
Flow Measurement and Instrumentation 73 (2020) 101739

Available online 10 April 2020
0955-5986/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A novel approach based on artificial neural network for calibration of 
multi-hole pressure probes 

Homam Nikpey Somehsaraei a,**, Magnus H€olle b, Herwart H€onen b, Mohsen Assadi a 

a Department of Energy and Petroleum Engineering, University of Stavanger, 4036, Stavanger, Norway 
b Institute of Jet Propulsion and Turbomachinery, RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany   

A R T I C L E  I N F O   

Keywords: 
Pressure probe 
Polynomial approach 
ANN 
Calibration 

A B S T R A C T   

Imperfections in the manufacturing process of flow measuring probes affect their measuring behavior. Never-
theless, in order to provide the highest possible accuracy, each individual multi-hole pressure probe has to be 
calibrated before using them in turbomachinery. This paper presents a novel method based on artificial neural 
networks (ANN) to predict the flow parameters of multi-hole pressure probes. A two-stage ANN approach using 
multilayer perceptron (MLP) is proposed in this study. The two-stage prediction approach involves two MLP 
networks, which represent the calibration data and the prediction error. For a given set of inputs, outputs from 
both networks are combined to estimate the measured value. The calibration data of a 5-hole probe at RWTH 
Aachen was used to develop and validate the proposed ANN models and two-stage prediction approach. The 
results showed that the ANN can predict the flow parameters with high accuracy. Using the two-stage approach, 
the prediction accuracy was further improved compared to polynomial functions, i.e. a commonly used method 
in probe calibration. Furthermore, the proposed approach offers high interpolation capabilities while preventing 
overfitting (i.e. failure to fit new data). Unlike polynomials, it is shown that the ANN based method can provide 
accurate predictions at intermediate points without large oscillations.   

1. Introduction 

The determination of the three-dimensional steady flow properties in 
a turbomachine requires information about Mach number, total pressure 
and the flow angles in yaw and pitch direction. Pneumatic multi-hole 
probes (e.g. 4-hole or 5-hole probes) are commonly applied in-
struments for the measurement of the 3D flow vectors. The crucial 
design criteria for these probe types are the measuring characteristics, 
which have to provide an unambiguous assignment of the pressure 
readings to the spatial flow properties. 

The example of a 5-hole probe with spherical head as shown in Fig. 1 
demonstrates that the pressure readings of bores 1 and 3 are sensitive for 
angle variations in horizontal direction (yaw) and those of bores 2 and 4 
indicate angle variations in vertical direction (pitch). 

Each probe has its specific measuring characteristic, which depends 
on the probe geometry, manufacturing inaccuracies and other influ-
encing parameters. In order to obtain the best possible measuring ac-
curacy, each probe has to be calibrated individually in a well-known 
flow. For this purpose, the probe is installed in a calibration wind tunnel, 
where the Mach number and the flow angles are varied systematically, 

and the five pressures are measured for the different operating condi-
tions. Each Mach number and angle setting is characterized by a set of 
pressure readings. The relationship between the measured pressure 
values and the flow properties can be described by normalized co-
efficients. These parameters which have to be independent from each 
other are chosen in such a way that they display the abovementioned 
characteristics. One possibility for the definition of characteristic vari-
ables is shown in the following [1]: 

kMa¼
Δp
p0

(1)  

kα¼
p3 � p1

Δp
(2)  

kγ¼
p4 � p1

Δp
(3)  

with Δp ¼ p0 �
p1þp3

2 . 
Each calibration parameter is then described by the following func-

tion: 
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Y ¼ f ðkMa;  kα; kγÞ (4)  

where Y represents calibration parameters, namely Mach number (Ma), 
yaw angle (α) and pitch angle (γ). In addition, two calibration param-
eters for the total and static pressures can be defined as: 

kpt¼
pt � p0

Δp
(5)  

kps¼
p0 � ps

Δp
(6) 

