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A B S T R A C T   

This study investigated productivity in an offshore wind project to understand the distribution of their value- 
adding and non-value-adding hours. A comprehensive literature review presented results on productivity in 
regular mega-projects, revealing a limited knowledge of offshore wind projects. From the first quarter of 2019 to 
the early second quarter of 2020, 62,447 realized activities, equaling 213,786 h, were sampled from a wind farm 
development project in the British sector of the North Sea. This data was then analyzed and presented through a 
descriptive statistic. The results showed a distribution of 21.21% value-adding (VA) and 50.09% non-value- 
adding (NVA) hours. With 20.9% of the total hours, the weather is the dominant cause of waiting time, fol
lowed by vessels and previous tasks. The findings further show the disruptions of the COVID-19 pandemic and its 
effects on productivity. It supports and expands on existing knowledge of causes for waiting time in offshore 
wind projects, ultimately providing the industry with an understanding of areas that need development to 
enhance productivity. The paper contributes to current knowledge by providing an understanding of productivity 
in offshore wind projects.   

1. Introduction 

The offshore wind market is a continuous and rapidly expanding 
industry. It reaches beyond the European market, into the Asian, North 
American, and lately investigating opportunities in the South American 
market [1–6]. With offshore wind projects considered project-based 
productions [7], it receives and assembles large modules, materials, 
and resources provided from international supply chains [8]. Despite 
wind projects being part of the renewable energy sector for more than 30 
years [4,9] and in the construction industry equally as long [7], little is 
known about productivity during assembly. When considering produc
tivity, it is measured at different levels; 1) National level (macro-level), 
2) Project or production plant level, 3) Operator level. 1) When 
measuring productivity on the macro-level, the ratio between the output 
of earned value and input of labor hours is investigated. This is then 

captured in national databases, containing decades of data for labor 
productivity in both manufacturing [10–12] and construction [13], yet, 
offshore wind labor productivity is not included in either database. 2) 
Measuring productivity at the project or plant level requires opting to 
either investigate; the relation between goods or objects coming out of 
the process in relation to the materials and resources added to the 
process [14], or the relationship between planned and complete activ
ities [15–17]. 3) On the operator level, there has been a tendency to 
utilize the work sampling method [13,18], providing a relationship 
between the value-adding (VA) and non-value-adding (NVA) activities 
within a given time period [19]. But neither of these methods have 
previously been applied to gain an understanding of offshore wind 
productivity. This has left offshore wind projects in a grey zone, as it is 
considered a maturing industry, but has limited quantifiable knowledge 
of its productivity elements (VA or NVA activities). 
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1.1. Offshore wind project performance 

Productivity measures might not be known, nonetheless, perfor
mance measures based on the completed number of assets over a spec
ified duration are known and utilized, either as; reported outcomes, 
various planning methods looking to predict, or optimize potential 
outcomes [20–22]. From a project cost performance perspective, Sova
cool, Enevoldsen [20] found that offshore wind projects have a cost 
escalation with a mean of 9.6%, which is 7.9% points higher than the 
mean cost escalation of onshore wind projects. The average time over
run of 45% from offshore wind projects has also been reported. Even 
more interesting is that Lacal-Arántegui, Yusta [23] presented how the 
offshore performance had improved in the same period, but mainly 
compared to days per installed MegaWatt (MW). Both Sovacool, Ene
voldsen [20] and Lacal-Arántegui, Yusta [23] argued that it is not about 
what is being managed but how it is being managed. 

While investigating the productivity of an offshore wind project, the 
global pandemic COVID-19 hit Europe in early 2020 [24], disrupting 
societies [25], energy sectors [26,27], supply chains [28,29], and 
mobility in general [30]. It also opened a unique opportunity to inves
tigate firsthand how a disaster can disrupt a mega project’s productivity 
and its supply chain, as the construction phase continued similar to 
hospitals [31], without home-office, or other flexible alternatives [32, 
33]. When facing undesired or disruptive events, Ye, Jiao [34] outlined 
that extremely short response times, complex demand assessment, 
challenged resource mobility, coordination issues, further inflicting 
budget, and resource limitations are likely to occur. It further stresses 
the importance of knowing the factors which affect your productivity 
[35], paving the objective of this research. 

This study set out to describe and measure productivity at the project 
level by analyzing the historical progress data. To meet the objective, 
two units of analysis were developed on the basis of the literature re
view, data clustering, and qualitative verification from industry experts. 
The case inputs of productive and non-productive activities (including 
COVID-19 registrations) were categorized through data clustering, sta
tistically analyzed, and presented as descriptive statistics. The first unit 
of analysis provided knowledge of the productivity, while the second 
unit of analysis expanded on non-productive hours, providing an un
derstanding of the impact of COVID-19, along with other sources of 
delay. Through discussion and conclusion, the operations and project 
management implications of the findings are made clear. 

