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Abstract
Educationally-oriented measures of handwriting fluency – tasks such as writ-
ten alphabet recall and sentence copying – conflate graphomotor skill and vari-
ous higher-level abilities. Direct measurement of pen control when forming letters 
requires analysis of pen-tip velocity associated with the production of sub-letter fea-
tures that, in a skilled handwriter, are typically produced in a single, smooth move-
ment. We provide a segmentation and coding scheme that identifies these features 
in manuscript letters and gives criteria for whether or not a feature is accurately 
formed. We demonstrate that, in skilled handwriters, these features are the product 
of smooth movements: The velocity profiles of adult writers (N = 27 performing a 
letter-copying task) producing straight-line features and curved features gave modal 
velocity-peak counts of 1 and 2 respectively. We then illustrate the utility of our 
segmentation and coding scheme by describing the velocity profiles of beginning 
writers (176 first grade students with minimal handwriting training). This sample 
produced the same features with less accuracy and with a substantially greater num-
ber of velocity peaks. Inaccurate features tended to be produced more slowly and 
less fluently.
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Introduction

Handwriting is now relatively rare as a means of communication for most adults. 
However, it remains the dominant writing modality in the vast majority of pri-
mary school classrooms. Developing the ability to produce neat, or at least leg-
ible, handwriting is therefore important. Handwriting neatness affects subjective 
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ratings of text quality. Studies in which raters assess compositional quality of 
texts that are neatly or untidily written but are otherwise identical or matched 
have consistently found that lower, and often substantially lower, ratings are given 
to the untidy texts (Bull & Stevens, 1979; Chase, 1979; Klein & Taub, 2005, 
review by Graham et  al., 2011). In the majority of educational settings untidy 
writing will result in teacher criticism. Danna et  al. (2016) describe a vicious 
cycle in which criticism reduces self-esteem which results in handwriting avoid-
ance, which again results in reduced opportunity to improve.

Developing handwriting automaticity is also important. As might be expected, 
the fluency with which children are able to form letters on the page affects their 
productivity when composing text (Berninger et al., 1997; Graham et al., 2000), 
and there is some evidence that it also affects the quality of the resulting compo-
sition (Alves et  al., 2016). Handwriting ability is, therefore, needed not just for 
the production of aesthetically pleasing text. It is, in most educational contexts, a 
necessary precursor to effective written communication.

Researchers exploring handwritten production therefore need tools that allow 
assessment both of the written product – the neatness or at least accuracy with which 
letters are formed on the page – and also of the fluency with which the pen moves 
across the page when these letters are produced. Although accuracy and fluency are 
likely to be correlated, particularly in young children, developing an understand-
ing of the writing process requires that these are assessed independently: Real-time 
handwriting data need to be analysed in such a way as to be able to distinguish not 
just fluent, neat writers from inaccurate disfluent writers, but also writers who are 
fluent but inaccurate, and those who are disfluent but accurate.

Our aim in the present paper is to describe and illustrate one such tool. We 
first review existing research-focussed approaches to handwriting assessment. 
We then give a detailed description of the approach that we have adopted in our 
own research. By segmenting the handwriting trace into sub-letter features this 
approach makes possible fine-grained analysis of writers’ ability to control their 
pen movements. In the final section of the paper, we illustrate the use of the tool 
with a comparison of children and adults forming single letters.

Research‑focussed approaches to handwriting assessment

A range of tools have been developed to meet the needs of researchers and edu-
cators in identifying children whose handwriting is unusually poor and therefore 
requires remediation (see Feder & Majnemer, 2003 and Rosenblum & Weiss, 2006 
for reviews). Most of these include measures of both the neatness of the handwritten 
product – the form of the pen-trace as it appears on the page – and a measure of rate 
or fluency of the process by which this is produced. In practice, these are insepa-
rable. Product accuracy must be interpreted with reference to how fluently the text 
was produced, and vice versa. For ease of explanation, however, we will first discuss 
approaches to product assessment, and then approaches to measuring process.



1 3

Assessing handwriting: a method for detailed analysis of…

Assessing the handwritten product

Tools for assessing the handwritten product can be described broadly as either holis-
tic or analytic. Holistic assessment involves raters making a global judgement about 
the legibility (readability) of a handwriting sample. Ayres (1912) described a leg-
ibility measure based on how long it takes to read a text, averaging across several 
readers. Much more recently Larsen and Hammill (1989) developed the Test of Leg-
ible Handwriting based on matching handwriting samples to benchmark exemplars 
representing different levels of reading ease and neatness. Other measures elicit 
holistic ratings of legibility or of characteristics that are assumed to impact legibil-
ity. The Children’s Handwriting Evaluation Scale (Phelps & Stempel, 1988) rates 
samples for form, spacing and general appearance. The Handwriting Legibility scale 
(Barnett et  al., 2018) scores texts for legibility and effort-to-read, and raters also 
provide a single, global score for how well letters are formed, defined as containing 
all necessary elements, i.e., having appropriate shape, being neatly closed, and being 
consistent in size and tilt. Several other similar tools exist (e.g., Amundson, 1995; 
Molfese et al., 2011; Ziviani & Watson-Will, 1998).

Analytic approaches, by contrast, aim at direct measurement, on a letter-by-letter 
basis, of the degree to which a letter confirms to a neatly-written ideal. Helwig et al., 
(1976); see also Collins et al. (1980); Jones et al. (1977) described an approach to 
establishing accuracy when a writer is required to precisely copy model letters. Chil-
dren copy letters onto paper with four guidelines: a baseline, upper and lower lines 
to guide maximum and minimum vertical extent, and a midline above the baseline. 
Inaccuracies are identified, using transparent overlays, where letter components 
deviate from the model by more than a set tolerance (1, 2 or 3 mm depending on 
researcher purpose). This provides a binary copying-accuracy measure for each sub-
letter unit (is accurate or is not accurate, separately for, for example, the straight line 
and the curve in a lowercase h).

The strength of this approach, for research contexts, is that in contrast with holis-
tic measures, it provides very precise diagnosis of which features a writer is not able 
to form precisely. The pen-control deficit of a child who, for example, struggles to 
keep letter height within bounds is potentially quite different from the deficit associ-
ated with producing malformed curves. The disadvantage, however, is that it neces-
sarily requires precise copying not just of the form of a presented letter, but also its 
dimensions. This provides an overly-specific definition of what constitutes an accu-
rately formed letter, both in terms of form – there is no possibility for variation in 
allograph – and in size.

The widely used Minnesota Handwriting Test (MHT; Reisman, 1993) also scores 
a sample of text on a letter-by-letter basis. However, unlike the transparent-overlay 
method, the sample text is a sentence that participants copy without the requirement 
to exactly reproduce letter form. In the manuscript version participants are, however, 
required to print rather than use cursive script to write within three guidelines. For 
each letter, scorers first determine whether or not it is possible to identify the letter 
out of context. If the letter passes this test, then it is given a binary score for form 
(for example whether gaps or overlaps within the letter are all less than 1.6 mm), for 
position relative to the printed baseline (must be within 1.6 mm), for size (all letter 
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components must be positioned correctly relative to guidelines), and for letter and 
word spacing. Each legible letter is therefore given a score out of 5 representing its 
neatness.

The approach adopted by the MHT in scoring letter form is conceptually different 
from that implemented by the transparent-overlay method. The transparent-overlay 
method specifies a specific form for each letter, whereas the MHT applies the same 
neatness criteria across all letters. If the researcher requires by-child neatness scores 
– and this is the aim of the MHT – then this makes sense. However, if researchers 
need to know whether a specific letter was formed well, as might be the case for 
example in an experimental context, then letter-specific form criteria are required. 
The transparent-overlay method is one way to provide these. It is possible, however, 
to specify form individually for each letter without constraining size and allowing 
at least some flexibility in allograph choice. For example, the “criteria for letter for-
mation” provided by Ziviani and Elkins (1984, Table II) specify necessary (but not 
sufficient) characteristics for each letter. For example, a lowercase m must comprise 
a “double smooth curve finishing on aligned base”.

