
Architectural Risk Analysis in Agile Development of
Cloud Software

Martin Gilje Jaatun∗†
∗Software Engineering, Safety and Security

SINTEF Digital
Trondheim, Norway

†Department of Electrical Engineering and Computer Science
University of Stavanger

Stavanger, Norway
Email: martin.g.jaatun@{sintef.no,uis.no}

Abstract—Software in the cloud is predominantly
developed using agile methodologies, where practices
such as continuous deployment and DevOps contribute
to increased speed and quick turnarounds. This in-
creased speed does however require additional focus
on software security in order to avoid security bugs
and architectural flaws from crippling a cloud business.
Architectural Risk Analysis has been touted as one of
the most powerful software security activities, but in
some agile development projects there is no distinct
architecture activity, and often no dedicated architects.
In this paper we will examine the challenges of perform-
ing Architectural Risk Analysis in agile development
projects.

Keywords: Architectural Analysis, Threat Modeling,
Cloud Software, Software Security, Secure Software
Engineering

I. Introduction

Software in the cloud is predominantly developed using
agile methodologies, where practices such as continuous
deployment and DevOps contribute to increased speed and
quick turnarounds [1]. This increased speed does however
require additional focus on software security in order to
avoid security bugs and architectural flaws from crippling
a cloud business.

Software security can, at the risk of over-simplification,
be reduced to two facets: Avoiding security bugs (cod-
ing errors) and avoiding security flaws (design errors).
Architectural Risk Analysis (often referred to as simply
Architectural Analysis) was identified by McGraw [2] as
the second most effective software security activity among
the Cigital Touchpoints, and the single most effective
activity for identifying security design flaws.

Unfortunately, with the current popularity with agile
development methodologies for developing cloud software,
the focus on architecture appears to be diminished in
many development organizations. However, whether or
not the developers are paying attention to it, the archi-
tecture is still there [3], and architectural flaws are just
as devastating. The challenge is thus to ensure that the

architectural risk analysis can happen without breaking
the agile paradigm.
The remainder of the paper is structured as follows: In

Section II we present relevant background. In Section III
we present a preliminary case study. We discuss further in
Section IV, and conclude in Section V.

II. Background
Abrahamsson et al. [4] argue that not all design deci-

sions are architectural, and sometimes they are made on
day one. Some of these decisions are relevant for security,
and when they are made without taking security into
account, the results can be detrimental to security.

A. The Microsoft Security Development Lifecycle
Around the turn of the century, Microsoft Windows

users were exposed to a series of different malware; names
such as Iloveyou, Code Red and Nimda are sure to evoke
fond memories among professionals with a few years under
their belts. This eventually grew to a liability of such
proportions that Bill Gates i 2002 wrote a memo to all
employees, where he announced the introduction of the
Microsoft Trustworthy Computing Initiative. This led to
a two-month stop in development of new features, and
more than 9000 developers were sent for security training
(The underlying problems could of course not be solved
immediately, and in 2002 and 2003 the community made
the acquaintance of Beast, Slammer and Blaster, that
caused equally serious problems).
Then, in 2004 Michael Howard and Steve Lipner pre-

sented the Microsoft Security Development Lifecycle, tai-
lored after a traditional waterfall development lifecycle.
After a few iterations, Microsoft SDL has settled in the
form described in Table I [5].
As originally defined, Microsoft SDL is not compatible

with an agile development methodology, so a few years
ago Microsoft created a more agile variant dubbed “SDL
Agile” [6]. The change primarily lies in categorizing the
various SDL activities in one of three groups:

• Performed in every sprint (7,8,9,10,15,16)

Author version. Published in proceedings of IEEE CloudCom 2019.
Final version available from http://ieeexplore.ieee.org. Copyright (c) 2019 IEEE

TABLE I
Original Microsoft Security Development Lifecycle

1. Training 1. Core security training

2. Requirements
2. Establish security requirements
3. Create quality gates/bug bars
4. Perform Security and Privacy risk assessments

