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ABSTRACT

Reward systems based on balanced scorecards often connect pay to an in-
dex, that is, a weighted sum of multiple performance measures. We show that
such an index contract may indeed be optimal if performance measures are
nonverifiable so that the contracting parties must rely on self-enforcement.
Under commonly invoked assumptions (including normally distributed mea-
surements), we show that the weights in the index reflect a tradeoff between
distortion and precision for the measures. The efficiency of the contract im-
proves with higher precision of the index measure, because this strengthens
incentives, and correlations between measurements may for this reason be
beneficial. There is a caveat, however, because the index contract is not nec-
essarily optimal for very precise measurements, although it is shown to be
asymptotically optimal. We also consider hybrid measurements, and show that
the principal may want to include verifiable performance measures in the
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relational index contract in order to improve incentives, and that this has
noteworthy implications for the formal contract.

JEL codes: D86, J33, M52

Keywords: balanced scorecards; performance measures; relational con-
tracts

1. Introduction

Very few jobs can be measured along one single dimension; employees usu-
ally multitask. This creates challenges for incentive providers: If the firm
only rewards a subset of dimensions or tasks, agents will have incentives to
exert efforts only on those tasks that are rewarded, and ignore others. A
solution for the firm is to add more metrics to the compensation scheme,
but this usually implies some form of measurement problem, leading ei-
ther to more noise or distortions, or to the use of nonverifiable (subjective)
performance measures.

The latter is often implemented by the use of a balanced scorecard
(BSC). Kaplan and Norton’s [1992, 1996] highly influential concept began
with a premise that exclusive reliance on verifiable financial performance
measures was not sufficient, as it could distort behavior and promote ef-
fort that is not compatible with long-term value creation. Their main ideas
were indebted to the canonical multitasking models of Holmström and Mil-
grom [1991] and Baker [1992]. However, their approach was more prac-
tical, guiding firms in how to design performance measurement systems
that focus not only on short-term financial objectives, but also on long-term
strategic goals (Kaplan and Norton [2001]).

While measuring performance is one issue, the question of how to
reward performance is a different one. As noted by Budde [2007], there
is a general understanding that efficient incentives must be based on
multiple performance measures, including nonverifiable ones. Still, the
implementation is a matter of controversy. Reward systems based on BSC
often connect pay to an index, that is, a weighted sum of multiple perfor-
mance measures, but there is also variety regarding to what extent index
contracts are used (see WorldatWork and Deloitte Consulting LLP [2014],
and section 5 later in this paper for a discussion). There is apparently no
formal incentive model that actually derives this kind of index contract
as an optimal solution in settings with nonverifiable measures.1 In fact,
Kaplan and Norton [1996] were sceptical to compensation formulas that
calculated incentive compensation directly via a sum of weighted metrics.
Rather, they proposed to establish different bonuses for a whole set of

1 Banker and Datar [1989] derive conditions under which a contract based on a linear
aggregate of verifiable performance measures is optimal in a standard moral hazard problem
with a risk-averse agent.
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balanced scorecards 3

critical performance measures, more in line with the original ideas of
Holmström and Milgrom [1991] and Feltham and Xie [1994].

Despite the large literature following the introduction of BSC (see
Hogue [2014], for a review), and the massive use of scorecards in prac-
tice, it appears that the index contracts that BSC firms often prescribe lack
a formal contract theoretic justification.2 We take some steps to fill the
gap. Our starting point is that the performance measures are nonverifi-
able. This means that the incentive contract cannot be enforced by a third
party and thus needs to be self-enforcing—or what is commonly termed
“relational.” Incentive contracts used by firms, including performance mea-
sures based on BSCs, often include nonverifiable qualitative assessments of
performance (see Ittner, Larcker, and Meyer [2003], Gibbs et al. [2004],
Kaplan and Gibbons [2015]). Moreover, even if some performance mea-
sures in principle are verifiable, the costs and uncertainty of taking the
contract to court may be so high that the parties in practice need to rely
on self-enforcement (see MacLeod [2007] and references therein).

In the now large literature on self-enforcing relational contracts, rela-
tively few papers have considered relational contracts with multitasking
agents (prominent papers include Baker, Gibbons, and Murphy [2002],
Budde [2007], Schottner [2008], Mukherjee and Vasconcelos [2011], Ishi-
hara [2016], Ishihara [2020]). We on the one hand generalize this liter-
ature in some dimensions (to an arbitrary number of tasks with stochas-
tic measurements that are possibly correlated and/or distorted), and on
the other hand invoke assumptions (notably normally distributed measure-
ments) that make the model quite tractable.3

We first show that the optimal relational contract between a principal
and a multitasking agent turns out to be an index contract, or what one
may call a BSC. That is, the agent gets a bonus if a weighted sum of per-
formance outcomes on the various tasks (an index) exceeds a hurdle. This
is in contrast to the optimal contract in, for example, Holmström and Mil-
grom [1991], where the agent gets a bonus on each task. The important
difference from Holmström and Milgrom is that we consider a relational
contracting setting where the size of the bonus is limited by the principal’s
temptation to renege (rather than risk considerations). In such a setting,
the marginal incentives to exert effort on each task are higher with index
contracts than with bonuses awarded on each task.

2 According to Hogue [2014], among the more than 100 papers published on BSC theory,
only a handful have used principal agent theory to analyze BSC. See also Hesford et al. [2007]
for a review.

3 Our paper is indebted to the seminal literature on relational contracts. The concept of
relational contracts was first defined and explored by legal scholars (Macaulay [1963], Macneil
[1978]), whereas the formal literature started with Klein and Leffler [1981]. MacLeod and
Malcomson [1989] provide a general treatment of the symmetric information case, whereas
Levin [2003] generalizes the case of asymmetric information. The relevance of the relational
contract approach to management accounting and performance measurement is discussed in
Glover [2012] and Baldenius, Glover, and Xue [2016].
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4 o. kvaløy and t. e. olsen

The performance measures within a scorecard may well be correlated.
We point out that such correlations will affect the efficiency of the con-
tract and we show that the efficiency of the index contract depends on how
correlations affect the precision of the overall scorecard measure. In partic-
ular, an index contract with nonnegative weights on all relevant measures
will work even better if the measures are negatively correlated. The reason
is that negative correlation reduces the variance of the overall performance
measure (the index) in such cases. This is beneficial in our setting, not be-
cause a more precise measure reduces risk—because the agent is assumed
to be risk neutral—but because it strengthens, for any given bonus level,
the incentives for the agent to provide effort.4

Besides being affected by noise, performance measures are normally also
to various degrees distorted, implying that incentives on these measures
promote actions that are not perfectly aligned with the firm’s true objec-
tive. Many firms end up with rewarding performance according to such
distorted measures, as long as the performance can be measured precisely.
That is, the firm may prefer distorted, but precise performance measures,
rather than well-aligned, but vague and imprecise measures. They can find
support for this strategy in classic incentive theory where performance mea-
sures are verifiable and contracts are court enforceable (e.g., Datar, Kulp,
and Lambert [2001]).

A natural solution to this measurement problem may be to rely on sub-
jective performance measures that are better aligned with the true objec-
tive, and make the contract self-enforcing. However, as we show in this
paper, even in relational contracts, where there are no requirements re-
garding verifiability, and thus presumably greater scope for subjective and
well-aligned performance measures, it may still be optimal to let precision
weigh more heavily than alignment in incentive provision.

Our analysis reveals that the optimal weights in the scorecard index re-
flect a tradeoff between distortion and precision, implying that a measure,
which is well aligned with the firm’s true objective, may nevertheless get a
small weight in the index if that measure is to a large extent affected by
noise and therefore highly imprecise. Again, this is not because of risk con-
siderations, but because of incentive effects from the overall precision of
the index.

We also consider the case where some measures are verifiable, and some
are not. We show that the principal will include verifiable measures in the
relational index contract in order to strengthen incentives.5 This resembles

4 Similar effects appear in Kvaløy and Olsen [2019], which analyzes relational contracts and
correlated performances in a model with multiple agents, but single tasks.

5 Our analysis of this issue presumes short-term explicit (court-enforced) contracts. Wat-
son, Miller, and Olsen [2020] present a general theory for interactions between relational
and court-enforced contracts when the latter are long term and renegotiable, and show that
optimal contracts are then nonstationary. Implications of this for the contracting problems
considered in this paper are left for future research.
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balanced scorecards 5

BSCs seen in practice, which often include both verifiable measures such as
sales or financial accounting data, and nonverifiable (subjective) measures
(see, e.g., Kaplan and Norton [2001], Ittner, Larcker, and Meyer [2003]).
By including a verifiable measure in the relational contract, the variance
of the performance index may be reduced, which again strengthens incen-
tives. We also show that the verifiable performance measure is taken into
the index as a benchmark, to which the other performances are compared.
Moreover, the principal will still offer an explicit bonus contract on the veri-
fiable measure, but this bonus is generally affected by the optimal relational
index contract.6 We show that, in spite of the agent being risk neutral, the
optimal bonus will, via this link with the relational contract, vary with the
variance of the verifiable measure.

A paper closely related to ours is Budde [2007], which was the first to
investigate BSCs within a relational contracting framework. Specifically,
it analyzes incentive effects of a scorecard scheme based on a set of bal-
anced performance measures under both explicit and relational contracts.
The paper is important, as it shows that BSC types of contracts can pro-
vide undistorted incentives in settings with no noise and sufficient con-
gruity/alignment between performance measures and the “true” value
added. We extend and complement Budde in several aspects. First, and
unlike us, Budde assumes at the outset that the available measurement sys-
tem is “balanced,” “minimal,” and without noise. These assumptions imply,
among other things, that from an observation of the measurements, one
can perfectly deduce the agent’s action. This means that the action is in
essence observable, and simple forcing contracts for the agent are then fea-
sible (and optimal).7 We extend Budde by allowing for both “unbalanced”
and noisy measurements. Actions then cannot be deduced from observa-
tions, which means that there is a real hidden action problem, and the
characterization of optimal (relational) incentive contracts becomes an es-
sential task. This characterization is an important part of our paper.