Assessing production fluency

Handwriting fluency measures are, broadly, of two different types, delineated by 
implicit assumptions about the range of processes that are encompassed by the term 
“handwriting”. Educationally-focussed research that, for example, explores the 
effects of handwriting ability on the quality of children’s written compositions (e.g., 
Abbott & Berninger, 1993; Kim & Schatschneider, 2017; Limpo & Alves, 2013; 
review by Kent & Wanzek, 2016), tends to use tasks that capture a range of skills 
over-and-above the motor planning and execution necessary to form a letter. All of 
the studies reviewed by Kent and Wanzek measure fluency by recording the number 
of characters children wrote in a fixed period of time when recalling the alphabet 
or when copying a written sentence or paragraph. Both the MHT and the Detailed 
Assessment of Speed of Handwriting (Barnett et  al., 2009), for example, involve 
copying an unfamiliar sentence that includes all of the letters in the English alpha-
bet (although necessarily with unrepresentative letter and digraph frequencies). Rate 
of output when performing this task will depend upon motor planning ability and 
pen control. However, it will also require reading, short-term memory, attention, and 
orthographic retrieval.

More direct measures of the speed and fluency with which a writer can form 
known letters – i.e., of those components of the handwriting process that are directly 
related to planning and controlling pen movement – can be captured by participants 
writing on a digitising tablet (or, at lower resolution, with a smart pen). This permits 
a broad range of measures that describe how the pen moves across that page (see 
review by Danna et al., 2013). At minimum, measuring pen movement, unlike meas-
ures that just count characters produced in a fixed period, differentiates between time 
spent with the pen moving on the page and time spent with the pen lifted or station-
ary (e.g., Paz-Villagrán et al., 2014; Sumner et al., 2013). Pen lifts or stops will, for 
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example, occur (probably) in sentence copying tasks when the writer is reading the 
next words to be copied (probably, but see Alamargot et al., 2007).

Measuring pen movement also permits a direct measure of mean pen-tip speed 
(Khalid et al., 2010; Kushki et al., 2011; Rosenblum et al., 2006; van Galen et al., 
1993). For example, van Galen et  al. found that 2nd to 4th graders identified by 
their teachers as having untidy handwriting moved the pen more quickly than peers. 
Kushki et al. (2011) found that 4th graders showed decreasing vertical velocity but 
increasing horizontal velocity as they progressed through composing a paragraph. 
Most obviously, competent adult writers show much faster mean pen-movement 
speed than beginning writers (writing single words: adults around 80 mm/s, Hepp-
Reymond et al., 2009; 6-year-olds, around 10 mm/s, Séraphin-Thibon et al., 2019).

Underlying this variation in speed is the extent to which letter components are 
formed with smooth single movements. This is illustrated in Fig. 1, which shows the 
velocity profile and final product for a competent adult producing a lower-case letter 
h. The upright is formed in a single, ballistic movement. The velocity curve for this 
feature – the first peak in the speed plot – is smooth, formed by a single acceleration 
and deceleration. Contrast this with the much less fluent velocity profile for the cor-
responding feature produced by a child in the lower panel. Whilst the adult produced 
this feature in a little over 300 ms, the child took over three times longer. This dif-
ference in speed and fluency is even more marked in the formation of the curved 
feature of the h.

Fig. 1   Speed (tangential velocity) of pen tip, omitting in-air movement, and the final product for an adult 
and a beginning writer producing lowercase h. Solid circles are locations where the pen was either sta-
tionary or lifted. Unfilled circles represent velocity peaks. Velocity is smoothed with a 10  Hz Butter-
worth filter
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A range of indices have been suggested for measuring pen-tip movement 
disfluency (Broderick et  al., 2009; Khalid et  al., 2010; Rosenblum et  al., 2006; 
Smits-Engelsman & Van Galen, 1997). One relatively straightforward approach 
is to smooth the velocity trace to some extent, as is the case in Fig. 1, and then 
simply count the number of times that velocity reaches a local maximum (a veloc-
ity peak; e.g., Overvelde & Hulstijn, 2011). Average velocity and velocity peak-
count are strongly correlated, at least in beginning writers (Fitjar et al., 2021), but 
velocity peaks are causally prior to slow production: The child in Fig. 1 produced 
the two components of the h much more slowly than the adult because their pen 
accelerated and decelerated multiple times.

Two other characteristics of the velocity profiles shown in Fig. 1 are important 
to note. First, the disfluency in the child’s pen movement was particularly marked 
when producing the curve. This is to be expected. The motor planning associated 
with forming a straight line has two degrees of freedom – length and direction. 
Curves add the need to manage angular change. This adds considerable com-
plexity to both planning and execution (see Morasso & Mussa Ivaldi, 1982, for a 
computational model and Habas & Cabanis, 2008, for fMRI evidence). Séraphin-
Thibon et al. (2019) found that pseudowords composed of letters that contained 
more curves were written with a larger number of velocity peaks than otherwise-
matched pseudowords with fewer curves.

Second, maximal fluency does not mean zero velocity peaks. Drawing a 
straight line necessarily involves starting and finishing with the pen stationary 
and so, at minimum, there must be one velocity maximum between these two 
points. This is the case for the adult writer in Fig.  1. Similar constraints apply 
to curved features: Edelman and Flash (1987) showed that both open and closed 
loops (hook, cup and gamma strokes, in their terminology) necessarily involve 
two velocity peaks, yet are still produced with maximum fluency. This again can 
be seen in the adult’s formation of the curve (inverted cup) of the h.

Product segmentation for process analysis

Determining the extent to which a specific sample of real-time handwriting data 
represent fluent production involves, therefore, making a comparison between the 
velocity profile for the sample and the theoretical maximally-fluent velocity pro-
file for the production of the same text. One approximation to this is simply to 
make comparisons between groups who have, a priori, been identified as poor or 
good handwriters on the basis of the neatness of their handwriting (e.g., Di Brina 
et al., 2008; Rosenblum & Werner, 2006; van Galen et al., 1993). It is also pos-
sible to make a priori assumptions about differences in the bandwidth of veloc-
ity spikes that constitute disfluency and those that are an essential to fluent pro-
duction (Danna et al., 2013; Meulenbroek & van Galen, 1986). Danna et al., for 
example, counted velocity peaks after low-pass filtering of pen-tip speed at 10 Hz 
(as in Fig. 1) and then subtracted a count of velocity peaks after low-pass filtering 
at 5 Hz on the grounds that the latter were likely to be a necessary characteristic 
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of competent, fluent production. This permits estimates of pen-movement fluency 
across extended text.

A more fine-grained approach is to segment letters into standard features that in 
competent, fluent writers could be produced as a single stroke – i.e. as a pen move-
ment bounded by points where the pen-tip is stationary or near-stationary and / or 
lifted (e.g., Meulenbroek & van Galen, 1990). These features then provide a basic 
unit of analysis when comparing pen movement across writers or experimental con-
ditions. This is the approach that we have taken in our discussion of the fluency 
of production of the letter h shown in Fig. 1. By segmenting the letter h into two 
features – a straight line and a curve – it was possible to make direct comparison 
between the adult and child samples.

For an approach based on marking up pen traces into features to be an effective 
research tool it needs to meet the following criteria:

First, and most obviously, it must be universally applicable: The segment delinea-
tion for a specific letter must be applicable across a wide range of different attempts 
at forming that letter by different writers.

Second, segmentation must be possible on the basis of the written product, with-
out reference to information about how the letter was formed. Automatic segmenta-
tion based on process – dividing up letters into components based on units that are 
composed in single strokes – is possible, of course (see, for example Rosenblum 
et al., 2006). However, this will identify different segments depending on whether 
a letter is produced fluently or disfluently. The reason for this can be clearly seen in 
Fig. 1 by considering the different location of the pen stops and lifts in the adult and 
child letters. If the purpose of segmenting the letter is to then establish the fluency 
with which the segments are produced, then the procedure by which segmentation is 
achieved must itself be independent of fluency.

Third, because there is potential for a trade-off between speed and precision, the 
segmentation procedure also needs to take some account of the accuracy with which 
a segment is formed. To compare like-with-like it is necessary to know whether a 
feature is well shaped and positioned.