This research contributes to the body knowledge by;  

A. providing a model for analyzing non-value-adding activities within 
the offshore wind domain or similar contexts, and  

B. the results provide an in-depth understanding of productivity in 
modular wind construction projects. 

2. Productivity in operations management 

Productivity, the relationship between inputs and outputs, is a 
mature topic [14] within the operation management domain. Koskela 
[36] contributed to this thinking by adding the conceptual under
standing of what defines a production flow and further described pro
ductivity as a relationship between value-adding and non-value-adding 
activities. Faridi and El-Sayegh [37], Iyer, Chaphalkar [38], Kaming, 
Olomolaiye [39], Semple, Hartman [40] all found that productivity was 
the cause of delay in various project types. The understanding in this 
study follows Koskela [36], Sanni-Anibire, Mohamad Zin [41], who find 
productivity to be the result of ready and prepared activities. In addition 
to this, Hopp and Spearman [14], Neve, Wandahl [18], Ohno [42], 
Ballesteros-Pérez, Sanz-Ablanedo [43], Karami and Olatunji [44], Pall, 
Bridge [45] argued that when eliminating unnecessary activities (vari
ability, delaying factors, and non-value adding activities, etc.), project 
or operations productivity would increase. 

2.1. Productivity in offshore wind projects 

In the planning perspective of an offshore wind project, productivity 
is seen in relation to activity or overall project durations. The dominant 
planning methods used in offshore projects are activity-based ap
proaches following fixed sets of parameters, seeking to optimize dura
tions by applying the critical path method (CPM) and models of either 
deterministic or stochastic character [22,46]. These methods are then 
used to solve logistic problems [47,48], optimizing the utilization of the 
resources (manning, equipment and vessels) while predicting weather 
windows. Irawan, Akbari [49] added to school of thought by expanding 
the knowledge of the inventory stocks of the larger modules. The pa
rameters of the weather windows (wave heights and wind speeds) are 
also the dominant parameter for the models intending to solve instal
lation problems and reduce the overall duration [47,50–56]. Besides the 
weather, these planning models also utilized the following parameters: 
components, equipment, resources, information, and safety, although, 
mainly considering them as binary conditions either present or not. 
Despite the number of models available, Lacal-Arántegui, Yusta [23] 
still emphasized that the current planning methods might not be 
adequate for future wind turbine projects. This study sees construction 
planning methods such as the last planner system (LPS) [15], Takt [57, 
58], or location-based management [59,60] as alternatives to the CPM. 
Especially LPS, which categorizes delaying factors as preconditions. 
Lerche, Neve [61] supported this, by implementing LPS and conse
quently reported an increase in productivity compared to the optimized 
CPM schedule. Nevertheless, limited knowledge exists about the causes 
of decreased productivity in offshore wind projects. 

2.2. Model for analyzing productivity 

A unit of analysis was developed to understand productivity in the 
offshore wind project context. Table 1 presents this unit of analysis, 
distributing data points with time weight among value-adding (work) 
and non-value-adding activities (other categories). The hours are not 
differentiated between trades - Neve, Wandahl [18] found that pro
ductivity is not trade-dependent. The table categories were inspired by 

Table 1 
Unit of analysis for activity categories.  

Categories Description 

Break Time spent on breaks [18] - indifferent to this being lunch, stops, 
or other activities reported as breaks. 

Inspection Time spent on inspecting the product assembled. 
Meeting 

(Talking) 
Olomolaiye, Wahab [63] described taking instructions as part of 
their data sampling, where Wandahl and Skovbogaard [64]. 
identified the same category without distinctions between private 
and professionals’ talk. This research categorized it as – “Time 
spent on meetings internally or externally, toolbox talks, 
planning, or briefings (safety, work, technical or other)”. 

Preparation Gong, Borcherding [62] considered preparation a part of this 
work, both Neve, Wandahl [18], Wandahl and Skovbogaard [64]. 
segregated preparation from the work category. This research 
followed a similar approach. This category reports – “Time spent 
on activities which include preparing materials, equipment, or 
tools”. 

Rework This category reflects the “time spent on work rectifying quality 
issues, defects, snagging, or punch list items”. 

Transport/ 
travel 

Olomolaiye, Wahab [63] defined transport as when materials 
were moved, whereas travel was emptyhanded. This research 
used it for “time spent on moving personnel, materials, 
equipment, tools by sailing, driving, or manual handling”. 

Waiting This research followed the description of waiting by Abdel-Razek, 
Abd Elshakour M [65] as “Time reported on waiting for 
equipment, machinery, materials, weather, or other reasons”. 

Work This category consists of the “transformations (activities that add 
or increase the product’s value) or time spent processing 
materials, assembling processes, or operating assembly 
equipment”.  
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Neve, Wandahl [18] and Gong, Borcherding [62]. 