The dependencies between the calibration parameters and the three 
characteristic variables kMa, kα and kγ are given by the sample points in 
the calibration space and can be expressed by calibration functions ac-
cording to Equation (4). Bohn and Simon [1] describe a polynomial 
approach for the evaluation of the calibration maps for a 5-hole probe 
with the geometry shown in Fig. 1. A polynomial method for the 
application with seven-hole probes was published by Gallington [2] and 
Gerner et al. [3]. The probe head was divided into several sectors ac-
counting for the flow direction. For each of these sectors, four equations 
for the flow angles, α and γ, as well as the pressure coefficients Cpt (total 
pressure) and Cq (dynamic pressure) were defined. Based on the cali-
bration data within one sector, the polynomial coefficients, c, are 
derived applying a least-squares method for each calibration parameter. 
The accuracy of this method is sufficient for the center sector (flow di-
rection approximately aligned with probe head axis) but quite poor for 
the others. Angle errors in the outer sectors increase significantly and are 
not sufficient for an appropriate application of this approximation 
approach. Wenger and Devenport [4] reported on an extended approach 

where they apply error look-up tables for improving the approximation 
accuracy. In a first step, the calibration functions for the different flow 
properties are fitted by cubical polynomial functions using the 
least-square method as describe above. Since the fitting surface results in 
deviations at the sample points from the calibration, an error value can 
be derived for each of these points. The calibration function can then be 
defined as C(Ca,Cb) ¼ f(Ca,Cb) þ e(Ca, Cb), where f(Ca, Cb) is the poly-
nomial function for each calibration parameter and e(Ca, Cb) charac-
terizes the deviations between measurement and approximation at each 
sample point. The derived error values are listed in a database and can 
be used for correction of the approximated parameters. For points be-
tween the sample points, the errors are derived by interpolation. This 
method has a significant advantage in comparison to a pure polynomial 
approach. The application of the polynomial function reduces the 
interpolation parts and thus the arising interpolation error. Finally, this 
method provides an exact match with the calibration data. 

However, the accuracy of the methods described above significantly 
depends on the number of sample points during the calibration and the 
order of the polynomial functions. High-order polynomial functions 
suffer from overfitting when interpolating between points and on the 
other hand, low-order polynomial functions cause high deviations at the 
sample points. Additionally, the number of sample points is directly 
related to the duration of the calibration involving personal and oper-
ational costs. Advanced data analytics based on artificial intelligence 
(AI) seem to be a promising solution to avoid these limitations while 
maintaining the desired level of accuracy. 

It is well known that ANN as an AI based technique, due to its many 
advantages such as pattern recognition, nonlinearity and adaptivity [5], 

Nomenclature 

AI Artificial intelligence 
ANN Artificial neural network 
c! Velocity vector 
C Polynomial coefficient 
CAD Computer aided design 
GFF Generalized feed forward 
k Pressure coefficient 
MLP Multilayer perceptron 
MAE Mean absolute error 
Ma Mach number 
p Pressure 
Qprop Quick propagation 
R Correlation factor 
RBF Radial basis function 
Rprop Resilient backpropagation 

w Synaptic weights 
x ANN inputs 
y ANN outputs 
Y Calibration parameter 

Greek Symbols 
α Yaw angle 
γ Pitch angle 
Δ Difference 
ϕ Transfer function of the hidden neuron 
g Transfer function of the output neurons 

Subscript 
ct Calibration 
s Static 
t Total 
0 … 1 Number of pressure holes  

Fig. 1. 5-hole probe (left: CAD model with numbering of the pressure holes, right: probe head with 2.8 mm diameter).  
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offers a high interpolation capability as well as accurate predictions 
against unseen data. The ANN learns from the data by constructing a 
function that relates inputs to outputs. It was shown in authors’ previous 
works that ANN is a suitable method for complex and multidimensional 
problems [6–10]. Despite several studies focusing on well-stablished 
approaches such as those mentioned above, there are quite a few pub-
lications on the subject of ANN applications for probe calibration. For 
example, an ANN was used by Rediniotis and Chrysanthakopoulos [11] 
to predict the flow angles as well as static and total pressure coefficients 
of a seven-hole probe. The comparison between the predicted and actual 
values showed that the ANN could not meet the expected accuracy levels 
and further modifications were required to enhance its performance 
[11]. As a continuation to this study, Rediniotis together with Vijaya-
gopal [12] developed a self-optimizing ANN based algorithm for cali-
bration of miniature multi-hole probes, which allowed selection of 
different activation functions for each processing unit or neuron. This 
resulted in a significant improvement in the prediction accuracies of 
flow angles and velocities. Fan et al. [13] proposed an ANN based 
calibration method which was trained using the differential evolution 
algorithm. The algorithm was developed and tested by limited number 
of samples obtained from calibrating a five-hole probe. The testing re-
sults showed that although ANNs can predict the flow parameters with 
good accuracy, the deviation between predictions and targets for some 
samples were still too high [13]. In these studies, the ANNs have shown 
the potential to provide accurate approximations in probe calibration 
applications but still more research is required to shed light on the ANN 
capabilities and achieve more accurate results. 