The main focus in Budde’s paper is the extent to which a relational con-
tract can supplement an explicit contract to achieve a first-best allocation,
in a setting where an explicit contract alone cannot do so because of mis-
alignment between the measures that are verifiable and the true value. The
assumptions on the total measurement system imply that the first best can

6 Our model thus complements the influential papers by Baker, Gibbons, and Murphy
[1994] and Schmidt and Schnitzer [1995], on the interaction between relational and explicit
contracts. Whereas their results are driven by differences in fallback options created by the
explicit contracts, our results stem from correlation between the tasks and (or) misalignment
between measurements and true values.

7 The paper allows for noisy observations in settings with verifiable measurements, and
briefly discusses general noisy observations in a final section. The discussion concludes that
“… a subtle tradeoff between the benefits of risk diversification and congruity has to be consid-
ered” and “. . a detailed investigation of this tradeoff requires considerable analysis” (Budde
[2007, p. 533]). We provide such an investigation here.
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6 o. kvaløy and t. e. olsen

always be achieved if the parties are sufficiently patient.8 This is generally
not the case under our relaxed assumptions. We thus complement Budde’s
analysis by characterizing optimal relational contracts and second-best al-
locations under more realistic assumptions about the performance mea-
surement system, especially regarding the measurements’ precision, and
regarding the interaction between verifiable and nonverifiable measures.
Interestingly, an index contract—a scorecard—then emerges as the opti-
mal (relational) contract.

The rest of the paper is organized as follows: In section 2, we present
the basic model and a preliminary result. In section 3, we introduce dis-
torted performance measures and present our main results for relational
contracts in this setting. They show that an optimal such contract takes
the form of a BSC (index) contract, where the weights on the measures in
the index reflect a tradeoff between distortion and precision. These results
rely on some assumptions, including validity of the “first-order approach”
(FOA). It turns out that this approach is invalid if measurements are very
precise, and although a characterization of optimal contracts is therefore
lacking for such environments, we show that index contracts will never-
theless perform well and in fact become asymptotically optimal when mea-
surement noise vanishes. In section 4, we extend the model to include both
verifiable and nonverifiable performance measures, and we present novel
results regarding (1) whether and how the relational contract will depend
on a verifiable measure and (2) in what way and to what extent bonus el-
ements of the formal contract will be affected by the relational contract.
Section 5 presents some empirical evidence on firms’ use of BSCs, and sec-
tion 6 concludes.

2. Model

First, we present the basic model between a principal and a multitask-
ing agent. Consider an ongoing economic relationship between a risk-
neutral principal and a risk-neutral agent. Each period the agent takes an
n-dimensional action a = (a1, . . . , an )′, generating a gross value v(a) for
the principal, a private cost c(a) for the agent, and a set of m ≤ n stochastic
performance measurements x = (x1, . . . , xm )′. These measurements are ob-
servable, but not verifiable, with joint density, conditional on action f (x, a).
Only the agent observes the action. The gross value v(a) is not observed
(as is the case if this is, e.g., expected revenue for the principal, conditional
on the agent’s action). We assume v(a) to be increasing in each ai and
concave, and c(a) to be increasing in a each ai and strictly convex with
c(0) = 0 and gradient vector (marginal costs) ∇c(0) = 0. The total surplus

8 The paper characterizes the minimal critical discount factor necessary to achieve the first-
best, and importantly shows that this entails restricting informal incentives to that part of
the first-best action that cannot be induced by a formal contract. Moreover, all unverifiable
measures should be used in the relational contract.
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balanced scorecards 7

(per period) in the relationship is v(a) − c(a). The parties have a common
discount factor δ ∈ (0, 1).

Given observable (but not verifiable) measurements, the agent is in each
period promised a bonus β(x) from the principal. Specifically, the stage
game proceeds as follows: (1) The principal offers the agent a contract con-
sisting of a fixed payment w and a bonus β(x). (2) If the agent accepts, he
chooses some action a, generating performance measure x. If the agent de-
clines, nothing happens until the next period. (3) The parties observe per-
formance x, the principal pays w and chooses whether or not to honor the
full contract and pay the specified bonus. (4) The agent chooses whether
or not to accept the bonus he is offered. (5) The parties decide whether
to continue or break off the relationship. Outside options are normalized
to zero.

As shown by Levin [2002], [2003], we may assume trigger strategies and
stationary contracts. The parties honor the contract only if both parties
honored the contract in the previous period, and they break off the rela-
tionship and take their respective outside options otherwise. To prevent de-
viations, the self-enforced discretionary bonus payments must be bounded
above and below. As is well known, the range of such self-enforceable pay-
ments is defined by the future value of the relationship, hence we have a
dynamic enforceability condition given by

0 ≤ β(x) ≤ δ

1 − δ
(v(a) − c(a)), all feasible x. (1)

The optimal relational contract maximizes the surplus v(a) − c(a) sub-
ject to this constraint and the agent’s incentive compatibility (IC) con-
straint. The latter is

a ∈ arg max
ã

E (β(x)|ã) − c(ã),

with first-order conditions (subscripts denote partials)

0 = ∂

∂ai
E (β(x)| a) − ci(a) =

∫
β(x) fai (x, a) − ci(a), i = 1, · · · n.

A standard approach to solve this problem is to replace the global incen-
tive constraint for the agent with the local first-order conditions. It is well
known that this may or may not be valid, depending on the circumstances
(see, e.g., Hwang [2016] and Chi and Olsen [2018]). We will in this paper
mostly assume that it is valid, and subsequently state conditions for which
this is true. So we invoke the following:

Assumption A. The FOA is valid.
Unless explicitly noted otherwise, we will take this assumption for

granted in the following. We then have an optimization problem that is
linear in the bonuses β(x). The optimal bonuses will then have a bang-
bang structure, and hence be either maximal or minimal, depending on
the outcome x. Introducing the likelihood ratios

lai (x, a) = fai (x, a)/ f (x, a),
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8 o. kvaløy and t. e. olsen

we obtain the following:

Lemma 1. There is a vector of multipliers μ such that (at the optimal action a = a∗)
the optimal bonus is maximal for those outcomes x, where �iμi lai (x, a) > 0, and it
is zero otherwise, that is,

β(x) = δ

1 − δ
(v(a) − c(a)) if �iμi lai (x, a) > 0,

and β(x) = 0 if �iμi lai (x, a) < 0.

The lemma says that there is an index ỹ(x) = �iμi lai (x, a), with a = a∗

being the optimal action, such that the agent should be paid a bonus if
and only if this index is positive, and the bonus should then be maximal.
This index, which takes the form of a weighted sum of the likelihood ratios
for the various action elements, is in this sense an optimal performance
measure for the agent.

The index is basically a scorecard for the agent’s performance, and be-
cause it is optimal, it is (more or less by definition) balanced. That is, the
available measures are used in a balanced way to construct the scorecard so
as to achieve the highest feasible surplus for the parties. In the following,
we will introduce further assumptions to analyze its properties. As we will
then demonstrate, these properties include, among other things, an opti-
mal balance between precision and alignment for the various measures.

3. Scorecards and Distorted Measures

Following Baker [1992], Feltham and Xie [1994], and the often used
modeling approach in the management accounting literature (e.g., Datar,
Kulp, and Lambert [2001], Huges, Zhang, and Xie [2005], Budde [2007],
[2009]), we will from now on assume that the measurements x are poten-
tially distorted and given by

x = Q ′a + ε, (2)

where Q ′ is an m × n matrix of rank m ≤ n, and ε ∼ N (0,�) is multinor-
mal with covariance matrix � = [si j ] (i.e., x ∼ N (Q ′a,�)).9 Let q1, . . . , qm

be the column vectors of Q , so we have E (xi|a) = q′
ia, i = 1 . . .m. As is com-

mon in much of this literature, we assume multinormal noise for tractabil-
ity. The likelihood ratios for this distribution are linear in x, and this implies
that the optimal performance index �iμi lai (x, a) identified in the previous
lemma is also linear in x. In particular, the vector of likelihood ratios is given
by the gradient ∇a ln f (x; a) = Q�−1(x − Q ′a). Hence, defining vector τ

by τ ′ = μ′Q�−1, the index can be written as �iμi lai (x, a∗) = τ ′(x − Q ′a∗),

9 Budde [2007] in addition assumes “balance,” which implies that the first-best action can
be implemented by linear bonuses when measurements are verifiable. For the main results
(on relational contracts), measurements are also assumed to be noise free.
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balanced scorecards 9

Fig 1.—Structure of the optimal index contract.

where the expression in accordance with Lemma 1 is evaluated at a = a∗.
So we have the following:

Proposition 1. In the multinormal case, there is a vector τ and a performance index
ỹ = � jτ j x j such that the agent is optimally paid a bonus if and only if the index
exceeds a hurdle (ỹ0). The hurdle is given by the agent’s expected performance in
this setting (ỹ0 = � jτ j E (x j |a∗)), and the bonus, when paid, is maximal: β(x) =
δ

1−δ (v(a∗) − c(a∗)).

This result parallels Levin’s [2003] characterization of the single-task
case, where the agent optimally gets a bonus if his performance on the sin-
gle task exceeds a hurdle. Here, in the multitask case, the principal offers
an index ỹ = � jτ j x j , that is, a weighted sum of performance outcomes on
the various tasks, such that the agent gets a bonus if and only if this index ex-
ceeds a hurdle ỹ0. The optimal hurdle is given as the similar weighted sum
of optimal expected performances. Hence, performance xi is compared to
expected performance, given (equilibrium) actions. If the weighted sum of
performances exceeds what is expected, then the agent obtains the bonus.

Figure 1 illustrates the structure of the optimal bonus scheme. The index
and its hurdle define a hyperplane delineating outcomes “above” the plane
from those “below,” where the former are rewarded with full and maximal
bonus, whereas the latter yield no bonus at all. This is clearly different from
a structure with separate bonuses and hurdles on each task. Such a struc-
ture is illustrated by the blue lines in the figure. In the two-dimensional case
this structure defines four regions in the space of outcomes; where either
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10 o. kvaløy and t. e. olsen

zero, one, or two bonuses are paid, respectively. The analysis shows that the
structure defined by the index is better, and in fact optimal.

