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A B S T R A C T

Many networks exhibit a power-law configuration, where the number of connections each node has follows a
power-law distribution, including the Internet, terrorist cells, species relationships and infrastructure. Given the
prevalence of power-law networks, studying the effects of disruptions on their performance is of interest.
Previous work has investigated the influence of network topology on the effects of random node failures for
independent networks. Many networks depend on others to function and thus, exploring the influence of net-
work topology on the effects of failures in interdependent networks is of interest. The present paper extends the
previous work to coupled power-law network systems. For a set of randomly generated coupled systems, each
containing two networks, we investigate the significant topological factors for different dependency types.
Failures in the coupled networks are simulated and the effects on the system performance are analysed by
performing a beta regression. The results are consistent across the dependency types, with the most influential
topological factors being mean nodal degree and factors relating to the dependency type. The results are also
compared with those of the independent networks and their potential relevance to the design of interdependent
networks is indicated, for example, their use within an infrastructure setting.

1. Introduction

It is well established that to model and evaluate the robustness (or
vulnerability) of critical infrastructure, the dependencies that exist
between infrastructure systems need to be accounted for [7,32,34].
Over the years, there have been many methods suggested for how to
model dependencies between infrastructures, including the use of agent
based and network based approaches [29]. Network models are based
on a network representation of the important components of each in-
frastructure, represented as nodes, and the connections between the
components within the same network, as well as between the different
networks, represented as edges. The edges between nodes of different
networks represent the dependencies between the different infra-
structures.

Infrastructure networks are a special case of the broader class of
interdependent networks. For example, the metabolic pathways of
different species in an ecosystem can be interdependent (e.g., one
species depends on an output from another species as an input).
Similarly, economies, when represented as networks of consumers and
producers, are strongly interdependent across regions within a country
and across different countries.

There have been many differing methods suggested for modelling

the dependencies between infrastructures using network models. Some
examples of the different methods are given by Parshani et al. [31],
Gaogao et al. [19] Jiang et al. [20], and Cheng and Cao [10]. The main
structural differences between the models can be characterised by
whether the infrastructures are fully or partially dependent (i.e., if each
node has at least one dependency to a node in the other network or only
a fraction of the nodes do) and if components with dependencies have
single or multiple dependencies (each dependent node has one or more
than one dependency) [17].

For both independent and interdependent networks, percolation
theory has been used to find analytical solutions to disruptions across
an array of different network types and dependency methods [7,10,18].
Such papers show the number or fraction of nodes removed in the in-
itial disruption that lead to complete collapse of the investigated
system. This can be used as a measure of the system's robustness and to
compare the robustness of different system models [18,20]. However,
this measure does not convey information about what happens to net-
work performance at lower levels of node removals and does not di-
rectly provide information about the relative importance of different
topological properties of the network in terms of their influence on
network robustness.

Network flow models are an extension of the network models that
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include the addition of load to the nodes and/or edges of the network.
The load represents the amount of commodity present at each node and
or/edge. Each node and/or edge is also assigned a maximum capacity.
When a disruption occurs the load of any failed nodes and edges is
redistributed throughout the remaining functional network compo-
nents. The reassignment of the load can lead to additional failures if the
load of nodes or edges exceeds their maximum capacity [14,38].

Scala et al. [35] investigated the inclusion of physical flow to both
independent and interdependent networks, with a focus on how edge
overload affected the robustness of the networks. They used a mean
field model to redistribute the load of failed edges throughout the
system, that is, they assumed when an edge failed its load was redis-
tributed evenly throughout the existing edges within the network.

The addition of commodity flow within networks is useful when
looking into the cascading mechanisms between specific infrastructure
network types, such as electric power and telecommunication. The in-
teraction between the types of infrastructure can be explored to see how
the redistribution of commodity flow can influence the cascading ef-
fects of disruptions [22,38]. One conclusion from the literature is that
the inclusion of network flow shows an increased level of cascading
effects [42], while others argue that including “smart” interactions
(which occur due to buffers within real dependent infrastructure sys-
tems) between the two networks decreases the cascading effects within
the interdependent power-communication system [22].

The use of network flow models is effective when studying a specific
system, such as one including an electric power system. However, when
investigating the effects of dependencies between general infrastructure
networks, the type of infrastructure is not specified, and thus the flow of
the commodity cannot be included. Instead the structure of the net-
works can be explored. The effects of network structure, or topology, on
the robustness of independent networks have previously been in-
vestigated [3,23]. Different topological factors can be calculated, which
capture particular structural features of a network.

Four of these topological factors are nodal degree, path length,
betweenness centrality and clustering coefficient. Nodal degree spe-
cifies the number of edges connected to each node. Path length pro-
vides the shortest path between each nodal pair within a network.
Here the shortest path is considered as the path that traverses the least
number of edges. Betweenness centrality indicates the extent to which
a node lies on the shortest path between two other nodes within the
network [27]. Clustering coefficient (also referred to as transitivity)
indicates the how likely it is for the neighbours of a node to also be
neighbours, where if an edge exists between two nodes, then they are
neighbours. Clustering coefficient gives an indication of local re-
dundancy within a network.

Alipour et al. [3] used topological based and reliability based
measures to identify weak nodes within power transmission networks.
The topology based measures included factors such as nodal degree and
betweenness centrality. The reliability based measures incorporates
what the author refers to as the reliability of the edges within the
system. To do this, a weight is assigned to each edge that represents the
probability that the edge is functional. The topological factors are then
calculated including the weights of the edges. They also compared the
robustness of the independent power transmission networks to random
and targeted attacks, using efficiency as a measure of robustness. Effi-
ciency is defined as the inverse of the average of the shortest paths
between each nodal pair within the network. The targeted attacks were
simulated by removing the most central nodes of the network. The most
central nodes are defined as those who had the highest cumulative rank
score in relation to the reliability based measure, i.e., the greater the
value of each reliability based measure a node has the lower it is
ranked.

LaRocca and Guikema [23] provide a general overview of the
topological factors that have a significant influence on the robustness
of independent networks when random failures occur. The focus of
the paper was the robustness of networks, of which the nodal degree

followed a power-law distribution with exponential cut-off. Here,
robustness was defined as the percentage of functional nodes after
disruptions. Their findings show that the following topological factors
are significant when characterising the robustness of independent
networks: mean nodal degree, mean betweenness centrality, mean
clustering coefficient, standard deviation of clustering coefficient and
standard deviation of path length. However, the influence of the to-
pology on the robustness of interdependent networks has not been
explored. In this paper, characterising the robustness of networks
with topological factors is extended to the case of coupled network
systems.

LaRocca et al. [24] compared the use of network topology and
network flow models to simulate electric power networks. They con-
cluded that using only network topology as performance measures for
particular power networks under specific disruption scenarios provides
poor estimates of system performance, relative to when commodity
flow is taken into account. However, they also find that an average of
some performance measures, such as largest connected subgraph, may
capture the average behaviour of the system when random failures
occur. If investigating the effects of disruption to a specific system that
includes at least one infrastructure for which the flow of the commodity
can be modelled, then the use of a physical flow model is more ap-
propriate than a network theoretic model. However, this paper aims to
give an overview for any type of networks within a coupled system and
thus does not include physical flow. The inclusion of flow limits the
connections within an individual network to all be of the same type of
connection, e.g. physical if the flow of a commodity (e.g. power of
water) or of information. By not including physical flow, the connec-
tions within the model can represent different types of connections,
rather than just one.

To extend the work of LaRocca and Guikema [23] the present paper
aims to provide a general overview of which topological factors are
important when random disruptions occur in coupled network systems
for a variety of different dependency types. The various dependency
types allow for the investigation of both dependent and interdependent
coupled systems. The 2000 coupled network systems are generated such
that each system consists of two networks, both of which are scale-free
networks that follow a power-law distribution with exponential cut-off.
The two networks present in each coupled system are referred to as
Network A and Network B. The dependencies between the two net-
works are directional (or unidirectional), i.e., if node i in Network A
depends on node j in Network B, node j does not necessarily depend on
node i in Network A.

In our analysis, the robustness of Network A is explored when
random disruptions occur within the coupled system. Robustness here
is considered as the percentage of functional nodes after a disruption
occurs. The analysis aims to advance the understanding of how the
robustness is affected within a short time frame after the initial dis-
ruption. All initial failures occur within Network B, thus investigating
the first order effects of a disruption on Network A. A first order effect
refers to the effect of a disruption that initiates in Network B and affects
Network A through the dependencies Network A has on Network B
[34]. After the disruptions are simulated within the coupled system, a
beta regression is performed to provide an overview of which topolo-
gical factors are significant in characterising the robustness of Network
A. A comparison of the significant topological factors across the dif-
ferent types of dependencies modelled is made, as well as a comparison
to the significant factors reported for independent networks in LaRocca
and Guikema [23].