Therefore, this study aims at a detailed investigation on using ANNs 
for prediction of the calibration parameters of pneumatic multi-hole 
probes. This was enabled thanks to availability of real-case data from 
the calibration of a 5-hole probe at the Institute of Jet Propulsion and 
Turbomachinery, RWTH Aachen University (IST). The final target of 
these investigations was to explore the possibility to reduce the exper-
imental effort for the calibration by using ANNs for the generation of the 
calibration maps. Therefore, it was first of all necessary to develop a 
suitable ANN and to compare the outputs with those from the poly-
nomial approach to make sure that the resulting errors of both methods 
are in the same order. This could be the basis for future investigations 
about the effects of reduced number of sample (measuring) points on the 
accuracy of the ANN. 

A systematic analysis in different steps was carried out to identify the 
optimum network structure. Several networks with different configu-
rations were developed and their performance was evaluated and 
compared with polynomial functions. The concluding optimum ANN 
model was then used to develop a novel two-stage approach that 
resulted in further improvement of the prediction accuracy. Finally, 
ANNs trained with reduced number of calibration points were used for 
prediction of the intermediate samples to analyze their interpolation 
capability. Toward this end, the development and analysis carried out 
can be summarized as follows: 

1. A baseline MLP neural network was trained and tested using cali-
bration data.  

2. A systematic analysis through testing different combinations of 
network, training algorithms, transfer functions and hidden neurons 
was carried out to find the optimum solution in comparison with the 
baseline network.  

3. The optimum network architecture was then used to develop a two- 
stage approximation approach that incorporated two ANNs to pre-
dict the calibration parameters and the approximation errors sepa-
rately. The sum of the predictions of two ANNs gives the estimation 
of the measured value.  

4. Finally, to test the interpolation capability of the ANNs, the proposed 
two-stage method was tested by data at the intermediate points be-
tween two sample points, which were not used during training. 

The paper is organized as follows. In Section 2, the methodology, 
including experimental setup, polynomial and ANN approaches used in 
this study is described. The detailed discussions on the obtained results 
are presented in Section 3, which is then followed by the conclusion in 
Section 4. 

2. Methodology 

2.1. Experimental setup 

For the generation of a database for the comparison of the two 
approximation procedures, a spherical 5-hole probe (see Fig. 1) was 
calibrated in a free stream wind tunnel at ambient conditions for a Mach 
number range between 0.1 and 0.8. Fig. 2 shows a typical calibration 
set-up. The probe positioning and high accuracy angle adjustment was 
performed by means of a robot. The probe was positioned stepwise in 
different angle settings in the range of �25� in yaw and in pitch direc-
tion. In the normal calibration process, the steps are chosen to 5�. 

Fig. 3 shows an example of a calibration map for the abovementioned 
angle range and steps of 5�. The distributions of the characteristic var-
iables kα and kγ for α ¼ 0� and for γ ¼ 0� are almost horizontal and 
vertical lines which indicate a high manufacturing accuracy with good 
geometric symmetry. However, it becomes obvious that for high angles 
of attack the surface becomes quite destorted. The deformation of the 
lines in the center region of kα indicate the influence of the probe stem at 
high pitch angles (see angle definition in Fig. 1). This asymmetric 
behavior means a significant challenge for a proper surface fitting with 
low approximation errors. 

2.2. Polynomial function approach 

As a commonly applied approach, the mathematical relationship 
between the three characteristic variables kα, kγ and kMa and the flow 
parameters is established by multi-parametric approximations: 

Y ¼
Xl

i¼0

Xm

j¼0

Xn

k¼0
δi;j;k⋅CY i;j;k⋅kk

Ma⋅kj
α⋅ki

γ (7)  

with 

δi;j;k ¼

� 1 if i; j; k � max ðl; m; nÞ
0 for the other

cases 

The polynomial degrees l, m and n are usually not the same. In the 
evaluation process for the calibration data, they are varied between 
three and the maximum degree. The coefficients CY i,j,k are determined 
by applying the least square method. 