Proposition 1 characterizes the type of bonus scheme that will be optimal.
The next step is to characterize the parameters of the scheme, that is, the
weights τ and the hurdle ỹ0 that will generate optimal actions. We now turn
to this.

Given the index ỹ = τ ′x with hurdle ỹ0, and the bonus β = b being paid
for ỹ > ỹ0, the agent’s performance-related payoff is b Pr(τ ′x > ỹ0|a) − c(a).
Using the normal distribution, we find (see the appendix for details) that
the agent’s first-order conditions for actions at their equilibrium levels (a =
a∗) then satisfy

(bφ0/σ̃ )Qτ = ∇c(a∗), (3)

where φ0 = 1/
√

2π is a parameter of the distribution, and σ̃ is the standard
deviation of the performance index:

σ̃ = SD(ỹ) = (τ ′�τ)1/2
.

Note that incentives, given by the marginal revenues on the left-hand side
of (3), are inversely proportional to the standard deviation σ̃ . All else equal,
a more precise performance index (lower σ̃) will thus enhance the effec-
tiveness of a given bonus in providing incentives to the agent. This indi-
cates that more precise measurements will be beneficial in this setting, and
that this will occur not because of reduced risk costs (there are none, by
assumption) but because of enhanced incentives. The monetary bonus is
constrained by self-enforcement, and other factors that enhance its effec-
tiveness will then be beneficial. We return to this below.

The optimal bonus paid for qualifying performance is the maximal one,
so

b = δ

1 − δ
(v(a∗) − c(a∗)). (4)

For given action a∗, the elements b and τ of the optimal incentive scheme
will be given by these relations.

On the other hand, optimal actions must maximize the surplus v(a) −
c(a) subject to these conditions. To characterize the associated optimiza-
tion program for actions, it is convenient to introduce modified weights in
the performance index, namely, a weight vector θ given by

θ = (bφ0/σ̃ )τ.

Because θ is just a scaling of τ, that is, θ = kτ, k > 0, the performance index
can be expressed in terms of θ as y = θ′x, and the agent is then given a bonus
if this index exceeds its expected value y0 = θ′E (x|a∗). Note that the agent’s
first-order condition (3) then takes the form Qθ = ∇c(a∗).

Observe also from the definitions of θ and σ̃ that the modified index has
variance θ′�θ = (bφ0/σ̃ )2τ ′�τ = φ2

0b2, meaning that its standard deviation
is proportional to the bonus b. The index will thus be enforceable (for a
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balanced scorecards 11

given action a) if and only if its standard deviation satisfies the following
constraint:

δ

1 − δ
(v(a) − c(a)) ≥ (

θ′�θ
)1/2

/φ0. (5)

The optimal action a∗ must solve the problem of maximizing v(a) − c(a)
subject to this constraint and the IC constraint. The latter is here repre-
sented by the agent’s fist-order condition, and we can then state the follow-
ing result:

Proposition 2. In the multinormal case, the optimal action a∗ solves the following
problem:

max
a,θ

(v(a) − c(a))

subject to Qθ = ∇c(a) and the enforcement constraint (5).

The proposition shows that the general problem of finding a payment
function and action can be reduced to the much simpler problem of find-
ing a vector of weight parameters and an action. The optimal solution yields
action a∗ and associated weight parameters θ∗ for the performance index.
These weights are (from Qθ∗ = ∇c(a∗)) given by θ∗ = (Q ′Q )−1Q ′∇c(a∗).

There are two sources for deviations from the first-best action in this set-
ting, and they are reflected in the two constraints in the optimization prob-
lem. The first is because of distorted primary measures x, and will be rele-
vant when the vector of marginal costs at the first-best actions (aF B) cannot
be written as ∇c(aF B ) = Qθ, for any θ, that is, when this vector does not
belong to the space spanned by (the column vectors of) Q .10 Implications
of distorted measures will be discussed below.

The second source is self-enforcement, which is reflected in the dynamic
enforcement constraint (5). The expression (θ′�θ)1/2 on the right-hand
side of this constraint is the standard deviation of the performance index
y = θ′x. It can be written as (�i� j si jθiθ j )1/2, where si j = cov(xi, x j ). It is
clear that any variation in � that reduces this expression will relax the con-
straint, and hence allow for a higher total surplus. In particular, any reduc-
tion of a variance in � will have this effect and, provided θ has no negative
elements, so will any reduction of a covariance in �.

It is also noteworthy that, provided θ has no negative elements, then posi-
tive correlations among elements in the measurement vector x will be detri-
mental for the surplus, whereas negative correlations will be beneficial. This
follows because, all else equal, the former increases and the latter reduces
the variance of the performance index.

The economic mechanism behind these effects is that, although the
index θ∗′x with standard deviation σ ∗ = (θ∗′�θ∗)1/2 can implement ac-
tion a∗ (by satisfying IC and the enforcement constraint) with the bonus

10 This possibility is precluded in Budde [2007] by the requirement of measurements be-
ing balanced.
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12 o. kvaløy and t. e. olsen

b∗ = σ ∗/φ0, the same index could, with a lower standard deviation, say
σ̂ < σ ∗, implement the same action with a lower bonus, namely, the bonus
b̂ = σ̂ /φ0. The lower bonus satisfies IC11 for action a∗, but yields slack in the
enforcement constraint, and incentives could then be increased to induce
a higher surplus.

From the enforcement constraint (5), it may appear that any action a will
satisfy this constraint if the standard deviation of the performance index
on the right-hand side is sufficiently small; and hence that the constraint
becomes irrelevant if measurements are sufficiently precise. The reason for
this is that a very precise index yields strong marginal incentives, and hence
implies that just a low monetary bonus is required to satisfy the agent’s first-
order condition for choosing action a. The result in Proposition 2 builds,
however, on the assumption that this FOA is valid; but as we will now point
out, this is generally not the case for sufficiently precise measurements.12

The FOA replaces global IC constraints for the agent with a local one,
and is only valid if the action (a∗) derived this way is in fact a global op-
timum for the agent under the given incentive scheme. Observe that, by
choosing action a∗, the agent gets a bonus if the index y = θ∗′x exceeds
its expected value, an event that occurs with probability 1

2 . The agent’s ex-
pected revenue is then b/2, and this must strictly exceed the cost c(a∗) in
order for the agent to be willing to choose action a∗. This is so because by
alternatively choosing action a = 0, the agent incurs zero costs but still ob-
tains the bonus with some (small) positive probability. Because the bonus
b cannot exceed the future value of the relationship, we then see that the
following condition is necessary:

δ

1 − δ
(v(a∗) − c(a∗)) > 2c(a∗). (6)

If a solution identified by the program in Proposition 2 does not satisfy this
condition, it is not a valid solution.

Observe that if a∗, θ∗ is a solution from Proposition 2 with the en-
forcement constraint binding, the necessary condition (6) implies a lower
bound for the standard deviation of the performance index: (θ∗′�θ∗)1/2 >

2c(a∗)φ0. It can be shown (proofs available online) that there is in fact
σ ∗

0 > 0 such that a∗ is an optimal choice for the agent, and the FOA is
thus valid, if and only if θ∗′�θ∗ ≥ σ ∗2

0 . Moreover, for a quadratic cost func-
tion (c(a) = a′a/2), this condition will be fulfilled if a∗ satisfies a stricter
version of (6), where the right-hand side is replaced by c(a∗)/φ0 with
1/φ0 = √

2π ≈ 2.5. A sufficient condition for the approach employed in
Proposition 2 to be valid in this case is thus that the solution entails a cost

11 If index θ∗′x has standard deviation σ̂ , the marginal revenues from bonus b̂ = σ̂ /φ0 are
from (3) equal to Qθ∗ and hence satisfy IC for action a∗.

12 Similar issues arise in other contexts, including tournaments, and have been noted in the
literature on this subject, following Lazear and Rosen [1981].
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balanced scorecards 13

for the agent that is no larger than 40% of the entire value of the future re-
lationship.

3.1 distortions, alignment, and precision

We now discuss implications of distorted performance measures in the
present setting. Such measures have been studied extensively for the case
when these measures are verifiable, see, for example, Feltham and Xie
[1994], Baker [1992], Datar, Kulp, and Lambert [2001], Budde [2007];
and particularly in settings where value- and cost-functions are linear and
quadratic, respectively:

v(a) = p′a + v0 and c(a) = a′a/2. (7)

Here, ∇c(a) = a and the first-best action, characterized by marginal cost
being equal to marginal value, is given by aF B = p. If we now neglect the dy-
namic enforceability constraint (5) in Proposition 2, we are led to maximize
the surplus p′a − a′a/2 subject to a = Qθ. This maximization yields θ =
(Q ′Q )−1Q ′ p and action, here denoted by a∗

0 given by a∗
0 = Q (Q ′Q )−1Q ′ p.

The best action, subject only to the agent’s IC constraint a = Qθ, is thus
generally distorted relative to the first-best action.

Remark. The solution a∗
0 just derived is also the optimal solution in a

setting where the measurements x are verifiable and the agent is rewarded
with a linear incentive scheme β̃′x + α. This is the setting studied in sev-
eral papers on distorted measures, and the literature has introduced indi-
cators to measure the degree of distortion. One such indicator is the ratio
of second-best to first-best surplus (as in Budde [2007]), which for the the
second-best solution just derived (and with v0 = 0) amounts to a∗′

0 a∗
0/(p′ p).

In particular, when the measure x is one-dimensional, so Q is a vector, say
Q = q ∈ Rn, the ratio is (p′q/|p||q|)2 and is thus a measure of the alignment
between vectors p and q. Then, the first-best can be attained only if the two
vectors are perfectly aligned (q = kp, k �= 0).

In the case of nonverifiable measurements x, which is the case analyzed
in this paper, the solution must also respect the dynamic enforcement con-
straint, represented by (5) in the last proposition. When this constraint
binds, the action a∗

0 is generally no longer feasible. Moreover, because the
stochastic properties of the measurements, represented by the covariance
matrix �, affects the constraint, they will also affect the solution.