3. Design
5. Establish design requirements
6. Perform attack surface analysis/reduction
7. Use threat modeling

4. Implementation
8. Use approved tools
9. Deprecate unsafe functions
10. Perform Static Analysis

5. Verification
11. Perform dynamic analysis
12. Perform fuzz testing
13. Conduct attack surface review

6. Release
14. Create an incident response plan
15. Conduct final security review
16. Certify release and archive

7. Response 17. Execute incident response plan

• Performed once per project (1,2,5,14)
• Bucket activities; a selection is performed in every

sprint (3,4,6,11,12,13)
Microsoft provides lists of activities that are even more

detailed than in Table I [6]. SDL Agile is illustrated in
Fig. 1, where the bucket activities are depicted as “pie
wedges”.

One-Time Requirements

Project
start

Every Sprint

Every SprintEvery Sprint

Fig. 1. MS SDL for Agile

B. Touchpoints
Gary McGraw [7] introduced an artifact-oriented secure

software development lifecycle (SSDL) known as The Cig-

ital1 Touchpoints (see Fig. 2). In order of effectiveness,
McGraw lists the touchpoints as:
1) Code review
2) Architectural risk analysis
3) Penetration testing
4) Risk-based security tests
5) Abuse cases
6) Security requirements
7) Security operations

As mentioned, the second most effective touchpoint is thus
architectural risk analysis.

C. Architectural Risk Analysis
Architectural risk analysis in the context of software

security has been described by McGraw [7] as follows:
• Start with a forest-level view of the architecture
• Determine the system’s attack resistance (by using

checklists, e.g., STRIDE – see below)
• Perform ambiguity analysis
• Identify vulnerabilities in underlying frameworks
The observant reader will see that this is pretty much

the same as what is known as threat modeling as defined
by (among others) Howard & Lipner [5] and Swiderski
& Snyder [8], although it was defined by Cigital (now:
Synopsys) as a distinct process [7].
According to McGraw[7], architectural risk analysis can

be done at different stages of the development life cycle,
but it certainly makes sense to do this at least in the design
phase. Kruchten advocates that a certain minimum of ar-
chitecting should be performed also for agile development
projects, and worries that “the last responsible moment”
for making architecture decisions may be misjudged [3],

1The software security consultancy Cigital, co-founded by Gary
McGraw, was acquired by Synopsys in 2016

Requirements
and use cases

Design Test plans Code Test
results

[5] Abuse cases

[6] Security Requirements

[2] Risk analysis [4] Risk-based
security tests

[1] Static analysis
(tools)

[3] Penetration testing

[*] External analysis

Field
feedback

Security breaches

[7] Security
Operations

Fig. 2. The Cigital Touchpoints

leading to unfortunate “organic” architecture that later
needs to be changed at considerable cost.

The “forest-level” view of the architecture could be
based on anything; UML if you are of that persuasion,
or any other form of boxes and arrows. We have found [9]
that data flow diagrams work well for this purpose (see
below). Often, the very act of drawing this representation
on (e.g.) a whiteboard can lead to important insights.

The forest-level view is then used as a basis for deter-
mining the system’s attack resistance. It is often useful
to use some sort of checklist for this purpose, STRIDE is
a popular choice, but also other (possibly more domain-
specific) options could work.

Ambiguity analysis consists in two (or more) security
experts studying the available architecture documentation
individually, and then meeting to each present their indi-
vidual take on it. Whenever there is a disagreement, this
is a sign of ambiguity in the specification, and more effort
is needed to determine any possible security implications
of this ambiguity.

Finally, any underlying frameworks or libraries must
be examined for known vulnerabilities, whether the latest
versions of libraries have been used, and whether patches
have been applied.