Finally, the segmentation procedure must allow for the possibility of variation 
in allograph. Again, this is illustrated in Fig. 1. Although we have been talking as 
though the curved component of the h is comparable across the adult and child 
samples this is, arguably, not the case: In the classification used by Edelman and 
Flash (1987), the adult forms a cup whereas the child forms a hook. The production 
demands of these two features may well be different. Segmentation must therefore 
differentiate between various allographs that represent the same letter but comprise 
different features. In practice this means that common allographs of the same letter 
will require their own segment codes, but obviously also that the coding scheme 
must identify these different allographs as representations of the same letter.

The coding scheme that is the focus of this paper aims to meet these criteria. We 
describe a formal, though we believe intuitive, schema for segmenting Latin lower 
and uppercase letters into sub-letter features, and for then determining whether or 
not the feature is formed and positioned with adequate precision. This develops the 
“criteria for letter formation” (Ziviani & Elkins, 1984) approach to coding the hand-
written trace into a rigorous formalism for segmenting letters into sub-letter units 
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that can then be directly compared in terms of kinematics of their production. In the 
next section of this paper, we give a detailed description of our letter-segmentation 
and coding scheme. In the final section we provide evidence for its value in compar-
ing production fluency across writers.

A scheme for letter segmentation and accuracy coding

Our coding scheme specifies, for each letter, a set of rules that (a) segments letters 
into sub-letter features, based on the shape of the pen trace, (b) provides criteria for 
deciding whether or not the feature is well formed. These are illustrated, for upper 
case R, in Table 1 and given in full in the appendix. The descriptions in the appendix 
describe common allographs of both upper- and lower-case printed letters. This is 
intended as illustrative rather than definitive and should be adapted by researchers to 
suit local context and their research needs.

Segmentation

Our strategy for identifying sub-letter features within a particular writer’s output 
depends just on the pen trace – the shape that the writer forms – and does not make 
reference to how the writer produced the feature. A feature is identified if it cor-
responds, within specified tolerances, to a feature as defined in our coding scheme 
(see example in Table 1). However, decisions about what constitutes a feature in a 
prototypical letter form – the decision, for example, to identify 3 distinct features in 
R is process-based. In developing the coding scheme, we identified features in a let-
ter as the minimum number of components in an allograph such that, in maximally-
fluent handwriting, each feature could be produced with a smooth velocity profile 
and without the pen either stopping or lifting (i.e., as a single pen stroke). Under this 
definition the letter C comprises a single feature, T comprises two features, N com-
prises three features, and so forth. Features may be either straight, as is the case for 
both features in T, or curved, as in feature R3 of R (see Table 1).

Marking up a specific pen trace into segments – identifying feature boundaries 
– is, as we have said, independent of the process by which that trace was produced. 
So, although in a skilled writer a feature will normally start and end with a pen stop 
or lift, this information is not used when deciding for a particular pen trace where a 
feature starts and ends. We defined features based on the spatial characteristics of 
acceptable letter forms – i.e., how the letter appears on the page – and then look for 
pen trace segments that, alone or combined, match these characteristics. As we dis-
cussed above, identifying features independently of how they were produced allows 
comparison of the kinematics of production of the same features across writers with 
varying graphomotor ability.

We use MarkWrite v 0.4.9 (Simpson et al., 2021) to segment and code handwrit-
ing traces. MarkWrite takes as input data captured in real time from a digitising 
tablet or, at lower resolution, a smart pen. It requires just that data provide, at mini-
mum, time and coordinates for each pen-location sample. The MarkWrite interface 
is illustrated in Fig. 2. Sequences of samples that comprise a feature, as defined by 
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the coding scheme, are selected either by cursor movement or by keyboard shortcut. 
Then the feature is annotated with a feature label and, if it is inaccurate, one or more 
codes to indicate how it deviates from well-formed.

Table 1   Example of coding scheme with specifications for size and position of each feature

Feature 
code

Shape and 
orientation

Size Position

R1
 

Straight, verti-
cal

Length is twice the width of the 
curve in feature 2

To the left of features 2 and 3

R2_1
 

Curve, open Width is half the length of 
feature 1,

Length: shorter or similar to 
height of feature 1

To the right of Feature 1
Open end towards feature 1
Top arm meets with top of feature 

1 and bottom arm meets feature 
1 in the middle

R2_2
 

Curve, closed Width: half the length of feature 
1

Length: shorter or similar to 
height of feature 1

To the right of feature 1
In the upper half of feature 1

R3
 

Straight, 
diagonal

Shorter than feature 1 To the right of R1
Slant bottom to right
Meets lower arm of feature 2 and 

or middle of feature 1

Fig. 2   Screenshot from the MarkWrite program showing selection Feature R1 from a child’s copying an 
uppercase R. The upper right panel shows change in y-axis location (upper plot) and pen-tip speed (lower 
plot) over the period when this feature was produced. The black trace in the spatial view is a selected set 
of samples that represent a single feature (annotated as R1). The grey trace represents in-air movements
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Accuracy

Once features are identified, the coding scheme then allows a binary decision about 
whether or not a handwritten feature was produced accurately. By accurately, we 
mean the extent to which the pen-trace corresponds to an acceptable representation 
of the target feature with regards to shape, size and position. In our coding, this deci-
sion is made without regard to aesthetics – we define relatively broad criteria for 
acceptable feature representation – and as with segmenting into features, accuracy 
coding is agnostic about the kinematics of the feature’s production. Decisions about 
accuracy (and / or neatness) criteria will depend on research purposes. The criteria 
we present here are illustrative rather than prescriptive. In our own implementation 
we applied a general tolerance of 1/6 of letter or feature height or width in deter-
mining whether or not features deviated from the shape, proportion or size defined 
by their allograph. This corresponds approximately to the 1.5  mm tolerance on 
9.5 mm ruled paper allowed by the Minnesota Handwriting Test (Reisman, 1993). 
Our approach differs from the MHT, however, in that we allowed for variation in 
absolute letter size, and therefore applied proportional rather than absolute tolerance 
criteria.

In Fig. 3 we illustrate six versions of the letter R, all of which have at least one 
inaccurate feature.

Fig. 3   Different inaccurate versions of the letter R 
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Shape

Shape accuracy depends on the straightness for straight features and curvedness for 
curved features. Decisions about straightness were made relative to the feature’s 
length and without reference to other features in the letter. The rule is that the fea-
ture is coded as inaccurate if the pen trace deviates from the straightest path between 
the ends of the feature with more than 1/6 of the feature length. In Fig. 3 the first R 
(I), the feature R1 (highlighted in solid black) is inaccurately shaped. Curvedness 
requires the pen trace to deviate from the straightest path between endpoints with 
more than 1/6 of feature width without the trajectory crossing itself. Thus, the fea-
ture length (measured between endpoints and bottom of the curve) must be at least 
1/6 of feature width (measured between the two most extreme points to each side of 
the endpoints). All the curved features in Fig. 3 are sufficiently curved. In our data, 
lack of curvedness was generally not a problem.

As shown in Table 1, curves can be either open or closed. Open curves need an 
opening that is at least 1/6 of feature width. Closed curves can have a gap or overlap 
between endpoints that corresponds to 1/6 of feature width. For letters with only one 
option, such as U, a gap smaller than 1/6 of feature width means that the letter is not 
accurately shaped. Likewise, the letter O can only be written with a closed curve 
and a gap larger than 1/6 means the letter is not accurately shaped.1 For letters with 
options, such as R2 in Table 1, this distinction has two purposes. First, it makes let-
ter description easier. Second, this is a scheme intended for exploring handwriting 
fluency and we recognise that other researchers may have an interest in curved fea-
tures in particular. Although we have not pursued this further at the moment, other 
researchers might find this useful.