This leads to a tradeoff between alignment and precision when it comes
to incentive provision. To highlight the tradeoff, suppose there is a mea-
sure, which is well aligned with the marginal value vector p, but which is
very imprecise in the sense of having a large variance, and another mea-
sure, which is not as well aligned with p, but is quite precise. In a setting
with verifiable measures (and no risk aversion), the optimal solution would
then entail strong incentives on the first measure and weak incentives
on the second one. This solution, however, could imply a large variance
for the performance index, and hence quite possibly be infeasible under
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14 o. kvaløy and t. e. olsen

self-enforcement by violating the enforcement constraint (5). The con-
straint may thus imply weaker incentives on measures that are well aligned
but imprecise, and stronger incentives on measures that are less well
aligned but more precise.

To analyze these issues, we consider the optimization problem in Proposi-
tion 2. Say that the enforcement constraint is strictly binding if the Lagrange
multiplier (shadow cost) in this problem is nonzero. We then obtain the
following result.

Corollary 1. Let v(a) = p′a and c(a) = 1
2 a′a. An optimal solution in Proposi-

tion 2 with the enforcement constraint strictly binding then satisfies

θ∗ = (ψ∗� + Q ′Q )−1Q ′ p

with ψ∗ > 0.

The tradeoff between distortion and precision is captured in this expres-
sion for θ∗, and can be nicely illustrated by considering measurements that
are uncorrelated and for which the associated vectors in Q are orthogonal,
that is, q′

iq j = 0 for all i �= j . Then, the formula yields

θ∗
i = q′

i p
ψ∗sii + q′

iqi
,i = 1, · · · ,m.

All else equal, a measure with better alignment (larger q′
i p) will optimally

have a larger weight in the index; but also, all else equal, so will a measure
with higher precision (smaller variance sii). A highly precise, but not so
well-aligned measure may thus get a larger weight than a measure that is
better aligned, but quite imprecise.

Remark. A formally similar tradeoff between distortion and precision
arises in multitasking models with verifiable measurements and a risk-averse
agent, such as Feltham and Xie [1994] or Datar, Kulp, and Lambert [2001].
We should keep in mind, however, that the tradeoffs arise from two very
distinct phenomena in the two settings, namely, from the requirements
of self-enforcement and the costs of risk exposure, respectively. Moreover,
although comparative static results are relatively straightforward in the
Feltham-Xie setting, they are less straightforward here. For example, we
cannot conclude directly from the last displayed formula that θ∗

i is decreas-
ing in the variance sii , because ψ∗ is endogenous and hence also depends
on sii .

It turns out that a two-step procedure is fruitful for deriving comparative
statics results. In the first step, consider the problem of finding an index
that implements a given surplus V with minimal variance, that is, the prob-
lem

min θ′�θ s.t. ∇c(a) = Qθ and v(a) − c(a) ≥ V .
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balanced scorecards 15

Let θ̂(�,V ) be the optimal solution and m(�,V ) the minimal value. Ob-
serve that for V > v(0), the last constraint here must bind, because other-
wise a = 0 and θ = 0 would solve the minimization problem.

Next observe that if (θ∗, a∗) is a solution to the problem in Proposi-
tion 2 with the enforcement constraint strictly binding and with surplus
V ∗ = v(a∗) − c(a∗), then we must have

θ∗ = θ̂(�,V ∗).

If this was not true, there would be (a, θ) satisfying the two constraints in
the minimization problem and θ′�θ < θ∗′�θ∗. Because the enforcement
constraint in Proposition 2 would then be slack, a higher surplus than V ∗

would be feasible.
From the last formula, we now have

∂θ∗
i

∂sii
= ∂θ̂i

∂sii
+ ∂θ̂i

∂V
∂V ∗

∂sii
. (8)

This (Slutsky-type) formula shows that the effect on the weight θ∗
i in the

optimal index can be decomposed in two effects: first an effect induced
from a change in sii with the value V ∗ held constant; and second, an effect
generated by the change in V ∗ induced by the change in sii .

It turns out that the first effect, that is, the “own effect” on the weight
θ̂i of an increase in the variance sii , has the opposite sign of θ̂i , and is thus
negative if θ̂i is positive. This follows from the minimal value m(�,V ) being
concave13 in � and the envelope property, which implies

0 ≥ ∂2m
∂s2

ii

= ∂

∂sii
θ̂2

i = 2θ̂i
∂θ̂i

∂sii
.

Regarding the second effect in the decomposition (8), we know from
the discussion following Proposition 2 that the value V ∗ is decreasing in a
variance sii . We thus have ∂V ∗

∂sii
≤ 0, but it appears that the sign of ∂θ̂i

∂V may
depend on the parameters, and hence that the total effect in (8) cannot be
unambiguously signed. For the linear-quadratic case with uncorrelated and
orthogonal measurements, however, we can show that ∂θ̂i

∂V has the opposite
sign of ∂θ̂i

∂sii
, which then implies that the two terms representing the two

effects in (8) have equal signs. Thus, we have the following result.

Proposition 3. Let v(a) = p′a and c(a) = 1
2 a′a, and assume that the measure-

ments are uncorrelated and that q′
iq j = 0 for all i �= j . An optimal solution in

Proposition 2 with the enforcement constraint strictly binding then satisfies

θ∗
i
∂θ∗

i

∂sii
≤ 0,i = 1, · · · ,n.

13 Concavity of m follows by observing that if k ∈ (0, 1) and � = k�1+ (1 − k)�2, then
θ′�θ = kθ′�1θ + (1 − k)θ′�2θ, and hence θ′�θ ≥ km(�1,V ) + (1 − k)m(�2,V ) holds for any
θ that is admissible in the minimization problem.
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16 o. kvaløy and t. e. olsen

The absolute value of the weight θ∗
i on measurement xi in the optimal index will thus

be decreasing in the measurement’s variance sii .

The tradeoffs between distortion and precision that we have analyzed in
this section imply that scorecards must be constructed to find the best bal-
ance between these effects. Scorecards can be based on nonverifiable mea-
sures, and among those it may be possible to find one that is well aligned
with the principal’s true (marginal) values. This does not mean, however,
that such a measure should be given a large weight in the scorecard in-
dex. If the measure is highly imprecise, a large weight on this measure may
make the relational contract nonsustainable. Then, it will be better to shift
more weight to measures that are more precise, even if they may be less well
aligned with the principal’s true value.

3.2 very precise measurements

We have noted that the FOA used to derive Proposition 2 may be invalid
if measurements are noisy, but very precise, and we thus lack a characteriza-
tion of optimal incentive schemes for such settings. On the other hand, the
optimal scheme for an environment with no noise is known (e.g., Budde
[2007]). In this subsection, we show that if V N F is the optimal surplus in a set-
ting with no noise, then any surplus value V < V N F can be implemented with an
index contract if the measurements are sufficiently precise. Index contracts (score-
cards) are in this sense at least approximately optimal for sufficiently pre-
cise measurements.

3.2.1. Measurements Without Noise. As a reference case, we first consider
measurements with no noise, that is, of the form

x = Q ′a.

We have then that an action a can be implemented by some bonus scheme
β(x) if and only if

∇c(a) = Qγ (9)

for some γ ∈ Rm . The condition is necessary because, if a generating mea-
surement x = Q ′a is optimal for the agent, then it must be cost-minimizing
among all actions that generate the same x. So it must solve minã c(ã)
subject to x = Q ′ã, and hence satisfy the first-order condition (9) with
Lagrange multiplier γ . On the other hand, if a satisfies (9), it is a cost-
minimizing action generating measurement x = Q ′a, and will be chosen by
the agent under a bonus scheme with β(x) ≥ c(a) and β(x̃) = 0, x̃ �= x.

Being discretionary, bonuses must respect a dynamic enforcement con-
straint. Because the minimal bonus to implement an action a is its cost c(a),
the constraint here takes the form (as in Budde [2007]):

c(a) ≤ δ

1 − δ
(v(a) − c(a)). (10)

The optimal contract in this setting thus maximizes the surplus v(a) − c(a)
subject to (9) and (10). Let aN F denote the optimal action and V N F the
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balanced scorecards 17

maximal surplus in this noise-free environment. In the following, we will
assume that the enforcement constraint binds and implies a surplus V N F

strictly less than the optimal surplus obtained without the constraint, thus
V NF < V ∗

0 = max{v(a) − c(a)|∇c(a) = Qθ,θ ∈ Rm}.
3.2.2. Measurements with noise. Consider again noisy measurements, and

recall that the approach behind Proposition 2 is valid only if the solution
(action a∗) satisfies condition (6). This condition is stricter than condition
(10). This implies that, although noise-free measurements can be seen as a
limiting case of noisy measurements when all variances go to zero, a valid
solution from Proposition 2 can generally not converge to aN F .

It may be noted that Chi and Olsen [2018] have found that for settings
with a univariate action, an index contract derived from the likelihood ra-
tio is still optimal even when the FOA is not valid. The only required mod-
ification is that the threshold for the index must be adjusted, taking into
account not only a local IC constraint for the agent, but also nonlocal ones,
which will be binding. It is an open question whether a similar property
holds in settings with multivariate actions.

In the setting of this paper, however, we can show that for noisy but suf-
ficiently precise measurements, any surplus V < V N F can be obtained by
means of an index contract. This does not mean that such a contract is op-
timal, but it will at least be approximately optimal for such measurements.
Specifically, we will consider actions that satisfy

2c(a) ≥ δ

1 − δ
(v(a) − c(a)) > c(a), (11)

plus ∇c(a) = Qθ for some θ ∈ Rm . Such an action will be feasible for the op-
timization problem with noise-free measurements, but not optimal in that
problem, because the enforcement constraint (10) does not bind. Hence,
it generates a surplus V < V N F , but the action a can be chosen such that V
is arbitrarily close to V N F .

