumulants, as defined in Eq. (7), of the imaginary-
time correlation functions. The nth cumulant of the imagi-
nary-time correlation function at τ ¼ 0 is equivalent to the
nth moment of the corresponding spectral functions [see
Eq. (3)], assuming that the moment of the underlying
spectral functions is finite. We found that they differ beyond
statistical errors from the predictions of resummed HTL
perturbation theory at all temperatures investigated, includ-
ing the highest temperature, T ¼ 1938 MeV. Furthermore,
even at the qualitative level there is a difference between the

FIG. 24. Comparison of reconstructed spectra using the Padé
(grey) and BR (blues) methods at T ¼ 151 MeV (β ¼ 6.740,
Nτ ¼ 12) at different separation distances r ¼ 0.32, 0.64, 0.96
and 1.28 fm.

FIG. 25. Comparison of Ω using the Padé method, BR method
and Gaussian fit at β ¼ 6.740 with Nτ ¼ 12 (T ¼ 151 MeV).
The T ¼ 0 potentials for the same β are given as grey data points.
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lattice results and HTL result. The first cumulant calculated
in leading order HTL perturbation theory is antisymmetric
around τ ¼ 1=ð2TÞ, but the lattice results do not show such a
feature except near τ ∼ 1=ð2TÞ. In addition we checked that
our data sets allow for a meaningful determination of up to
the third cumulant of the correlation function in Euclidean
time. For higher moments the signal to noise ratio does not
suffice. In turn we understand that our input data will be able
to constrain spectral information only within the limitations
placed by these three moments.
Thesecondpartof thestudywasconcernedwithextracting

the position Ω and width Γ of the dominant spectral peak
structureencodedin theWilsonlinecorrelators.Wedeployed
four different approaches: spectral function model fits
where the dominant peak is described by a Gaussian, the
HTL-inspired fit of Bala and Datta, the Padé approximation
and, where positivity allowed, the BR method.
In essence each of the four methods introduces certain

prior information in order to regularize the ill-posed
inversion problem to gain access to the spectral function.
It turns out that the Euclidean data scrutinized in the first
part of our study is amenable to different possible hypoth-
eses, which in turn lead to different outcomes for Ω and Γ.
The spectral function fits assume that the high energy part

of the spectral function has negligible temperature depend-
ence, and that the observed temperature dependence of the
Wilson line correlators is determined by the dominant peak
structure. Since the correlator is found to have a second
cumulant much larger than its higher cumulants, a Gaussian
for the dominant peak, and a single delta function for the low
energy tail are the simplest, permissible choices for para-
metrizing the data. The Gaussian spectral function model
shows a value of Ω, which is virtually independent of
temperature and a width, which scales trivially with the
temperature.
In order to extract the values ofΩ via the HTL-inspired fit,

one assumes that the correlation functions are amenable to a
certain nonstandard spectral decomposition, similar to the
one encountered in leading-order HTL perturbation theory.
This spectral decomposition leads to a first cumulant that is
antisymmetric around τ ¼ 1=ð2TÞ. Because of the small Nτ,
the fits can be performed only in a small region around
τ ¼ 1=ð2TÞ. This fit yields an Ω, which shows clear
temperature dependence and signs of asymptotic flattening
in the QGP phase. The width that the method computes
shows a nontrivial scaling with the temperature, which is
weaker than linear in the temperature.
The third method we deployed is the Padé rational

approximation. The only assumption it makes is that the
correlation function represents an analytic function.
However it suffers from the drawback that its outcome is
known to violate the spectral decomposition of the input
data. I.e., the Padé spectrum, when reinserted into the
Lehmann representation, does not reproduce the original
correlator. We have however tested the Padé method under

