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Imperfections in the manufacturing process of flow measuring probes affect their measuring behavior. Never-
theless, in order to provide the highest possible accuracy, each individual multi-hole pressure probe has to be
calibrated before using them in turbomachinery. This paper presents a novel method based on artificial neural
networks (ANN) to predict the flow parameters of multi-hole pressure probes. A two-stage ANN approach using
multilayer perceptron (MLP) is proposed in this study. The two-stage prediction approach involves two MLP
networks, which represent the calibration data and the prediction error. For a given set of inputs, outputs from
both networks are combined to estimate the measured value. The calibration data of a 5-hole probe at RWTH
Aachen was used to develop and validate the proposed ANN models and two-stage prediction approach. The
results showed that the ANN can predict the flow parameters with high accuracy. Using the two-stage approach,
the prediction accuracy was further improved compared to polynomial functions, i.e. a commonly used method
in probe calibration. Furthermore, the proposed approach offers high interpolation capabilities while preventing
overfitting (i.e. failure to fit new data). Unlike polynomials, it is shown that the ANN based method can provide
accurate predictions at intermediate points without large oscillations.

and the five pressures are measured for the different operating condi-

1. Introduction

The determination of the three-dimensional steady flow properties in
a turbomachine requires information about Mach number, total pressure
and the flow angles in yaw and pitch direction. Pneumatic multi-hole
probes (e.g. 4-hole or 5-hole probes) are commonly applied in-
struments for the measurement of the 3D flow vectors. The crucial
design criteria for these probe types are the measuring characteristics,
which have to provide an unambiguous assignment of the pressure
readings to the spatial flow properties.

The example of a 5-hole probe with spherical head as shown in Fig. 1
demonstrates that the pressure readings of bores 1 and 3 are sensitive for
angle variations in horizontal direction (yaw) and those of bores 2 and 4
indicate angle variations in vertical direction (pitch).

Each probe has its specific measuring characteristic, which depends
on the probe geometry, manufacturing inaccuracies and other influ-
encing parameters. In order to obtain the best possible measuring ac-
curacy, each probe has to be calibrated individually in a well-known
flow. For this purpose, the probe is installed in a calibration wind tunnel,
where the Mach number and the flow angles are varied systematically,
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tions. Each Mach number and angle setting is characterized by a set of
pressure readings. The relationship between the measured pressure
values and the flow properties can be described by normalized co-
efficients. These parameters which have to be independent from each
other are chosen in such a way that they display the abovementioned
characteristics. One possibility for the definition of characteristic vari-
ables is shown in the following [1]:
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Each calibration parameter is then described by the following func-
tion:
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Nomenclature

Al Artificial intelligence
ANN Artificial neural network
< Velocity vector

C Polynomial coefficient
CAD Computer aided design
GFF Generalized feed forward
k Pressure coefficient

MLP Multilayer perceptron
MAE Mean absolute error

Ma Mach number

p Pressure

Qprop  Quick propagation

R Correlation factor

RBF Radial basis function
Rprop  Resilient backpropagation

w Synaptic weights

X ANN inputs

y ANN outputs

Y Calibration parameter

Greek Symbols

a Yaw angle

y Pitch angle

A Difference

[ Transfer function of the hidden neuron
g Transfer function of the output neurons
Subscript

ct Calibration

S Static

t Total

0...1  Number of pressure holes

Y =f(kma, karky) C)]

where Y represents calibration parameters, namely Mach number (Ma),
yaw angle (@) and pitch angle (y). In addition, two calibration param-
eters for the total and static pressures can be defined as:

P — P
kpt :ITPO 5)

s =p"A—pps ®)

The dependencies between the calibration parameters and the three
characteristic variables kya, ky and k, are given by the sample points in
the calibration space and can be expressed by calibration functions ac-
cording to Equation (4). Bohn and Simon [1] describe a polynomial
approach for the evaluation of the calibration maps for a 5-hole probe
with the geometry shown in Fig. 1. A polynomial method for the
application with seven-hole probes was published by Gallington [2] and
Gerner et al. [3]. The probe head was divided into several sectors ac-
counting for the flow direction. For each of these sectors, four equations
for the flow angles, o and vy, as well as the pressure coefficients Cp (total
pressure) and Cq (dynamic pressure) were defined. Based on the cali-
bration data within one sector, the polynomial coefficients, c, are
derived applying a least-squares method for each calibration parameter.
The accuracy of this method is sufficient for the center sector (flow di-
rection approximately aligned with probe head axis) but quite poor for
the others. Angle errors in the outer sectors increase significantly and are
not sufficient for an appropriate application of this approximation
approach. Wenger and Devenport [4] reported on an extended approach