Position

Positioning of features refers to spatial orientation of features as well as gaps and 
overlaps between features. For open curves spatial orientation refers to the direc-
tion of the open end – left, right, upwards and downwards – and is described for 
each letter. Straight lines can be either vertical, diagonal or horisontal. In this coding 
scheme, the tolerances for gaps/overlaps are 1/6 of letter height, or feature height in 
case of curves. In Fig. 3, the top arm of the R2 feature of R (III) does not meet the 
top of R1 as specified in the table. The horizontal overlap is within the 1/6 tolerance 
for overlap between features that should meet. The vertical overlap exceeds the 1/6 
tolerance and is coded as inaccurate for position. The R3 feature in the same let-
ter does not meet R2 and is therefore coded as inaccurate for position. The R3 in 
R(IV) and R(II) are not diagonal, slanting bottom to right, and are therefore coded as 

1  In copy and letter to dictation tasks it is clear what the target letter is. If the child saw or heard /u/ and 
produced a curve with a 1/6 gap between endpoints, then it is the letter u. If the scheme is applied to 
spelling words to dictation or free composition tasks researchers will need to make some additional deci-
sions about letter interpretation.
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inaccurate for position. The R2 and R3 in R(VI) are both inaccurately positioned as 
both are placed to the left of R1.

Size

For a feature to be accurate it also needs to meet relative size criteria. Criteria for 
size are letter specific. These are described in Appendix 1. To illustrate, in the letter 
R the vertical straight feature must be proportional to the other two features and vice 
versa. The rule is that the length of R1 is twice the width of the curve in R2. The 
length of the curve, R2, must be shorter or similar to length of R1, and the width 
must half the length of R1. Unless specified the tolerance for size difference is 1/6 of 
the previously produced feature. In Fig. 3, the curved feature R2_1 in the R(V) is too 
big in comparison with the previously produced feature, as the width of the curve is 
almost the same as the length of R1.

Alternative allographs

All letters have several legal allographs, depending on whether it is an upper-case 
or lower-case, block or cursive version. In addition, some letters have several allo-
graphs within these categories. As Fig. 4 shows, the upper-case A is an example of a 
letter with two allographs; one has two straight features slanting towards each other 
at the top while in the other the straight features are replaced by one curved feature. 
The scheme is open-ended and may need to be adapted and augmented in specific 
contexts.

One feature – multiple segments

A feature may be produced with a single stroke (e.g., the h open curve – feature 
h2 in our coding scheme – produced by the adult in Fig. 1). A feature can also be 
produced with multiple pen-stops as is the case for the child’s production of the h 
open curve in Fig. 1. It may be produced in two or more distinct movements. The 
bar of the T – feature T2 in our coding scheme – would typically be produced by a 
skilled writer in a single stroke. Figure 5 shows this feature, T2, being produced, by 
a beginning writer, in two distinct movements. The numbers represent the sequence 
in which these were generated, and arrows indicate approximate initial direction of 
pen trajectory. The movement is separated by a pen lift and in-air move, and with 
the pen moving in different directions to produce each segment. It is not even the 
case that a feature must be produced with consecutive movements as illustrated with 

Fig. 4   Two handwritten allographs for the letter A, one has one curved and one straight feature and the 
other has three straight features
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the g in Fig. 5. The feature g1 – in our coding scheme – is produced in three distinct 
and non-consecutive movements.

Handwriting fluency in adults and beginning handwriters

Our purpose in this section is to illustrate how the segment and coding scheme can 
be used as the basis for a detailed analysis of the kinematics of single letter produc-
tion in a sample of very early writers, and of competent adults.

Participants and task

Our child sample comprised 176 Norwegian children tested within the first four 
weeks of first grade (mean age 6.2 years, 86 girls). Early childhood care and edu-
cation in Norway (Barnehage / Kindergarten) is attended by 97.6% of 5 year olds 
(Norwegian Directorate for Education & Training, 2019).2 Children in kindergarten 
do not, however, follow a set curriculum and, in particular there is no requirement 
to learn handwriting before the start of primary (elementary) school. Many of the 
children in our sample were, therefore, at the very start of learning how to hand-
write. Our adult sample comprised faculty and other staff at a Norwegian university 
(N = 27, 23 women). We did not record age.

Both children and adults copied the letters A M d h T d g R. Letters were dis-
played on cards presented one-at-a-time by a researcher.3 Participants copied these 
within pre-printed 2.5 cm square boxes. They were instructed to “write the letter as 
they saw it”, without a requirement to exactly copy its form.

Fig. 5   Handwritten letters in which features are produced with multiple actions. Different line shades 
represent pen traces bounded by pen lifts. Numbers represent the sequence in which these were gener-
ated. Arrows indicate approximate initial direction of pen trajectory. The feature g1, for example, was, 
therefore, produced in three separate non-consecutive movements – segments 1, 3 and 5. Data are digi-
tally-sampled pen movements by a Norwegian child who was just starting to learn how to handwrite

2  92.8% of all children between 1 and 5 years old attend Barnehage (SSB, 2021).
3  As part of the same task participants also copied 4 unfamiliar letter-like symbols. We do not report 
data from these or the two practice items – one letter and one symbol – in this paper.
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All participants were asked to write with their dominant hand. Adults then com-
pleted the task again, writing with their non-dominant hand. This provided a direct 
motor-control manipulation, holding all other factors that might affect production 
fluency constant.

Participants wrote with an inking ballpoint stylus on paper overlayed on a Wacom 
Intuos XL digitising tablet connected to an HP Elitebook i5 laptop. Pen-tip locations 
were sampled at intervals of around 7.5 ms (133 Hz) and with a spatial resolution of 
at least 330 lines/cm. Software for pen-movement capture and analysis was provided 
by the OpenHandWrite suite of programs (Simpson et  al., 2021) which provide a 
digitising tablet interface for PsychoPy (Peirce et al., 2019).

Data from the child sample are a subset of data previously reported in Fitjar et al., 
(2021), although the analyses reported in this paper are new. Adults were sampled 
specifically for this paper.

Processing handwritten data

Pen traces were segmented and coded according to the segmentation and coding 
scheme presented in the previous section. If copied accurately, using most-common 
allographs, these 8 letters segment into a total of 20 features. We additionally classi-
fied these as either straight or curved. The motor plan for producing a curved line is 
more complex than a straight line and these different motor plans are reflected in dif-
ferent kinematic profiles (Habas & Cabanis, 2008; Morasso & Mussa Ivaldi, 1982). 
This means that the effects of graphomotor difficulty, in writers with impaired or 
not-yet-developed graphomotor ability, are more likely to be exhibited when draw-
ing curves than when drawing straight lines (e.g., Fitjar et al., 2021). The letters for 
the present task – reproduced with the most common allograph, gave 8 curved and 
12 straight features.

The digitised pen traces were first segmented into features, with boundaries at the 
first visible (non-zero pressure) sample that was part of the pen-trace associated with 
an identifiable feature. We then calculated tangential velocity (speed) of the pen tip 
at each sample point and then filtered the resulting velocity timecourse with a 10 Hz 
4th order low-pass Butterworth filter. The 10 Hz filter removes measurement noise. 
We then counted remaining velocity maxima for each feature (see, for example, 
Khalid et al., 2010; Overvelde & Hulstijn, 2011; Smits-Engelsman et al., 2001).

Results

We present analysis of these data as follows: We describe the distribution of veloc-
ity maxima for straight and curved features produced by adults writing with their 
dominant hand and with their non-dominant hand and children. We then provide 
examples of fluency and accuracy for participants producing the three features of 
an upper-case letter R. We finally provide inferential analysis across all stimulus let-
ters and both adult and child samples to determine differential effects of handwriting 
skill on the production of curved and straight features.
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Fluency distributions

Figure 6 shows frequency distributions for the three groups producing straight and 
curved features. As we suggested in our introduction, modal number of velocity 
peaks for adults producing straight lines was one, and for producing a curve was 
two. For straight line, and for many curves, these represent the minimum possible 
number of velocity peaks. Adults writing with their dominant hand tended, as might 
be expected, to be maximally fluent. Interestingly, even though the distribution had 
a longer tail when adults wrote with their non dominant hands, modal number of 
velocity peaks remained similar in number to those for writing with their dominant 
hand, and substantially fewer than for our child sample. Given that handwriting with 
a non-dominant hand is not something that our adult sample will have practiced, this 
finding is consistent with the assumption that the motor plans underlying competent 
handwriting are effector-independent (Wing, 2000).