nontrivial settings in HTL perturbation theory and found that
for the temperature and spatial separation distances probed,
the position of the lowest lying peak structure was well
reproduced. Applied to genuine lattice data we obtained
results that were robust under changes in the number of input
points and a reordering when constructing the Padé approxi-
mation of the Matsubara domain input data. The outcome of
the extraction of Ω based on the Padé method yields values,
which similarly to the Gaussian model fit, show virtually no
temperature dependence. While the mock data tests tell us to
take the outcome of the width with a significant grain of salt,
we find small statistical error bars and a behavior that
qualitatively agrees with that of the Bala-Datta method, i.e.,
Γ scales weaker than linear with the temperature.
Last but not least we also deployed the BRmethod, where

positivity of the spectral function allowed. The BR method
has been extensively tested on HTLmock data and has been
shown to outperform other Bayesian methods, such as the
maximum entropy method in the accurate reconstruction of
the lowest lying peak fromWilson line correlators, a finding
reproduced in this study. As the BR method is designed to
reproduce the Euclidean input data within their uncertainty,
its reconstructed spectra denote a valid hypothesis for the
actual underlying spectrum. The BR method possesses an
explicit default model dependence, which however can and
is assessed by repeating reconstructions for different func-
tional forms of the default model. And while the BRmethod
is known to be susceptible to ringing artifacts, as its
regulator is weakest among the reconstruction methods
on the market, no signs of ringing have been observed in
this study, neither in the HTL mock test nor in the
reconstruction of genuine lattice data.

As a crucial limitation in the context of the current study,
the BR method is only applicable to positive definite spectral
functions. If effective masses show nonmonotonicity it
indicates that the BR method cannot be deployed.
However even if the effective masses are monotonous,
positivity violation may persist, which explains why the
BR method fails to converge successfully for higher temper-
atures on the raw Euclidean correlators. The outcome of the
extraction ofΩ, based on the BRmethod at low temperatures
such as T ¼ 151 MeV yields a real part which agrees well
with the static energy from (multi-state) exponential fits, also
applicable on those lattices. We find that the spectral
functions show well defined Breit-Wigner like peaks, which
get exponentially cut off close to the origin, similar to what is
seen in HTL perturbation theory at much higher temper-
atures. Comparing the BR result to the Padé method we find
that the Padé method incorrectly assigns too much weight to
the low frequency regime and at the same time produces a
less and less well-defined peak, which is consistently located
at a higher position than the BR peak. Agreement between
the BR method and the effective masses and the tension with
the Padé method starting around r ¼ 0.5 fm seem to
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indicate that the Padé method tends to overestimate the
values of Ω when applied to our lattice data.
The comparison of different methods of the spectral

reconstruction in terms of the peak position, Ω of
the dominant peak and its width, Γ is summarized in
Figs. 26 and 27, respectively for three temperatures, T ¼
151 MeV (just below the chiral crossover), T ¼ 199 MeV
(the typical temperature most relevant for the RHIC), and
T ¼ 408 MeV deep in the QGP. The present study sheds

new light on the extraction of Ω and Γ. While different
methods often lead to quantitatively different results some
general features are the same. The width Γ is significant
compared to the temperature scale and increases with
distance r for all temperatures. In fact, for the lowest
temperature all methods give consistent results for Γ. For
temperatures 150 MeV < T < 200 MeV, the Gaussian
fits and HTL fits lead to similar widths for large r, while
at small r the HTL fit gives a smaller width. The Padé
method always gives a smaller Γ than the Gaussian and
HTL fits at large r, but agrees with the HTL result at small

FIG. 26. Comparison of Ω as a function of separation distance
for three different temperatures 151, 199 and 408 MeV obtained
from different methods discussed in the text. We have also shown
the T ¼ 0 potential (dark grey) for all temperatures and the free
energy (light grey) for high temperature (408 MeV).