where they apply error look-up tables for improving the approximation
accuracy. In a first step, the calibration functions for the different flow
properties are fitted by cubical polynomial functions using the
least-square method as describe above. Since the fitting surface results in
deviations at the sample points from the calibration, an error value can
be derived for each of these points. The calibration function can then be
defined as C(C,,Cp) = f(C,,Cp) + e(Ca, Cp), where f(C,, Cp) is the poly-
nomial function for each calibration parameter and e(C,, C}) charac-
terizes the deviations between measurement and approximation at each
sample point. The derived error values are listed in a database and can
be used for correction of the approximated parameters. For points be-
tween the sample points, the errors are derived by interpolation. This
method has a significant advantage in comparison to a pure polynomial
approach. The application of the polynomial function reduces the
interpolation parts and thus the arising interpolation error. Finally, this
method provides an exact match with the calibration data.

However, the accuracy of the methods described above significantly
depends on the number of sample points during the calibration and the
order of the polynomial functions. High-order polynomial functions
suffer from overfitting when interpolating between points and on the
other hand, low-order polynomial functions cause high deviations at the
sample points. Additionally, the number of sample points is directly
related to the duration of the calibration involving personal and oper-
ational costs. Advanced data analytics based on artificial intelligence
(AD) seem to be a promising solution to avoid these limitations while
maintaining the desired level of accuracy.

It is well known that ANN as an Al based technique, due to its many
advantages such as pattern recognition, nonlinearity and adaptivity [5],

Fig. 1. 5-hole probe (left: CAD model with numbering of the pressure holes, right: probe head with 2.8 mm diameter).
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offers a high interpolation capability as well as accurate predictions
against unseen data. The ANN learns from the data by constructing a
function that relates inputs to outputs. It was shown in authors’ previous
works that ANN is a suitable method for complex and multidimensional
problems [6-10]. Despite several studies focusing on well-stablished
approaches such as those mentioned above, there are quite a few pub-
lications on the subject of ANN applications for probe calibration. For
example, an ANN was used by Rediniotis and Chrysanthakopoulos [11]
to predict the flow angles as well as static and total pressure coefficients
of a seven-hole probe. The comparison between the predicted and actual
values showed that the ANN could not meet the expected accuracy levels
and further modifications were required to enhance its performance
[11]. As a continuation to this study, Rediniotis together with Vijaya-
gopal [12] developed a self-optimizing ANN based algorithm for cali-
bration of miniature multi-hole probes, which allowed selection of
different activation functions for each processing unit or neuron. This
resulted in a significant improvement in the prediction accuracies of
flow angles and velocities. Fan et al. [13] proposed an ANN based
calibration method which was trained using the differential evolution
algorithm. The algorithm was developed and tested by limited number
of samples obtained from calibrating a five-hole probe. The testing re-
sults showed that although ANNs can predict the flow parameters with
good accuracy, the deviation between predictions and targets for some
samples were still too high [13]. In these studies, the ANNs have shown
the potential to provide accurate approximations in probe calibration
applications but still more research is required to shed light on the ANN
capabilities and achieve more accurate results.

Therefore, this study aims at a detailed investigation on using ANNs
for prediction of the calibration parameters of pneumatic multi-hole
probes. This was enabled thanks to availability of real-case data from
the calibration of a 5-hole probe at the Institute of Jet Propulsion and
Turbomachinery, RWTH Aachen University (IST). The final target of
these investigations was to explore the possibility to reduce the exper-
imental effort for the calibration by using ANNs for the generation of the
calibration maps. Therefore, it was first of all necessary to develop a
suitable ANN and to compare the outputs with those from the poly-
nomial approach to make sure that the resulting errors of both methods
are in the same order. This could be the basis for future investigations
about the effects of reduced number of sample (measuring) points on the
accuracy of the ANN.