An example: upper‑case R

Table 2 gives some summary statistics for adults and children producing the three 
features of the letter R. The adult sample produced all three of these features 

Fig. 6   Distribution of count of velocity maxima (velocity peaks remaining after 10 Hz low-pass filtering) 
for adults and children producing straight and curved features
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accurately in all cases, and inaccuracy was also rare in children. This resulted partly 
from how the task was set. Both adults and children had the shape of the letter that 
they were to produce visible in front of them as they wrote. It is also a feature of 
the coding scheme: The parameters within which a feature must lie are deliberately 
quite broad, so as to capture any successful attempt at production. Only a subset of 
these would also be perceived as having been produced neatly.

Pen movement in adults was very much more fluent than in children, even when 
adults were writing (accurately) with their non-dominant hand (see also Fig. 9). 74% 
of adults writing with their dominant hand achieved the minimum-possible number 
of velocity peaks for both features R1 and R2.4

Fluency decreased when adults wrote R with their non-dominant hand but, as 
we have already noted, only slightly. This effect can be clearly seen in the exam-
ple in Fig. 7. Non-dominant handwriting was definitely slower than when adults 
wrote normally, and mid-curve deceleration was more pronounced. However, 

Table 2   Descriptive statistics for three features for the letter R 

a Fluent here refers to production of the feature with a velocity peak count that corresponds to the mode 
for the adult sample (1 for straight features, ≤ 2 for curves, see Fig. 8)

Feature R1  Feature R2  Feature R3 

Number inaccurate (%)
Adult dominant 0 (.0) 0 (.0) 0 (.0)
Adult non-dominant 0 (.0) 0 (.0) 0 (.0)
Child 5 (2.9) 9 (5.2) 15 (8.6)
Number fluenta (%)
Adult dominant 20 (74.1) 20 (74.1) 9 (33.3)
Adult non-dominant 9 (33.3) 5 (18.5) 6 (22.2)
Child 6 (3.4) 5 (2.9) 3 (1.7)
Mean velocity peak count (SD)
Adult dominant 1.26 (.45) 2.30 (1.03) 1.81 (.74)
Adult non-dominant 2.30 (1.32) 4.78 (2.28) 2.41 (1.58)
Child 9.00 (6.28) 11.77 (11.30) 8.64 (7.90)

4  R3 does not fit this pattern, however, with only 33% of adults achieving maximum fluency. Inspection 
of the velocity profiles suggests that this was due to adults tending to add a final short pen movement 
at an acute angle to the end R3. This may be because adults’ motor plans are adapted to writing cur-
sively. It may also be because control of diagonal left-to-right finger movement is relatively complex in 
right-handed writers. Whatever their cause, our segmentation scheme, which was developed for use with 
children but then applied to adults, allowed for the inclusion of these final short movements. These little 
flicks were not big enough to break the rules of how features may deviate from prototype features. Big-
ger flicks would have been classified as inaccurate production of the feature. This highlights the need for 
carefully developing and testing feature definitions within a specific research context.
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the velocity profile maintained a similar shape to normal production and did not 
come close to the level of disfluency seen in our child sample.

One question worth asking concerns the relationship between accuracy and 
fluency. Figure 8 gives velocity plots from four different child writers producing 
feature R2. This demonstrates again, very clearly, the importance of exploring 
fluency alongside accuracy. On the basis of their pen traces the children in the 
top two panels would be identified as skilled handwriters, and the children in 
the bottom two panels might be identified as being in need of remedial interven-
tion. This is despite the fact that the child in the second panel took 8 times as 
long to produce the same feature as the child in the first panel. The bottom two 
panels show faster production suggesting an accuracy fluency trade-off: Inac-
curacy in older children is often associated with greater rather than less fluency 
(van Galen et al., 1993). Analysis of just the child data from the present sample 
– children at an earlier stage of learning to handwrite than those sampled by van 
Galen, reported in Fitjar et  al., (2021) – did not find this effect, however. We 
found, instead, that inaccurate features were produced with, on average, 3 more 
velocity peaks than accurately produced features.

Fig. 7   Examples of velocity profiles for each feature of the letter R – R1 (vertical straight), R2_1 (open 
curve), R3 (diagonal straight) – for a child, and an adult writing with both non-dominant and dominant 
hand. Open circles in the trace represent locations of velocity peaks. Filled circles represent stops or lifts. 
Velocity is smoothed with a 10 Hz Butterworth filter
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Effects of feature shape on child and adult fluency

The descriptive statistics and illustrations that we have reported so far suggest that, 
as might be expected, curved features present a greater graphomotor challenge than 
straight features, particularly in the early stages of learning to handwrite. In this sec-
tion we test that hypothesis with data from both adult and child samples. To this 
end we compared nested linear mixed effects models (e.g., Baayen et al., 2008) pre-
dicting velocity peak count and implemented in the lme4 R package (Bates et al., 
2015). Model comparison was by likelihood ratio χ2 test. Statistical significance for 
parameter estimates for models was established by evaluating against a t distribu-
tion with Satterthwaite approximation for denominator degrees of freedom (imple-
mented in lmerTest; Kuznetsova et  al., 2017). We started with an intercept-only 
model, and then added main effects for condition (child, adult dominant-hand, adult 
non-dominant hand) and whether the feature was straight or curved as fixed effects. 
This model gave significantly better fit (χ2(1) = 70.4, p < 0.001). We then added the 
interaction between these factors (Model 2 vs. M1, χ2(1) = 49.3, p < 0.001). This 
final model gave an estimated marginal R2 of 0.17 (Nakagawa & Schielzeth, 2013), 

Fig. 8   Pen velocity (smoothed with 10 Hz Butterworth filter) for examples of children producing Fea-
ture R2 either correctly or incorrectly, and the resulting trace. Filled circles represent pen lifts or stops. 
Unfilled circles represent velocity maxima
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and intra-class correlations of 0.26 for random effects of child and 0.16 for random 
effects of item.

The effects found by the best-fit model can be clearly seen in Fig. 9. Relative to 
adult writers writing with their dominant hand there was some evidence of a reduc-
tion in fluency when adults write with their non-dominant hand (estimated velocity 
peak increase = 1.0, 95% CI [0.01,2.0], p = 0.047) but with no significant additional 
effect of the feature being curved. Children were substantially less fluent for straight 
features (5.8 [4.5, 7.2], p < 0.001) with a substantial additional effect of 7.9 velocity 
peaks (95% CI [5.7, 9.9], p < 0.001) for children producing curved features.

Conclusion

The aim of this paper was to describe and illustrate a method for segmenting hand-
written letter pen-traces into sub-letter features that can then form the basis for an 
analysis of handwriting fluency. The scheme that we have described also necessarily 
identifies whether or not a feature has been produced with an acceptable degree of 
accuracy.

The details of our specific implementation of the approach – our 1/6 tolerance 
principle and, particularly, our set of acceptable allographs – can and should be 
varied by users to fit specific research questions, populations, and educational con-
texts. Our contribution boils down to two observations. First, that if researchers want 
to make comparisons across writers in handwriting kinesthetics then this must be 
across features that are, to some meaningful extent, spatially equivalent and that 
are identified independently of how they are produced. Second, that it is possible 

Fig. 9   Observed velocity peak count, after 10 Hz Butterworth smoothing. Error bars represent one 
standard deviation
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to develop a rigorous approach to identifying these features that allows both for 
variation in absolute size of letter that writers may represent letters using different 
allographs.

Combined with analysis of movement fluency based on counts of velocity peaks 
our approach to segmentation and coding scheme therefore allows direct meas-
urement of graphomotor performance. This will be of use to researchers who are 
directly interested in motor control, providing a more systematic and rigorous 
approach to pen-trace coding than we were able to find in the existing literature. 
It will also be of use to researchers who have a broader interest in the cognitive 
processes that underlie written production, and also in developing strategies for sup-
porting children learning to write. Our approach contrasts, for example, with meas-
ures that count the number of characters that are produced in a fixed period of time. 
These necessarily confound handwriting fluency with time spend in other writing-
related processing that occurs when the pen is stationary. Application of this method 
to real time data from, for example, sentence-copying or written alphabet recall, 
would allow disambiguation of the contribution of handwriting fluency, per se, to 
a writer’s overall fluency, and the contribution of processes – reading, message pro-
cessing / stimulus recall, syntactic and orthographic retrieval – that are more likely 
to occur when the pen is lifted.