FIG. 27. Comparison of Γ=T as a function of separation distance
for three different temperatures 151, 199 and 408 MeV obtained
from different methods discussed in the text.
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r, cf. Fig. 27. The r dependence of the peak position turns
out to be similar for the Gaussian fits and the Padé
method, indicating an apparent absence of the screening
effects. Furthermore in the temperature range 150 MeV <
T < 200 MeV and at intermediate distances, all the
explored methods give a peak position that is slightly
larger than the singlet free energy; see Fig. 26. For these
temperatures, which are the most relevant ones for the
RHIC, the spread of the results is not too large in order to
have an impact on the phenomenological studies. At
higher temperatures, which are of interest for quarkonium
phenomenology in heavy ion collisions at the LHC our
results are inconclusive at present, and lattice calculations
with larger Nτ and smaller statistical errors are needed.
Increasing the temporal extent of the lattice will be
possible in the coming years. At the same time accumu-
lation of statistics at T ¼ 0 will also enable a high
precision subtraction, which in turn will enable us to
use the BR method above the crossover temperature.

All data from our calculations, presented in the figures of
this paper, can be found in [67].
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APPENDIX A: THE SPECTRAL
DECOMPOSITION OF STATIC QQ̄

CORRELATORS

In this Appendix we discuss the general features of the
spectral decomposition of the static meson correlation
function. Let Or ¼ Q̄ðxÞUðx − yÞQðyÞ be a static meson
operator with r ¼ jx − yj. The gauge connection Uðx − yÞ
runs along the straight line connecting the spatial points x
and y and may be constructed from smeared links on the
lattice. More complicated paths are also possible. In
Coulomb gauge we set Uðx − yÞ ¼ 1. The static meson
correlation function at nonzero temperature is defined as

Wðr; τ; TÞ ¼ hOrðτÞOrð0Þi

¼ 1

ZðTÞTr½Orð0Þe−τHOrð0Þe−ðβ−τÞH�;

β ¼ 1=T; ZðTÞ ¼
X
n

e−βEn : ðA1Þ

Using the energy eigenstates to evaluate the trace in the
above expression and inserting a complete set of energy
eigenstates between the operators Or the spectral decom-
position of the static meson correlation function can be
written as

Wðr; τ; TÞ ¼ 1

ZðTÞ
X
n;n0

e−ðβ−τÞEne−E
0
nτjhnjOrð0Þjn0ij2; ðA2Þ

where jni are states without the static QQ̄ pair and jn0i are
the states that also contain the static QQ̄ pair at distance r.
Since static quarks are not part of the thermal system in the
evaluation of the trace we only take into account the states
jni. Hereafter, we introduce Cr

nm ¼ jhnjOrjm0ij2. Let us
take into account the few lowest terms in the spectral
decomposition, n ¼ 0, 1, 2 and n ¼ 00; 10; 20:

ZðTÞWðr; τ; TÞ ¼ e−ðβ−τÞE0e−E00 ðrÞτC00

þ e−ðβ−τÞE0e−E10 ðrÞτCr
01

þ e−ðβ−τÞE1e−E00 ðrÞτCr
10

þ e−ðβ−τÞE1e−E10 ðrÞτCr
11

þ e−ðβ−τÞE0e−E20 ðrÞτCr
02

þ e−ðβ−τÞE2e−E00 ðrÞτCr
20

þ e−ðβ−τÞE2e−E20 ðrÞτCr
22: ðA3Þ
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Now we assume that the energy of the vacuum is zero,
while the energy of the vacuum state plus a staticQQ̄ is the
static QQ̄ energy: E0 ¼ 0 and E00 ðrÞ ¼ VðrÞ. We ignore
the contribution of hybrid potentials for now. For the
energy of the states with a QQ̄ pair plus a hadronic state
we write

En0 ðrÞ ¼ VðrÞ þ En þ ΔEnðrÞ; ðA4Þ

where ΔEnðrÞ is the interaction energy of theQQ̄ pair with
hadron state n, and it could be either positive or negative.
For small r we expect ΔEnðrÞ ≪ En because hadrons do
not interact significantly with a tiny color singlet dipole.
Now let us assume that j1i has nonvacuum quantum
number, i.e., Cr