A systematic analysis in different steps was carried out to identify the
optimum network structure. Several networks with different configu-
rations were developed and their performance was evaluated and
compared with polynomial functions. The concluding optimum ANN
model was then used to develop a novel two-stage approach that
resulted in further improvement of the prediction accuracy. Finally,
ANNSs trained with reduced number of calibration points were used for
prediction of the intermediate samples to analyze their interpolation
capability. Toward this end, the development and analysis carried out
can be summarized as follows:

1. A baseline MLP neural network was trained and tested using cali-
bration data.

2. A systematic analysis through testing different combinations of
network, training algorithms, transfer functions and hidden neurons
was carried out to find the optimum solution in comparison with the
baseline network.

3. The optimum network architecture was then used to develop a two-
stage approximation approach that incorporated two ANNs to pre-
dict the calibration parameters and the approximation errors sepa-
rately. The sum of the predictions of two ANNs gives the estimation
of the measured value.

4. Finally, to test the interpolation capability of the ANNs, the proposed
two-stage method was tested by data at the intermediate points be-
tween two sample points, which were not used during training.
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The paper is organized as follows. In Section 2, the methodology,
including experimental setup, polynomial and ANN approaches used in
this study is described. The detailed discussions on the obtained results
are presented in Section 3, which is then followed by the conclusion in
Section 4.

2. Methodology
2.1. Experimental setup

For the generation of a database for the comparison of the two
approximation procedures, a spherical 5-hole probe (see Fig. 1) was
calibrated in a free stream wind tunnel at ambient conditions for a Mach
number range between 0.1 and 0.8. Fig. 2 shows a typical calibration
set-up. The probe positioning and high accuracy angle adjustment was
performed by means of a robot. The probe was positioned stepwise in
different angle settings in the range of +25° in yaw and in pitch direc-
tion. In the normal calibration process, the steps are chosen to 5°.

Fig. 3 shows an example of a calibration map for the abovementioned
angle range and steps of 5°. The distributions of the characteristic var-
iables ky and k, for a = 0° and for y = 0° are almost horizontal and
vertical lines which indicate a high manufacturing accuracy with good
geometric symmetry. However, it becomes obvious that for high angles
of attack the surface becomes quite destorted. The deformation of the
lines in the center region of k, indicate the influence of the probe stem at
high pitch angles (see angle definition in Fig. 1). This asymmetric
behavior means a significant challenge for a proper surface fitting with
low approximation errors.

2.2. Polynomial function approach

As a commonly applied approach, the mathematical relationship
between the three characteristic variables ky, k; and km, and the flow
parameters is established by multi-parametric approximations:

1 m n
Y= "61u-Cr ijukip kK, %)

i—0 j=0 k=0
with

ifi, j, k < max (I, m, n)

1
Oijk = { 0 for the other
cases

The polynomial degrees [, m and n are usually not the same. In the
evaluation process for the calibration data, they are varied between
three and the maximum degree. The coefficients Cy jjx are determined
by applying the least square method.

Considering the abovementioned calibration range (0.1 < Ma < 0.8
in steps of AMa = 0.1, @ = £25° in steps of Aa = 5°, y = £25° in steps of
Ay = 5°), in total 968 data sets (Y, kma, ko, k;) are available for the
approximation. For each calibration coefficient (calibration map), one
polynomial (fitting function) is derived. Due to the imperfectness of the
calibration maps described above, certain deviations between the
measured sample points and the approximation values will occur. Fig. 4
shows these approximation errors at the example of the Mach number.
The left diagram indicates the deviations at each sample point. The error
histogram in the right diagram demonstrates that in about 70% of the
points, the differences between approximated and measured Mach
numbers (AMa) is less than 0.0055 (i.e. almost 1%). The maximum
deviation is 0.016 and the average value was calculated to 0.004.