The remainder of this paper is structured as follows: Section 2
provides an overview of the different network related terminology used
throughout the paper. The methods used to generate and analyse the
coupled network systems are outlined in Section 3, with the results of
the regression analysis are presented in Section 4. A discussion of the
findings is given in Section 5, followed by the conclusion in Section 6.

C.A. Johnson, et al. Reliability Engineering and System Safety 191 (2019) 106560

2



2. Network terminology

Networks consisting of nodes and edges can be used to construct a
simplified representation of an infrastructure system. The nodes re-
present important components of the system and the edges represent
the connections between such components. The network or graph can
be denoted as =G V E{ , }, where V is the set of vertices or nodes in
the network and E is the set of edges, which form connections between
the nodes. The size of the network, N, is equal to the number of vertices
[5]. The edges in a network can either be directed or undirected. When
the edges are directed, the direction of each edge is specified and can
only be traversed in the specified direction. When the edges are un-
directed, the edges can be traversed in either direction. For simplicity,
the networks generated to be included the coupled systems in this paper
are undirected.

Barabási and Albert [4] first observed that the nodal degree of some
networks can be described as following a power-law distribution, given
by:

P k k( )

such that P(k) is the probability that a node is connected to k neigh-
bours and γ is some constant. It has since been suggested that the
power-law distribution with exponential cut-off is more accurate as it
takes into account the physical cost of adding additional edges to a
node, providing an upper limit to the number of edges a node can have.
The power-law distribution with exponential cut-off is given as:

P k k e( ) k K( / )

where K is the cut-off at which it becomes too costly to add additional
edges to a node [2, 26].

It has recently been questioned if power-law networks are as pre-
valent in the real world as the mountain of literature stating this would
have us believe. Broido and Clauset [6] investigated if the best fitting
power-law distribution for the nodal degree of 3662 simple graphs
(constructed from 928 real-world networks) was better than alternative
(non-scale-free) distributions. They use the term scale-free networks to
refer to networks which nodal degree follows a power-law distribution.
Likelihood ratio tests were compared for the best fitting model from
four alternative degree distributions. One such distribution they com-
pared was the power-law with exponential cut-off, where 56% of the
results favoured the power-law distribution with exponential cut-off.
This result led Broido and Clauset [6, p. 5] to state “a majority of
networks favor the power law with cutoff model, indicating that finite-
sized effects may be common”. This topic of discussion will likely gain
much attention in the near future, and may lead to a different under-
lying degree distribution to be proposed. However, for the time being,
the power-law distribution with exponential cut-off is one of the better
methods to use when constructing simulated networks.

2.1. Network topology

The structure or topology of a network can be described using dif-
ferent network parameters. Four such parameters that are particularly
useful for characterising the network structure are: nodal degree, be-
tweenness centrality, clustering coefficient and path length. Each of
these four topological parameters can be calculated for any network
[23].

2.1.1. Nodal degree
The degree, k, of any node in an undirected network is the number

of edges connected to the node. The mean nodal degree of the network
is expressed as

=k
N

k1

i V
i

where V is the set of nodes in the network, and ki is the degree of node i.

2.1.2. Path length
The length of the shortest path for each pair of nodes within a

network is calculated as the least number of edges traversed to get from
one node in the pair to the other. The shortest path from node i to node j
in a network is denoted as pij. For undirected graphs =p pij ji. For the
remainder of the paper, the set of shortest paths between each nodal
pair in a network is denoted as L.

2.1.3. Betweenness centrality
For each node i in the network, the betweenness centrality is defined

as:

=Bc
p
p

b, a i,i
a b

aib

ab

where paib is the number of shortest paths from node a to node b that
pass through node i, and pab is the total number of shortest paths from
node a to node b.

2.1.4. Clustering coefficient
The clustering coefficient of a node specifies how connected its

neighbours are to each other and is an indication of local redundancy in
the network. The neighbours of a node is the set of nodes to which it is
connected to. For node i, which has ki neighbours, the clustering coef-
ficient is defined as:

=Cc E
k k

2
( 1)i

i

i i

where Ei is the number of edges between the neighbours of node i.

2.2. Giant connected component and source node clusters

When disruptions occur to a network, the network can fragment into
several clusters. The largest connected cluster present after the network
fragments is referred to as the Giant Connected Component (GCC). The
relative size of the GCC is the percentage of nodes within the GCC
[9,10,36]. The relative size of the GCC can be used as a measure of
network performance after disruption has occurred [17,22]. We ac-
knowledge that this is an imperfect measure of network robustness,
especially given that it does not account for source and sink nodes or for
the physics of network flows. However, this simple, widely-used mea-
sure, provides an initial view of the influence of topological factors on
the topological robustness of a network.

Source nodes can also be included into a network. Source nodes
represent components of the network that must be functioning in order
for the network to be functional. When a disruption occurs within a
network containing source nodes, only the clusters that contain source
nodes are considered functional.

2.3. Network dependencies

Connections between different networks can also be formed to
generate a system of dependent networks. These connections represent
the dependencies that exist between different infrastructure networks,
for example the dependency a water network has on an electricity
network to power electric pumps [13]. To distinguish between the
edges within each network and between the networks the terms intra-
connections and inter-connections are used. Intra-connections refer to
the connections or edges between two nodes within the same network.
Inter-connections refer to the connections or edges between two dif-
ferent networks, i.e. the dependencies between the networks.

For the remainder of the article, all intra-connections are assumed
to be undirected and all inter-connections are assumed to be directed.
This is representative of situations such as a drinking water network
and its dependency on a power network. The water within the network
can flow in both directions, such that the intra-connections are un-
directed. However, some components of the water network, such as the
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pumps, rely on electricity to function and thus the dependency is di-
rectional from the power network to the water network. Another ex-
ample is a transportation network and its dependency on a power
network. Within the transportation network traffic flows in both di-
rections, whereas the dependency is directed from the power network
to the transportation network, for example, to signals within the
transportation network that requires electricity. The power network can
also be dependent on the transportation network, for example, the
transportation of fuel (e.g., coal) or spare parts, but not necessarily on
the component that depends on the power network, such as the signals.

For coupled system where the networks have partial dependency
(i.e., only a percentage of the nodes in the network depend on another),
the influence of additional variables on the robustness of the system are
considered. These variables are the percentage of nodes in the network
which are dependent on another network, denoted Dp, and the intra-
nodal degree (number of intra-connections a node has) of these de-
pendent nodes, which is denoted as Dk. When source nodes are in-
cluded in the coupled systems, the influence of the additional variable
of the source nodes’ intra-nodal degree is also considered, and denoted
as Sk.

3. Methods

A total of 4000 networks were generated following the process
outlined in Section 3.1 before being sorted into pairs to give 2000
coupled network systems. The two networks within each system are
referred to as Network A and Network B. Different types of de-
pendencies between the two networks were explored and are described
in Section 3.2.1. For each dependency type, failure scenarios were si-
mulated within the 2000 coupled systems and the robustness of Net-
work A was recorded. More information on simulating the failure sce-
narios is given in Section 3.3. To characterise the robustness of Network
A from the topological factors of the coupled network system a beta
regression analysis was performed as described in Section 3.4.

3.1. Generating networks

The 4000 networks were generated using the preferential attach-
ment variation algorithm presented by LaRocca and Guikema [23]. This
algorithm assigns the degree of each node from the power-law dis-
tribution with exponential cut-off before assigning intra-connections
preferentially, based on nodal degree. All intra-connections are as-
sumed to be undirected.

An assortment of simulated networks was produced using combi-
nations of different network sizes and parameter groups for the nodal
degree distribution. Five different power-law distributions with ex-
ponential cut-off were used to assign the nodal degree of the networks.
The parameter groups of the five power-law distributions used are
shown in Table 1. These distributions are the same as those used pre-
viously by LaRocca and Guikema [23] and were chosen as they re-
presented nodal degree distributions exhibited by real-world networks
studied in Albert and Barabási [2]. Twenty different network sizes
ranging from 100 to 1000 nodes were chosen from a uniform dis-
tribution and can be seen in Table 2. Therefore, for each combination of
network size and nodal degree distribution 40 networks were

generated.
After generating the networks, the mean, minimum, maximum and

standard deviation of the four topological factors of each network was
calculated. A summary can be seen in Table 3.

3.2. Generating coupled network systems

The 4000 networks generated were then paired such that each pair
of networks, referred to as Network A and Network B, were the same
size and of the same parameter group for the nodal degree distribution.
Each pair was used to form a coupled network system, resulting in 2000
systems. The two networks within each coupled system were assumed
to occupy the same spatial area. The layout of each network was
decided using the layout.graphopt function in the igraph R package
[12]. This assigned each node a Cartesian (x, y) coordinate.