2.3. Non-value adding activities affecting productivity 

Through time, operational planning has responded to events of un
certainty - including crisis or disaster-during its everyday operations. 
These uncertainties are parameters of different characteristics or 
wording (e.g., uncertainty, emergencies, undesired events, variability, 
delays, or variations). All negatively affect durations and productivity 
from an operational, project, or planning perspective [66]. In CPM, the 
response to uncertainty is made through risk analysis and time or 
resource buffering, protecting the scheduled durations [67,68]. When 
managing risk in supply chains, the focus is on preserving the material or 
resource availability despite demand changes [69]. Offshore wind pro
jects have done so through sourcing from local providers [70] and/or 
international providers [8,71], which is indifferent to managing a per
manent production facility or a temporary project-based production. 
Koch [21] added to this by arguing that productivity would be impacted 
by weather, product technology, site features, or processes. Analyzing 
supply chain processes, Stauffer, Pedraza-Martinez [72] argued that it is 
vital to ensure resource availability and mobility in response to these 
times. Similar to van der Laan, van Dalen [73]’s focus on protecting the 
logistics and demand volatility with safety stocks, following predefined 
parameters aligned between every day and crisis operations. Das, 
Annand [74] added how transparency and information flow throughout 
the supply chain would enable control of the situation. In marine pro
jects, Karami and Olatunji [44] mentioned how knowing the reasons for 
delay allows decision-makers to address productivity issues. Nonethe
less, none of them addressed in detail what causes low productivity in 
offshore wind. 

2.4. Model for analyzing non-value adding activities 

The second unit of analysis expands the knowledge of the non-value- 
adding activities and, in particular, the delaying factors causing waiting 
time. As a unit of analysis was not compatible with the delay factors in 
the data set, one was developed through triangulation of project delay 
literature, data clustering, and qualitative analysis made in collabora
tion with industry experts. Comparable to Murphy, Schleifer [75] 
developed a taxonomy for energy systems, or Braglia, Dallasega [76] 
construction supply chains. Table 2 presents the delaying factors. 

3. Method and materials 

The method section first introduces the units of analysis, then the 
case description, and last, the procedure for the statistical analysis. With 
offset in Voss, Tsikriktsis [93]’s understanding of exploration, this 
research project focus on value-adding (VA) and non-value-adding 
(NVA) activities in modular wind turbine construction. 

3.1. Research framework 

This research follows a framework as illustrated in Fig. 1 inspired by 
Yin [94], using a single case study approach with multiple units of 
analysis. Fig. 1 shows how the problem initiated the case study, leading 
to the case selection and literature review. This is also how the internal 
validity was developed [95]. The case was selected based on its project 
features (Table 3), data detail level, and total duration. The data 
collection was done by analyzing project progress reports. The data 
gathering and the developed units of analysis ensured the construct 
validity. The units of analysis ensure replicability of the study within the 
context, allowing for later quantifiability [96]. The external validity was 
built through different phases; a) comparison to existing literature, b) 
the dialogue with industry experts, and c) the discussion [97]. 

3.1.1. Developing the units of analysis 
Developing the two units of analysis followed Koskela’s [36] con

ceptual understanding of production systems. The flow view associated 
with the transformation flow value (TFV) theory of production is out
lined below:  

1. Conceptualization of production flow: flow of material, composed of 
transformation, inspection, moving, and waiting.  

2. Main principle: elimination of waste (interpretation: unnecessary 
activity, movement, or waiting).  

3. Methods and practices: continuous flow, pull, production control, 
continuous improvement.  

4. Practical application: taking care that what is unnecessary is done as 
little as possible.  

5. Suggested name for practical application of the view: flow 
management. 

Step 1) The first unit of analysis was developed through the literature 
review and data clustering [98] VA and NVA activities, as shown in 
Fig. 1. Table 1 is the outcome of this, defining the activity categories 

Table 2 
Unit of analysis expanding waiting time.  

Delay factor Description 

Components & Parts Components being the modules, parts are all the minor 
assembly materials. Reported as a delay when lacking, 
inconsistent delivery, damaged or has other issues with 
the quality [65,77,78]. 

Equipment & Tools The equipment is related to machinery, cranes, or onsite 
transport, where tools are hand-carried. It becomes a 
delay for similar reasons as components [79]. Karami 
and Olatunji [44] explored how mechanical stoppage or 
operators could contribute to this category for marine 
projects. 

Information & 
Documentation 

The information is reported when diagrams, drawings, 
instructions, or other documentation is late, missing, 
inadequate, or incomplete for the teams [80,81]. 

Location The location or workspace is not accessible for various 
reasons, e.g., permits when offshore [82,83]. Offshore, 
it is also associated with foundations not available. Or 
related to space where teams work being unavailable 
for reasons such as other teams using the area [41]. 

Manning & Competence Outlined how the capacity of workers, availability of 
resources, and labor can be sources for delays equally to 
the other categories if missing, not ready, or 
craftmanship of low quality. Underqualified would be 
categorized as a lack of competence. 

Planning & Permit Inadequate planning or information between 
management and the teams [37]. Further, it could also 
be related to poor coordination or commitment among 
actors [79,84]. 

Previous task Tasks handed over incomplete, the time spent rectifying 
this or waiting for others to do so [85]. 

Safety When the working conditions are unsafe, safety is 
reported, including both incidents and accidents [85]. 