In addition to the deviations at the calibration points, the polynomial
functions may show unwanted oscillations between the sample points.
These may lead to significant errors in the calculated flow properties.
Fig. 5 illustrates this problem on the calibration surfaces at Ma = 0.5 for
the yaw and pitch angle as well as the Mach number and the coefficient
kp. These diagrams show the regarding calibration as well as several
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Fig. 2. Calibration wind tunnel with robot (left: total view, right: probe in front of nozzle). The components of the wind tunnel shown in the picture are 1. Settling

chamber, 2. Nozzle, 3. Robot, 4. Probe and 5. Exhaust duct.
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Fig. 3. 2D calibration map k, - k, for Ma = 0.55.
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points indicating errors of the flow values at intermediate points be-
tween two sample points. For this, the results from the polynomial
function were compared to linearly interpolated points in the kq-k,
plane. Orange interpolation points indicate a medium deviation and red
interpolation points denote a high deviation from the expected cali-
bration surface. Interpolated points with low deviations are not dis-
played. Fig. 5a and b shows the yaw angle, @, and the pitch angle, 7,
respectively. Orange points indicate deviations larger than 0.3°, red
points larger than 0.5°. The yaw angle exhibits large deviations in the
region of large positive values of ky and k,. Likewise, the pitch angle
shows high deviations in the region of large positive k, values as well as
in the region of large negative k, values in combination with large
positive k, values. Similarly, the Mach number as well as the coefficient
kps in Fig. 5c¢ and d displays significant deviations due to oscillations of
the polynomial functions. Orange interpolation points indicate de-
viations larger than 0.0025 Ma and 0.015 kyps, red interpolation points
represent deviations larger than 0.005 Ma and 0.025 k.

The risk of these oscillations increases with the order of the poly-
nomial functions. However, higher order polynomials usually minimize
the deviations at the calibration points. Since such oscillations are in
general unpreventable using polynomial functions, advanced analytics
like ANN should be favored.
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Fig. 4. Approximation error for Ma = 0.55 (left: deviations at the sample points, right: error histogram).
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Fig. 5. Visualization of polynomial oscillations between calibration points for Ma = 0.5 as a function of k, and k,.(a) @ angle, (b) y angle, (c) Mach number, (d)

calibration parameter k.

2.3. ANN based approach

The ANN mimics the way in which the brain performs. It mainly
consists of processing units called artificial neurons that are connected
to each other to form the structure or topology of the network. The
neurons contain an activation or a transfer function that transforms the
input signals to output signals. The neural network learns the knowledge
about a system, which is represented by a data set, through a training
process. During the training process, the interneuron connections, so-
called synaptic weights or weights, are tuned to store the salient fea-
tures that characterize the data [5]. Once ANNs are trained, the weights
are frozen, and the long-term memory of the ANN is formed. The trained
ANN enables the acquired knowledge to be recalled predicting the
outputs when new inputs are introduced. The ANN usually performs
accurately for data lying in between the training data, which is indeed
referred to high interpolation capability of a trained ANN.

Like the polynomial function approach, as shown in Fig. 6, the ANN
was constructed to approximate calibration parameters including Ma, o,
¥, kpt and kps as a function of characteristic variables, namely k, k, and
kma- A data set consisting of 9680 measurements from 986 calibration
points (as described in preceding section) with 10 measurements at each
calibration point was used to train the ANN model. The arithmetically
averaged measured values at each calibration point, constituting a data
set with 968 samples, were used for testing the performance of the
trained networks. For better understanding, Table 1 shows an example
of training and testing samples at a particular calibration point (i.e. at
Ma = 0.5, « = 10° and y = 25°).

There are different parameters such as the neural network structure,

Inputs:
characteristic variables

Outputs:
calibration parameters

— Ma,,

—
acr

ANN
4 Model

— Ja
-k,

— ky,

Fig. 6. ANN model structure.

training algorithm, and transfer function that should be optimized in
developing an ANN model. Optimizing these parameters involves de-
velopers’ experience as well as trial and error, which requires systematic
testing of various options and retraining to identify the best combina-
tion. The approach used in this study will be explained in detail in the
rest of the section.

Previous experiences of authors show that feed-forward network
architectures have been a suitable method for the modeling of complex
energy systems when an accurate prediction is required [6-10]. Of these
networks, the multilayer perceptron (MLP) is by far the most commonly
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Table 1