Appendix

The table below gives letter segmentation and coding scheme for upper and lower-
case letters in the English alphabet. Unless specified, the tolerance for size differ-
ence 1/6 of the size of the preceding feature, and the tolerance for gaps/overlaps are 
1/6 of letter height.

Letter Feature code Shape and orientation Size Position

A A1_1 Straight
Diagonal

Similar length to A2 Slant top to right
Meet with A2 at top to 

create an acute angle
A1_2 Curve,

Open
Arms must be similar 

length
Open end downwards

A2 Straight
Diagonal

Similar length to A1_1 Slant top to left
Meets with A1_1 at top to 

create an acute angle
A3 Straight

Horizonal
Must be long enough to 

meet with or slightly 
overlap with A1_1 and 
A2 or both arms of 
A1_2

In the middle of A1 and 
A2
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Letter Feature code Shape and orientation Size Position

B B1 Straight
Vertical

Must be longer than the 
length of B2

To the left of B2 and B3
Top meets upper arm of 

B2_1
Bottom meets lower arm 

of B3_1
B2_1 Curve

Open
The length of the curve 

must be half the length 
of B1 and similar to or 
shorter than B3

Width of curve should be 
similar to or narrower 
than width of B3

Open end towards B1
Above B3
Both arms meet B1
Upper arm meets top of 

B1

B2_2 Curve,
Closed

The length of the curve 
must be half the length 
of B1 and similar to or 
shorter than B3

Width of curve should be 
similar to or narrower 
than width of B3

Above B3
The left side meets B1 in 

the upper half of B1

B3_1 Curve
Open

The length of the curve 
must be half the length 
of B1, and similar to or 
longer than B2

Width of curve should be 
similar to or wider than 
width of B2

Open end towards B1
Below B2
Both arms meet B1
Lower arm meets bottom 

of B1

B3_2 Curve,
Closed

The length of the curve 
must be half the length 
of B1 and similar to or 
longer than B2

Width of curve should be 
similar to or wider than 
width of B2

Below B2
The left side meets B1 in 

the lower half of B1

C C1 Curve
Open

Similar length and width, 
but length cannot 
exceed width

Open end towards the 
right

D D1 Straight
Vertical

Must be longer than the 
length of D2

Must be long enough to 
meet both arms of D2

To the left of D2
Cannot extend top of 2 or 

descend below D2

D2 Curve
Open

Similar length and width, 
and length must be 
similar to or shorter 
than D1 length

Open end towards D1
Upper arm meets top of 

D1
Lower arm meets bottom 

of D1
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Letter Feature code Shape and orientation Size Position

E E1 Straight
Vertical

Must be longer than 
the lengths of E2, E3 
and E4

To the left of E2, E3, 
and E4

Cannot extend above E2 or 
descend below E4

E2 Straight
Horizontal

Shorter than E1, similar 
to E4

To the right of E1
Left end meets with top 

of E1
E3 Straight

Horizontal
Shorter than 1, similar or 

shorter than 2 and 4
To the right of E1
Left end meets with the 

middle of E1
E4 Straight

Horizontal
Shorter than E1, similar 

to E2
To the right of E1
Left end meets with bot-

tom of E1
F F1 Straight

Vertical
Must be longer than the 

lengths of F2 and F3
To the left of F2 and F3
Top meets left end of F2

F2 Straight
Horizontal

Shorter than F1, similar 
or longer than F3

To the right of F1
Left end meets with top 

of F1
F3 Straight

Horizontal
Shorter than F1 and 

similar to or shorter 
than F2

To the right of F1
Left end meets with the 

middle of F1
G G1 Curve

Open
Width must be wider 

than G2
Arms must be similar 

length, or bottom arm 
may be longer than 
upper arm

Curve length cannot be 
longer than letter height

Open end towards the 
right

G2 Straight
Horizontal

At least 1/6 of letter 
height and no longer 
than letter height

Right end meets with bot-
tom arm of G1

Left end cannot intersect 
G1

Optional G3 Straight
Vertical

Length cannot extend 
above G2 or below G1

Top end meets right end 
G2

Bottom end meets bottom 
arm of G1

H H1 Straight
Vertical

Similar length to H2 To the left of H2 and H3
The left end of H3 meets 

with the middle of H1
H2 Straight

Vertical
Similar length to H1 To the right of H1 and H3

The right end of H3 meets 
with the middle of H2

H3 Straight
Horizontal

Must be long enough to 
meet with or slightly 
overlap with H1 and H2

Cannot be longer than 
both H1 and H2

Meets with H1 and H2 in 
the middle of H1 and H2

I I1 Straight
Vertical
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Letter Feature code Shape and orientation Size Position

J J1 Curve
Open

Uneven lengths, left arm 
must be no more than 
half the length of the 
right arm

Open end upwards
Below J2
Top of J1 right arm meets 

J2 in the middle
J2 Straight

Horizontal
Length must be shorter 

than letter height
Above J1
Middle meets the top of J1 

right arm
K K1 Straight

Vertical
Longer than K2 and K3 To the left of K2 and K3

K2 Straight
Diagonal

Shorter than K1
Similar to K3

Slant top to right
Bottom meets in the mid-

dle of K1
K3 Straight

Diagonal
Shorter than K1
Similar to K2

Slant down to right
Top meets in the middle 

of K1
L L1 Straight

Vertical
Longer than L2 To the left of L2

Bottom meets with left 
end of L2

L2 Straight
Horizontal

Shorter than L1 To the right of L1
Left end meets with bot-

tom part of L1
M M1 Straight

Vertical
Similar to M4 To the left of M2, M3, 

and M4
Meet with M2 at top to 

create an acute angle
M2_1 Straight

Diagonal
Must be at least 1/6 of 

both 1 and 4
Length similar to length 

of M3

Slant top to left
Top meets with top of 1 to 

create acute angle
Bottom meets with bottom 

of M3_1, meeting point 
below the upper 1/6 of 
letter height

M2_2 Curve
Open

The arms should be simi-
lar length, or the right 
arm may be shorter

Bottom of right arm over-
laps with bottom of left 
arm of M3_2

M3_1 Straight
Diagonal

Must be at least 1/6 of 
both 1 and 4

Length similar to length 
of M2

Slant top to right
Bottom meets with bottom 

of M2_1, meeting point 
below the upper 1/6 of 
letter height

M3_2 Curve
Open

The arms should be simi-
lar length, or the left 
arm may be shorter

Bottom of left arm over-
laps with bottom of right 
arm of M2_1

M4 Straight
Vertical

Longer than M2_1 and 
M3_1

Length similar to M1

To the right of M1, M2 
and M3

Meet with M3_1 at top to 
create an acute angle
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Letter Feature code Shape and orientation Size Position

N N1 Straight
Vertical

Length similar to N2 
and N3

To the left of N2, and N3
Meets with N2 at top to 

create an acute angle
N2 Straight

Diagonal
Length similar to N1 

and N3
Slant top to left
Meets with N1 at top and 

N3 within lower half to 
create acute angles

N3 Straight
Vertical

Length similar to 1 and 2 To the right of N1 and N2
Meets with N2 within the 

lower half to create an 
acute angle

O O1 Curve
Closed

Similar width and length

P P1 Straight
Vertical

Length twice the width of 
the curve in P2

To the left of P2

P2_1 Curve
Open

Width: half the length 
of P1

Length: shorter or similar 
to height of P1

To the right of P1
Open end towards P1
Top arm meets with top 

of P1, and bottom arm 
meets P1 in the middle

P2_2 Curve
Closed

Width: half the length 
of P1

Length: shorter or similar 
to height of P1

To the right of P1
In the upper half of P1

Q Q1 Curve
Closed

Similar width and length

Q2 Straight
Diagonal

Shorter than the letter 
height

Slant top to left
Meets with or intersects 

Q1 only once and in the 
right lower quadrant

R R1 Straight
Vertical

Length twice the width of 
the curve in R2

To the left of R2 and R3

R2_1 Curve
Open

Width: half the length 
of R1

Length: shorter or similar 
to length of R1

To the right of R1
Open end towards R1
Top arm meets with top 

of R1
Bottom arm meets R1 in 

the middle
R2_2 Curve

Closed
Width: half the length 

of R1
Length: shorter or similar 

to length of R1

To the right of R1
In the upper half of R1

R3 Straight
Diagonal

Shorter than R1 To the right of R1
Slant bottom to right
Meets lower arm of R2 

and or middle of R1
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Letter Feature code Shape and orientation Size Position