Unexpected conditions 
(COVID-19) 

This factor does not exist consistently throughout the 
dataset, as it was only present by the end of the case 
study. Disaster event registrations are yet unseen. Yet 
they would come by Chan and Kumaraswamy [86], 
Mishmish and El-Sayegh [87], Odeh and Battaineh [88] 
be classified as unforeseen events, or by Mukhtar, 
Khoiry Muhamad [89] force majeure. 

Unspecified This category contains those data points which caused 
waiting time but were not further classified. 

Vessel This includes all delays related to vessels used on-site to 
transport material or resources. 

Weather Ballesteros-Pérez, Sanz-Ablanedo [43], 
Ballesteros-Pérez, del Campo-Hitschfeld Maria [90], 
Ballesteros-Pérez, Rojas-Céspedes [91] investigated the 
impact on construction in general, the weather relates 
to both wave and wind as seen by Karami and Olatunji 
[44], Ruqaishi and Bashir [92]. It also includes 
lightning, thunderstorm, and fog.  
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based on different sampling methods. Step 2) The second unit of analysis 
was developed through data clustering [98] the reasons for NVA activ
ities produced through the first analysis. Triangulation was used to 
verify the NVA by engaging a team of industry experts (a site manager, 
two supervisors, a mechanical- and an electrical-competent technician) 
from the case (dotted line in Fig. 1). The outcome is the clusters shown in 
Table 2. Step 3,4, and 5 are not considered further in this study. 

3.1.2. Selected case 
The case project description in Table 3 is organized by conditions 

providing an overview of the case in relation to relevant literature. 

3.2. Case data 

The primary data sources were from observations, interviews, and 
field notes. Where Neve, Wandahl [18], Gong, Borcherding [62], Olo
molaiye, Wahab [63], Handa and Abdalla [107], Al-Ghamdi [108] uti
lized work sampling to collect both value-adding and non-value adding 
activities, this research followed Liu, Ballard [16], Abdel-Razek, Abd 
Elshakour M [65]’s method, focusing on labor productivity. It did not 
use the construction Percent-Plan-Complete (PPC) as a productivity 
measure [15,61,109,110]. The secondary data sources came from his
torical data such as progress reports and hour registrations. 

3.2.1. Data analysis 
The dataset consists of 62,447 documented activities containing in

formation such as when the activities occurred, their duration, and type 
of activity. Activities with missing data on date and time were omitted 
from the dataset before conducting any statistical analysis. Predomi
nantly, these activities pertain to breaks, lunch/dinner, daily briefings, 
and traveling. Additional data wrangling was needed to deal with 
inconsistent use of whitespace, capitalization, and singular versus plural 
form. Activities with a duration of zero were also omitted. The process 
left 54,144 activities for analysis. The activities’ duration adds up to 
213,786 h, 17 min, and 24 s. To put this statistic into perspective, the 
project would require 24 years, 147 days, 18 h, 17 min, and 24 s for a 
single unit of human resources. Out of the 54,144 activities, 39,631 of 
the activities (73.20%) are categorized as offshore. Analogously, 11,814 
of the activities (21.82%) are onshore. The remaining 2699 (4.98%) 
activities are not classified. 

Fig. 2 shows the activity durations’ statistical distribution, proxied 
by a histogram and an Epanechnikov kernel density plot (bandwidth of 
0.2087). On average, an activity exhibited a duration of 3.95 h. The 
mode, however, is 5.5 h. The shortest activity - ignoring activities with a 
recording duration of zero, was 0.02 h or 1 min and 20 s. The activity 
with the longest duration, on the other hand, lasted for 17 h. 

4. Results 

The results section is organized in accordance with the units of 
analysis. 

4.1. Understanding productivity 

The results from the first unit of analysis are presented in section 
4.1.1, 4.1.2, and 4.1.3. 

4.1.1. Distribution between value-adding and non-value-adding activities 
The 54,144 activities can be assigned to eight different categories 

following the unit of analysis: inspection, meeting, preparation, rework, 
training, transport, waiting, and work. Fig. 3 shows the number of ac
tivities corresponding to each category and the aggregate time spent on 
each work category. As shown in Fig. 3, the three major components are 
waiting, work and preparation. The total project time was about 
213,786 h. A total of 107,081 h were spent on waiting, i.e., 50.09% of 
the project time consisted of waiting. 47,826 (22.37%) and 45,339 
(21.21%) hours were dedicated to preparation and work, respectively. 
Hence, productive time (preparation and work) contributed less to the 
total project time than unproductive time (waiting). Time spent on in
spection, meetings, rework, training, and transport amount to 12,840 h 
and 6.33% with respect to all activities. 