An example of training and testing samples.
no. Measurements Acr Yet Ma,, kg k, knta kpe kps
1 10 25 0.5 —1.015 —2.026 0.091 0.481 1.326
2 10 25 0.5 —-1.013 —2.023 0.091 0.478 1.326
3 10 25 0.5 —1.014 —2.024 0.091 0.479 1.326
4 10 25 0.5 —1.014 —2.025 0.091 0.483 1.326
5 10 25 0.5 —1.014 —2.024 0.091 0.478 1.326
6 10 25 0.5 —1.014 —2.027 0.091 0.480 1.327
7 10 25 0.5 -1.017 —2.021 0.091 0.478 1.325
8 10 25 0.5 —-1.017 —2.024 0.091 0.478 1.325
9 10 25 0.5 -1.017 —2.024 0.091 0.481 1.326
10 10 25 0.5 -1.017 —2.029 0.091 0.481 1.327
Averaged value for testing 10 25 0.5 —-1.015 —2.025 0.091 0.480 1.326

applied network. Fig. 7 shows a typical MLP structure with one hidden
layer. The inputs denoted by x are multiplied by weights, which repre-
sent the strengths of connections connecting input units to neurons in
the hidden layer. The weighted inputs are then summed and trans-
formed while passing through the hidden neurons. The outputs of hid-
den neurons are the inputs for the output layer. They are weighted,
combined and processed in the hidden layer, where the outputs corre-
sponding to inputs are calculated. The functional representation of an
MLP network with n inputs, k hidden neurons and m outputs shown in
Fig. 7 can be defined using Equation (8):

k n
ym—g(ZwijaS(Zw.}ixf)) ®)
j=0 i=0

wjli is a weight connecting input i to the hidden unit j, and wjlo is the bias
for the hidden unit j, corresponding to the fixed input xp equals 1.
Similarly, wﬁy denotes a weight, connecting hidden unit j to the output
unit m, and w%y is the bias for the output unit m, corresponding to the
fixed input equals 1. ¢(.) and g(.) represent the transfer function of the
hidden and output neurons respectively.

As the first attempt, an MLP neural network with one hidden layer
was evolved during the training process. The training process of MLPs is
carried out in two phases. Firstly, errors are evaluated in the output layer
and weights between the output and the hidden layer (wﬁu-) are adjusted.
Secondly, the resulting error is propagated in a backward path through

Input layer

Hidden layer

Output layer

Fig. 7. Schematic of a MLP network [14].

the network, and weights between the hidden layer and the input layer
(wjli) are updated. This process is repeated until the error between the
predicted outputs and desired values is converged to an acceptable low
level. This algorithm is known as back-propagation [5]. Although MLPs
can have more than one hidden layer, there is no impediment to having
more than one hidden layer. It has been proved that one layer of the
hidden neurons with a continuous activation function is enough to
approximate any continuous functions if it has a sufficient number of
neurons (i.e. universal approximation theorem) [5]. The sigmoid hy-
perbolic tangent function was chosen as the transfer function and the
number of hidden neurons varied from 10 to 20. The batch method was
used for updating the weights. In the batch method, all training exam-
ples, known as epoch, are introduced to the network and training is
performed on epoch-by-epoch basis. The results illustrated the capa-
bility of the ANN to approximate the calibration parameters with rather
good accuracy.

The developed MLP was considered as the baseline ANN and various
network options and training algorithms were then examined to identify
the optimum combination of the network structure, learning algorithm
and transfer function. This was carried out systematically in a three-step
trial and error analysis. The first step concerned specifying the most
suitable network with highest prediction performance. There are many
different types of feed-forward neural networks, but most of them can be
classified as belonging to one of the main networks, namely MLP,
generalized feed forward (GFF), Jordan-Elman and radial basis function
(RBF) networks. Different ANNs based on these networks were trained
using the abovementioned settings and their accuracies were tested and
compared with each other. Fig. 8 shows the results of selecting different
network structures. MLP emerged as the best network with lowest
approximation error for all calibration parameters. In the second step,
the prediction performance of MLP network was investigated with
different learning algorithms in order to find the most compatible
learning algorithms. Fig. 9 presents the approximation errors for output

0.90
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0.70 mkpt
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Fig. 8. Approximation errors for different networks.
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Fig. 9. Approximation errors for different learning algorithms.

parameters with respect to learning algorithms. The results showed that
Levenberg-Marquardt (LM) algorithm undoubtedly provides the best
prediction results for MLP. Since the MLP training involves back prop-
agation of errors, the neurons of the hidden layer should have nonlinear
transfer functions, but neurons in output layer can have either linear or
nonlinear functions. The sigmoidal nonlinear function is a commonly
used transfer function in the design of MLPs, two main forms of which
are the logistic and hyperbolic tangent (tanh) functions. The third step of
analysis aimed at defining the most desired transfer function. After
testing different functions, nonlinear tanh was selected for both hidden
and output layers.