The inclusion of source nodes within the coupled network systems
was also explored to see if their presence caused a change in which
topological factors were significant to network robustness. When source
nodes were present in the coupled system, a random subset of nodes in
Network B were chosen to represent these source nodes. The size of the
subset was varied at 2%, 5% and 10% of the network's size. These re-
latively low percentages of source nodes are representative of systems
such as infrastructure where the large majority of nodes are demand
points and demand is met by a relatively small number of major source
nodes; for example, natural gas networks [15, 33, 37], electric power
systems [1, 39–41] and water distribution systems [21, 25, 28]. The
analysis could be extended to networks with much higher percentages
of source nodes, but this is not explored in this paper.

3.2.1. Forming dependencies
For each type of dependency, Network A is always dependent on

Network B, however Network B was either independent (did not de-
pend on Network A) or was dependent on Network A. For each de-
pendency type, a subset of nodes in Network A is randomly chosen to
depend on Network B. This subset is denoted as AD. Each node in AD

depends on the closest node in Network B (based on Euclidean dis-
tance). This allows multiple nodes in AD to be dependent on the same
node in Network B. The method of forming dependencies based on
geographic proximity is used by Dueñas-Osorio et al. [13] when mod-
elling the interdependent power and water system of Shelby County,
Tennessee and Ouyang et al. [30] to simulate coupled power and water
systems with features similar to those of real infrastructure.

For dependency types that include Network B depending on
Network A, the dependencies Network A has on Network B are first
formed, using the method described in the previous paragraph. Next a
random subset of nodes in Network B is chosen to depend on Network
A. This subset is denoted as BD. Each node in BD is dependent on the
closest node in Network A (based on Euclidean distance) that is not
present in the subset AD. This allows for multiple nodes in BD to depend
on the same node in Network A.

Table 1
Power-law parameters used for generating networks.

Power-law distribution parameters
γ K

1.1 40
1.7 200
2.0 900
2.1 400
2.4 2000

Table 2
Summary of generated networks.

Number
of nodes

Number of
degree
distributions

Number
of
networks

Number
of nodes

Number of
degree
distributions

Number
of
networks

100 5 40 485 5 40
133 5 40 509 5 40
142 5 40 536 5 40
232 5 40 547 5 40
249 5 40 690 5 40
350 5 40 697 5 40
361 5 40 752 5 40
448 5 40 862 5 40
464 5 40 896 5 40
467 5 40 1000 5 40
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The size of the dependent subsets AD and BD vary for each de-
pendency type. An overview of the size of the dependent subsets is
given in Table 4. When the percentage of dependency is referred to as
fixed, this means that each of the 2000 coupled systems have the same
fixed percentage of dependent nodes. When Network B was in-
dependent, 10%, 30%, 50% and 100% of dependency levels (of Net-
work A on Network B) were considered. These levels were picked such
that a range of levels that could be observed by infrastructure systems
were covered. When both Network A and B were dependent on each
other, a fixed percentage of 50% was considered, though this could be
extended in future work. When the percentage is referred to as random,
the percentage of nodes to be chosen for the subset(s) AD (and BD) is
randomly assigned to Network A (and Network B) in each of the 2000
coupled network systems. The percentage of dependent nodes is as-
signed using a uniform distribution with a range from 1/N% to 100%,
where N is the size of the network, for each dependent network. This
provides a range of dependency from only one node being dependent in
a network to the network being fully dependent.

3.3. Simulating failures

Each failure scenario was simulated by randomly choosing a subset
of nodes in Network B to fail. The percentage of nodes randomly chosen
to initially fail in Network B was investigated at the 10%, 25% and 50%
level. These failed nodes were then removed from the network and the
cascading effect throughout the coupled system was observed. For each
dependency type, 100 failure scenarios were run for each of the 2000

coupled network systems. The percentage of nodes functional in
Network A was averaged over the 100 failure scenarios run on each
coupled network system and recorded. Two different methods were
used to simulate the cascading effects of the initial disruption. When the
coupled network systems did not contain source nodes, only nodes in
the GCC of Network A were considered as functional. When source
nodes were present in the coupled network system, only nodes that
could be reached from source nodes after disruption were considered as
functional. A more in-depth explanation to the two methods used to
simulate the cascade effects are given in Sections 3.3.1 and 3.3.2.

3.3.1. Giant connected component (source nodes not present)
When source nodes were not present in the coupled system, only

nodes present in the GCC were considered as functional. The initial
disruption removed a percentage of nodes in Network B, causing the
network to fracture into clusters. Of these clusters, only the largest, the
GCC, is considered as functional and thus all nodes outside the GCC are
also considered as failed. Any nodes in AD that depend on failed nodes
in Network B also fail and are removed from Network A. This causes
Network A to fragment into clusters. As with Network B, only the lar-
gest cluster, the GCC, of Network A is considered functional and all
nodes outside of the GCC are also considered as failed. Any nodes in BD
that depend on nodes in Network A which have failed are also con-
sidered failed. This process iterates until an equilibrium is reached (no
additional node failures occur). In the dependency types where
Network B is independent, BD will be an empty set and thus the failures
of Network A will not affect Network B and the system will reach
equilibrium after any nodes outside of the GCC of Network A are con-
sidered as failed.

3.3.2. Source node clusters (source nodes present)
When source nodes are present in the coupled system, the initial

failures occur within Network B, the failed nodes are removed and the
network fragments as with the method described in Section 3.3.1.
However, with the inclusion of source nodes, only the clusters which
contain source nodes will be considered as functional and all nodes
outside of these clusters are also considered as failed. As before, any
nodes in ADwhich depend on failed nodes in Network B fail and Net-
work A fragments into clusters. The set of functioning dependent nodes
in Network A is denoted as ADf. Now only clusters that have input from
Network B are functional. This means that only clusters containing the
nodes in ADf are functional. Nodes outside of these functional clusters
are also considered as failed. Any nodes in BD that depend on failed
nodes in Network A are now considered as failed, causing further
fragmentation to Network B. As before, this process iterates until the

Table 3
Summary of the topological characteristics of the generated networks, separated into Network A and Network B.

Network A Network B
Parameter Within-network measure Mean Min Max Std dev Mean Min Max Std dev

Network size (N) 496 100 1000 253.5 496 100 1000 253.5
Degree (k) Mean 5.35 2.34 12.94 2.35 5.37 2.49 12.44 2.37

Minimum 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Maximum 372 39 999 241 374 42 998 241
Std dev 20.50 6.77 37.18 6.24 20.62 6.83 36.94 6.23

Betweenness centrality (Bc) Mean 706 95 2948 535 700 95 2953 528
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 214,499 1766 995,119 236,109 216,959 1752 993,561 236,791
Std dev 9049 368 31,468 7608 9131 344 31,419 7633

Clustering coefficient (Cc) Mean 0.31 0.04 0.66 0.11 0.31 0.03 0.69 0.12
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 1.00 0.90 1.00 0.00 1.00 1.00 1.00 0.00
Std dev 0.40 0.11 0.49 0.08 0.40 0.10 0.49 0.08

Path length (L) Mean 2.36 1.96 4.00 0.53 2.35 1.95 3.98 0.52
Minimum 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Maximum 4.75 2.00 14.00 2.20 4.74 2.00 17.00 2.32
Std dev 0.46 0.06 1.38 0.33 0.46 0.06 1.90 0.33

Table 4
Summary of dependency types considered.

Type of dependency
Network A has on Network
B

Type of dependency
Network B has on
Network A

Percentage of source
nodes in Network B

Fixed, 10% – –
Fixed, 30% – –
Fixed, 50% – –
Fixed, 100% – –
Fixed, 50% Fixed, 50% –
Random – –
Random – 2
Random – 5
Random – 10
Random Random –
Random Random 2
Random Random 5
Random Random 10
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system reaches an equilibrium. Again, in the dependency types where
Network B is independent, the set BD will be empty and the failures will
not cascade back into Network B.

3.4. Regression model

After simulating the various failure scenarios, regression analyses
were performed on the recorded outcomes. The analyses present the
significant topological measures of the coupled network system that
affect the robustness of Network A. For each method of forming de-
pendencies, and each percentage of initial node failures in Network B,
two regression analyses were completed, one that included the topo-
logical factors of Network A only and one including the topological
factors of both Networks A and B. In real-world situations the two
different infrastructures are commonly owned by different private
companies that do not share infrastructure data for safety and security
reasons. Therefore, if the owner or management of Network A wanted a
general overview of the most important topological factors to consider
in relation to robustness of random failure events they would be able to
have an good overview of their own structure but would likely have
little or no information regarding the topological structure of the net-
work they are dependent on.