S S1 Curve
Open

Similar to S2
Tolerance: half or double 

the size of S2

Open end towards right
Directly above S2
Lower arm merges into 

upper arm of S2
S2 Curve

Open
Similar to S1
Tolerance: half or double 

the size of S1

Open end towards left
Directly below S1
Upper arm merges into 

lower arm of S1
T 1 Straight

Vertical
Similar to T2
Tolerance: half or double 

the size of T2

Below T2
Top meets the middle 

of T2
2 Straight

Horizontal
Similar to T1
Tolerance: half or double 

the size of T1

Above T1
Middle meets the top 

of T1
U U1 Curve

Open
Arms have similar length
Length should be longer 

or similar to width

Open end upwards

V V1 Straight
Diagonal

Similar to V2 Slant top to left
Bottom meets with bottom 

part of V2 to create an 
acute angle

V2 Straight
Diagonal

Similar to V1 Slant top to right
Bottom meets with bottom 

part of V1 to create an 
acute angle

W W1 Straight
Diagonal

Longer than or similar to 
W2 and W3

Similar to W4

Slant top to left
Bottom meets with bottom 

part of W2 to create an 
acute angle

W2 Straight
Diagonal

Shorter than or similar to 
W1 and W4

Similar to W3

Slant top to right
Bottom meets with bottom 

part of W1 to create an 
acute angle

Top meets with top of W3 
to create an acute angle 
or intersects upper part 
of W3

W3 Straight
Diagonal

Shorter than or similar to 
W1 and W4

Similar to W2

Slant top to left
Top meets with top part 

of W2 to create an acute 
angle or intersects with 
upper part of W2

Bottom meets with bottom 
of W4 to create an acute 
angle

W4 Straight
Diagonal

Longer than or similar to 
W2 and W3

Similar to W1

Slant top to right
Bottom meets with bottom 

part of W3 to create an 
acute angle
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Letter Feature code Shape and orientation Size Position

X X1 Straight
Diagonal

Similar to X2 Slant top to left
The middle intersects the 

middle of X2
X2 Straight

Diagonal
Similar to X1 Slant top to right

The middle intersects the 
middle of X1

Y Y1 Straight
Diagonal

Half the length of Y2 Slant top to left
Bottom meets middle 

of Y2
Y2 Straight

Diagonal
Double the length of Y1 Slant top to right

Middle meets end of Y1
Z Z1 Straight

Horizontal
Similar to or shorter than 

Z2 and
similar to or longer than 

Z3

Above Z2 and Z3
Right end meets top of Z2 

to create an acute angle

Z2 Straight
Diagonal

Similar to Z1 and Z3 Between Z1 and Z3
Slant top to right
Top meets right end of Z1 

to create an acute angle
Bottom meets left end of 

Z3 to create an acute 
angle

Z3 Straight
Horizontal

Similar to Z1 and Z2 Below Z1 and Z2
Left end meets bottom of 

Z2 to create an acute 
angle

a a1_1 Curve
Open

Length similar to a2 
length

Width similar to length 
of a2

Open end to the right
Aligned with and to the 

left of a2
Top arm meets top of a2
Bottom arm meets bottom 

of a2
a1_2 Curve

Closed
Similar length as a2 Top and bottom aligned 

with a2 top and bottom
To the left of a2

a2_1 Straight
Vertical

Similar length as a1 To the right of a1
Overlaps with the right 

side of a1 OR
The top meets end of 

upper arm of a1_1 and 
the bottom meets end of 
lower arm of a1_1

a2_2 Curve
Open

Left arm similar length 
as a1

Right arm cannot extend 
the middle of letter 
height

To the right of a1
Overlaps with the right 

side of a1 OR
The top meets end of 

upper arm of a1_1, the 
bottom meets end of 
lower arm of a1_1
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Letter Feature code Shape and orientation Size Position

b b1 Vertical Length twice the width of 
the curve in b2

To the left of b2
Meets with arms of b2_1 

OR the left side of b2
b2_1 Curve

Open
Width: half the length 

of b1
Length: shorter than 

length of b1

Open end towards the left
To the right of the bottom 

half of b1

b2_2 Curve
Closed

Width: half the length 
of b1

Length: shorter than 
length b1

To the right of the bottom 
half of b1

c c1 Curve
Open

Similar length and width, 
but length cannot 
exceed width

Open end towards the 
right

d d1_1 Straight
Vertical

Length twice the width of 
the curve in d2

To the right of d2 and 
meets d2_1 end of arms 
OR right side of d2_2

d1_2 Curve
Open

Left arm length twice the 
width of the curve in d2

Right arm length cannot 
extend the middle of 
letter height

To the right of d2 and 
meets d2_1 end of arms 
OR right side of d2_2

d2_1 Curve
Open

Length and width: half 
the length of d1

Open end towards the 
right

Upper arm meets the mid-
dle of d1

lower arm meets the bot-
tom of d1

d2_2 Curve
Closed

Length and width: half 
the length of d1

Meets d1 to the left of the 
bottom half of d1

e e1 Straight
Horizontal

Length: similar to length 
of e2 and no more than 
double the width of e2

Right end meets upper 
arm of e2

Left arm meets bottom 
curve of e2

e2 Curve
Open

Length: similar to length 
of e1

Width: must be at least 
half of e1 length, but 
no more than double 
length of e1

The lower arm must 
exceed the middle 
of the upper arm but 
cannot meet the right 
end of e1

Open end towards the 
right

The upper arm continues 
downward to meet the 
right end of e1
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Letter Feature code Shape and orientation Size Position

f f1 Curve
Open

Arms are uneven length-
wise

Right arm must be 
between 1/6 and 1/2 
of the length of the 
left arm

Must be longer than f2

Open end downwards
Left arm must be in the 

middle of f2

f2 Straight
Horizontal

Shorter than f1 and 
longer than 1/3 of f1

Placed cross sectional in 
the middle of f1, but 
below endpoint of f1 
right arm

g g1 Curve
Open

Arms are uneven length-
wise

Left arm must be 
between 1/6 and 1/2 the 
length of the right arm

Must be longer than g2

Open end upwards
Must be placed visibly 

below the bottom curve 
of g2

g2_1 Curve
Open

Width: half the length 
of g1

Length: shorter or similar 
to length of g1

To the left of g1
End of upper arm meets 

top of g1
Lower arm must be visibly 

above the bottom of the 
curve in g1

g2_2 Curve
Closed

Width: half the length 
of g1

Length: shorter or similar 
to length of g1

To the left of g1
The right side of the curve 

meets g1 in the upper 
half

The closed curve must be 
visibly above the bottom 
of the curve in g1

h h1 Straight
Vertical

Length: double the length 
of h2

(Potentially) overlapping 
with the left arm of h2

Bottom part of h1 should 
be aligned with end of 
h2 right arm

h2 Curve
Open

Length: Half the length 
of h1

Width: shorter or similar 
to length of h1

Endpoints of h2 arms 
should be aligned with 
bottom part of h1

The left arm of h2 may 
be shorter than the right 
arm but should be con-
nected to h1

i i1 Straight
Vertical

Ignore tittle

j j1 Curve
Open

Uneven lengths, left arm 
must be no more than 
half the length of the 
right arm