The results of the systematic analysis showed that the MLP network
with tanh transfer function, which was trained by LM algorithm, pro-
vides the least amount of approximation errors. Nevertheless, the errors
were still higher than those that were obtained from the polynomial
function approach. Variations in the number of hidden neurons using
25, 30, 35, 40, 45 and 50 neurons were promoted and it was found that
the MLP with 50 hidden neurons increases the accuracy, without losing
the generalization or prediction capability. Higher numbers of hidden
neurons were also tested but no further improvement in approximation
errors was achieved.

Given the limited accuracy of the MLP, a novel two-stage approxi-
mation approach was thus proposed to improve the results. This
approach involved two MLPs with the optimum architecture obtained
from analysis as discussed above to approximate the calibration pa-
rameters and the approximation errors separately. Fig. 10 shows the
sketch of the two-stage approach. The first MLP was used to predict the
calibration parameters. The errors (é;) generated by comparison

1 N )
AP
X, . 1
A}
X, ANN1 —
X 5,4 " Vi
5 o
" Y2
— Y+E |— ¥
& — " Y4
& —>Y¥s
ANN2 &
€4
é- >

- \ /

Fig. 10. The schematic of two-stage approximation approach.
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between predictions and desired values were then used to form an error
data set. The error data set was used to train the second MLP, providing
an estimation of the error for the same set of inputs. Since the developed
approach should be able to predict the output parameters in the un-
known flow and thus the input parameters should be independent of the
flow parameters, the same input parameters were used in ANN2 to
predict the errors. The final approximation is obtained by the summa-
tion of the results from both ANNs, i.e. ¥ + E. The ANN model derived
from error values was used for refining the approximated parameters. It
was found that the approximation accuracy was further improved using
the proposed two-stage approach. The obtained results were in agree-
ment with the study reported in Ref. [4], where two polynomial func-
tions were used to approximate the parameters and errors. Finally, the
interpolation capability of the two-stage method was tested using a data
set that contained samples at intermediate flow angles (@ and y from —25
to 25 with step of 1.25°) for the same Mach numbers used for the cali-
bration. The results obtained from the performed analyses are presented
and discussed in the next section.

3. Results and discussions

This section presents and discusses the results in detail. Two main
parameters, namely correlation factor (R) and mean absolute error
(MAE), were considered to assess and compare the performance of the
developed ANNs. They are defined as following:
E?I:l [¥: — vil

N

MAE = (C)]

R= Zil(yl ; ?)(Yi - Y) (10)
N I Dt o

where y; and y; represent the ith approximated and measured values of a

particular calibration parameter, Yand ¥ are respectively the average of
approximated and measured values of that calibration parameter. N
denotes the number of samples. The correlation factor R is a measure of
the linear relationship between prediction and desired values. The
greater the R is, the better the model fits to the data. The MAE is a
measure for the accuracy of the models, which is defined by the mean
absolute error between the predicted and desired values. The smaller the
MAE is, the more accurate the model is.

Table 2 shows the approximation errors of calibration parameters
that resulted from the optimum single-stage ANN in comparison with
the errors obtained from the polynomial approximation. It can be seen
that the levels of errors for all output parameters are considerably low
and the accuracies of most outputs are approximately at the same level
as the polynomial approach. However, the maximum errors are slightly
higher than those of polynomials. The linear correlation coefficient, R,
for flow parameters and pressure coefficients is almost around 0.999,
which indicates that the predictions are very close to measurements.

Due to the fact that a high level of accuracy is required for the
calibration, the two-stage method based on ANN as shown in Fig. 10 was
proposed and developed to enhance the performance of the approxi-
mation task. The approximation errors of outputs are listed in Table 3.
The results generally show that the errors are further reduced using the
proposed methods, which was also noticed with the slight improvement
in R coefficient for all output parameters. More specifically, not only the
MAE of a., Ma,; and ky, are similar to the polynomial approach but also
the maximum deviation decreased. For y.; and ks, the MAE decreased
but the maximum error is still a little higher compared to the polynomial
approximation. The high value of R, i.e. 0.999, achieved for all output
parameters, indicates a very good match between predicted and
measured values. This is illustrated in Fig. 11, where the approximated
values (y-axis) are plotted together with desired values (x-axis) for all
outputs. The dashed line is the best-fit line that represents the best linear
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Table 2
The approximation errors of calibration parameters for the optimum single-stage ANN architecture.