The dependent variable for the regression was the average percen-
tage of nodes in Network A considered functional after a random dis-
ruption occurs in Network B over the 100 failure scenarios. The beta
regression model was chosen as the dependent variable was in the
range (0, 1). The beta regression model was proposed by Ferrari and
Cribari-Neto [16] for instances when the dependent variable follows a
beta distribution. The beta density they suggest for the regression
model is a parameterisation of the beta density to account for a re-
gression structure where the dependent variable is an average of the
response and is given as

= <f y µ
µ µ

y y y( ; ; ) ( )
( ) ((1 ) )

(1 ) , 0 1, 0µ µ1 (1 ) 1

and the mean and variance of y are

=E y µ( )

and

=
+

Var y V µ( ) ( )
1

.

The parameter estimation is performed using the maximum like-
lihood method. For our analysis the logit link function was used.

When only the topology of Network A is considered, the in-
dependent variables were the mean, minimum, maximum and standard
deviation of the four topology factors (shown in Table 3) as well as the
percentage of dependency and mean nodal degree of dependent nodes,
when applicable. When considering the topology of Network A and
Network B the independent variables also included the mean,
minimum, maximum and standard deviation of the four topological
factors for Network B, as well as the percentage of dependency, mean
nodal degree of dependent nodes and mean nodal degree of source
nodes, when applicable.

Any of the within network topological factors that have a standard
deviation of zero in Table 3 were removed from the data set as they do
not impact the results. After removing variables with a standard de-
viation of zero, the Variance Inflation Factor (VIF) method was used to
remove multicollinear variables. The VIF of each variable gives an in-
dication of how well each variable can be explained by a combination
of the other variables. A VIF of 1 indicates the variable is not explain-
able with the others, with a larger VIF indicating a larger degree of
redundancy with the other variables. The variable with the largest VIF
was removed iteratively until all variables had a VIF value of less than
10. For the regression models which only included the topological
factors of Network A and for the model including the topological factors
of both Networks A and B, the following variables of Network A were

Table 5
Significant covariates when Network A is dependent on Network B and Network B is independent and the effect of change of these covariates. The sign indicates if the
covariate has a positive or negative influence on the percentage of nodes considered functional in Network A after random failures in Network B. The colour indicates
the covariate coefficient value with the darker the colour indicating the further the value is from 0.
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removed due to multicollinearity: maximum nodal degree, betweenness
centrality standard deviation, clustering coefficient standard deviation,
mean path length and maximum path length. Additionally, for the re-
gression model including topological factors from both Networks A and
B the variables maximum nodal degree and mean betweenness cen-
trality of Network A were removed due to multicollinearity as well as
the following variables from Network B: mean nodal degree, maximum
nodal degree, maximum betweenness centrality, betweenness centrality
standard deviation, clustering coefficient standard deviation, mean
path length and maximum path length.

After removing variables due to multicollinearity, the remaining
variable were normalised before fitting a beta regression model using
the betareg R package [11]. After fitting the initial beta regression
model, the least significant variable was removed iteratively, until all
remaining variables were significant at the = 0.05 level. The results of
the regression analysis are shown in Section 4.

4. Results

The results of the beta regression analyses are shown in Tables 5 and
6. Table 5 contains the results for regression analyses relating to the
dependent coupled systems (i.e., Network A depends on Network B and
Network B is independent). Table 6 contains the results for the re-
gression analyses relating to the interdependent coupled systems (i.e.

Networks A depends on Network B and Network B depends on Network
A). The full results of the beta regression models are given in
Appendix A.

Each column of Tables 5 and 6 represents the result of the regression
analysis for a dependency type and percentage of initial failures oc-
curring in Network B. For example, the first column in Table 5 shows
the results for when, in each of the 2000 coupled network systems, 10%
of nodes in Network A are dependent on Network B, Network B has no
source nodes and 10% of nodes in Network B are randomly chosen to
fail initially. If a topological factor was significant in a beta regression
model, then the cell in the corresponding column is shaded and con-
tains either a positive or negative sign. The sign indicates if the topo-
logical factor has a positive of negative influence on the robustness of
Network A, and the shading indicates how strong of an influence it has,
the darker the shading the more influential the factor is (i.e., the further
the covariate coefficient is from 0). Table 7 shows the values associated
with the levels of shading for both Tables 5 and 6 (the same scale has
been used to shade both Tables 5 and 6). If a factor has a positive in-
fluence on the robustness of Network A, this indicates the greater the
values of the topological factor the more robust Network A is. When a
factor has a negative influence on the robustness of Network A this
means the greater the value of the topological factor the less robust
Network A is.

Table 6
Significant covariates when Network A and Network B are interdependent and the effect of change of these covariates.
The sign indicates if the covariate has a positive or negative influence on the percentage of nodes considered functional
in Network A after random failures in Network B. The colour indicates the covariate coefficient value with the darker
the colour the further the value is from 0.
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4.1. General observations

The level or percentage of dependency Network A had on Network B
(Dp, A) was always significant (when included in the applicable re-
gression models) and has a great negative on the robustness of Network
A. Given that all initial failures occur in Network B, it seems intuitive
that the more dependent Network A is on Network B, the greater the
cascading effects will be in Network A. The mean intra-nodal degree of
dependent nodes in Network A (Dk, mean A) consistently has a negative
effect on the robustness of Network A. The structure of power-law
networks is described as containing hubs [8]. The greater the mean
nodal degree of dependent nodes, the more likely it is for the central
nodes of the hubs to be dependent on Network B. When one of the
central nodes of a hub fails, the network is more likely to fragment into
many clusters that contain only a small number of nodes. Therefore, the
higher the intra-nodal degree of dependent nodes in Network A, the
greater the chance that a central node of a hub fails, and thus the less
robust the network is when initial failures occur in Network B.

The mean nodal degree of Network A (k, mean A) is significant in
every regression model with a positive influence on the robustness of
Network A. This is expected as the greater the mean nodal degree, the
more edges or connections are present in the network. This increases
the chance of alternative pathways within the networks, increasing the
redundancy of the network.

4.2. Dependent coupled systems

Table 5 shows the results for the dependent coupled systems, that is
when Network A depends on Network B and Network B is independent.
The top section of Table 5 shows the regression results when only the
topological factors of Network A were included as covariates in the
regression model. The bottom section of Table 5 shows the results when
both the topological factors of Networks A and B were included in the
regression model.

4.2.1. Topological factors of Network A only
When Network A has a fixed partial dependency on Network B, the

first three columns in Table 5, the two most influential topological
factors are the mean nodal degree (k, mean A) and the mean intra-nodal
degree of dependent nodes (Dk, mean A). The mean nodal degree has a
positive influence on the robustness of Network A, whereas the mean
intra-nodal degree of dependent nodes has a negative influence. For
Network A fully dependent on Network B (100% dependency), as
shown in column four, it can be seen that the mean nodal degree (k,
mean A) still has a positive influence on the robustness of Network A,
but is less influential compared to when Network A is partially de-
pendent. The standard deviation of both nodal degree and path length
(k, std dev A and L, std dev A) have a weak negative influence on the
robustness of Network A for all fixed dependency types. The mean
clustering coefficient (Cc, mean A) has a weak positive influence on the
robustness of Network A.

When the level of dependency is randomly assigned to each of the
2000 coupled systems, the percentage of dependent nodes in Network A
(Dp, A) becomes the most influential factor, with a negative influence
on the robustness of the network. The mean nodal degree and mean
intra-nodal degree of dependent nodes (k, mean A and Dk, mean A)

consistently have a positive and negative influence, respectively, on the
robustness of Network A, however to a lesser extent than when the
dependency level is fixed.

4.2.2. Topological factors of Network A and Network B
The topological factors with the greatest influence when the topo-

logical factors of both networks are included in the regression model
are consistent of those when only the factors of Network A are con-
sidered. For fixed levels of dependency the mean nodal degree of
Network A (k, mean A) has the greatest positive influence on the ro-
bustness of Network A and the mean intra-nodal degree of dependent
nodes in Network A (Dk, mean A) has the greatest negative influence.
When the level of dependency is randomly assigned to each coupled
system again the percentage of dependency (Dp, A) becomes the most
influential factor, with a negative influence on the robustness of
Network A. The nodal degree standard deviation of Network A (k, std
dev A) is no longer significant, however path length standard deviation
of Network A (L, std dev A) is sometimes significant, mainly when the
initial percentage of node failures is 10% and 25%, again with a ne-
gative influence on the robustness of Network A.