D. Other Forms of Architectural Analysis

What is the relation between architectural risk analysis
and security architecture? Is it similar to the compari-
son between security features and secure features? Ryoo
et al. [10] point to the Architecture Tradeoff Analysis
Method (ATAM) [11], and suggest three approaches to
architectural analysis based on vulnerabilities, patterns,
and tactics, respectively. However, Ryoo’s proposal seems
rooted in classical waterfall-style development, and thus
not particularly agile.

Use of security patterns is also advocated by Halkidis et
al. [12], who present a method for mathematically calcu-
lating the security risk of a specific architecture provided
that security patterns have been used in the construction
of the architecture. Whereas security patterns doubtlessly
would have been a good thing, in our experience they are
not used by the vast majority of software development
organizations, and this method is thus also not applicable
to our use case.
E. STRIDE - a Mnemonic for Attacks
The STRIDE mnemonic was introduced by Microsoft

[8] as an aid to threat modeling. The letters spell out the
following threats:

• Spoofing
• Tampering
• Repudiation
• Information disclosure
• Denial of Service
• Elevation of privilege
STRIDE has been criticized as a poor choice for per-

forming threat modeling, but even so it is a simple starting
point that is easy for most developers to grasp, and even if
it cannot be considered exhaustive, it is useful to create a
baseline for analysis. To quote Adam Shostack, “STRIDE
is a good framework, [but a] bad taxonomy” [13].
F. Tool Support
Microsoft has made the Microsoft Threat Modeling Tool

(TMT) freely available2, focusing on drawing Data Flow
Diagrams and applying STRIDE to the result. Although
TMT strictly speaking is not intended for Architectural
Analysis as defined by McGraw [7], it works well for
drawing Data Flow Diagrams that fulfill the objective of
having a “Forest-level view".

2https://www.microsoft.com/en-us/download/details.aspx?id=49168

Fig. 3. Forest-level view with TMT

TMT also has other automatic features to aid threat
analysis, but the few industry actors we have identified
that use TMT have made little or no use of these features,
stating that “it is too complicated”. This implies that most
people seem to be using TMT as a drawing tool only.

It is not surprising that the Building Security In Ma-
turity Model (BSIMM) framework [14] has Architecture
Analysis (AA) as a distinct practice (see Table II). The
latest edition of the BSIMM report [15] lists the following
activities in the Architecture Analysis practice:

• LEVEL 1
– Perform security feature review.
– Perform design review for high-risk applications.
– Have the Software Security Group (SSG) lead

design review efforts.
– Use a risk questionnaire to rank applications.

• LEVEL 2
– Define and use AA process.
– Standardize architectural descriptions (including

data flow).
• LEVEL 3

– Have software architects lead design review ef-
forts.

– Drive analysis results into standard architecture
patterns.

– Make the SSG available as an AA resource or
mentor.

III. Beginnings of a Case Study
We are working with a number of software development

organizations who use agile development practices, and we
find that they generally do not perform any systematic ar-
chitectural risk analysis activities as part of their software
development lifecycle (SDLC). This is also borne out by a
previous study of software security maturity among public
organizations [16].

However, in agile development, there may be no identi-
fied design phase, and even worse: there may not even be
a formally defined architecture! Among the Architectural
Analysis activities specified in the BSIMM [15], we would
like to highlight the following activities:

AA1.1Perform security feature review

AA1.2Perform design review for high-risk applications
AA2.1Define and use an Architectural Analysis process
AA2.3Standardize architectural descriptions (including

data flow)
AA3.2Drive analysis results into standard architecture

patterns
We find that it is usually easy to argue for AA1.1

and AA1.2, as security features “obviously” need to be
carefully scrutinized, and the same goes for high-risk appli-
cations. As mentioned above, this does not mean that this
is codified beyond “taking an extra look at it”. The latest
BSIMM report [15] seems to confirm that Architecture
Analysis is an esoteric art, as only 12.5% of the surveyed
organizations confirm that they have defined an Archi-
tectural Analysis process for security that they actually
use. This implies that even when architectural analysis is
performed, it is usually ad-hoc and unstructured.
A major challenge is how to document the outcome of