Outputs ANN MAE ANN Max. error R Polynomial MAE Polynomial Max. error Polynomial R
L2 0.129 0.597 0.999 0.090 0.600 0.999
Yet 0.233 1.267 0.999 0.130 0.910 0.999
Ma,, 0.002 0.022 0.999 0.002 0.014 0.999
kpt 0.012 0.085 0.999 0.009 0.076 0.999
kps 0.010 0.065 0.997 0.006 0.040 0.991
Table 3

The approximation errors of calibration parameters for the two-stage ANN method.

Outputs ANN MAE ANN Max. error R Polynomial MAE Polynomial Max. error Polynomial R
Ot 0.087 0.437 0.999 0.090 0.600 0.999
Yet 0.194 1.375 0.999 0.130 0.910 0.999
Ma,, 0.002 0.013 0.999 0.002 0.014 0.999
kpe 0.010 0.071 0.999 0.009 0.076 0.999
kps 0.009 0.057 0.999 0.006 0.040 0.991
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relationships between predictions and measurements. It can be seen that
the predicted values fit to the measured values, with almost all data
lying on a straight line.

In order to determine the flow parameters for total and static pres-
sure (p; and py), the predicted ky; and ks values are further processed
using Equations (5) and (6). Their values were compared with those
from the polynomial approach. The approximation error and the error
distribution over different ranges for these two parameters together with
A, 7ot and Ma,, are shown in Table 4. While the approximation errors for
A, Mage and ps have improved using ANN, polynomial approximations
provide better results for p; and y.. However, the differences are small
and generally, the performance of the two approaches is quite
comparable.

An ANN trained with the data for a particular range is in general able
to predict output parameters with good accuracy for a different range
lying in between the ranges of training data. This is called the interpo-
lation capability of the ANN. To check the interpolation capability of the
two-stage ANN approach, the calibration data at Ma = 0.5 is linearly
interpolated to generate three intermediate points in each direction of
the k,- and k,-plane. This results in an interpolated grid with steps of
1.25° in the yaw and pitch angle direction, as shown in Fig. 12. On the
basis of the interpolated calibration variables, the polynomial functions
and the trained two-stage ANN were used to predict the calibration
parameters at the interpolated points. The linearly interpolated cali-
bration parameters were used as a reference to determine the perfor-
mance for each approach. Although this procedure assumes that the
distribution of the intermediate points exhibits a purely linear behavior,
it can be used to check the general interpolation capabilities. Table 5
lists results of the interpolation study for the two-stage ANN approach
and the polynomial functions at Ma = 0.5. The values for the mean
absolute errors are comparable between the ANN and the polynomial
functions. However, the ANN performs much better for the maximum
errors. Moreover, for flow angles, the ANN provides a clear advantage.
As a result, the two-stage ANN approach is the preferred algorithm due
to its better interpolation capabilities. For better illustration, the scatter
plots of the ANN and polynomial predictions with respect to reference
values for flow angles are provided in Fig. 13. The red markers represent
the polynomial approximations, which show undesired deviations at
some intermediate points.

Unlike the polynomial approximation, which is highly dependent on
the data and shows large deviations at intermediate samples, the pro-
posed ANN based approach provides satisfactory results at intermediate
points without being overfitted to training data. In other words, if these
two approaches were used to interpolate in ranges falling between the
calibration points, the ANN approach can make much better predictions.
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Fig. 12. Calibration grid and linearly interpolated grid at Ma = 0.5.
Table 5

The approximation errors of calibration parameters for interpolation study.