01 ¼ Cr
10 ¼ 0 and state j2i has vacuum

quantum number, i.e., Cr
20 ≠ 0 and Cr

20 ≠ 0. Then we also
have Cr

21 ¼ Cr
12 ¼ 0 and the corresponding terms have

been already omitted in Eq. (A3). Note that the matrix
elements Cr

02 and Cr
20 could be small since the operator Or

is optimized to create a single static meson state, while j20i
is an extended state of a static meson and a multi-hadron
state with vacuum quantum numbers. Now we can write

ZðTÞWðr; τ; TÞ ¼ C00e−VðrÞτ þ C11e−βE1e−ðVðrÞþΔE1ðrÞÞτ

þ C22e−βE2e−ðVðrÞþΔE2ðrÞÞτ

× C02e−ðVðrÞþE2þΔE2ðrÞÞτ

þ C20e−ðβ−τÞE2e−VðrÞτ: ðA5Þ

The first term is the contribution of the vacuumQQ̄ energy.
The second and third terms are due to thermal effects, and
they correspond to a broadening of the spectral function and
vanish in the zero temperature limit. The fourth term is just an
excited state contribution to the correlator at T ¼ 0 corre-
sponding to a static Q̄Q pair of size r and a hadron statewith
vacuum quantum numbers, e.g., isospin zero ππ states. The
last term is Boltzmann suppressed for all τ, except for τ very
close to β. This is the term that causes a rapid decrease of
effective masses when τ ∼ β. The spectral function corre-
sponding to the above correlator can be written as

ρrðω; TÞ ¼ ρmed
r ðω; TÞ þ ρhighr ðω; TÞ þ ρtailr ðω; TÞ; ðA6Þ

ρmed
r ðω; TÞ ¼ 1

ZðTÞ ½C
r
00δðω − VðrÞÞ

þ Cr
11e

−βE1δðω − VðrÞ − ΔE1ðrÞÞ
þ Cr

22e
−βE2δðω − VðrÞ − ΔE2ðrÞÞ�; ðA7Þ

ρhighr ðω; TÞ ¼ 1

ZðTÞC
r
02δðω − VðrÞ − ΔE2ðrÞ − E2Þ; ðA8Þ

ρtailr ðω; TÞ ¼ 1

ZðTÞC
r
20e

−βE2δðω − VðrÞ þ E2Þ: ðA9Þ

We see that ρmed is a discrete version of a narrow broadened
peak,while ρtailr can have support forωwell below the ground
state peak. Note that the above considerations are valid not
only for static meson correlators but also for nonrelativistic
meson correlators, e.g., extended bottomonium correlators in
NRQCD considered in Refs. [13,49,50].
It is straightforward to generalize the above spectral

function to include all states. First, we note that E00 does not
only correspond to the ground state QQ̄ energy but also to
hybrid potentials as well as static-light mesons. We denote
these additional states by VαðrÞ; α ≥ 1. If we use index k for
all hadron states with vacuum quantum number (e.g.,
isospin zero two pion states) for the spectral function we
can write

ρrðω; TÞ ¼ ρmed
r ðω; TÞ þ ρhighr ðω; TÞ þ ρtailr ðω; TÞ; ðA10Þ

ρmed
r ðω;TÞ¼ 1

ZðTÞ½C
r
00δðω−VðrÞÞ

þ
X
n

Cr
nne−βEnδðω−VðrÞ−ΔEnðrÞÞ�; ðA11Þ

ρhighr ðω; TÞ ¼ 1

ZðTÞ
�X

k

Cr
0kδðω − VðrÞ − ΔEkðrÞ − EkÞ

þ
X
α

Crα
00δðω − VαðrÞÞ

þ
X
n;α

Crα
nne−βEnδðω − VαðrÞ − ΔEnðrÞÞ

�
;