Considering the abovementioned calibration range (0.1 < Ma < 0.8 
in steps of ΔMa ¼ 0.1, α ¼ �25� in steps of Δα ¼ 5�, γ ¼ �25� in steps of 
Δγ ¼ 5�), in total 968 data sets (Y, kMa, kα, kγ) are available for the 
approximation. For each calibration coefficient (calibration map), one 
polynomial (fitting function) is derived. Due to the imperfectness of the 
calibration maps described above, certain deviations between the 
measured sample points and the approximation values will occur. Fig. 4 
shows these approximation errors at the example of the Mach number. 
The left diagram indicates the deviations at each sample point. The error 
histogram in the right diagram demonstrates that in about 70% of the 
points, the differences between approximated and measured Mach 
numbers (ΔMa) is less than 0.0055 (i.e. almost 1%). The maximum 
deviation is 0.016 and the average value was calculated to 0.004. 

In addition to the deviations at the calibration points, the polynomial 
functions may show unwanted oscillations between the sample points. 
These may lead to significant errors in the calculated flow properties. 
Fig. 5 illustrates this problem on the calibration surfaces at Ma ¼ 0.5 for 
the yaw and pitch angle as well as the Mach number and the coefficient 
kpt. These diagrams show the regarding calibration as well as several 
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points indicating errors of the flow values at intermediate points be-
tween two sample points. For this, the results from the polynomial 
function were compared to linearly interpolated points in the kα-kγ 
plane. Orange interpolation points indicate a medium deviation and red 
interpolation points denote a high deviation from the expected cali-
bration surface. Interpolated points with low deviations are not dis-
played. Fig. 5a and b shows the yaw angle, α, and the pitch angle, γ, 
respectively. Orange points indicate deviations larger than 0.3�, red 
points larger than 0.5�. The yaw angle exhibits large deviations in the 
region of large positive values of kα and kγ. Likewise, the pitch angle 
shows high deviations in the region of large positive kα values as well as 
in the region of large negative kα values in combination with large 
positive kγ values. Similarly, the Mach number as well as the coefficient 
kps in Fig. 5c and d displays significant deviations due to oscillations of 
the polynomial functions. Orange interpolation points indicate de-
viations larger than 0.0025 Ma and 0.015 kps, red interpolation points 
represent deviations larger than 0.005 Ma and 0.025 kps. 

The risk of these oscillations increases with the order of the poly-
nomial functions. However, higher order polynomials usually minimize 
the deviations at the calibration points. Since such oscillations are in 
general unpreventable using polynomial functions, advanced analytics 
like ANN should be favored. 

Fig. 2. Calibration wind tunnel with robot (left: total view, right: probe in front of nozzle). The components of the wind tunnel shown in the picture are 1. Settling 
chamber, 2. Nozzle, 3. Robot, 4. Probe and 5. Exhaust duct. 

Fig. 3. 2D calibration map kα – kγ for Ma ¼ 0.55.  

Fig. 4. Approximation error for Ma ¼ 0.55 (left: deviations at the sample points, right: error histogram).  
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2.3. ANN based approach 

The ANN mimics the way in which the brain performs. It mainly 
consists of processing units called artificial neurons that are connected 
to each other to form the structure or topology of the network. The 
neurons contain an activation or a transfer function that transforms the 
input signals to output signals. The neural network learns the knowledge 
about a system, which is represented by a data set, through a training 
process. During the training process, the interneuron connections, so- 
called synaptic weights or weights, are tuned to store the salient fea-
tures that characterize the data [5]. Once ANNs are trained, the weights 
are frozen, and the long-term memory of the ANN is formed. The trained 
ANN enables the acquired knowledge to be recalled predicting the 
outputs when new inputs are introduced. The ANN usually performs 
accurately for data lying in between the training data, which is indeed 
referred to high interpolation capability of a trained ANN. 

Like the polynomial function approach, as shown in Fig. 6, the ANN 
was constructed to approximate calibration parameters including Ma, α, 
γ, kpt and kps as a function of characteristic variables, namely kα, kγ and 
kMa. A data set consisting of 9680 measurements from 986 calibration 
points (as described in preceding section) with 10 measurements at each 
calibration point was used to train the ANN model. The arithmetically 
averaged measured values at each calibration point, constituting a data 
set with 968 samples, were used for testing the performance of the 
trained networks. For better understanding, Table 1 shows an example 
of training and testing samples at a particular calibration point (i.e. at 
Ma ¼ 0.5, α ¼ 10� and γ ¼ 25�). 

There are different parameters such as the neural network structure, 

training algorithm, and transfer function that should be optimized in 
developing an ANN model. Optimizing these parameters involves de-
velopers’ experience as well as trial and error, which requires systematic 
testing of various options and retraining to identify the best combina-
tion. The approach used in this study will be explained in detail in the 
rest of the section. 