4.1.2. Distribution of hours 
Additional insight into the behavior of the different work categories 

can be obtained by inspecting the statistical distribution of the condi
tional activity durations – see Fig. 4. As gleaned from Fig. 4, subfigure 
(b) - meeting, its average duration ranges from 1.04 h to 5.47 h subfigure 
(e) - training. On average, waiting activity - subfigure (g), had a duration 
of 4.58 h with a standard deviation of 1.86 h. Work activities - subfigure 
(h), on the other hand, had an average duration of 3.24 h with a standard 
deviation of 1.81 h. Subfigure (b) shows an outlier of 6-h meetings, 
which was traced back to project introductions, where the less than 30 
min meetings were related to the daily beginning and end of shifts. 
Subfigure (f) shows that transport had a mean of 2.53 h with a standard 
deviation of 2.85 h, indicating that shorter trips with vessels were 
conducted. The use of a service operating vessel (SOV) supported this as 
it was positioned in the wind farm field close to the assembly locations. 

4.1.3. Productivity measure over time 
Fig. 5 depicts the percentage of time spent on preparation, work, and 

waiting for the sum of these three work categories. The y-axis shows the 
distribution in the percentage of the main productive and non- 
productive activities performed throughout the project weeks on the 
x-axis. Notably, preparation as the dominating activity until project 
week (PW) 10 can be explained for various reasons. It was a way of 
protecting the expensive vessel hours through time buffering as the 

Fig. 1. Research framework.  
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offshore campaign started in PW 12. A batch of turbines was planned to 
continuously leave the harbor every week from then on, buffering the 
port with two batches, leaving the harbor workforce to wait in between 
in having filled the installation vessel buffer of prepared components. 

Table 3 
Case description.  

Conditions Description 

Duration The case study was 60 calendar weeks 
conducted from quarter one (Q1) in 2019 
and finalized by the beginning of quarter 
two (Q2) of 2020, at the beginning of the 
COVID-19 pandemic in Europe [24]. 

Country The selected case was being developed in 
the United Kingdom (UK), which is 
considered part of a mature offshore wind 
market in Europe [5,99]. The differences 
in legislation or country-specific 
requirements or their impact on 
construction and operations are yet to be 
explored and were not pursued further. 

Total number of turbines and power 
output 

The case consists of 102 wind turbines 
with a total of 702 MW. Enevoldsen and 
Xydis [9] described the significant 
differences in turbine dimensions and 
power output in the last 35 years, 
especially the blade lengths (75 m here) 
and tower heights (95 m here). Are 
expected to impact both the installation 
compositions and vessels in the future. 

Planning method The contractual planning was a critical 
path method similar to what Irawan, 
Jones [54], Barlow, Tezcaner Öztürk [55] 
presented, as reported in the Oracle 
software package Primavera. 

Capital Expenditure (CapEx) The CapEx for the case is 2600 million 
British Pounds. Bosch, Staffell [100] 
related this to the development, 
manufacturing, and construction of wind 
farms. Sovacool, Enevoldsen [20] 
reported that the main difference in cost 
drivers between onshore and offshore 
wind projects lies with the offshore 
vessels. 

Supply chain The case followed a similar supply chain 
structure described by Poulsen and Lema 
[8], tower modules coming from Spain, 
Denmark (DK), and Vietnam. Nacelles 
were from Germany and DK, while blades 
were from UK and DK. 

Resource hubs The case organization used local (UK) and 
international resource hubs (including 
European countries as Denmark, 
Germany, and Poland) for the assembly 
activities. 

Onshore assembly port For this case, the port of assembly is the 
port of Great Yarmouth in the UK, 
following a layout similar to what Irawan, 
Song [101] described - a European port 
already made ready for receiving turbine 
components for assembly before being 
shipped offshore with the installation 
vessels. Lerche, Neve [61] explained these 
processes in depth while applying an 
alternative planning method. 

Offshore assembly location (distance to 
shore, foundation type, and water 
depth) 

Since the early 2000s offshore wind has 
consistently moved further away from 
shore [4], Ursavas [52] showed how 
foundation types alternate depending on 
the water depth for the particular area. 
Luo-Theilen and Rung [102], and Alla, 
Quandt [51] revealed how similar vessels 
are used to install the foundations and 
turbines, while separate vessels install the 
in-field cables and export cables going to 
shore. The case selected used jacket 
foundations installed 45 km into the 
British sector of the North Sea, with water 
depths between 29 and 41 m. 

Installation composition and batch size The compositions define to what level the 
turbines are assembled before being 
collected by the installation vessel, and  

Table 3 (continued ) 

Conditions Description 

they differentiate between bunny ear, full 
rotor star, or separate components [47]. 
Sarker and Faiz [53] defined it as methods 
and added towers partially or fully 
assembled. Combining the installation 
vessel’s deck capacity, turbine dimension, 
and weight determines the batch size. The 
installation composition chosen was 
batches of four complete turbines 
consisting of separate parts with a fully 
assembled tower, a nacelle with the hub, 
and three separate blades as described by 
Vis and Ursavas [47], Sarker and Faiz 
[53], Jiang [103] 

Installation vessel The installation vessels differentiated 
between the self-propelled jack-up vessel 
(JU) or jack-up barge. These are selected 
based on either the turbine (dimensions, 
weight, and composition) or the 
surrounding environment (harbor, 
foundation, water depth, or even power 
lines crossing the in-sailing) [47,55,61]. 
Barlow, Tezcaner Ozturk [104] further 
expanded on the installation vessel 
capabilities such as crane, jacking legs, or 
deck space. The vessel chosen for this case 
was a six-legged JU conducting two 
separate campaigns, one for the 
foundations and later for the turbines, 
bringing them to the offshore on-site 
assembly location where the turbine’s 
main components are then assembled by 
utilizing the vessel crane [23]. 