When source nodes are not present in the model the nodal degree
standard deviation of Network B (k, std dev B) is significant with a weak
negative influence on the robustness of Network A. When source nodes
are present the nodal degree standard deviation of Network B (k, std
dev B) is sometimes significant, mostly with a weak positive influence
on the robustness of Network B. However, the inclusion of source nodes
within the coupled system does not change which topological factors
are the most influential on the robustness of the network.

4.3. Interdependent coupled systems

Table 6 shows the result for interdependent coupled systems, that is
when Network A and B both depend on each other. The top section of
Table 6 shows the regression results when only the topological factors
of Network A are included in the regression model. The bottom section
of Table 6 shows the results when the topological factors of both net-
works were included in the regression model.

4.3.1. Topological factors of Network A only
The first column in Table 6 shows the results when both Network A

and Network B had a fixed level of dependency at 50%. Similar to the
results for fixed levels of dependency in Table 5, the mean nodal degree
and mean intra-nodal degree of dependent nodes in Network A (k, mean
A and Dk, mean A) have the greatest influence on the robustness of
Network A. Again, the mean nodal degree (k, mean A) has a positive
influence and the mean intra-nodal degree of dependent nodes (Dk,
mean A) has a negative influence. The remaining columns in Table 6
show the results when the level of dependency was randomly assigned
to Networks A and B separately, with the level of dependency for
Network A (Dp, A) included in the regression model. Again, this now
becomes the most influential factor, with a negative influence on the
robustness of Network A. The influence of the mean nodal degree and
mean intra-nodal degree (k, mean A and Dk, mean A) are still influential
with a positive and negative influence, respectively.

For a fixed 50% dependency and random dependency when no
source nodes are present both the standard deviation of the nodal

Table 7
Reference for the covariate coefficient values represented in Tables 5 and 6.
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degree and path length (k, std dev A and L, std dev A) have a weak
negative influence on the robustness of Network A. When source nodes
are present the influence of both nodal degree standard deviation and
path length standard deviation (k, std dev A and L, std dev A) have a
weak influence, when significant, but now both have a positive influ-
ence on the robustness of Network A.

4.3.2. Topological factors of Network A and Network B
Comparing the bottom section on Table 6 with that of Table 5, the

results look similar, with the main difference being that now that
Network B depends on Network A the percentage of dependency Net-
work B has on Network A (Dp, B) is now included in the model, and is
significant with a negative influence on the robustness of Network A.
The mean intra-nodal degree of the dependent nodes in Network B (Dk,
mean B) is significant in some of the regression models, however the
influence it has is not as great as the mean intra-nodal degree of the
dependent nodes in Network A (Dk, mean A).

Nodal degree standard deviation of Network A (k, std dev A) is no
longer significant for any regression models. However, path length
standard deviation of Network A (L, std dev A) is still sometimes sig-
nificant, with a weak negative influence when significant. Nodal degree
standard deviation of Network B (k, std dev B) is often significant, with
a weak influence on the robustness of Network A. When source nodes
are not present in Network B this influence is negative, but becomes
positive when source nodes are present in Network B.

5. Discussion

In the analysis presented, the first order effects of a disruption
within a coupled system have been explored for different structures of
coupled systems. Across the various methods of forming dependencies
(both dependent and interdependent systems) as well as two different
methods of simulating failures, the majority of the results were con-
sistent.

The most influential factors across all the coupled network struc-
tures investigated are the mean nodal degree of Network A, the mean
intra-nodal degree of dependent nodes in Network A and, when ap-
plicable, the percentage of dependency Network A has on Network B. It
is worth noting that of the three most influential factors, two were in
relation to the dependency Network A has on Network B. However, this
analysis only covers scenarios where initial failures occurred in
Network B and so these results are to be expected.

The analysis which included the topological factors of Network B (in
addition to those of Network A) concluded some addition factors were
significant, but have only minor influence on the robustness of Network
A. This suggests that even for interdependent networks, the most im-
portant topological factors when characterising the robustness are those
relating to the network's own structure.

The most influential factor was the percentage of dependency
Network A had on Network B. This has a negative effect on the ro-
bustness of a network in relation to first order effects. All initial dis-
ruptions occurred within Network B, and so, the more nodes in Network
A depending on Network B, the more likely it is for failures to cascade
into Network A. Increased percentage of dependency increases the
number of paths available for the disruption to cascade from Network B
to Network A.

The mean nodal degree of Network A has a positive influence on the
network's robustness, however, the mean nodal degree of dependent
nodes in Network A has a negative influence. The positive influence of
the mean nodal degree can be attributed to the fact that the higher the
mean nodal degree a network has, the more intra-connections are
present, increasing the likelihood of available paths between the nodes,
and so, increasing the redundancy of the network. The negative influ-
ence of the mean intra-nodal degree of dependent nodes in Network A is
intuitive. Any dependent node in Network A fails if the node it depends
on fails. If the dependent nodes have a high intra-degree, when they fail

they have a greater potential to affect the robustness of Network A.
Some factors were significant over the different system structures,

but their effect on the robustness of the network changed. For example,
when source nodes are present in Network B, the standard deviation of
the nodal degree of Network A has a positive influence. However, when
neither network within the coupled system contains source nodes, the
standard deviation of Network A's nodal degree has a negative effect on
its robustness. The mean clustering coefficient of Network A also
changes from having a positive influence when source nodes not are
present in Network B, to a negative influence when source nodes are
present in the coupled system.

The change in the influence of the clustering coefficient may be due
to the different methods of assessing which nodes are functional for the
different coupled system structures. When source nodes are not present
within the system, the GCC method is used to assess which nodes are
functional after disruption. When this method is used the more con-
nections between a neighbourhood of nodes, the less likely the neigh-
bourhood is to fragment when disruptions occur, leaving a cluster with
a high population. However, when source nodes are present, a node is
only functional if there is a path available from any source node to that
node. If neighbourhoods of nodes are highly connected, they may be
reliant on only a small number of nodes in the neighbourhood to re-
ceive input from the source nodes. When these nodes fail, the other
members of the neighbourhood will no longer have a path from a
source node to itself, causing the entire neighbourhood to fail.

When comparing the results of the coupled system analysis to those
found by LaRocca and Guikema [23], some factors which were sig-
nificant for independent networks were no longer significant for de-
pendent networks. Other factors remained significant but the influence
of the factors on the robustness of the network changed. LaRocca and
Guikema [23] found that the mean clustering coefficient was the most
influential topological factor for independent networks when 10% and
25% of nodes initially failed. When 50% and 75% nodes initially failed
in an independent network the mean nodal degree was the most in-
fluential factor. However, when looking at the robustness of a network
in a coupled system, the influence of the mean nodal degree is always
more influential that the mean clustering coefficient. This suggests that
for first order disruptions the overall redundancy of the network is more
important than the local redundancy.

These results can be used alongside those of LaRocca and Guikema
[23] to provide some direction on which topological factors should be
given more focus on when planning improvements or developing new
networks. The influence of the significant topological factors shown by
LaRocca and Guikema [23] for failures within a network and those
presented in this paper for first order disruptions can be used together
to plan the structure of networks, such as infrastructure, so that it is
robust to disruptions that both directly affect it and, through de-
pendencies, indirectly affect it.

If a new network is being designed, attention should be given to the
level of dependency. Our results show that for each dependency type
we investigated, the higher the level of dependency, the less robust the
network is to first order disruptions. This suggests that the level of
dependency a network has should be low as possible.

The nodes which have dependencies should also be carefully con-
sidered. Our results show that the greater the nodal degree of the
components that are dependent on another network, the less robust the
network is to first order disruptions. This suggests that dependent nodes
should have the fewest number of intra-connection possible. However,
in reality, the components which have dependencies are guided by
functionality. In this case, the results can be considered when deciding
how to increase redundancy within the network. For example, in a
water supply network, the dependency on the power network is
through pumps within the network. The nodal degree of the dependent
pumps could be taken into consideration when deciding where to im-
prove redundancy, such as the addition of a back-up generator.

This extension of LaRocca and Guikema [23] to interdependent
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networks has covered a range of coupled network structures to provide
a generalised overview of the important topological factors for char-
acterising robustness of a dependent network, however, there are nu-
merous ways of modelling dependencies between networks, as well as
multiple failure scenarios. The results give a general overview of the
important topological factors for a network present in a coupled in-
frastructure system, where each dependent node has one and only one
dependency, concerning the first order effects of a random disruption.