Previous experiences of authors show that feed-forward network 
architectures have been a suitable method for the modeling of complex 
energy systems when an accurate prediction is required [6–10]. Of these 
networks, the multilayer perceptron (MLP) is by far the most commonly 

Fig. 5. Visualization of polynomial oscillations between calibration points for Ma ¼ 0.5 as a function of kα and kγ.(a) α angle, (b) γ angle, (c) Mach number, (d) 
calibration parameter kps. 

Fig. 6. ANN model structure.  
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applied network. Fig. 7 shows a typical MLP structure with one hidden 
layer. The inputs denoted by x are multiplied by weights, which repre-
sent the strengths of connections connecting input units to neurons in 
the hidden layer. The weighted inputs are then summed and trans-
formed while passing through the hidden neurons. The outputs of hid-
den neurons are the inputs for the output layer. They are weighted, 
combined and processed in the hidden layer, where the outputs corre-
sponding to inputs are calculated. The functional representation of an 
MLP network with n inputs, k hidden neurons and m outputs shown in 
Fig. 7 can be defined using Equation (8): 

ym¼ g

 
Xk

j¼0
w2

mjϕ

 
Xn

i¼0
w1

jixi

!!

(8)  

wji
1 is a weight connecting input i to the hidden unit j, and wj0

1 is the bias 
for the hidden unit j, corresponding to the fixed input x0 equals 1. 
Similarly, wmj

2 denotes a weight, connecting hidden unit j to the output 
unit m, and wm0

2 is the bias for the output unit m, corresponding to the 
fixed input equals 1. ϕ(.) and g(.) represent the transfer function of the 
hidden and output neurons respectively. 

As the first attempt, an MLP neural network with one hidden layer 
was evolved during the training process. The training process of MLPs is 
carried out in two phases. Firstly, errors are evaluated in the output layer 
and weights between the output and the hidden layer (wmj

2 ) are adjusted. 
Secondly, the resulting error is propagated in a backward path through 

the network, and weights between the hidden layer and the input layer 
(wji

1) are updated. This process is repeated until the error between the 
predicted outputs and desired values is converged to an acceptable low 
level. This algorithm is known as back-propagation [5]. Although MLPs 
can have more than one hidden layer, there is no impediment to having 
more than one hidden layer. It has been proved that one layer of the 
hidden neurons with a continuous activation function is enough to 
approximate any continuous functions if it has a sufficient number of 
neurons (i.e. universal approximation theorem) [5]. The sigmoid hy-
perbolic tangent function was chosen as the transfer function and the 
number of hidden neurons varied from 10 to 20. The batch method was 
used for updating the weights. In the batch method, all training exam-
ples, known as epoch, are introduced to the network and training is 
performed on epoch-by-epoch basis. The results illustrated the capa-
bility of the ANN to approximate the calibration parameters with rather 
good accuracy. 

The developed MLP was considered as the baseline ANN and various 
network options and training algorithms were then examined to identify 
the optimum combination of the network structure, learning algorithm 
and transfer function. This was carried out systematically in a three-step 
trial and error analysis. The first step concerned specifying the most 
suitable network with highest prediction performance. There are many 
different types of feed-forward neural networks, but most of them can be 
classified as belonging to one of the main networks, namely MLP, 
generalized feed forward (GFF), Jordan-Elman and radial basis function 
(RBF) networks. Different ANNs based on these networks were trained 
using the abovementioned settings and their accuracies were tested and 
compared with each other. Fig. 8 shows the results of selecting different 
network structures. MLP emerged as the best network with lowest 
approximation error for all calibration parameters. In the second step, 
the prediction performance of MLP network was investigated with 
different learning algorithms in order to find the most compatible 
learning algorithms. Fig. 9 presents the approximation errors for output 

Table 1 
An example of training and testing samples.  

no. Measurements αct γct Mact kα kγ kMa kpt kps 

1 10 25 0.5 � 1.015 � 2.026 0.091 0.481 1.326 
2 10 25 0.5 � 1.013 � 2.023 0.091 0.478 1.326 
3 10 25 0.5 � 1.014 � 2.024 0.091 0.479 1.326 
4 10 25 0.5 � 1.014 � 2.025 0.091 0.483 1.326 
5 10 25 0.5 � 1.014 � 2.024 0.091 0.478 1.326 
6 10 25 0.5 � 1.014 � 2.027 0.091 0.480 1.327 
7 10 25 0.5 � 1.017 � 2.021 0.091 0.478 1.325 
8 10 25 0.5 � 1.017 � 2.024 0.091 0.478 1.325 
9 10 25 0.5 � 1.017 � 2.024 0.091 0.481 1.326 
10 10 25 0.5 � 1.017 � 2.029 0.091 0.481 1.327 
Averaged value for testing 10 25 0.5 � 1.015 � 2.025 0.091 0.480 1.326  