The first inequality in (11) implies that the necessary condition (6) for
FOA to be valid is violated, hence a cannot be implemented by the scheme
applied in Proposition 2. Recall that this is a consequence of the scheme
being designed such that, for the desired action, the agent’s expected rev-
enue falls short of his costs.14

It seems intuitive that this problem can be alleviated by modifying the
hurdle so as to make it less demanding for the agent to qualify for the
bonus. On the other hand, such a modification will also negatively affect
the agent’s marginal incentives. It turns out that, if the measurements are
sufficiently precise, a modification of the hurdle can achieve both goals:
sufficiently strong incentives and a sufficiently large payoff for the agent,

14 The hurdle for the index is set to maximize marginal incentives, but this implies that the
probability to obtain the bonus is 1/2, and the first inequality in (11) then implies a negative
payoff for the agent, relative to choosing action a = 0.
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18 o. kvaløy and t. e. olsen

so that the desired action can be implemented. This is formally stated as
follows.

Proposition 4. Let action a satisfy 2c(a) ≥ δ
1−δ (v(a) − c(a)) > c(a) and

∇c(a) = Qθ, for some θ ∈ Rm. There is σ0 > 0 with the following property: If �

satisfies θ′�θ ≡ σ 2 < σ 2
0 , then there is a hurdle κ(σ ) < E (x′θ|a) such that action

a is implemented by the index x′θ with hurdle κ(σ ) and bonus b = δ
1−δ (v(a) −

c(a)). Moreover, κ(σ ) → E (x′θ|a) as σ → 0.

Observe that the second condition in this proposition requires that
∇c(a) belongs to the span of Q , and that our assumptions regarding Q
imply that there is then a unique θ that satisfies the condition, namely,
θ = (Q ′Q )−1Q ′∇c(a).

Now recall that an action a satisfying the two conditions in the proposi-
tion generates a surplus V smaller than the optimal surplus with no noise
(V N F ), but that a can be chosen such that V is arbitrarily close to V N F . An
immediate consequence of the proposition is then the following:

Corollary 2. Any surplus V < V N F can be obtained by means of an index contract,
provided measurements are sufficiently precise.

The proposition also implies that if an index contract generates a surplus
V that is close to V N F , and this contract is optimal in the class of index
contracts, then FOA must necessarily be violated; and hence some nonlocal
incentive constraint must bind.15

This implies that characterizing the optimal (linear) index contract can
be technically challenging in this setting. Of course this applies also for
the overall optimal contract, because it must have nonlocal incentive con-
straints binding as well. (Otherwise it would be characterized by Proposi-
tion 2, and thus be an index contract with only a local constraint binding.)
We leave these issues as topics for future research.

4. Nonverifiable and Verifiable Measurements

We have so far focused on nonverifiable measurements. But incentive
schemes, at least for top management, will typically also include verifiable
financial performance measures. Consider then a situation where there are
both nonverifiable and verifiable measurements available. To simplify the
exposition, we will assume that there is one verifiable measure (x0) in ad-
dition to the nonverifiable measures (x) considered above. The latter de-
pends stochastically on effort as in (2) and the former is assumed to have a
similar representation:

x0 = q′
0a + ε0,

15 The optimal action yielding surplus V must be close to the action aN F yielding surplus
V N F , and because the latter action by our assumptions satisfies (10) with equality and thus
violates the necessary condition (6) for FOA to be valid, the former action must also violate
this condition.
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balanced scorecards 19

where q0 ∈ Rn and ε0 is normally distributed noise generally correlated with
the noise variables ε in x. (More precisely, the vector (ε0, ε) is multinor-
mal.)

The agent can now be incentivized by a court-enforced (explicit) bonus
b0x0 on the verifiable measure and a discretionary (relational) bonus
β(x0, x) depending on the entire measurement vector (x0, x). This setting
allows us to analyze two interesting issues, namely, (1) whether and under
what conditions the relational contract will in fact depend on the verifiable
measure x0 and (2) in what way and to what extent the formal bonus b0 will
be affected by the relational contract.

We consider a case where only short-term explicit contracts are fea-
sible, which allows us to confine attention to stationary contracts.16 In
each period, the agent will then choose action a to maximize E (b0x0 +
β(x0, x)|a) − c(a), yielding first-order conditions17∫

(b0x0 + β(x0, x)) fai (x0, x, a) − ci(a) = 0, i = 1, · · · ,n.

Returning to the assumption that FOA is valid, the principal then max-
imizes the total surplus v(a) − c(a) subject to these constraints and the
dynamic enforcement constraint. We assume as before that the parties sep-
arate if the relational contract is broken. The enforcement constraint is
then the same as (1), just with x now replaced by the entire measurement
vector (x0, x).

From the same principles as before, it follows that the agent should be
given the discretionary bonus if and only if an index exceeds a hurdle,
and from the normal distribution, it follows that this index is linear in the
measurements; y = �m

i=0θixi ≡ θ0x0 + θ′x, and moreover that the hurdle is
y0 = E (�m

i=0θixi|a∗), where a∗ is the equilibrium action. As in section 3,
we may normalize the weights such that if the magnitude of the bonus is
b, the performance index has variance var (�m

i=0θixi ) = b2φ2
0 . This leads to

the following first-order condition for the agent at the equilibrium action
(a = a∗):

(b0 + θ0)q0 + Qθ = ∇c(a),

and the following dynamic enforcement condition:

δ

1 − δ
(v(a) − c(a)) ≥ (var (θ0x0 + θ′x))1/2/φ0.

The principal maximizes the total surplus v(a) − c(a) subject to these con-
straints.

16 Watson, Miller, and Olsen [2020] analyze long-term renegotiable court-enforced con-
tracts, and show that it will generally be optimal to renegotiate these contracts each period
when in combination with relational contracts.

17 Here, we use f (x0, x, a) to denote the joint density of all measurements, conditional
on action.
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20 o. kvaløy and t. e. olsen

Because the court-enforced bonus b0 can be chosen freely, while the
elements θ0, θ of the discretionary bonus scheme are constrained by self-
enforcement, we see that θ0 should be chosen so as to minimize the vari-
ance appearing in the enforcement constraint. (If not, then for given θ, we
could modify b0 and θ0 so that the IC constraint holds and the enforcement
constraint becomes slack.)

The variance is minimized for θ0 = −cov(x0, θ
′x)/s00, where s00 =

var (x0), and this implies in turn that the performance index takes the form

θ0x0 + θ′x = �m
i=1θi

(
xi − cov(x0, xi )

s00
x0

)
. (12)

This shows that for correlated measurements, performance on the verifi-
able measure is taken into the index as a benchmark, to which the other
performances are compared.

The bonus is awarded when the index exceeds its expected value. As
verified in the appendix, this condition can equivalently be formulated as

�m
i=1θi(xi − E ( xi|x0, a∗)) > 0. (13)

Performance xi is thus compared to expected performance, given (equi-
librium) actions and the outcome on the verifiable measure. If the perfor-
mance exceeds what is expected, given this information, then it contributes
positively to making the index exceed the hurdle, and thus for the agent to
obtain the bonus.

By benchmarking the agent’s performance on the nonverifiable mea-
sures to her performance on the verifiable one, the precision of the perfor-
mance index is increased, which strengthens incentives without violating
the dynamic enforcement constraint. The surplus can then be increased.

It turns out that this way of structuring the relational contract has
interesting implications for the formal bonus (b0) on the verifiable
measure. To see this, consider the minimized index variance, which is
var (θ′x) − (cov(x0, θ

′x))2/s00. The last term equals (�m
i=1θiρ0i s

1/2
ii )2, where

ρ0i = cor r (x0, xi ), and if we define the matrix �̃ to have elements si j −
ρ0iρ0 j (siis j j )1/2, we can then write18

min
θ0

var (θ0x0 + θ′x) = var (θ′x) − (�m
i=1θiρ0i s

1/2
ii )2 = θ′�̃θ. (14)

Observe that the minimized index variance is, for given correlations, inde-
pendent of s00, the variance of the verifiable measure x0. As we verify below,
this implies that the optimal action and associated surplus is independent
of s00, which in turn has noteworthy implications for the formal bonus (b0)
on x0. For in order to maintain an optimal action independent of s00, the
effective incentive b0 + θ0 on the verifiable measure must remain constant,

18 The matrix �̃ is the covariance matrix for the variables x̃i = xi − ρ0i (sii/s00)1/2x0, i =
1, . . . ,m.
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balanced scorecards 21

which requires that the formal bonus b0 must compensate for any variations
in the relational bonus θ0 on this measure. Because the latter varies with the
variance s00, so must therefore the former.

To analyze this, define b̃0 = b0 + θ0 as the effective (net) incentive on x0,
implying that the IC constraint takes the form b̃0q0 + Qθ = ∇c(a). Next
define S(θ) as the maximal feasible surplus for given weights θ on the non-
verifiable measures:

S(θ) = max
b̃0,a

{v(a) − c(a)|b̃0q0 + Qθ = ∇c(a)}. (15)

The optimal weights θ∗ are then determined by the following program:

max
θ

S(θ) s.t.
δ

1 − δ
S(θ) ≥ (θ′�̃θ)

1/2
/φ0. (16)

Now we see from (14) that the optimal θ∗ is, for given correlations, inde-
pendent of the variance s00. It follows that the optimal action a∗ and the
optimal effective bonus b̃∗

0 are also independent of s00. The relational bonus
on x0 is θ∗

0 = −cov(x0, θ
∗′x)/s00, and the formal bonus is then

b0 = b̃∗
0 − θ∗

0 = b̃∗
0 + cov(x0, θ

∗′x)/s00. (17)

The last term in the formula equals �m
i=1θ

∗
i ρ0i(sii/s00)1/2 and is, for given

correlations, decreasing (increasing) in s00 if the covariance cov(x0, θ
∗′x)—

or equivalently the correlation cor r (x0, θ
∗′x)—is positive (negative). The

same is therefore true for the formal bonus. Hence, in spite of the agent
being risk neutral, the optimal formal bonus on the verifiable measure does
in this setting generally depend on the variance of this measure.

We summarize our findings so far in the following proposition.

