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Abstract 

Monitoring the heart rhythm during out-of-hospital 
cardiac arrest (OHCA) is important to improve treatment 
quality. OHCA rhythms fall into five categories: asystole 
(AS), pulseless electrical activity (PEA), pulse-generating 
rhythms (PR), ventricular fibrillation (VF) and ventricular 
tachycardia (VT). This paper introduces an algorithm to 
classify these OHCA rhythms using the ECG and the 
thorax impedance (TI) signals recorded by the 
defibrillation pads. The dataset consisted of 100 OHCA 
patient files from which 2833 4-s signal segments were 
extracted: 423 AS, 912 PE, 689 PR, 643 VF, and 166 VT. 
The Stationary Wavelet Transform (SWT) was used to 
obtain 95 features from the ECG and the TI. Random 
Forest  classifiers were used, features were ranked during 
training using random forest importance, and models with 
increasing number of features were evaluated. The optimal 
classifier was obtained combining 50 ECG and TI features, 
with a median (80% confidence interval) average recall of 
86.5% (80.6-89.4). The recall for AS/PEA/PR/VF/VT were 
96.3% (93.0-98.5), 77.8% (68.1-89.2), 88.7% (79.5-93.6), 
94.4% (90.2-97.4) and 77.3% (52.9-91.3), respectively.  
 
1. Introduction 

Out-of-hospital cardiac arrest (OHCA) is one of the 
main causes of death in developed countries, and a major 
public health problem. The number of OHCA cases treated 
annually by Emergency Medical Systems exceeds 250,000 
in Europe [1] and 180,000 in the United States [2]. OHCA 
has an average incidence of 55 cases per 100,000 person-
years [3] and a survival rate of 7.1%.  

To increase OHCA survival, it is necessary to provide 
the patient with adequate treatment during the arrest, but 
also to identify the factors that influence the patient’s 
response to treatment [4], [5]. The patient’s state is at large 
linked to its cardiac rhythm, which in OHCA is categorized 

into five groups, namely: asystole (AS), pulseless electrical 
activity (PEA), pulse-generating rhythms (PR), ventricular 
fibrillation (VF) and tachycardia (VT).  

Rad et al. [6] introduced 5-class OHCA rhythm 
classification using the ECG. Since then, other ECG-based 
5-class classifiers have been developed [7]. However, 
using only the ECG may limit classification accuracy, 
particularly the distinction of rhythms that albeit having 
visible QRS complexes may or may not have a palpable 
associated mechanical activity. That is, the distinction 
between PEA (no pulse) and PR (pulse). PEA/PR 
classification improves when other signals such as the 
thoracic impedance (TI) or the capnogram are also used 
[8], [9]. Defibrillators currently record the TI to adjust 
defibrillation energy levels and to monitor the quality of 
cardiopulmonary resuscitation (CPR) [10]. The TI signal 
shows a correlated fluctuation with each beat when the 
patient regains circulation, as can be seen in Figure 1. 
Therefore, the TI can be a good indicator of pulse. 

The objective of this study was to improve the accuracy 
of ECG-only methods for 5-class OHCA rhythm 
classification by using for the classification the ECG and 
the TI signals recorded by the defibrillation pads. 

 
2. Materials and methods 

2.2. Dataset 

The dataset was a subset of OHCA episodes obtained 
from a study conducted between March 2002 and 
September 2004 to measure CPR quality in three European 
cities: Akershus (Norway), Stockholm (Sweden), and 
London (UK) [11]. Defibrillators based on the Heartstart 
4000 (Philips Medical Systems, Andover, Mass) were used 
to record the data. The raw data consisted of the ECG, TI, 
and CPR pad signals, sampled at 500 Hz with 16 bit 
resolution. All recordings were annotated by experts for 
the original study into the five OHCA rhythm types. 
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For this study, all the original signals were down 
sampled to 250 Hz and 4-s ECG and TI segments were 
extracted from 100 OHCA patients: 42 Akershus, 30 
Stockholm, 28 London. The segments corresponded to a 
single rhythm type and showed no artefact due to CPR 
compressions or noise. All the labels of the segments were 
reviewed by authors (HL, UI, TE) to remove noise in 
annotations, and a consensus decision was used as ground 
truth. The final audited dataset contained 2833 segments: 
423 AS, 912 PE, 689 PR, 643 VF, and 166 VT.  
    

 
Figure 1. ECG and TI signals of PEA and PR rhythms. When the 
patient has spontaneous pulse (PR in panel a), activity associated 
with each heartbeat can be observed in the impedance waveform; 
this activity is absent when there is no pulse (PEA, panel b). 

 
2.2. Feature Extraction 

Multi-resolution analysis based on the Stationary 
Wavelet Transform (SWT) was conducted to decompose 
ECG and TI segments into their sub-bands and obtain the 
denoised ECG and TI. Features were extracted from the 
denoised ECG and TI and their sub-band components [12]. 

At each decomposition level the approximation (low-
pass), 𝑎!, and detail (high-pass), 𝑑!, coefficients were 
generated.  Eight decomposition levels were used to obtain 
𝑎" and 𝑑", …	𝑑#, and the denoised 𝑑$ − 𝑑" coefficients 
were used to reconstruct the denoised ECG and TI signals. 
A total of 95 features were extracted as follows: 

 
• ECG features (65 from the ECG and its 𝑑$ − 𝑑" 

coefficients): SampEn, x1, x2, bCP, count1, count2, 
count3, bWT, Npeak, vfleak, expmod, hilb, IQR, FQR, 
tcsc, mav, frqbin, cm, kurt, A1, A2, A3, AR_c, AR_n 
,m2_s, m3_s, m4_s, v1, v2, v3, v4, v5, v6, v7, v8, v9, 
Pf0, LAC, Pnh, mSl. A detailed description of the 
features can be found in [7], [13], [14] and [15].  