The results presented in this paper highlight to networks, such as
infrastructure, that even though they depend on another infrastructure,
the most influential factors are primarily those attributed within their
own structure, or topology. Therefore, changes to their own structure
can help to increase their robustness to random failures in the depen-
dent networks. Although when applicable, the percentage of de-
pendency was the most influential topological factor, the dependency of
one infrastructure on another is defined by the need for the input (or
the utility) that the infrastructure produces and thus is not easy to
change to increase the robustness of the dependent infrastructure.
Therefore, the more important topological factors to consider when
designing or improving infrastructure are nodal degree and the intra-
nodal degree of the dependent networks. The topology of components
(or nodes) with dependencies on other networks are shown to be im-
portant and thus gives an indication that providing some redundancy
into the infrastructure, such as back-up generators for those dependent

on the power network, for example, could improve their own robust-
ness.

6. Conclusion

In conclusion we find that the most influential topological factors
associated with the robustness of coupled power-law networks with
exponential cut-off are those related to the dependency the network has
on the network in which the disruption originates. These factors are the
percentage of dependency and the mean nodal degree of the dependent
nodes in the coupled power-law network system. However, in networks
such as infrastructure the dependency an infrastructure has on another,
and which components need input from another infrastructure is de-
termined by the operational needs of the network and thus is difficult to
change. The mean nodal degree of the network has also shown to be
very influential on the robustness of the network, with the greater the
mean degree the more robust the network was to first order effects of a
disruption. Although a variety of dependency types have been explored,
the results remained consistent over the different coupled network
structures. The results provide a general overview of the most influ-
ential topological factors for a coupled network system and can be used
as a basis of which topological factors should be considered by, for
example, infrastructure owners or management when developing or
improving their infrastructure.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ress.2019.106560.

Appendix A

Tables A.1–A.6 show the full beta regression results for the various regression analyses performed as part of the current paper.

Table A.1
Full beta regression results for fixed dependency types when topology of Network A only are included in the regression analysis.

10% initial failures 25% initial failures 50% initial failures
Dependency type Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value

Network A fixed 10%
dependency
Network B
independent

Intercept 3.904 0.007 0.000 Intercept 2.991 0.007 0.000 Intercept 2.328 0.007 0.000
k, mean A 0.460 0.010 0.000 k, mean A 0.500 0.013 0.000 k, mean A 0.554 0.014 0.000
Bc, mean A −0.049 0.008 0.000 k, std dev A −0.030 0.007 0.000 k, std dev A −0.029 0.008 0.000
L, std dev A −0.041 0.011 0.000 Cc, mean A 0.036 0.009 0.000 Cc, mean A 0.034 0.010 0.000
Dk, mean A −0.491 0.006 0.000 L, std dev A −0.064 0.014 0.000 L, std dev A −0.066 0.016 0.000

Dk, mean A −0.562 0.006 0.000 Dk, mean A −0.652 0.007 0.000
Network A fixed 30%

dependency
Network B
independent

Intercept 2.712 0.005 0.000 Intercept 1.741 0.005 0.000 Intercept 0.964 0.006 0.000
k, mean A 0.581 0.013 0.000 k, mean A 0.634 0.012 0.000 k, mean A 0.769 0.015 0.000
K, std dev A −0.042 0.006 0.000 K, std dev A −0.037 0.006 0.000 K, std dev A −0.032 0.007 0.000
Cc, mean A 0.021 0.007 0.003 Cc, mean A 0.023 0.007 0.001 Cc, mean A 0.031 0.008 0.000
L, std dev A −0.052 0.012 0.000 L, std dev A −0.041 0.011 0.000 L, std dev A −0.031 0.013 0.020
Dk, mean A −0.509 0.009 0.000 Dk, mean A −0.576 0.008 0.000 Dk, mean A −0.729 0.010 0.000

Network A fixed 50%
dependency
Network B
independent

Intercept 2.168 0.004 0.000 Intercept 1.129 0.004 0.000 Intercept 0.232 0.005 0.000
k, mean A 0.607 0.013 0.000 k, mean A 0.689 0.012 0.000 k, mean A 0.894 0.015 0.000
K, std dev A −0.049 0.005 0.000 K, std dev A −0.046 0.004 0.000 K, std dev A −0.045 0.006 0.000
Cc, mean A 0.012 0.006 0.040 Cc, mean A 0.015 0.005 0.005 Cc, mean A 0.020 0.007 0.002
L, std dev A −0.048 0.010 0.000 L, std dev A −0.038 0.009 0.000 L, std dev A −0.026 0.011 0.015
Dk, mean A −0.498 0.011 0.000 Dk, mean A −0.581 0.010 0.000 Dk, mean A −0.790 0.012 0.000

Network A fixed 100%
dependency
Network B
independent

Intercept 1.396 0.003 0.000 Intercept 0.184 0.003 0.000 Intercept −1.176 0.004 0.000
k, mean A 0.158 0.006 0.000 k, mean A 0.178 0.006 0.000 k, mean A 0.233 0.007 0.000
K, std dev A −0.078 0.007 0.000 K, std dev A −0.086 0.007 0.000 K, std dev A −0.102 0.006 0.000
Bc, max A 0.017 0.007 0.013 Bc, max A 0.017 0.007 0.010 Bc, mean A 0.021 0.008 0.009
L, std dev A −0.067 0.006 0.000 Cc, mean A 0.012 0.004 0.005 Cc, mean A 0.037 0.006 0.000

L, std dev A −0.054 0.007 0.000 L, std dev A −0.049 0.010 0.000
Network A fixed 50%

dependency
Network B fixed 50%
dependency

Intercept 1.941 0.005 0.000 Intercept 0.932 0.005 0.000 Intercept 0.092 0.006 0.000
k, mean A 0.634 0.016 0.000 k, mean A 0.746 0.016 0.000 k, mean A 0.977 0.018 0.000
K, std dev A −0.061 0.006 0.000 K, std dev A −0.053 0.006 0.000 K, std dev A −0.051 0.007 0.000
Cc, mean A 0.019 0.007 0.006 Cc, mean A 0.027 0.007 0.000 Cc, mean A 0.036 0.008 0.000
L, std dev A −0.081 0.012 0.000 L, std dev A −0.058 0.012 0.000 L, std dev A −0.026 0.013 0.045
Dk, mean A −0.528 0.013 0.000 Dk, mean A −0.641 0.013 0.000 Dk, mean A −0.887 0.015 0.000
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Table A.2
Full beta regression results for fixed dependency types when the topology of both Network A and Network B are included in the regression analysis.

10% initial failures 25% initial failures 50% initial failures
Dependency type Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value

Network A fixed 10%
dependency
Network B
independent

Intercept 3.904 0.007 0.000 Intercept 2.991 0.007 0.000 Intercept 2.328 0.007 0.000
k, mean A 0.467 0.011 0.000 k, mean A 0.492 0.013 0.000 k, mean A 0.547 0.014 0.000
L, std dev A −0.065 0.012 0.000 Cc, mean A 0.038 0.009 0.000 Cc, mean A 0.037 0.009 0.000
Dk, mean A −0.491 0.006 0.000 L, std dev A −0.053 0.013 0.000 L, std dev A −0.056 0.014 0.000
k, std dev B −0.017 0.008 0.029 Dk, mean A −0.563 0.006 0.000 Dk, mean A −0.652 0.007 0.000
Bc, mean B −0.032 0.010 0.001 k, std dev B −0.026 0.007 0.000 k, std dev B −0.025 0.007 0.000

Network A fixed 30%
dependency
Network B
independent

Intercept 2.712 0.005 0.000 Intercept 1.741 0.005 0.000 Intercept 0.964 0.006 0.000
k, mean A 0.568 0.012 0.000 k, mean A 0.622 0.011 0.000 k, mean A 0.746 0.011 0.000
L, std dev A −0.034 0.010 0.001 L, std dev A −0.024 0.009 0.011 Dk, mean A −0.729 0.010 0.000
Dk, mean A −0.509 0.009 0.000 Dk, mean A −0.576 0.008 0.000 k, std dev B −0.025 0.006 0.000
k, std dev B −0.037 0.005 0.000 k, std dev B −0.032 0.005 0.000 Cc, mean B 0.044 0.006 0.000
Cc, mean B 0.030 0.006 0.000 Cc, mean B 0.034 0.006 0.000

Network A fixed 50%
dependency
Network B
independent

Intercept 2.168 0.004 0.000 Intercept 1.129 0.004 0.000 Intercept 0.232 0.005 0.000
k, mean A 0.593 0.013 0.000 k, mean A 0.678 0.012 0.000 k, mean A 0.874 0.012 0.000
L, std dev A −0.030 0.008 0.000 L, std dev A −0.023 0.007 0.001 Dk, mean A −0.789 0.012 0.000
Dk, mean A −0.497 0.011 0.000 Dk, mean A −0.580 0.010 0.000 k, std dev B −0.039 0.005 0.000
k, std dev B −0.043 0.004 0.000 k, std dev B −0.041 0.004 0.000 Cc, mean B 0.029 0.005 0.000
Cc, mean B 0.019 0.005 0.000 Cc, mean B 0.019 0.005 0.000