Proposition 5. For correlated measurements, performance on the verifiable measure
x0 is taken into the index as a benchmark, to which performances on the nonverifiable
measures are compared. The optimal index awards a bonus when performance exceeds
what is expected, conditional on x0, as stated in (13). The optimal action a∗ is, for
given correlations, independent of the variance var (x0). To achieve this, the formal
bonus on the verifiable measure must decrease (increase) with the measure’s variance
when the correlation cor r (x0, θ

∗′x) is positive (negative).

The proposition implies that, when there is predominantly positive (neg-
ative) correlations between the verifiable measure and the nonverifiable
ones, and the weights in the index θ∗ are positive, then the optimal for-
mal bonus must decrease (increase) with var (x0). The precise criterion for
whether the bonus is decreasing or increasing is the sign of the correla-
tion (or equivalently the sign of the covariance) between the measure x0

and the index θ∗′x that comprises the nonverifiable measures. This index
is endogenous, but its weights—and hence the sign of the correlation—are
independent of var (x0).

Regarding variations in correlations, we see from �̃ defined in (14) that
if all of the correlation coefficients between the verifiable and the nonver-
ifiable measures have the same sign, then the stronger these correlations
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22 o. kvaløy and t. e. olsen

are, the smaller the variance θ′�̃θ is if all elements of θ are nonnegative.
This will then relax the enforcement constraint and increase the surplus.
Stronger correlations, either all positive or all negative, between the verifi-
able and each nonverifiable measure, will thus increase the surplus in such
a case.

To analyze further effects of variations in correlations we consider the
linear-quadratic case (v(a) = p′a and c(a) = 1

2 a′a), and follow the pro-
cedure leading to the optimization in (16). The IC constraint is here
b̃0q0 + Qθ = a, where as before b̃0 is the effective bonus on the verifiable
measure x0. Using this to substitute for a, and maximize the surplus with
respect to b̃0, we find that the optimal effective bonus, conditional on θ is19

b̃0 = (p′q0 − θ′Q ′q0)/q′
0q0. (18)

We see that, except if q0 is orthogonal to all the columns of Q , that is,
Q ′q0 = 0, the optimal effective bonus b̃0 will depend on θ and hence be
different from the optimal bonus for the verifiable measure alone.

The formal bonus on the verifiable measure is, as in (17), given as
b0 = b̃0 + cov(x0, θ

′x)/s00, and is generally influenced by the relational con-
tract through both terms. A positive covariance cov(x0, θ

′x) calls for a larger
formal bonus, whereas a positive alignment (θ′Q ′q0 > 0) calls for a smaller
one (via its effect on b̃0). Both of these elements are endogenous, and de-
pend on the primitives of the model. For a given scorecard index with posi-
tive weights (θi > 0), we see that the covariance term cov(x0, θ

′x) is increas-
ing in each of the correlation coefficients (ρ0i) between the verifiable and
the nonverifiable measures. Higher such correlations will thus have a pos-
itive effect on the formal bonus b0 in this situation, but this effect may be
counteracted (or strengthened) by endogenous responses in the scorecard
weights θ.

A full comparative analysis is challenging, but with extra assumptions we
can obtain some instructive results. Say that the measurements x have sym-
metric noise terms if they have equal variances (sii = s11) and equal correla-
tions (cor r (xi, x j ) ≡ ρi j = ρ12 and cor r (x0, xi ) ≡ ρ0i = ρ01, i, j = 1 . . .m).20

Then we can show the following:

Proposition 6. For the linear-quadratic model, assume the surplus S(θ) in (15) is
strictly concave and symmetric in (θ1, . . . , θm ), with Sθi (0) > 0, i = 1 . . .m. Sup-
pose also that the nonverifiable measurements x have symmetric noise terms. Then, if
�m

i=1q′
iq0 = 0, the formal bonus b0 will increase if the common correlation coefficient

ρ0i increases. If �m
i=1q′

iq0 > 0, there is ρM > 0 such that if the common correlation
coefficient ρ0i increases, the formal bonus b0 increases for ρ0i < ρM and possibly
decreases for ρ0i > ρM .

19 The first-order condition for this maximization is (p − a)′q0 = 0, with a = b̃0q0 + Qθ.
20 The covariance matrix must be positive definite, which implies the following restriction

on the parameters: 1 − ρ2
01 + (m − 1)(ρ12 − ρ2

01) > 0.
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balanced scorecards 23

Fig 2.—Illustration of incentives on verifiable and nonverifiable measurements.

If there is orthogonality between the verifiable measure and the non-
verifiable ones, the formal bonus b0 increases with increasing correlations
cor r (x0, xi ), and is thus minimal for strong negative correlations and maxi-
mal for strong positive ones. At least under symmetry, 21 this monotone ef-
fect on b0, which stems from adjustments to compensate for changes in the
scorecard index weight θ0, is thus not reversed by endogenous responses in
the weights θ.

If there is positive alignment, the monotonicity is also preserved for cor-
relations below some upper positive bound. In this case, the formal bonus
must also be adjusted to accommodate an adjustment in the effective bonus
b̃0, but this response will not dominate for correlations below the bound.
In the setting considered here, there is thus always a range of correlations,
including all admissible negative ones, where the formal bonus increases
when correlations increase. Put differently, for negative correlations the for-
mal bonus will decrease if these correlations become stronger (i.e., larger
in absolute value).

The results in this subsection are illustrated in Figure 2 for the case of one
verifiable (x0) and one nonverifiable measure (x1), with associated vectors
q0 and q1, respectively. If only x0 is available, only action vectors on the line
L0 can be implemented. The optimal action minimizes the distance 22 to p,
and is thus the projection of p on the line L0, defined by action a0 = b0q0

such that (p − a0)′q0 = 0. When also x1 is available, action vectors on a
parallel line such as L1 (given by a = θ1q1 + b̃0q0) can be implemented. This

21 The model is continuous in the parameters, and the results should therefore be robust
to at least small deviations from symmetry.

22 This yields maximal surplus because of the identity p′a − 1
2 a′a = 1

2 |p|2 − 1
2 |p − a|2.
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24 o. kvaløy and t. e. olsen

allows for implementation of action vectors with a smaller distance to p, and
hence a larger surplus. The optimality condition for the effective bonus
b̃0 on the verifiable measure still implies (p − a)′q0 = 0, and hence that
p − a should be orthogonal to q0 (and line L0). The figure makes clear that,
unless q0 and q1 are orthogonal, the bonus b̃0 defining the component q

0
=

b̃0q0 of action a will be different from the optimal bonus when only measure
x0 is available. Moreover, unless x0 and x1 are stochastically independent,
the formal bonus b0 must also be adjusted to compensate for the incentive
element θ0 on x0 in the scorecard.

The correlation cor r (x0, x1) = ρ01 will affect the enforcement constraint
for the scorecard via the variance term on the right-hand side of (16). This
variance is here θ2

1 s11(1 − ρ2
01), and we see that a stronger correlation (pos-

itive or negative) will relax the constraint and allow for a larger weight θ1.
As the variance is nonmonotone in ρ01, the optimal weight θ1 will also be
non-monotone; and specifically decreasing for ρ01 < 0 and increasing for
ρ01 > 0. It can be seen, however, that the weight θ0 on the verifiable mea-
sure will be monotone and decreasing.23 When q0 and q1 are orthogonal,
the formal bonus will then be monotone increasing in ρ01, because it only
compensates for changes in θ0 in that case.

Under positive alignment (q′
0q1 > 0 ) as illustrated in the figure, we see

that if θ1 increases and the line L1 consequently shifts up, the effective
bonus b̃0 on x0 must decrease. This implies that, when the correlation ρ01 is
positive and increasing, there are two opposing effects on the formal bonus
b0 = b̃0 − θ0, as the effective bonus b̃0 and the weight θ0 in the scorecard
both decrease. If the correlation is negative, however, the two effects go in
the same direction, as θ1 then decreases and consequently b̃0 increases with
increasing ρ01. This accords with the results in the last proposition above.

5. BSCs in Practice

There are three key ingredients of the optimal incentive schemes that we
deduce in this paper: The use of thresholds to qualify for bonus payments,
the use of weighted indexes to measure performance, and the combination
of verifiable and nonverifiable measures as basis for bonus payments. All
these features are quite common in practice:

With respect to thresholds, firms usually combine a performance
threshold with some linear “incentive zone,” that is, there is typically a
performance threshold that needs to be met in order to achieve a bonus,
and then there is a linear payment for performance in a range up to a
maximum level (see Merchant, Stringer, and Shantapriyan [2018]). Many
scholars have been critical to the use of thresholds, as it may induce various
sorts of gaming and reduce the agents’ efforts if they are too far from

23 We have θ0 = −cov(x0, θ1x1)/s00 = −ρ01θ1
√

s11/s00, and this expression is a decreasing
function of ρ01 because θ1 is an increasing function of ρ2

01.
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balanced scorecards 25

the incentive zone (see, e.g., Murphy and Jensen [2011]). Levin [2003]
showed, however, that a scheme with a single threshold and no linear in-
centive zone provides the strongest incentives for a unidimensional action.
This paper shows that Levin’s [2003] insight also turns out to be valid for
multidimensional actions when a number of performance measures (often
referred to as key performance indicators—KPIs) are optimally combined
in one single index contract.24

Indeed, empirical evidence shows that incentive plans with restricted in-
centive zones are common in practice. A survey of more than 350 publicly
traded companies by WorldatWork and Deloitte Consulting LLP [2014]
showed that 75% of the companies reported use of performance thresh-
olds. Pearl Meyer & Partners [2013] found in a survey of 130 firms that
71% used thresholds and maximums. Colucci, Peek, and Engel [2015] stud-
ied a sample of 100 statements produced by Fortune 500 companies and
found that only 37% of the companies disclosed that they used a thresh-
old. According to Merchant, Stringer, and Shantapriyan [2018], however,
the difference here appears to be caused by the lack of public disclosure
of the details of the incentive contracts by firms that use thresholds. (In-
deed, empirical evidence on details of the incentive contracts are generally
quite limited, and one may find more details in consulting reports than in
academic scholarly work.)