the threat modeling. One of the companies we work with
admitted that although they found using the TMT to draw
the data flow diagram practical as a prelude to running
through the STRIDE categories, they made no attempt to
store the created diagrams for later use. Issues that were
identified during the process were added to the backlog
(e.g., Jira), but only actionable issues, which carry the
risk of leaving out issues that somehow are worrying, but
need to be revisited at some later time.
However, even when the outcomes are not documented

beyond concrete issues that immediately end up in the
backlog, performing an architectural risk analysis process
will still have intrinsic value to the developers involved,
as it will contribute to general security awareness. Much
like agile development in general, this will work well as
long as there is a relatively stable team of competent
developers [17], but might leave security gaps in teams
with inexperienced members and/or high turnover.
Other companies state that they do add annotated

data flow diagrams to their documentation systems (e.g.,
Confluence), but we have been unable to find evidence that
these are actually used in subsequent analysis efforts.

IV. Discussion
Among the various steps involved in architecture analy-

sis, ambiguity analysis seems to be particularly difficult
to accomplish without security experts. It is therefore
tempting to highlight this as an activity that is likely to be
outsourced to a consultancy firm, or dropped altogether.
Another question is whether this activity is possible with-
out architectural documentation, or other documentation.
This might mean that it would be necessary for the
development team to spend extra time explaining the
architecture to the external security expert(s), who in turn
would have to document the architecture based on the
presentation by the team.
One option might be to split the ambiguity analysis

between the security expert (when there is only one) and

TABLE II
The BSIMM Software Security Framework

Governance Intelligence SSDL Touchpoints Deployment

Strategy and
Metrics Attack Models Architecture Analysis Penetration

Testing

Compliance and
Policy

Security Features and
Design Code Review Software

Environment

Training Standards and
Requirements Security Testing

Configuration
Management and
Vulnerability
Management

the team. The expert would then do one independent
analysis, and present it to the team to see if they agree.
However, there have been no documented cases of this
mode of operation, and it is uncertain whether this would
be sufficient to catch ambiguities, since the developers in
this case do not perform a detailed analysis by themselves.

We have found [18] that threat modeling activities
become difficult when development teams are distributed
across different geographical locations. However, when it
comes to ambiguity analysis, the geographical separation
may actually work to your advantage, since it creates
a natural division in two (or more) groups. It could be
argued that with distributed teams, ambiguity analysis
becomes even more important, since it otherwise might
be more difficult to catch misconceptions. There is little
or no difference between the attack resistance analysis and
plain threat modeling as advocated by Howard and Lip-
ner [5], and thus ambiguity analysis seems to be the main
added value of “Architectural Risk Analysis” compared to
“Threat Modeling”.

Gary McGraw [7] stated that one of the three pillars of
Software Security is “Knowledge”. In previous work [19] we
have found that Software Security knowledge is correlated
with years of experience. This highlights the fact that
up to this day, developers in general have not received
instruction in Software Security as part of their education.
This clearly needs to change, and one of the specific skills
that need to be taught is threat modeling or architectural
risk analysis.

V. Conclusion and Further Work

Architectural analysis is challenging in an agile devel-
opment process, and more work is needed to identify and
tailor an architecture analysis process that can align with
agile development. One particular challenge is how to inte-
grate architectural risk analysis in DevOps/Continuous In-
tegration/Continuous Deployment pipelines, since threat
modeling and related activities are not easily automated.
We are currently recruiting more development organiza-
tions to contribute to this goal, and through studies of
what works (and doesn’t work) in practice, we hope to
move the state-of-the-art one step in the right direction.

Acknowledgment

The research in this paper has been supported by the
Norwegian Research Council through the project SoS-
Agile, grant number 247678.