Fig. 7. Schematic of a MLP network [14].  Fig. 8. Approximation errors for different networks.  
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parameters with respect to learning algorithms. The results showed that 
Levenberg–Marquardt (LM) algorithm undoubtedly provides the best 
prediction results for MLP. Since the MLP training involves back prop-
agation of errors, the neurons of the hidden layer should have nonlinear 
transfer functions, but neurons in output layer can have either linear or 
nonlinear functions. The sigmoidal nonlinear function is a commonly 
used transfer function in the design of MLPs, two main forms of which 
are the logistic and hyperbolic tangent (tanh) functions. The third step of 
analysis aimed at defining the most desired transfer function. After 
testing different functions, nonlinear tanh was selected for both hidden 
and output layers. 

The results of the systematic analysis showed that the MLP network 
with tanh transfer function, which was trained by LM algorithm, pro-
vides the least amount of approximation errors. Nevertheless, the errors 
were still higher than those that were obtained from the polynomial 
function approach. Variations in the number of hidden neurons using 
25, 30, 35, 40, 45 and 50 neurons were promoted and it was found that 
the MLP with 50 hidden neurons increases the accuracy, without losing 
the generalization or prediction capability. Higher numbers of hidden 
neurons were also tested but no further improvement in approximation 
errors was achieved. 

Given the limited accuracy of the MLP, a novel two-stage approxi-
mation approach was thus proposed to improve the results. This 
approach involved two MLPs with the optimum architecture obtained 
from analysis as discussed above to approximate the calibration pa-
rameters and the approximation errors separately. Fig. 10 shows the 
sketch of the two-stage approach. The first MLP was used to predict the 
calibration parameters. The errors (êi) generated by comparison 

between predictions and desired values were then used to form an error 
data set. The error data set was used to train the second MLP, providing 
an estimation of the error for the same set of inputs. Since the developed 
approach should be able to predict the output parameters in the un-
known flow and thus the input parameters should be independent of the 
flow parameters, the same input parameters were used in ANN2 to 
predict the errors. The final approximation is obtained by the summa-
tion of the results from both ANNs, i.e. Ŷ þ Ê. The ANN model derived 
from error values was used for refining the approximated parameters. It 
was found that the approximation accuracy was further improved using 
the proposed two-stage approach. The obtained results were in agree-
ment with the study reported in Ref. [4], where two polynomial func-
tions were used to approximate the parameters and errors. Finally, the 
interpolation capability of the two-stage method was tested using a data 
set that contained samples at intermediate flow angles (α and γ from � 25 
to 25 with step of 1.25�) for the same Mach numbers used for the cali-
bration. The results obtained from the performed analyses are presented 
and discussed in the next section. 

3. Results and discussions 

This section presents and discusses the results in detail. Two main 
parameters, namely correlation factor (R) and mean absolute error 
(MAE), were considered to assess and compare the performance of the 
developed ANNs. They are defined as following: 

MAE¼ 
PN

i¼1jbyi � yij

N
(9)  

R¼
PN

i¼1ðbyi �
bYÞðyi � YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1ðbyi �
bYÞ2
PN

i¼1ðbyi � YÞ2
q (10)  

where ̂yi and yi represent the ith approximated and measured values of a 

particular calibration parameter, bYand Ȳ are respectively the average of 
approximated and measured values of that calibration parameter. N 
denotes the number of samples. The correlation factor R is a measure of 
the linear relationship between prediction and desired values. The 
greater the R is, the better the model fits to the data. The MAE is a 
measure for the accuracy of the models, which is defined by the mean 
absolute error between the predicted and desired values. The smaller the 
MAE is, the more accurate the model is. 

Table 2 shows the approximation errors of calibration parameters 
that resulted from the optimum single-stage ANN in comparison with 
the errors obtained from the polynomial approximation. It can be seen 
that the levels of errors for all output parameters are considerably low 
and the accuracies of most outputs are approximately at the same level 
as the polynomial approach. However, the maximum errors are slightly 
higher than those of polynomials. The linear correlation coefficient, R, 
for flow parameters and pressure coefficients is almost around 0.999, 
which indicates that the predictions are very close to measurements. 