Commissioning vessel The commissioning vessels ensure that 
teams have access to the turbines while 
finalizing the turbine modules at their 
offshore location and maintaining the 
completed wind farm [105]. These vessels 
have different features, e.g., crew transfer 
vessels are granted access by the 
foundation ladders [106]. Here, a service 
operation vessel with a gangway was 
chosen to directly provide access to the 
foundation platform.  

Fig. 2. Statistical distribution of activity duration.  
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There was a positive peak in productive hours, building up just before 
PW 50. The development of COVID-19 in Europe started in PW 50. 

4.2. Understanding the non-value-adding activities 

The results from the second unit of analysis are presented in section 
4.2.1,4.2.2, and. 

4.2.1. Expanding the waiting time category 
Approximately half of the project duration is spent on waiting - 

totaling 107,081 out of 213,786 h. A reason is provided for 95.76% of 
the waiting activities, however, the remaining 4.24% remain unspeci
fied. The explanation was classified into 16 different delay factors based 
on the unit of analysis (Table 3). In terms of time spent on waiting, the 
five most important reasons for waiting are weather, previous tasks, 
vessel, components, and location. In aggregate, these five categories 
account for 82.23% of the waiting. The most prevalent and impactful 
trigger for the waiting activity was the weather. As seen in Table 4, 
10,450 of the waiting activities, or 44.69%, were due to weather. 
Analogously, around 49,703 h or 46.42% of the accumulated time spent 
on waiting was caused by weather. Previous tasks and vessels account 
for 11.94% and 11.37% of the time spent on waiting. Components and 
location are responsible for 7.19% of the waiting. The COVID-19 
pandemic ranked thirteenth as an unexpected condition in the waiting 
reasons category. It instigated 81 waiting activities, which in aggregate 
made up for 447.25 h (0.42%). 

4.2.2. Investigating runtime of delaying factors 
Figs. 6–10 showcase the development in time spent on waiting 

caused by each of the categories. The graphs have the project weeks 
along the x-axis, while the y-axis on either side relates to the hour 
density of the delaying factor. The COVID-19 pandemic was emerging in 
China around PW 42 (November 2019), and started its development in 
Europe at PW 50 (February 2020), continuing beyond the project 
closure. 

Fig. 6 (a) compared weather and vessel to see if these had similar 
behavior, which was not the case. It is possible to see how waiting hours 
increase each time a vessel is introduced to the project, this happened in 
PW 12 for the installation vessel, and at about PW 25, this vessel 
encountered engine issues. On the other hand, the weather peaks from 
PW 38 to PW 46 reveal autumn and winter’s effect on productivity, 
lasting till spring in PW 52. Location in Fig. 6 (b) revealed inconsistent 
waiting due to locations not being available for various reasons, 
although the data available did not allow further investigations. Ob
servations, however, revealed that the workspace being occupied by 
other teams contributed to this. 

Fig. 7 (c) compares components and parts as both are affected by the 
international supply chains; their hour densities are different, having 
parts represented by the right-side y-axis, the x-axis represents the 
number of hours. The missing inbound component deliveries were 
caused by waiting in four peaks, starving the workstation. Further 
explanation was not available. The minor disruption was related to 
minor issues such as quality issues. Instead, the parts were not as 
disruptive in terms of hours; accessibility through local sourcing could 
be a reason. Fig. 7 (d) shows the waiting-related tasks handed over 
before completion. This is among the five most significant delay factors 
that indicate hand-over issues among both teams and project phases. 
The graph in (d) does not reveal learning among actors or project phases. 

Fig. 8 (e) shows the documentation issues being disruptive at the 
beginning of the offshore campaign. The reasons were not further 
specified but could be related to the legislative or contractual re
quirements to receive permits to access the field. Between PW 30 and 40, 
there is seemingly a link between the waiting for documentation and 
later information from the involved parties. The last significant disrup
tions caused by information were directly linked to the COVID-19 
pandemic. Fig. 8 (f) shows equipment and tools in comparison, the left 
y-axis is the hours related to waiting for tools. The ratio can be explained 
with the accessibility of tools, which, similar to parts, can be locally 
sourced. Missing or faulty equipment had a significant impact on the 
waiting. The equipment peaks in PW 24 and 41 were related to break
downs disrupting the offshore campaign. The PW 48 peaks in waiting 
time for both equipment and tools were associated with a spare parts 
shortage. 