ðA12Þ

ρtailr ðω;TÞ¼ 1

ZðTÞ
�X

k

Cr
k0e

−βEkδðω−VðrÞþEkÞ

þ
X
α

X
k

Crα
k0e

−βEkδðω−VαðrÞþEkÞ

þ
X
n;m≠0

Cr
nme−βEnδðω−VðrÞ−ΔEmðrÞ−EmþEnÞ

þ
X
α

X
n;m≠0

Crα
nme−βEnδðω−VαðrÞ

−ΔEmðrÞ−EmþEnÞ
�
: ðA13Þ

Since Ek can be very large the ρtailr ðω; TÞ can be nonzero at
very small ω. We see that the spectral function of the static
QQ̄ pair has three contributions: a dominant peak that is
broadened at nonzero temperature, a high ω part reflecting
the excited state contributions and a low ω tail that mostly
contributes at τ ¼ β. This is exactly what we see in our
lattice results.
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APPENDIX B: PARAMETERS OF THE
CALCULATIONS, QUARK MASS AND

CUTOFF EFFECTS

In this Appendix we summarize the parameters used in
our lattice calculations, including the bare gauge coupling
β ¼ 10=g20, the quark masses, the corresponding temper-
ature values, as well as the corresponding statistics in terms
of molecular dynamic time units (TUs). Measurements of
the Wilson loops and Wilson line correlators have been
performed every 10 TUs. We also discuss some systematic
errors in our calculations such as quark mass effects and
cutoff effects.
The parameters and statistics for the zero temperature

lattices are summarized in Table I. The parameters for
Nτ ¼ 16, 12 and 10 lattice are shown in Tables II–IV,
respectively.
As one can see from the tables for Nτ ¼ 10 and Nτ ¼ 12

lattices we have calculations at the same values of β ¼ 8.0,
8.2 and 8.4 but with different quark masses. In Fig. 28 we
show the comparison of the effective masses calculated at
different sea quark masses for Nτ ¼ 10 and 12. We see
from the figures that there is no statistically significant
difference between the calculations performed for ml ¼
ms=5 and ms=20. Thus we conclude that the quark mass
effects are small for temperatures T > 474 MeV.

We study cutoff effects in terms of the second cumulant,
m2. In Fig. 29 we show the Nτ dependence of the square
root of negative m2 as function of τT for temperatures
which are very close. We do not see a statistically
significant Nτ dependence.

APPENDIX C: QUALITY OF THE FITS OF THE
QQ̄ CORRELATION FUNCTION

In this Appendix we discuss the quality of the fit of the
static QQ̄ correlation function in Coulomb gauge with the
Gaussian form given by Eq. (12) and with the HTL inspired
(Bala-Datta) form given by Eq. (21). In Fig. 30 we show the
residue of the Gaussian fits in terms of the first cumulant for
three representative temperatures and rT ¼ 1=4; 1=2 and
3=4. As one can see from the figure the Gaussian form
describes the Wilson line correlator very well in the entire τ
range, with possibly an exception of the τ ¼ a data point at
high temperatures.
In Fig. 31 we show the residual of the fits for the Bala-

Datta form for the first cumulant. For the shortest distance,
rT ¼ 1=4 the fit captures the data well, except at the
shortest and largest values of τ. For larger distances this fit
only works for τT around 1=2.

TABLE I. Parameters of the calculations on zero temperature
lattices forml ¼ ms=20 (upper part) andml ¼ ms=5 (lower part).

ml ¼ ms=20

β a (fm) Nσ , Nτ ams mπL #TUs Ref.

6.740 0.109 484 0.0476 4.2 1350 [38]
6.800 0.103 324 0.0448 2.7 5650 [38]
6.880 0.095 484 0.0412 3.7 1400 [38]
6.950 0.089 324 0.0386 2.3 10830 [38]
7.030 0.083 484 0.0356 3.2 1355 [38]
7.150 0.074 643 × 48 0.0320 2.9 1458 [38]
7.280 0.066 643 × 48 0.0284 2.5 1734 [38]
7.373 0.060 643 × 48 0.0250 2.3 4623 [40]
7.596 0.049 644 0.0202 2.6 4757 [40]
7.825 0.040 644 0.0164 2.0 4768 [40]

ml ¼ ms=5

β a [fm] Nσ , Nτ ams mπL #TUs Ref.