Due to the fact that a high level of accuracy is required for the 
calibration, the two-stage method based on ANN as shown in Fig. 10 was 
proposed and developed to enhance the performance of the approxi-
mation task. The approximation errors of outputs are listed in Table 3. 
The results generally show that the errors are further reduced using the 
proposed methods, which was also noticed with the slight improvement 
in R coefficient for all output parameters. More specifically, not only the 
MAE of αct, Mact and kpt are similar to the polynomial approach but also 
the maximum deviation decreased. For γct and kps, the MAE decreased 
but the maximum error is still a little higher compared to the polynomial 
approximation. The high value of R, i.e. 0.999, achieved for all output 
parameters, indicates a very good match between predicted and 
measured values. This is illustrated in Fig. 11, where the approximated 
values (y-axis) are plotted together with desired values (x-axis) for all 
outputs. The dashed line is the best-fit line that represents the best linear 

Fig. 9. Approximation errors for different learning algorithms.  

Fig. 10. The schematic of two-stage approximation approach.  
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Table 2 
The approximation errors of calibration parameters for the optimum single-stage ANN architecture.  

Outputs ANN MAE ANN Max. error R Polynomial MAE Polynomial Max. error Polynomial R 

αct 0.129 0.597 0.999 0.090 0.600 0.999 
γct 0.233 1.267 0.999 0.130 0.910 0.999 
Mact 0.002 0.022 0.999 0.002 0.014 0.999 
kpt 0.012 0.085 0.999 0.009 0.076 0.999 
kps 0.010 0.065 0.997 0.006 0.040 0.991  

Table 3 
The approximation errors of calibration parameters for the two-stage ANN method.  

Outputs ANN MAE ANN Max. error R Polynomial MAE Polynomial Max. error Polynomial R 

αct 0.087 0.437 0.999 0.090 0.600 0.999 
γct 0.194 1.375 0.999 0.130 0.910 0.999 
Mact 0.002 0.013 0.999 0.002 0.014 0.999 
kpt 0.010 0.071 0.999 0.009 0.076 0.999 
kps 0.009 0.057 0.999 0.006 0.040 0.991  

Fig. 11. Comparison between the desired and approximated (a) αct (b) γct (c) Mact (d) kpt and (e) kps values using two-stage ANN method.  
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relationships between predictions and measurements. It can be seen that 
the predicted values fit to the measured values, with almost all data 
lying on a straight line. 

In order to determine the flow parameters for total and static pres-
sure (pt and ps), the predicted kpt and kps values are further processed 
using Equations (5) and (6). Their values were compared with those 
from the polynomial approach. The approximation error and the error 
distribution over different ranges for these two parameters together with 
αct, γct and Mact are shown in Table 4. While the approximation errors for 
αct, Mact and ps have improved using ANN, polynomial approximations 
provide better results for pt and γct. However, the differences are small 
and generally, the performance of the two approaches is quite 
comparable. 

An ANN trained with the data for a particular range is in general able 
to predict output parameters with good accuracy for a different range 
lying in between the ranges of training data. This is called the interpo-
lation capability of the ANN. To check the interpolation capability of the 
two-stage ANN approach, the calibration data at Ma ¼ 0.5 is linearly 
interpolated to generate three intermediate points in each direction of 
the kα- and kγ-plane. This results in an interpolated grid with steps of 
1.25� in the yaw and pitch angle direction, as shown in Fig. 12. On the 
basis of the interpolated calibration variables, the polynomial functions 
and the trained two-stage ANN were used to predict the calibration 
parameters at the interpolated points. The linearly interpolated cali-
bration parameters were used as a reference to determine the perfor-
mance for each approach. Although this procedure assumes that the 
distribution of the intermediate points exhibits a purely linear behavior, 
it can be used to check the general interpolation capabilities. Table 5 
lists results of the interpolation study for the two-stage ANN approach 
and the polynomial functions at Ma ¼ 0.5. The values for the mean 
absolute errors are comparable between the ANN and the polynomial 
functions. However, the ANN performs much better for the maximum 
errors. Moreover, for flow angles, the ANN provides a clear advantage. 
As a result, the two-stage ANN approach is the preferred algorithm due 
to its better interpolation capabilities. For better illustration, the scatter 
plots of the ANN and polynomial predictions with respect to reference 
values for flow angles are provided in Fig. 13. The red markers represent 
the polynomial approximations, which show undesired deviations at 
some intermediate points. 