Network A fixed 100%
dependency
Network B
independent

Intercept 1.396 0.003 0.000 Intercept 0.184 0.003 0.000 Intercept −1.176 0.004 0.000
k, mean A 0.146 0.005 0.000 k, mean A 0.162 0.006 0.000 k, mean A 0.210 0.004 0.000
L, std dev A −0.029 0.006 0.000 L, std dev A −0.017 0.006 0.007 k, std dev B −0.078 0.004 0.000
k, std dev B −0.058 0.004 0.000 k, std dev B −0.064 0.004 0.000 Cc, mean B 0.044 0.004 0.000
L, std dev B −0.026 0.006 0.000 Cc, mean B 0.016 0.004 0.000

L, std dev B −0.020 0.006 0.002
Network A fixed 50%

dependency
Network B fixed 50%
dependency

Intercept 1.941 0.005 0.000 Intercept 0.932 0.005 0.000 Intercept 0.092 0.006 0.000
k, mean A 0.659 0.018 0.000 k, mean A 0.758 0.017 0.000 k, mean A 0.958 0.015 0.000
L, std dev A −0.047 0.010 0.000 L, std dev A −0.039 0.010 0.000 Cc, mean A 0.024 0.011 0.022
Dk, mean A −0.529 0.013 0.000 Dk, mean A −0.639 0.013 0.000 Dk, mean A −0.886 0.015 0.000
k, std dev B −0.059 0.006 0.000 k, std dev B −0.046 0.005 0.000 k, std dev B −0.044 0.006 0.000
Cc, mean B 0.021 0.007 0.003 Cc, mean B 0.033 0.006 0.000 Cc, mean B 0.023 0.011 0.033
L, std dev B −0.030 0.011 0.007 Dk, mean B −0.030 0.011 0.006
Dk, mean B −0.032 0.011 0.005

Table A.3
Full beta regression results for when Network A has random dependency types, Network B is independent and the topology of Network A only is included in the
regression analysis. .

10% initial failures 25% initial failures 50% initial failures
Dependency group Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value

Network A random
dependency
Network B
independent

Intercept 2.347 0.009 0.000 Intercept 1.319 0.009 0.000 Intercept 0.397 0.010 0.000
k, mean A 0.128 0.013 0.000 k, mean A 0.147 0.013 0.000 k, mean A 0.264 0.011 0.000
k, std dev A −0.035 0.009 0.000 k, std dev A −0.037 0.010 0.000 k, std dev A −0.029 0.010 0.002
L, std dev A −0.039 0.013 0.003 L, std dev A −0.040 0.014 0.005 Dp, A −1.064 0.011 0.000
Dp, A −0.693 0.008 0.000 Dp, A −0.814 0.009 0.000 Dk, mean A −0.453 0.020 0.000
Dk, mean A −0.037 0.007 0.000 Dk, mean A −0.057 0.007 0.000

Network A random
dependency
Network B
independent with 2%
source nodes

Intercept 2.430 0.008 0.000 Intercept 1.312 0.008 0.000 Intercept 0.178 0.010 0.000
k, mean A 0.230 0.013 0.000 k, mean A 0.277 0.016 0.000 k, mean A 0.332 0.023 0.000
k, std dev A 0.105 0.015 0.000 k, std dev A 0.238 0.017 0.000 k, std dev A 0.495 0.026 0.000
Bc, mean A 0.025 0.010 0.015 Bc, mean A 0.052 0.016 0.001 Bc, mean A 0.076 0.024 0.001
Bc, max A −0.061 0.016 0.000 Bc, max A −0.134 0.018 0.000 Bc, max A −0.246 0.022 0.000
Dp, A −0.576 0.008 0.000 Cc, mean A −0.042 0.013 0.002 Cc, mean A −0.102 0.017 0.000
Dk, mean A −0.162 0.011 0.000 Dp, A −0.618 0.008 0.000 L, std dev A 0.083 0.027 0.002

Dk, mean A −0.211 0.012 0.000 Dp, A −0.705 0.010 0.000
Dk, mean A −0.300 0.016 0.000

Network A random
dependency
Network B
independent with 5%
source nods

Intercept 2.512 0.008 0.000 Intercept 1.446 0.008 0.000 Intercept 0.431 0.009 0.000
k, mean A 0.214 0.011 0.000 k, mean A 0.254 0.012 0.000 k, mean A 0.353 0.014 0.000
Dp, A −0.622 0.008 0.000 k, std dev A 0.016 0.007 0.033 k, std dev A 0.143 0.019 0.000
Dk, mean A −0.143 0.012 0.000 Dp, A −0.695 0.008 0.000 Bc, max A −0.066 0.019 0.001

Dk, mean A −0.169 0.012 0.000 Cc, mean A −0.034 0.010 0.001
Dp, A −0.832 0.009 0.000
Dk, mean A −0.251 0.013 0.000

Network A random
dependency
Network B
independent with 10%
source nodes

Intercept 2.533 0.009 0.000 Intercept 1.482 0.008 0.000 Intercept 0.516 0.009 0.000
k, mean A 0.166 0.011 0.000 k, mean A 0.191 0.011 0.000 k, mean A 0.318 0.013 0.000
k, std dev A −0.019 0.007 0.010 Dp, A −0.687 0.008 0.000 Dp, A −0.843 0.010 0.000
Dp, A −0.616 0.008 0.000 Dk, mean A −0.125 0.011 0.000 Dk, mean A −0.258 0.014 0.000
Dk, mean A −0.108 0.011 0.000
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Table A.4
Full beta regression results for when Networks A and B have random dependency type and the topology of Network A only is included in the regression analysis.

10% initial failures 25% initial failures 50% initial failures
Dependency group Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value

Network A random
dependency
Network B random
dependency

Intercept 1.969 0.012 0.000 Intercept 0.994 0.011 0.000 Intercept 0.148 0.011 0.000
k, mean A 0.384 0.022 0.000 k, mean A 0.453 0.022 0.000 k, mean A 0.548 0.017 0.000
k, std dev A −0.072 0.012 0.000 k, std dev A −0.071 0.012 0.000 k, std dev A −0.054 0.011 0.000
L, std dev A −0.096 0.018 0.000 L, std dev A −0.078 0.018 0.000 Cc, mean A 0.040 0.011 0.000
Dp, A −0.935 0.012 0.000 Dp, A −1.111 0.012 0.000 Dp, A −1.369 0.013 0.000
Dk, mean A −0.284 0.019 0.000 Dk, mean A −0.338 0.018 0.000 Dk, mean A −0.475 0.017 0.000

Network A random
dependency
Network B random
dependency with 2%
source nodes

Intercept 2.043 0.013 0.000 Intercept 0.952 0.012 0.000 Intercept −0.164 0.013 0.000
k, mean A 0.254 0.024 0.000 k, mean A 0.338 0.026 0.000 k, mean A 0.343 0.032 0.000
k, std dev A 0.111 0.021 0.000 k, std dev A 0.260 0.026 0.000 k, std dev A 0.571 0.036 0.000
Bc, mean A 0.046 0.014 0.001 Bc, mean A 0.072 0.023 0.001 Bc, mean A 0.078 0.032 0.014
Bc, max A −0.075 0.023 0.001 Bc, max A −0.161 0.026 0.000 Bc, max A −0.283 0.030 0.000
Dp, A −0.768 0.012 0.000 Cc, mean A −0.045 0.019 0.020 Cc, mean A −0.125 0.023 0.000
Dk, mean A −0.219 0.023 0.000 Dp, A −0.874 0.013 0.000 L, std dev A 0.127 0.037 0.001

Dk, mean A −0.285 0.022 0.000 Dp, A −1.005 0.015 0.000
Dk, mean A −0.317 0.023 0.000

Network A random
dependency
Network B random
dependency with 5%
source nodes

Intercept 2.054 0.013 0.000 Intercept 1.038 0.012 0.000 Intercept 0.077 0.012 0.000
k, mean A 0.228 0.018 0.000 k, mean A 0.309 0.019 0.000 k, mean A 0.499 0.020 0.000
Bc, max A 0.026 0.011 0.023 Bc, max A 0.038 0.012 0.002 k, std dev A 0.122 0.012 0.000
Cc, mean A 0.044 0.011 0.000 Cc, mean A 0.047 0.012 0.000 Dp, A −1.090 0.014 0.000
Dp, A −0.787 0.012 0.000 Dp, A −0.919 0.013 0.000 Dk, mean A −0.359 0.021 0.000
Dk, mean A −0.153 0.018 0.000 Dk, mean A −0.202 0.019 0.000

Network A random
dependency
Network B random
dependency with 10%
source nodes

Intercept 2.139 0.012 0.000 Intercept 1.148 0.011 0.000 Intercept 0.254 0.011 0.000
k, mean A 0.235 0.016 0.000 k, mean A 0.394 0.019 0.000 k, mean A 0.536 0.018 0.000
Bc, mean A −0.050 0.012 0.000 Bc, mean A −0.042 0.012 0.001 k, std dev A 0.037 0.011 0.001
Dp, A −0.810 0.012 0.000 Dp, A −0.939 0.012 0.000 Dp, A −1.143 0.013 0.000
Dk, mean A −0.159 0.014 0.000 Dk, mean A −0.339 0.020 0.000 Dk, mean A −0.488 0.020 0.000

Table A.5
Full beta regression results for when Network A has random dependency types, Network B is independent and the topology of Network A and Network B is included
in the regression analysis.