• TI features (30 from the TI and its 𝑑$ − 𝑑% coefficients 

and its combination with the ECG): the mean power of 
the TI and the mean cross-power between ECG and TI 
[16], the first-order derivative of the TI and the peak 
amplitude of the Fast Fourier Transform (FFT) of the 
first-order derivative of the TI [17], and the magnitude-
squared coherence and the cross power spectral density 
of ECG and TI. 
 

2.2. Classification 

To design the classifier 100 training-test partitions of 
the database were constructed. For each partition, 70% of 
the data were used to train the classifier and 30% for 
validation. Data was partitioned patient-wise and in a 
quasi-stratified way, so that the rhythm prevalence on each 
set (train/test) for each class was at least 75% of the 
prevalence for the full dataset. 

Random Forest algorithms were used to build the 
classifiers. For each partition, features were ranked during 
a first training process based on the random forest 
importance. The models were then trained again and tested 
using the 𝑁 most important features. Models with 
increasing number of features were evaluated. 

 
2.3. Evaluation 

Confusion matrices and the associated metrics were 
used to evaluate the performance of the classifiers. For 
each class 𝑖, Recall (𝑅!), Precision (𝑃!) and F1-score (𝐹#,!) 
were computed and the Average Recall (𝐴𝑅) was used as 
a global metric: 
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where 𝑇𝑃!, 𝐹𝑁!, and 𝐹𝑃! are the true positives, false 
negatives and false positives for each class. The stacked 
matrices for the 100 partitions were obtained and the 
associated metrics were computed. 

 
3. Results 

The best classifier was obtained combining 50 ECG and 
TI features, with a median (80% confidence interval, CI) 
𝐴𝑅 of 86.5% (80.6 – 89.4), 0.6 points above of the best 
model using only ECG features (30 features). The stacked 
confusion matrix and the 𝑅!, 𝑃! and	𝐹#,! of the best 
classifier are shown in Figure 2 and Table 1. The  𝐴𝑅 
(median, 80% CI) for the 100 train/test repetitions are 
shown in Figure 3, as a function of the number of features 
𝑁 included in the classifier. 
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Figure 2. Stacked confusion matrix for the best model for the 100 
partitions. 
 

 Performance metrics (%) 
Class 𝑅! 𝑃! 𝐹#,!  
AS 96.3 

(93.0-98.5) 
94.5 

(88.2-97.7) 
95.0 

(91.7-97.0) 
PEA 77.8 

(68.1-89.2) 
85.4 

(75.5-90.9) 
80.6 

(73.2-87.2) 
PR 88.7 

(79.5-93.6) 
84.4 

(71.8-95.5) 
86.2 

(76.9-91.5) 
VF 94.4 

(90.2-97.4) 
95.6 

(91.0-98.1) 
94.9 

(92.1-96.7) 
VT 77.3 

(52.9-91.3) 
66.1 

(50.0-77.7) 
69.9 

(53.5-79.1) 
Table 2. Median (80% CI) values of recall, precision and F1-score 
for the best classifier model. 
 
3. Discussion 

This work introduces a robust and accurate approach for 
multiclass OHCA rhythm classification, improving the 
accuracy by using a multimodal approach based on the 
ECG and the TI signals. Our classifier has improved the 
accuracy of algorithms published in the literature, correctly 
identifying, in average, the rhythm in 86.5% of the cases. 
This result presents an 8.8-point improvement over the one 
obtained by Rad et al. [6]. Several reasons explain the 
improvement. First, a thoroughly quality controlled dataset 
with few noisy annotations [6]. Second, the addition of the 
TI signal [8],  [15]. And finally, an improved ECG feature 
extraction based on the SWT [7], [12].  

Although the use of TI features was aimed to improve 
PEA/PR discrimination, the confusion matrix in Figure 2 
shows that PEA/PR distinction is still the major source of 
classification errors. Although the TI provides additional 
information, an accurate distinction is not possible with   
F1-scores of 80.6% and 86.2%, for PEA and PR 
respectively. 

 
Figure 3. Median (80% CI) 𝐴𝑅 of the classifiers. For each 𝑁 100 
models were evaluated using random train/test partitions. 
 
 A further increase may be expected adding information 
from other OHCA sources, such as the capnogram [9], 
although this information may not always be available in 
the defibrillator. Figure 4 shows a PR rhythm segment 
misclassified as PEA. There are TI fluctuations but weakly 
correlated with the heartbeats in the ECG, which presents 
wide QRS complexes, typically found during PEA. 
However, our results show that adding information from 
the TI improves PEA/PR distinction in a 5-class classifier. 
 

 
Figure 4. PR rhythm segment misclassified as PEA. 

 
 The second large source of errors was the identification 
of VT, in line with the results presented in Rad et al [6]. 
The cause here is the low prevalence of VT in OHCA, 
which makes it difficult for the models to accurately 
characterize VT segments. In the future data augmentation 
may be used to artificially grow the VT class during 
training.  

In conclusion, a robust 5-class OHCA heart rhythm 
classifier has been developed. The results confirm that 
combining ECG and TI signal characteristics produces a 
more precise classifier than using only the ECG 
characteristics. 
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