The large study by WorldatWork and Deloitte Consulting LLP [2014]
shows how common it is to use indexes in combination with thresholds. In
determining the payout amount against performance achievement, 41% of
the firms reported to review their employees’ performance “holistically,”
that is, performance measures were part of an overall scorecard, where a
minimum score is required to trigger the pay out of bonuses. More pre-
cisely, 41% of 350 publicly traded U.S. firms in the survey answered yes to
the following option: “Performance measures are part of an overall score-
card that is used to determine the payout amount. If a minimum overall
score is not achieved, no award is paid even if some goals were achieved.” In
comparison, 27% reported that performance measures are evaluated and
paid separately, that is, if one goal is achieved, an award is paid regardless
of whether any other performance goals are achieved.

The combination of verifiable and nonverifiable measures is also very
common, in particular for firms adopting scorecards/index contracts. As
underscored in the review by Lueg and Carvalho e Silva [2013], the KPIs
of the BSC systems differ from conventional performance measurement
systems as they combine financial and nonfinancial KPIs. Traditionally the
KPIs have been built around four perspectives in the scheme: (1) a finan-
cial perspective, covering how performance is measured by shareholders;
(2) a customer perspective, showing how the organization creates value for

24 If, contrary to our model, outcomes can be observed and actions can be adjusted within
each period, incentive zones may be useful to discourage gaming behavior.
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26 o. kvaløy and t. e. olsen

its customers; (3) internal business processes, explaining at which processes
the organization must develop in order to satisfy its customers and share-
holders; and (4) a so-called “learning and growth perspective,” addressing
the internal capabilities and information systems necessary to improve pro-
cesses and customer relationships. In particular, the latter two perspectives
are open for subjectivity and nonverifiable measures, as, for example, un-
derscored in the seminal work by Ittner, Larcker, and Meyer [2003].

Although our model can contribute to explain common features of BSCs
seen in practice, it also produces new empirical predictions that—to our
best knowledge—have not yet been tested. In particular, the model of-
fers novel insights on the relationship between verifiable and nonverifiable
measures. A key prediction is that when performance measures are corre-
lated, then performance on a verifiable measure is taken into the index
as a benchmark, to which the other performances are compared. More
specifically: by including such a verifiable measure in the relational con-
tract, the precision of the performance index can be increased, which in
turn strengthens incentives.

This result bears resemblance to the argument for why relative perfor-
mance evaluation (RPE) may be beneficial in conventional settings with
verifiable measures: By conditioning an agent’s performance on other
agents’ performances, one may increase precision and strengthen incen-
tives (Holmström [1979], 1982]). Interestingly, this idea, along with several
other ideas from incentive theory, appears to have started as normative pre-
scriptions rather than positive descriptions. Indeed, the moderate use of in-
centives based on RPE in practice has been regarded as a puzzle (Murphy
[1999]), but such incentives have become more common the last 20 years
(see, e.g., Meridian Compensation Partners LLC [2019]). Some of our new
results in this paper can also be seen with a similar perspective, namely as
normative advice on incentive design, and/or as new hypotheses awaiting
to be tested. 25

6. Conclusion

Employees are often evaluated along many dimensions, and at least some
of the performance measures will typically be nonverifiable to a third party.
They may also be misaligned with (distorted from) the true values for the

25 Normative arguments on incentive design rest on the assumption that firms are not al-
ways able to implement optimal management practices. As documented by Bloom and Reenen
[2010] and Bloom et al. [2019], the large productivity differences one can observe between
firms and countries, can to a large extent be explained by differences in management prac-
tice, including differences in incentive design. Interestingly, they find that the educational
background of managers matters, and that there exists informational barriers that makes it
hard to implement best practice: “New management practices are often complex and hard to
introduce without the assistance of employees or consultants with prior experience of these in-
novations. Firms learn from the experiences (good and bad) of others in experimenting with
different practices, so not all will adopt immediately” (Bloom and Reenen [2010], p. 220).

 1475679x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1475-679X

.12465 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [23/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



balanced scorecards 27

principal, and be stochastically dependent. The aim of this paper is to study
this environment: Optimal incentives for multitasking agents whose perfor-
mance measures are nonverifiable and potentially distorted and correlated.
We extend and generalize the received literature in some important dimen-
sions (to an arbitrary number of tasks with stochastic measurements that
are possibly correlated and/or distorted), and we invoke assumptions (nor-
mally distributed measurements) that make the model quite tractable.

We show that under standard assumptions the optimal relational con-
tract is an index contract. That is, the agent gets a bonus if a weighted
sum of performance outcomes on the various tasks (an index) exceeds a
hurdle. The weights reflect a tradeoff between precision and distortion for
the various measures. The efficiency of this contract improves with higher
precision of the index measure, because this strengthens incentives. Corre-
lations between measurements may be beneficial for this reason.

We point out that for very precise, but still noisy measurements, the stan-
dard FOA breaks down, and we show that, although index contracts may no
longer be optimal in such settings, they can be adjusted to become asymp-
totically optimal.

We also show that the principal may want to include verifiable perfor-
mance measures in the relational index contract in order to improve in-
centives. These are then included as benchmarks, to which the other per-
formances are compared. This implies in turn that the formal contract is
influenced by the relational contract, and we show that, despite the agent
being risk neutral, the bonus on a verifiable measure may be decreasing
or increasing in the variance of this measure, depending on the sign of
correlations between the measure and the nonverifiable measures.

Stronger correlations, either all positive or all negative, between the ver-
ifiable and each nonverifiable measure, will increase the surplus when the
optimal index has positive weights. These correlations will also influence
the formal contract, and we identify two channels of influence, associated
with alignment and stochastic dependence, respectively, that may yield op-
posing effects. For a symmetric case we show that there is always a range
of correlations, including all admissible negative ones, where the formal
bonus increases when correlation coefficients increase (from negative val-
ues to zero).

The index contracts in our model bear resemblance to key features of the
performance measurement system known as BSCs. Reward systems based
on BSC typically include non-verifiable measures and often connect pay to
an index. In that sense, our paper provides at contract theoretic rationale
for this way of implementing BSC schemes. However, although the scheme
we present is a bonus contract with just one threshold (or hurdle), score-
cards in practice may have several thresholds and bonus levels, where the
size of the bonus depends on the score. Future research can extend the
model we present to incorporate, for example, risk aversion or limited lia-
bility, in order to study under which broader conditions the index contract
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28 o. kvaløy and t. e. olsen

is optimal, and what kind of index contracts that are optimal under various
model specifications.

appendix a: proofs

Proof of Lemma 1. The lemma follows directly from the Lagrangian for the
problem, which takes the form

L = v(a) − c(a) +�iμi (
∫
β(x) fai (x, a) − ci(a)) + ∫

λ(x)( δ
1−δ (v(a) −

c(a)) − β(x)).
At the optimal action a = a∗, the optimal bonus satisfies
∂L

∂β(x) = �iμi fai (x, a) − λ(x) = 0 if β(x) > 0, ≤ 0 if β(x) = 0.
Hence, we have:
If �iμi fai (x, a) > 0 then λ(x) > 0 and hence β(x) = δ

1−δ (v(a) − c(a)).
If�iμi fai (x, a) < 0 then ∂L

∂β(x) < 0 and hence β(x) = 0 (implying λ(x) =
0). �

Verification of (3). Given that ỹ = τ ′x is normal with expectation E (ỹ|a)
and variance σ̃ 2 = τ ′�τ, we have that ỹ−E (ỹ|a)

σ̃
is a standard normal variable,

and hence

Pr( ỹ > ỹ0
∣∣a) = 1 −�(

ỹ0 − E ( ỹ
∣∣a)

σ̃
), (A.1)

where �(·) is the standard normal CDF. Because E (ỹ|a) = τ ′Q ′a has gradi-
ent ∇aE (ỹ|a) = Qτ, we then obtain

∇a Pr( ỹ > ỹ0
∣∣a) = φ(

ỹ0 − E ( ỹ
∣∣a)

σ̃
)

1
σ̃

Qτ,

where φ = �′ is the standard normal density. This verifies (3), because ỹ0 =
E (ỹ|a∗).

Proof of Corollary 1. Observe that for the linear-quadratic case, the La-
grangean for the optimization problem in Proposition 2 can be written
as (1 + λ̃)(p′a − 1

2 a′a) − λ̃ 1−δ
δφ0

(θ′�θ)1/2 with a = Qθ, and where the mul-
tiplier λ̃ is nonnegative. The first-order conditions for the optimal θ∗ there-
fore include

Q ′(p − Qθ∗) − λ̃

1 + λ̃

1 − δ

δφ0
(θ∗′�θ∗)−1/2�θ∗ = 0.

By assumption the multiplier λ̃ is nonzero and thus positive here. Defining
ψ∗ = λ̃

1+λ̃
1−δ
δφ0

(θ∗′�θ∗)−1/2, we then obtain the formula in the corollary. �

Proof of Proposition 3. We will show that θ̂i
∂θ̂i
∂V ≥ 0. Because θ̂i

∂θ̂i
∂sii

≤ 0 and
∂V ∗
∂sii

≤ 0, this implies from (8) that θ̂i
∂θ∗

i
∂sii

≤ 0, which verifies the formula in
Proposition 3 because θ̂i = θ∗

i when V = V ∗.

Consider the Lagrangean for the optimization problem that defines θ̂:
L = −θ′�θ + λ(p′a − a′a/2 − V ), a = Qθ.
The first-order conditions are
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balanced scorecards 29

(−2� − λQ ′Q )θ̂ + λQ ′ p = 0,

p′Q θ̂ − 1
2 θ̂′Q ′Q θ̂ − V = 0.

Differentiating this system with respect to V yields[−2� − λQ ′Q Q ′(p − Q θ̂)
(p − Q θ̂)′Q 0

][∇V θ̂
∂λ
∂V

]
=

[
0
1

]
. (A.2)

By Cramer’s rule we have

∂θ̂1

∂V
= 1

D
D1,

where D is the determinant of the bordered Hessian in (A.2), and D1 is
the determinant of the same matrix with the first column replaced by the
column on the right-hand side of (A.2). The determinant D has the same
sign as (−1)m .