Fig. 9 (g) shows how waiting for skilled labor was divided between 
manning and competencies. The peaks in PW 26 and 30 related to a 
competence issue, where skilled labor was required, specifically. Be
tween PW 48 and the closure of the project, a shortage in resources 
occurred due to COVID-19. The graphs show realized time, the 
increasing number of non-realized hours was not registered. The non- 
realized hours were related to the border closures in Europe (e.g., 
Denmark, Poland.), affecting resource availability. Fig. 9 (h) shows the 
relation between safety disruptions and unexpected events (COVID-19). 
The safety peaks in PW 19 and 34 are related to safety incidents. PW 22 
contained an accident causing a lost-time case, and all three occurrences 
disrupted all labor in the adjacent locations. The COVID-19 disruptions 
represented 0.42% of the total waiting hours. The quarantining and 
uncertainties around it created disruptions despite additional measures 
such as gloves, respiratory protection, and cleaning. 

Fig. 10 (i) represents 4.24% of the total distribution occurring 
throughout the project. Fig. 10 (j) planning related to communication, 
directions, and information between management and teams caused 
waiting time for the teams. The peak in PW 45 related to a permit 
revoked due to a complete stop in the offshore campaign. 

5. Discussion 

The latest existing knowledge of what causes low productivity in 
offshore wind projects can be attributed to Koch [21], who pointed at 
weather, product technology, site features, and processes as reasons for 
delays. The results presented in this research expand beyond this 
knowledge. The weather is the most considerable delay factor in terms 
of its hours (49,703.42 h). None of the results pointed towards the 
product technology, and this will not be pursued further. The site fea
tures could be related to a part of the location factor, Lerche, Seppänen 
[60], Irawan, Song [101] support this by pointing at the technicalities 
around the locations. Koch [21] combines both project phases and ac
tivities as “the processes,” and this research supports this, but not for the 
same reasons. Rework activities (8976.1 h) could be considered related 
to the processes, likewise, is the delay factor previous task (12,780.25 
h). Seemingly, it was a more significant problem for the case organiza
tion that incomplete activities were passed on downstream. 

Our findings extend the knowledge of delaying factors in offshore 

Fig. 3. Duration of activities for each work categories.  
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Fig. 4. Statistical distribution of activity duration for each work category.  
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wind projects, enabling operational managers in stabilizing productivity 
as preconditions has done for construction [36,110]. 

5.1. Implications to managing offshore wind projects 

Of the 213,786 h, 21.21% were productive hours, and 78,79% were 
non-productive hours, whereof 50,09% would be considered waste. 
Weather alone represents 20.9% of the total time, which supports the 
attention weather calculations has been given through time [22]. But as 
existing planning methods have continuously tried to predict and limit 
the impact of weather [49,51,55,111], it is interesting why such pre
dictive methods were not reflected in the results. Besides weather, the 
results also reveal a potential for significant improvement of at least 
30%. E.g., planning and permits combined represent 4.44% of the total 
waiting time, which supports Lacal-Arántegui, Yusta [23]’s argument 
that current planning methods are not adequate for future turbines. 

The findings revealed that waiting was caused by both materials 
(including components and parts) and resources (including manning, 
competences, equipment, tools, and vessels). The receiving facility 
harbor facilities have physical limitations, restricting the inventory and 
the number of main components on-site [49,101]. Interestingly, the 
results also show this as peaks of starvation of the workstations in Fig. 7. 
Fig. 5 reveals a significant variation throughout the project weeks and its 
effect on productivity. This is particularly interesting when considering 
past knowledge of learning curves, with Thomas, Mathews [112], 
assuming that productivity would increase throughout the project as 
people gain more experience. Another interesting finding is the time 
spent preparing for the first ten project weeks; this could also indicate 
that harbor activities are considered preparation. These results reveal 
similarities to productivity levels seen in other labor-intense projects 
[18,112] and emphasize the need for alternative planning methods not 
only in offshore wind projects. 

5.2. Implications of a disaster (COVID-19) 

The disruption of COVID-19 supported past arguments about the 
time urgency of an emergency, disaster, or occurrence of undesired 
events [34,72]. In aggregate, COVID-19 made up for 447.25 h (0.42%), 
its impact was felt in relation to the political decisions across Europe, 
particularly border closures, which limited resource movements. That 
COVID-19 occurred late in the project also limited the impact on the 
material supplies as the last components were placed on inventory 
before the pandemic’s development in Europe. There was a spike in 
waiting time for equipment and tools around project week 50, which 
was related to the lack of spare parts. It is impossible to determine if this 
was due to COVID-19 or a coincidence based on the available data. 

Fig. 5. Comparison between time spent on preparation, work, and waiting.  

Table 4 
Reasons for waiting (sorted according to rank).  