References

[1] M. G. Jaatun, D. S. Cruzes, and J. Luna, “DevOps for
better software security in the cloud,” in Proceedings of the
12th International Conference on Availability, Reliability and
Security, ser. ARES ’17. New York, NY, USA: ACM, 2017, pp.
69:1–69:6. [Online]. Available: http://jaatun.no/papers/2017/
secdevops-author.pdf

[2] G. McGraw, “Software security,” Security & Privacy, IEEE,
vol. 2, no. 2, pp. 80–83, Mar 2004.

[3] H. Erdogmus, “Architecture meets agility,” IEEE Software,
vol. 26, no. 5, pp. 2–4, Sept 2009.

[4] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and
architecture: Can they coexist?” IEEE Software, vol. 27, no. 2,
pp. 16–22, March 2010.

[5] M. Howard and S. Lipner, The Security Development Lifecycle.
Microsoft Press, 2006. [Online]. Available: https://aka.ms/
SDL/PDF

[6] Microsoft, “Security development lifecycle for agile develop-
ment, version 1.0,” Tech. Rep., June 30 2009. [Online]. Available:
https://www.blackhat.com/presentations/bh-dc-10/Sullivan_
Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-wp.pdf

[7] G. McGraw, Software Security: Building Security In. Addison-
Wesley, 2006.

[8] F. Swiderski and W. Snyder, Threat Modeling. Microsoft Press,
2004.

[9] M. G. Jaatun, K. Bernsmed, D. S. Cruzes, and I. A. Tøndel,
“Threat modeling in agile software development,” in Exploring
Security in Software Architecture and Design, M. Felderer and
R. Scandariato, Eds. IGI Global, 2019.

[10] J. Ryoo, R. Kazman, and P. Anand, “Architectural analysis for
security,” IEEE Security Privacy, vol. 13, no. 6, pp. 52–59, Nov
2015.

[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere, “The architecture tradeoff analysis method,”
in Proceedings. Fourth IEEE International Conference on En-
gineering of Complex Computer Systems (Cat. No. 98EX193).
IEEE, 1998, pp. 68–78.

[12] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and
G. Stephanides, “Architectural risk analysis of software
systems based on security patterns,” IEEE Transactions on
Dependable and Secure Computing, vol. 5, no. 3, pp. 129–142,
July 2008.

[13] A. Shostack, “Elevation of privilege: Drawing developers into
threat modeling,” in 2014 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 14), 2014.

[14] L. Williams, G. McGraw, and S. Migues, “Engineering security
vulnerability prevention, detection, and response,” IEEE Soft-
ware, vol. 35, no. 5, pp. 76–80, 2018.

[15] G. McGraw, S. Migues, and J. West, “Building Security In
Maturity Model (BSIMM 9),” 2018, https://www.bsimm.com/
content/dam/bsimm/reports/bsimm9.pdf.

[16] M. G. Jaatun, D. S. Cruzes, K. Bernsmed, I. A. Tøndel,
and L. Røstad, “Software security maturity in public
organisations,” in Information Security, ser. Lecture Notes in
Computer Science, J. Lopez and C. J. Mitchell, Eds. Springer
International Publishing, 2015, vol. 9290, pp. 120–138. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-23318-5_7

[17] T. Dybå and T. Dingsøyr, “What do we know about agile
software development?” IEEE software, vol. 26, no. 5, pp. 6–
9, 2009.

[18] D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A.
Tøndel, “Challenges and experiences with applying microsoft
threat modeling in agile development projects,” in Proc. 25th
Australasian Software Engineering Conference (ASWEC), Ade-
laide, Australia, Nov. 2018. [Online]. Available: http://jaatun.
no/papers/2018/Threat_modeling-aswec-2018_final.pdf

[19] T. D. Oyetoyan, M. G. Jaatun, and D. S. Cruzes, “A lightweight
measurement of software security skills, usage and training
needs in agile teams,” International Journal of Secure Software
Engineering, vol. 8, no. 1, pp. 1–27, 2017.