For uncorrelated and orthogonal measurements we have

−2� − λQ ′Q = diag {d1, · · · , dm} , di = −2sii − λq′
iqi < 0,i = 1· · · m.

Using this special structure to compute the determinant D1 (by expansion
along the first column and then the first row), we obtain

D1 = (−1)q′
1(p − Q θ̂)d2 · . . . · dm,

and thus

θ̂1
∂θ̂1

∂V
= −1

D
θ̂1q′

1(p − Q θ̂)d2 · . . . · dm.

Because each di is negative, their product has the same sign as (−1)m−1,
and hence we see that −d2 · . . . · dm/D is positive. Finally, for uncorrelated
and orthogonal measurements, we see from the first-order conditions that
we have
λq′

1(p − Q θ̂ ) = 2s11θ̂1.
For V > 0, we must have λ > 0 because λ = 0 will imply θ̂ = 0 and thus

a = 0 and V = 0. Hence, we see that θ̂1q′
1(p − Q θ̂) = 2s11θ̂

2
1 /λ > 0, which

now implies θ̂1
∂θ̂1
∂V ≥ 0. The same argument obviously holds for any i > 1,

and the proof is then complete.

Proof of Proposition 4. We will in this proof denote the given a and θ by ã and
θ̃, respectively. We thus consider ã and θ̃ that satisfy 2c(ã) ≥ δ

1−δ (v(ã) −
c(ã)) > c(ã) and ∇c(ã) = Q θ̃.

We will consider the index y = x′θ̃ with a hurdle κ < E (y|ã), and with
bonus b paid for qualifying performance (y > κ). The bonus is

b = δ

1 − δ
(v(ã) − c(ã)).

The proof will show that the hurdle κ can be chosen such that this index
scheme implements ã, provided the index has a sufficiently low variance.
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30 o. kvaløy and t. e. olsen

By assumption, we have c(ã) < b. Choose ξ0 > 0 and σ0 such that

c(ã) = (�(ξ0) −�(−ξ0))b and σ0 = bφ(−ξ0),

where � is the standard normal CDF and φ is its density. The index y = x′θ̃
has variance σ 2 = θ̃′�θ̃, and assume now σ < σ0. Define ξ > ξ0 by

σ = bφ(−ξ ),

and let the hurdle for the index be

κ = E ( y
∣∣ã) − ξσ = θ̃′Q ′ã − ξσ.

The agent’s payoff from an action a is then b(1 −�( κ−E (y|a)
σ

)) − c(a)

with gradient b 1
σ
φ( κ−θ̃′Q ′a

σ
)Q θ̃ − ∇c(a). It follows that action ã satisfies the

first-order condition for an optimum, because we have κ − θ̃′Q ′ã = −ξσ ,
b 1
σ
φ(−ξ ) = 1 and Q θ̃ = ∇c(ã). Because ξ > 0, we can also verify that the

Hessian at ã is positive definite, hence action ã is a local optimum for the
agent under the given incentive scheme.

It remains to show that ã is a global optimum. Observe that for any action
a the agent’s expected income depends only on the action via the expected
index value e = E (y|a). For an index with hurdle κ this expected income
is b(1 −�( κ−e

σ
)). Let now C(e) be the minimal cost to obtain a given ex-

pected value e,

C(e) = min
a

c(a) s.t. a′Q θ̃ = e, (A.3)

and consider the payoff

u(e) = b
(

1 −�

(
κ − e
σ

))
− C(e).

Let ẽ = E (y|ã) = θ̃′Q ′ã, and note that by the definition of κ we have κ−ẽ
σ

=
−ξ , which implies

u(ẽ) = b(1 −�(−ξ )) − c(ã).

Here we have used the fact that C(ẽ) = c(ã), by virtue of ã being the cost-
minimizing action to generate expectation ẽ. It is now clear that if u(e) ≤
u(ẽ) for all feasible e, then action ã is an optimal choice for the agent. (If
not, there exists an action a yielding a higher payoff. This payoff is u(e),
where e = a′Q θ̃, and thus u(e) > u(ẽ), a contradiction.) To show that u(e)
is maximal at e = ẽ, we first establish a fact about the cost function C(e).

Claim. C ′(e) is increasing in e and C ′(0) = 0.

To verify the claim, observe that because Q θ̃ = ∇c(ã), the first-order con-
ditions for the cost minimization problem defining C(e) are

∇c(â) = γ∇c(ã) and e = â′∇c(ã), (A.4)

where â = â(e) is the optimal action and γ is a Lagrange multiplier. Differ-
entiation with respect to e yields

H (â)dâ = dγ∇c(ã) and ∇c(ã)′dâ = de,
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balanced scorecards 31

where H (a) = [ci j (a)] is the Hessian of the cost function c(a). Hence,
dâ = H (â)−1∇c(ã)dγ and so

dγ
de

= (∇c(ã)′H (â)−1∇c(ã))−1 > 0,

where the inequality follows from H being positive definite. From the enve-
lope property, we have C ′(e) = γ and so C ′′(e) = dγ

de > 0. Next, because â =
0 is optimal for e = 0, we have γ (0) = 0 (by virtue of γ = ã′∇c(â)/ã′∇c(ã))
and therefore C ′(0) = γ (0) = 0. This verifies the claim.

Now we return to showing u(e) ≤ u(ẽ) for all feasible e. Consider first
e < ẽ. Because u′(0) > 0 (by virtue of C ′(0) = 0), we have u(e) ≤ u(ẽ) for
all e ∈ [0, ẽ] if u(·) has no local maximum in the interior of the interval. So
suppose u(·) has a local maximum at some e0 ∈ (0, ẽ). Then u′(e0) = 0 and
so b 1

σ
φ( κ−e0

σ
) = C ′(e0). Because C ′(e0) < C ′(ẽ), and ẽ is also a local maxi-

mum, we then have φ( κ−e0

σ
) < φ( κ−ẽ

σ
). Because φ(·) is symmetric around

zero, this implies κ − e0 > ẽ − κ and hence, by definition of κ = ẽ − ξσ ,
that κ − e0 > ξσ . This yields

u(e0) = b(1 −�(
κ − e0

σ
)) − C(e0) ≤ b(1 −�(ξ )),

and hence

u(ẽ) − u(e0) ≥ b(1 −�(−ξ )) − c(ã) − b(1 −�(ξ )).

The last expression is increasing in ξ and is (by definition of ξ0) zero for
ξ = ξ0. Hence u(ẽ) − u(e0) ≥ 0, because ξ > ξ0. This verifies u(e) ≤ u(ẽ)
for all feasible e < ẽ.

Now consider e > ẽ. Then, u(e) < u(ẽ) because we have u′(e) < u′(ẽ) =
0 when e > ẽ. This follows because C ′(e) is increasing, and because φ( κ−e

σ
)

is decreasing in e when e > ẽ, because ẽ > κ and thus κ − e < 0. This verifies
u(e) < u(ẽ) for e > ẽ.

We finally verify that κ → E (y|ã) when σ → 0. From the definition of
κ and ξ we have E (y|ã) − κ = ξσ = ξφ(−ξ )b, where ξ → ∞ when σ → 0.
The density φ(·) has the property that ξφ(−ξ ) → 0 when ξ → ∞, and this
completes the proof.

Verification of (13). With ρ0i = cor r (x0, xi ), the index (12) can be written
as �m

i=1θi(xi − rix0), with ri = ρ0i(sii/s00)1/2, i = 1, . . . ,m. The hurdle for
the index is its expected value �m

i=1θi(e∗
i − rie∗

0 ), where e∗
i = E (xi|a∗), i =

0, . . . ,m. Because e∗
i + ri(x0 − e∗

0 ) is the conditional expectation of xi , given
x0 (and a∗), it follows that we can write the condition for the index to pass
the hurdle as (13 ).

Proof of Proposition 6. Substituting for b̃0 from (18) we find that the surplus
S(θ) is here

S(θ) = 1
2q′

0q0
(p′q0 − θ′Q ′q0)2 + p′Qθ − 1

2
θ′Q ′Qθ.
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32 o. kvaløy and t. e. olsen

By our assumptions, the expression on the right-hand side of the con-
straint in (16) is symmetric in (θ1, . . . , θm ), as we have from (14) θ′�̃θ =
�m

i, j=1θiθ j (si j − ρ0iρ0 j (siis j j )1/2) and thus

θ′�̃θ = �m
i=1θ

2
i s11(1 − ρ2

01) + 2�m
i> j=1θiθ j s11(ρ12 − ρ2

01).

As S(θ) is also symmetric, the optimal solution θ∗ is then symmetric with
θ∗

i = θ∗
1 determined by the binding enforcement constraint:

δφ0

1 − δ
S(θ1, . . . , θ1) = |θ1|(m(1 − ρ2

01) + m(m − 1)(ρ12 − ρ2
01))1/2√s11.

Because S(θ) is concave and Sθi (0) > 0, we must have θ∗
1 > 0. We also see

that θ∗
1 is an increasing function of ρ2

01, and hence that we may write

∂θ∗
1

∂ρ01
= ρ01�(ρ2

01),where �(ρ2
01) > 0.

Because now cov(x0, θ
∗′x)/s00 = θ∗

1 mρ01
√

s11/s00, we have from (17) and
(18):

b0 = (
p′q0

q′
0q0

− θ∗
1�

m
i=1q′

iq0

q′
0q0

) + ρ01θ
∗
1 m

√
s11/s00,

The statements in the proposition then follow from the last two displayed
formulas. Specifically, we can write b0 = (k0 − θ∗

1 k1) + ρ01θ
∗
1 k2 and ∂b0

∂ρ01
=

θ∗
1 k2 + (−k1 + ρ01k2)ρ01�(ρ2

01) with k2 > 0, and we see that the derivative
is positive for all ρ01 if k1 = 0, and positive for all ρ01 ≤ 0 if k1 > 0.
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