8.000 0.035 644 0.01299 3.6 4616 [42]
8.200 0.029 644 0.01071 3.1 4616 [42]
8.400 0.025 644 0.00887 2.6 4616 [42]

TABLE II. Parameters of the 643 × 16 calculations for the two
different light quark masses. The lower part of the table
corresponds to ml ¼ ms=5, while the upper part corresponds
to ml ¼ ms=20.

ml ¼ ms=20

β ams T (MeV) #TUs

7.825 0.00164 306 67960
8.570 0.008376 577 10400
8.710 0.007394 650 10190
8.850 0.006528 731 4480
9.060 0.004834 872 41870
9.230 0.004148 1005 3610
9.360 0.003691 1121 3530
9.490 0.003285 1250 6790
9.670 0.002798 1454 42060

ml ¼ ms=5

β ams T (MeV) #TUs

8.000 0.001299 356 11460
8.200 0.001071 422 10660
8.400 0.000887 500 64370
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TABLE IV. Parameters of the calculations on 403 × 10 lattices
for ml ¼ ms=20 (upper part) and ml ¼ ms=5 (lower part).

ml ¼ ms=20

β ams T (MeV) #TUs

6.285 0.0790 116 9260
6.341 0.0740 123 39190
6.423 0.0670 133 10360
6.488 0.0620 142 102690
6.515 0.0604 146 107530
6.575 0.0564 155 106020
6.608 0.0542 160 112890
6.664 0.0514 169 155440
6.740 0.0476 181 200250
6.800 0.0448 192 279830
6.880 0.0412 208 341490
6.950 0.0386 222 243480
7.030 0.0378 239 137730
7.150 0.0320 267 145440
7.280 0.0284 301 105990
7.373 0.0250 328 50840
7.596 0.0202 400 51710
7.825 0.0164 489 54000
8.000 0.0140 569 6780
8.200 0.01167 675 27500
8.400 0.00975 800 7540
8.570 0.008376 924 3000
8.710 0.007394 1039 15320
8.850 0.006528 1169 7690
9.060 0.004834 1395 15490
9.230 0.004148 1608 7630
9.360 0.003691 1794 15800
9.490 0.003285 2000 7990
9.670 0.002798 2326 15760

ml ¼ ms=5

β ams T (MeV) #TUs

8.000 0.01299 569 82770
8.200 0.01071 675 72180
8.400 0.00887 800 72770

TABLE III. Parameters of the calculations on 483 × 12 lattices
for ml ¼ ms=20 (upper part) and ml ¼ ms=5 (lower part).

ml ¼ ms=20

β ams T (MeV) #TUs

6.515 0.0604 122 32500
6.608 0.0542 133 19990
6.664 0.0514 141 45120
6.700 0.0496 146 15900
6.740 0.0476 151 29410
6.770 0.0460 156 15530
6.800 0.0448 160 36060
6.840 0.0430 166 17370
6.880 0.0412 173 46350
6.950 0.0386 185 50550
7.030 0.0378 199 65940
7.100 0.0332 213 9640
7.150 0.0320 223 9600
7.200 0.0296 233 4010
7.280 0.0284 251 58210
7.373 0.0250 273 85120
7.596 0.0202 334 98010
7.650 0.0202 350 3230
7.825 0.0164 408 134600
8.000 0.0140 474 3110
8.200 0.01167 562 30090
8.400 0.00975 667 29190
8.570 0.008376 770 6320
8.710 0.007394 866 6490
8.850 0.006528 974 6340
9.060 0.004834 1162 7430
9.230 0.004148 1340 7280
9.360 0.003691 1495 7910
9.490 0.003285 1667 9780
9.670 0.002798 1938 7650

ml ¼ ms=5

β ams T (MeV) #TUs

8.000 0.01299 474 71670
8.200 0.01071 563 71390
8.400 0.00887 667 71170
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