Unlike the polynomial approximation, which is highly dependent on 
the data and shows large deviations at intermediate samples, the pro-
posed ANN based approach provides satisfactory results at intermediate 
points without being overfitted to training data. In other words, if these 
two approaches were used to interpolate in ranges falling between the 
calibration points, the ANN approach can make much better predictions. 

4. Conclusion 

In this study, the application of the ANN to predict the flow pa-
rameters for calibration of multi-hole pressure probes was investigated 
and compared with the commonly used polynomial functions. For this 
purpose, the data obtained from the calibration of a five-hole probe with 
spherical head at the Institute of Jet Propulsion and Turbomachinery, 
RWTH Aachen University (IST) was used to develop ANNs and test their 
performance. A baseline ANN was constructed and then the network 
architecture and setup was optimized through a systematic four-step 
analysis by examining different combinations of network options, 
learning algorithms, transfer function and number of neurons in the 
hidden layer. It was concluded that the MLP network with one hidden 
layer and nonlinear transfer function for both hidden and output 

Table 4 
The approximation errors and error distribution of calibration parameters for the two-stage ANN method.  

Error range <0.1� 0.1�–0.2� 0.2�–0.3� 0.3�–0.4� 0.4�–0.5� >0.5�

αct - poly 640 228 77 13 7 3   
αct -ANN 638 247 67 15 1 0   

γct - poly 540 225 105 52 20 26   
γct - ANN 331 254 185 98 45 55    

Error range < 0.001 0.001–0.002 0.002–0.003 0.003–0.004 0.004–0.005 > 0.005   

Mact - poly 215 337 207 111 50 48   
Mact - ANN 435 281 119 68 40 25    

Error range < 50 Pa 50–100 Pa 100–150 Pa 150–200 Pa 200–550 Pa > 250 Pa Max. Error MAE 

pt - poly 684 154 58 19 22 31 532 48 
pt - ANN 526 161 99 51 32 99 1034 91 

ps - poly 544 146 100 50 41 87 1026 85 
ps - ANN 565 151 85 56 41 70 833 79  

Fig. 12. Calibration grid and linearly interpolated grid at Ma ¼ 0.5.  

Table 5 
The approximation errors of calibration parameters for interpolation study.  

Outputs ANN 
MAE 

ANN Max. 
error 

Polynomial 
MAE 

Polynomial Max. 
error 

αct 0.138 1.625 0.168 10.475 
γct 0.247 1.698 0.198 2.874 
Mact 0.003 0.032 0.002 0.029 
kpt 0.012 0.188 0.012 0.233 
kps 0.016 0.290 0.013 0.306  
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neurons, which was trained by Levenberg–Marquardt algorithm, pro-
vides the optimum solution with best accuracy compared to the poly-
nomial approach. The MAE for outputs, namely Mact, αct, γct, kpt and kps, 
are 0.129, 0.233, 0.002, 0.012 and 0.01, respectively, which are com-
parable to the accuracy of the polynomial approach. The optimum ANN 
setup was used to develop a novel two-stage ANN method. First, the flow 
parameters were predicted and then an error data set was generated by 
calculating the errors between predictions and measurements to develop 
the second ANN, providing an estimation of the error for the same in-
puts. The final outputs are calculated by the sum of the predictions of 
flow parameters and corresponding error values. The validation results 
showed that the approximation accuracy was further improved using the 
proposed two-stage approach. While for the αct, Mact and kpt, the error 
levels were at the same levels as the polynomial approximations, the 
MAE of γct and kps decreased and a very high value of R i.e. 0.999 was 
achieved for all output parameters. Finally, the interpolation capability 
of the two-stage ANN approach was studied using linearly interpolated 
points. The comparison with the polynomial functions illustrated that 
the ANN method proposed in this study not only predicts the flow pa-
rameters with high accuracy comparable to the polynomial functions at 
the calibration points, but also performs better at intermediate points. 
The maximum error for αct and γct significantly reduced from 10.475 to 
2.874 to 1.625 and 1.698, respectively. The results basically showed that 
ANN with high interpolation capability provides the potential to reduce 
the experimental efforts, and thereby the cost, for the generation of the 
calibration maps, using less sampling points. In this context, the future 
work of the authors mainly focuses on evaluating the effects of reduced 
number of sample (measuring) points on the accuracy of the ANN. 
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