Open end upwards
Ignore tittle
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Letter Feature code Shape and orientation Size Position

k k1 Straight
Vertical

Length: longer than k2 
and k3

To the left of k2 and k3

k2 Straight
Diagonal

Shorter than k1,
Similar to or shorter 

than k3

Slant top to right
Bottom meets in the lower 

half of k1
k3 Straight

Diagonal
Shorter than k1, similar 

to or longer than k2
Slant down to right
Top meets in the lower 

half of k1, but not above 
k2 bottom

l l1_1 Straight
Vertical

l1_2 Curve
Open

Uneven lengths, right 
arm must be no more 
than half the length of 
the left arm

Open end upwards

m m1 Straight
Vertical

Length: similar to or 
longer than m2 and m3

(Potentially) overlapping 
with the left arm of m2

Top should be aligned 
with top of m2 and m3 
curves

Bottom part of m1 should 
be below or aligned with 
endpoint of m2 right 
arm and aligned with 
endpoint of m3 right arm

m2 Curve
Open

Length: similar to or 
shorter than m1

Left arm length: similar 
or shorter than m1, 
similar or longer than 
m2 right arm

Right arm length: similar 
or shorter than m2 left 
arm

Width: shorter than 
length, but at least half 
the length of feature 
length

Open end downwards
Top of curve should be 

aligned with m3 and top 
of m1

Left arm should overlap 
with m1, or start in the 
upper half of m1

Right arm should overlap 
with m3 left arm

m3 Curve
Open

Length: similar to or 
shorter than m1

Left arm: similar or 
shorter than m3 right 
arm

Right arm: similar or 
longer than m3 left arm

Width: shorter than 
length, but at least half 
the length of feature 
length

Open end downwards
Top of curve should be 

aligned with m3 and top 
of m1

Left arm should overlap 
with m2 right arm

Right arm endpoint should 
be below or aligned with 
endpoint of left arm and 
aligned with bottom 
om m1
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Letter Feature code Shape and orientation Size Position

n n1 Straight
Vertical

Length: similar to or 
longer than length of n2

(Potentially) overlapping 
with n2 left arm

Top should be aligned 
with top of n2 curve

Bottom part of n1 should 
be below or aligned with 
endpoint of n2 left arm 
and aligned with end-
point of n2 right arm

n2 Curve
Open

Left arm length: similar 
to or shorter than n1 
and n2 right arm

Right arm length: similar 
to or longer than n2 
left arm

Width: shorter than 
length, but at least half 
the length of feature 
length

Open end downwards
Left arm (potentially) 

overlapping with n1
Right arm endpoint should 

be below or aligned with 
endpoint of left arm and 
aligned with bottom 
om n1

o o1 Curve
Closed

Similar width and length

p p1 Straight
Vertical

Length twice the width of 
the curve on p2

Meets p2 to the left of p2

p2_1 Curve
Open

Length and width: half 
the length of p1

To the right of p1
Open end towards p1
Upper arm meets top of p1
Lower arm meets middle 

of p1
p2_2 Curve

Closed
Length and width: half 

the length of p1
To the right of p1
Meets in the upper half 

of p1
q q1 Straight

Vertical
Length twice the width of 

the curve on q2
Meets q2 to the right of q2

q2_1 Curve
Open

Length and width: half 
the length of p1

Meets q1 to the left of q1
Open end towards q1
Upper arm meets top of q1
Lower arm meets middle 

of q1
q2_2 Curve

Closed
Length and width: half 

the length of p1
To the right of q1
In the upper half of q1

r r1 Straight
Vertical

Length: similar to or 
longer than length of n2

(Potentially) overlapping 
with left arm of r2

r2 Curve
Open

Arms are potentially 
uneven lengthwise, ie 
left arm may be similar 
to r1 OR arms are 
similar in length

Right arm must be 
between 1/6 and 1/2 of 
the length of the left 
arm OR r1 length

Open end downwards
Left arm overlaps poten-

tially with r1, it may 
be shorter but must be 
connected to upper half 
of r1
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Letter Feature code Shape and orientation Size Position

s s1 Curve
Open

Similar to s2
Tolerance: half or double 

the size of s2

Open end towards right
Directly above s2
Lower arm merges into 

upper arm of s2
s2 Curve

Open
Similar to s1
Tolerance: half or double 

the size of s1

Open end towards left
Directly below s1
Upper arm merges into 

lower arm of s1
t t1_1 Straight

Vertical
Must be longer than t2 Placed in the middle of t2

t1_2 Curve
Open

Arms are uneven length-
wise

Right arm must be 
between 1/6 and 1/2 
of the length of the 
left arm

Must be longer than t2

Open end upwards
Left arm in the middle 

of t2

t2 Straight
Horizontal

Shorter than t1 but longer 
than 1/3 of t1

Placed cross sectional in 
the middle of t1, but 
above endpoint of t1_2 
right arm

u u1 Curve
Open

Length: longer than 
width, but no more 
than double the feature 
width

Width: shorter than 
length, but at least half 
the length of feature 
length

Open end upwards
Left arm (potentially) 

overlapping with u2
Arm endpoints must be 

aligned

u2_1 Straight
Vertical

Length similar to u1 
length

Overlapping with u1 to the 
right of u1

u2_2 Curve
Open

Left arm similar length 
as u1

Right arm cannot extend 
the middle of letter 
height

To the right of u1
Left arm overlapping with 

the right arm of u1

v v1 Straight
Diagonal

Similar to v2 Slant top to left
Bottom meets with bottom 

part of v2 to create an 
acute angle

v2 Straight
Diagonal

Similar to v1 Slant top to right
Bottom meets with bottom 

part of v1 to create an 
acute angle
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Letter Feature code Shape and orientation Size Position

w w1 Straight
Diagonal

Length shorter than or 
similar to w1 and w4

Length similar to w3

Slant top to right
Bottom meets with bottom 

part of w1 to create an 
acute angle

Top meets with top of w3 
to create an acute angle 
or intersects upper part 
of w3

w2 Straight
Diagonal

Length shorter than or 
similar to w1 and w4

Length similar to w2

Slant top to left
Top meets with top part 

of w2 to create an acute 
angle or intersects with 
upper part of w2

Bottom meets with bottom 
of w4 to create an acute 
angle

w3 Straight
Diagonal

Longer than or similar to 
w2 and w3

Similar to w1

Slant top to right
Bottom meets with bottom 

part of w3 to create an 
acute angle

w4 Straight
Diagonal

Shorter than or similar to 
w1 and w4

Similar to w3

Slant top to right
Bottom meets with bottom 

part of w1 to create an 
acute angle

Top meets with top of w3 
to create an acute angle 
or intersects upper part 
of w3

x  × 1 Straight
Diagonal

Similar to × 2 Slant top to left
The middle intersects the 

middle of × 2
 × 2 Straight

Diagonal
Similar to × 1 Slant top to right

The middle intersects the 
middle of × 1
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Letter Feature code Shape and orientation Size Position

y y1_1 Straight
Diagonal

Half the length of y2_1 Slant top to left
The bottom endpoint 

meets the middle of 
y2_1

y1_2 Curve
Open

Length: longer than 
width, but no more 
than double the feature 
width

Width: shorter than 
length, but at least half 
the length of feature 
length

Open end upwards
Arm endpoints must be 

aligned
Left arm overlaps (poten-

tially) with upper part of 
y2_2 left arm

y2_1 Straight
Diagonal

Double the length of 
y1_1

Slant top to right
The middle meets the bot-

tom endpoint of y1_1
y2_2 Curve

Open
Arms are uneven length-

wise
Left arm must be 

between 1/6 and 1/2 the 
length of the right arm

Must be longer than y1_2

Open end upwards
Left arm overlaps (poten-

tially) with left arm of 
y1_2

Must be placed visibly 
below the bottom curve 
of y1_2

z z1 Straight
Horizonal

Similar to or shorter 
than z2

Similar to or longer 
than z3

Above z2 and z3
Right end meets top of z2 

to create an acute angle

z2 Straight
Diagonal

Similar to z1 and z3 Between z1 and z3
Slant top to right
Top meets right end of z1 

to create an acute angle
Bottom meets left end of 

z3 to create an acute 
angle

z3 Straight
Horizontal

Similar to z1 and z2 Below z1 and z2
Left end meets bottom 

of z2 to create an acute 
angle
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