Delay factor Rank Activity Duration 

Frequency Percentage Hours Percentage 

Weather 1 10,450 44.69 49,703.42 46.42 
Previous task 2 2983 12.76 12,780.25 11.94 
Vessel 3 2387 10.21 12,177.61 11.37 
Components 4 1483 6.34 7702.75 7.19 
Location 5 1374 5.88 5686.1 5.31 
Equipment 6 1024 4.38 4996.53 4.67 
Unspecified 7 992 4.24 3839.07 3.59 
Permit 8 708 3.03 2902.6 2.71 
Manning 9 447 1.91 1983.06 1.85 
Planning 10 689 2.95 1856.49 1.73 
Safety 11 336 1.44 1357.01 1.27 
Information 12 208 0.89 802.72 0.75 
Unexpected 

conditions 
(COVID-19) 

13 81 0.35 447.25 0.42 

Parts 14 78 0.33 289.86 0.27 
Documentation 15 70 0.3 273.49 0.26 
Competence 16 51 0.22 241.78 0.23 
Tools 17 23 0.1 41.1 0.04  

Fig. 6. Development time spent on waiting for each delay factor.  
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5.3. Limitations of the study 

Comparing the first unit of analysis with those applied similarly 
during work sample studies [13,18,113,114], reveals that our unit of 
analysis was adjusted, given that the work sampling registrations for 
talking were not available. Another difference was the lack of applica
bility and inaccuracy among trades [62]. But where the work sampling 
method provides a picture of the labor productivity, this study has 

strengthened by displaying the overall project performance. This was 
supported by Neve, Wandahl [18], who found that investigating pro
ductivity was not trade-dependent. The second unit of analysis is 
unpreceded within the offshore wind, which could be seen as a limita
tion. But from an explorative perspective, a strength, given there were 
no prior biases regarding the delay factors. 

Limitations to the results, the results only consist of flow variability 
[14], as waiting was the primary reason for non-productive hours. 

Fig. 7. Development time spent on waiting for each delay factor – Continued.  

Fig. 8. Development time spent on waiting for each delay factor – Continued.  

Fig. 9. Development time spent on waiting for each delay factor – Continued.  

J. Lerche et al.                                                                                                                                                                                                                                   



Renewable and Sustainable Energy Reviews 158 (2022) 112188

10

Process-time variability [115] could have been either undetected, mis
labeled, or within the work and preparation hours. In addition, un
specified waiting represents 3839 h, equivalent to 3.59% of the total 
waiting time, which might be relevant for an operations manager but is 
not considered suitable for the results shown. With regards to the 
COVID-19 pandemic findings, it is a possibility that some of the progress 
reports did not contain the complete overview of the events’, as 
non-realized hours were not included, they were only available by the 
end of the case study. 

6. Conclusion 

The study of the value-adding and non-value-adding activities pro
vided an insight into how hours are spent during a modular offshore 
wind turbine project. The results extend the body of knowledge, by 
developing and testing the units of analysis on a case of historical data. 
The delay factors further expand the body of knowledge applicable to 
practitioners and academics, providing them with measurable parame
ters for investigating delays in future projects. By utilizing the delay 
factors as part of a management and control system, decision-makers can 
reduce data complexity. This would enable educated decisions that can 
bring down variability and improve offshore wind project productivity. 
Further research would be required to investigate if these results are 
generalizable across other renewable energy projects. 
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[77] Gündüz M, Nielsen Y, Özdemir M. Quantification of delay factors using the 
relative importance index method for construction projects in Turkey. J Manag 
Eng 2013;29:133–9. 

[78] Durdyev S, Hosseini MR. Causes of delays on construction projects: a 
comprehensive list. Int J Manag Proj Bus 2019;13:20–46. 

[79] Doloi H, Sawhney A, Iyer KC, Rentala S. Analysing factors affecting delays in 
Indian construction projects. Int J Proj Manag 2012;30:479–89. 

[80] Assaf SA, Al-Hejji S. Causes of delay in large construction projects. Int J Proj 
Manag 2006;24:349–57. 

[81] Luu VT, Kim S-Y, Tuan NV, Ogunlana SO. Quantifying schedule risk in 
construction projects using Bayesian belief networks. Int J Proj Manag 2009;27: 
39–50. 

[82] Lo TY, Fung IW, Tung KC. Construction delays in Hong Kong civil engineering 
projects. J Construct Eng Manag 2006;132:636–49. 

[83] Long ND, Ogunlana S, Quang T, Lam KC. Large construction projects in 
developing countries: a case study from Vietnam. Int J Proj Manag 2004;22: 
553–61. 

[84] Gunduz M, Nielsen Y, Ozdemir M. Fuzzy assessment model to estimate the 
probability of delay in Turkish construction projects. J Manag Eng 2015;31: 
04014055. 

[85] Lindhard S, Wandahl S. Exploration of the reasons for delays in construction. Int J 
Constr Manag 2014;14:36–44. 

[86] Chan DWM, Kumaraswamy MM. An evaluation of construction time performance 
in the building industry. Build Environ 1996;31:569–78. 

[87] Mishmish M, El-Sayegh SM. Causes of claims in road construction projects in the 
UAE. Int J Constr Manag 2018;18:26–33. 

[88] Odeh AM, Battaineh HT. Causes of construction delay: traditional contracts. Int J 
Proj Manag 2002;20:67–73. 

[89] Mukhtar AK, Khoiry Muhamad A, Hamzah N. Risk factors in oil and gas 
construction projects in developing countries: a case study. Int J Energy Sect 
Manag 2019;13:846–61. 
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