Outputs ~ ANN ANN Max. Polynomial Polynomial Max.
MAE error MAE error

Acr 0.138 1.625 0.168 10.475

et 0.247 1.698 0.198 2.874

Ma,, 0.003 0.032 0.002 0.029

kpe 0.012 0.188 0.012 0.233

kps 0.016 0.290 0.013 0.306

4. Conclusion

In this study, the application of the ANN to predict the flow pa-
rameters for calibration of multi-hole pressure probes was investigated
and compared with the commonly used polynomial functions. For this
purpose, the data obtained from the calibration of a five-hole probe with
spherical head at the Institute of Jet Propulsion and Turbomachinery,
RWTH Aachen University (IST) was used to develop ANNs and test their
performance. A baseline ANN was constructed and then the network
architecture and setup was optimized through a systematic four-step
analysis by examining different combinations of network options,
learning algorithms, transfer function and number of neurons in the
hidden layer. It was concluded that the MLP network with one hidden
layer and nonlinear transfer function for both hidden and output

Table 4

The approximation errors and error distribution of calibration parameters for the two-stage ANN method.
Error range <0.1° 0.1°-0.2° 0.2°-0.3° 0.3°-0.4° 0.4°-0.5° >0.5°
ag - poly 640 228 77 13 7 3
ace -ANN 638 247 67 15 1 0
Yet - poly 540 225 105 52 20 26
et - ANN 331 254 185 98 45 55
Error range < 0.001 0.001-0.002 0.002-0.003 0.003-0.004 0.004-0.005 > 0.005
Ma,, - poly 215 337 207 111 50 48
Ma,, - ANN 435 281 119 68 40 25
Error range < 50Pa 50-100 Pa 100-150 Pa 150-200 Pa 200-550 Pa > 250 Pa Max. Error MAE
Pe - poly 684 154 58 19 22 31 532 48
P - ANN 526 161 99 51 32 99 1034 91
Ds - poly 544 146 100 50 41 87 1026 85
Ds - ANN 565 151 85 56 41 70 833 79




H. Nikpey Somehsaraei et al.

25 o
— | x
8 20 = Polynomial x"!!
215 7/ - ANN Tl
% 10 + SN
5 x*
g 0T "
9 5l x*
g -5 x"

x
a0 4 o Ly
= N x
g-15 + x*
= L3 .! (a)
4%-20 ":x**.
L
25 sl } : " ;
-25 -15 -5 5 15 25

Reference a,, values (degree)

(]
wn

Approximated y,, values (degree)

'
=
W

—_ N
o v © wn O
4
t
[

»®

o
[=}
+
=
=1
o
=

Flow Measurement and Instrumentation 73 (2020) 101739

x Polynomial
+ ANN x

)
Tt O W
' s 4
T 1 T
"
3

(b)

: : | :
t t

15

25
Reference v, values (degree)

Fig. 13. Comparison between the reference and approximated (a) o (b) y.; values using two-stage ANN method and polynomial at intermediate samples.

neurons, which was trained by Levenberg-Marquardt algorithm, pro-
vides the optimum solution with best accuracy compared to the poly-
nomial approach. The MAE for outputs, namely Ma,, ¢t Yct, kpe and kps,
are 0.129, 0.233, 0.002, 0.012 and 0.01, respectively, which are com-
parable to the accuracy of the polynomial approach. The optimum ANN
setup was used to develop a novel two-stage ANN method. First, the flow
parameters were predicted and then an error data set was generated by
calculating the errors between predictions and measurements to develop
the second ANN, providing an estimation of the error for the same in-
puts. The final outputs are calculated by the sum of the predictions of
flow parameters and corresponding error values. The validation results
showed that the approximation accuracy was further improved using the
proposed two-stage approach. While for the a., Ma. and ky;, the error
levels were at the same levels as the polynomial approximations, the
MAE of y. and ks decreased and a very high value of R i.e. 0.999 was
achieved for all output parameters. Finally, the interpolation capability
of the two-stage ANN approach was studied using linearly interpolated
points. The comparison with the polynomial functions illustrated that
the ANN method proposed in this study not only predicts the flow pa-
rameters with high accuracy comparable to the polynomial functions at
the calibration points, but also performs better at intermediate points.
The maximum error for a.; and 7 significantly reduced from 10.475 to
2.874 t0 1.625 and 1.698, respectively. The results basically showed that
ANN with high interpolation capability provides the potential to reduce
the experimental efforts, and thereby the cost, for the generation of the
calibration maps, using less sampling points. In this context, the future
work of the authors mainly focuses on evaluating the effects of reduced
number of sample (measuring) points on the accuracy of the ANN.
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