10% initial failures 25% initial failures 50% initial failures
Dependency group Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value

Network A random
dependency
Network B
independent

Intercept 2.347 0.009 0.000 Intercept 1.319 0.009 0.000 Intercept 0.397 0.010 0.000
k, mean A 0.122 0.012 0.000 k, mean A 0.142 0.013 0.000 k, mean A 0.264 0.011 0.000
L, std dev A −0.031 0.012 0.012 L, std dev A −0.032 0.013 0.017 Dp, A −1.064 0.011 0.000
Dp, A −0.693 0.008 0.000 Dp, A −0.814 0.009 0.000 Dk, mean A −0.453 0.020 0.000
Dk, mean A −0.037 0.007 0.000 Dk, mean A −0.057 0.007 0.000 k, std dev B −0.032 0.010 0.001
k, std dev B −0.035 0.008 0.000 k, std dev B −0.036 0.009 0.000

Network A random
dependency
Network B
independent with 2%
source nodes

Intercept 2.431 0.008 0.000 Intercept 1.312 0.008 0.000 Intercept 0.179 0.010 0.000
k, mean A 0.221 0.016 0.000 k, mean A 0.240 0.017 0.000 k, mean A 0.306 0.023 0.000
Bc, max A −0.061 0.015 0.000 Bc, max A −0.122 0.017 0.000 Bc, max A −0.210 0.021 0.000
L, std dev A −0.050 0.015 0.001 L, std dev A −0.077 0.017 0.000 L, std dev A −0.122 0.021 0.000
Dp, A −0.575 0.008 0.000 Dp, A −0.615 0.008 0.000 Dp, A −0.701 0.010 0.000
Dk, mean A −0.162 0.011 0.000 Dk, mean A −0.210 0.012 0.000 Dk, mean A −0.295 0.016 0.000
k, std dev B 0.126 0.016 0.000 k, std dev B 0.234 0.018 0.000 k, std dev B 0.458 0.024 0.000
L, std dev B 0.084 0.016 0.000 Bc, mean B 0.058 0.018 0.001 Bc, mean B 0.089 0.025 0.000

L, std dev B 0.121 0.022 0.000 Cc, mean B −0.052 0.016 0.001
Sk, B 0.018 0.009 0.034 L, std dev B 0.228 0.027 0.000

Sk, B 0.037 0.010 0.000
Network A random

dependency
Network B
independent with 5%
source nodes

Intercept 2.512 0.008 0.000 Intercept 1.446 0.008 0.000 Intercept 0.431 0.009 0.000
k, mean A 0.214 0.011 0.000 k, mean A 0.254 0.012 0.000 k, mean A 0.324 0.018 0.000
Dp, A −0.622 0.008 0.000 Dp, A −0.695 0.008 0.000 Bc, max A −0.061 0.017 0.000
Dk, mean A −0.143 0.012 0.000 Dk, mean A −0.169 0.012 0.000 L, std dev A −0.048 0.017 0.004

k, std dev B 0.016 0.007 0.024 Dp, A −0.832 0.009 0.000
Dk, mean A −0.250 0.013 0.000
k, std dev B 0.149 0.018 0.000
L, std dev B 0.088 0.018 0.000

Network A random
dependency
Network B
independent with 10%
source nodes

Intercept 2.534 0.008 0.000 Intercept 1.482 0.008 0.000 Intercept 0.516 0.009 0.000
k, mean A 0.167 0.011 0.000 k, mean A 0.191 0.011 0.000 k, mean A 0.296 0.015 0.000
Dp, A −0.616 0.008 0.000 Dp, A −0.687 0.008 0.000 Dp, A −0.842 0.010 0.000
Dk, mean A −0.109 0.011 0.000 Dk, mean A −0.125 0.011 0.000 Dk, mean A −0.256 0.013 0.000
k, std dev B −0.021 0.007 0.005 Bc, mean B 0.039 0.014 0.005

Cc, mean B 0.037 0.012 0.002
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Table A.6
Full beta regression results for when Networks A and B have random dependency types and the topology of Network A and Network B is included in the regression
analysis.

10% initial failures 25% initial failures 50% initial failures
Dependency group Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value Topology

measure
Co-efficient Std error p value

Network A random
dependency
Network B random
dependency

Intercept 2.045 0.010 0.000 Intercept 1.031 0.010 0.000 Intercept 0.159 0.010 0.000
k, mean A 0.421 0.018 0.000 k, mean A 0.486 0.021 0.000 k, mean A 0.551 0.017 0.000
L, std dev A −0.050 0.016 0.002 L, std dev A −0.043 0.017 0.013 Cc, mean A 0.039 0.011 0.000
Dp, A −0.974 0.010 0.000 Dp, A −1.121 0.010 0.000 Dp, A −1.362 0.012 0.000
Dk, mean A −0.319 0.016 0.000 Dk, mean A −0.362 0.015 0.000 Dk, mean A −0.486 0.016 0.000
k, std dev B −0.073 0.010 0.000 k, std dev B −0.069 0.010 0.000 k, std dev B −0.055 0.010 0.000
L, std dev B −0.065 0.016 0.000 L, std dev B −0.036 0.017 0.037 Dp, B −0.168 0.010 0.000
Dp, B −0.293 0.008 0.000 Dp, B −0.249 0.009 0.000

Dk, mean B −0.025 0.013 0.048
Network A random

dependency
Network B random
dependency with 2%
source nodes

Intercept 2.120 0.010 0.000 Intercept 0.997 0.011 0.000 Intercept −0.145 0.013 0.000
k, mean A 0.325 0.021 0.000 k, mean A 0.364 0.025 0.000 k, mean A 0.362 0.030 0.000
Bc, max A −0.049 0.017 0.003 Bc, max A −0.132 0.021 0.000 Bc, max A −0.221 0.026 0.000
L, std dev A −0.040 0.017 0.016 L, std dev A −0.088 0.021 0.000 L, std dev A −0.106 0.027 0.000
Dp, A −0.839 0.010 0.000 Dp, A −0.916 0.011 0.000 Dp, A −1.011 0.014 0.000
Dk, mean A −0.244 0.019 0.000 Dk, mean A −0.302 0.019 0.000 Dk, mean A −0.326 0.021 0.000
k, std dev B 0.094 0.016 0.000 k, std dev B 0.236 0.024 0.000 k, std dev B 0.479 0.030 0.000
Cc, mean B −0.036 0.011 0.002 Bc, mean B 0.058 0.026 0.024 Bc, mean B 0.124 0.031 0.000
Dp, B −0.297 0.009 0.000 Cc, mean B −0.048 0.016 0.003 Cc, mean B −0.086 0.020 0.000
Dk, mean B 0.020 0.010 0.040 L, std dev B 0.071 0.027 0.008 L, std dev B 0.173 0.033 0.000
Sk, B 0.022 0.009 0.014 Dp, B −0.274 0.010 0.000 Dp, B −0.245 0.013 0.000

Dk, mean B 0.023 0.010 0.024 Sk, B 0.058 0.013 0.000
Sk, B 0.032 0.010 0.002

Network A random
dependency
Network B random
dependency with 5%
source nodes

Intercept 2.141 0.010 0.000 Intercept 1.090 0.010 0.000 Intercept 0.098 0.011 0.000
k, mean A 0.235 0.014 0.000 k, mean A 0.307 0.016 0.000 k, mean A 0.448 0.025 0.000
Cc, mean A 0.031 0.009 0.001 Dp, A −0.967 0.011 0.000 Bc, max A −0.051 0.023 0.027
Dp, A −0.867 0.010 0.000 Dk, mean A −0.214 0.016 0.000 L, std dev A −0.068 0.022 0.002
Dk, mean A −0.171 0.015 0.000 k, std dev B 0.023 0.010 0.021 Dp, A −1.103 0.013 0.000
Dp, B −0.326 0.009 0.000 Cc, mean B 0.029 0.010 0.004 Dk, mean A −0.359 0.019 0.000

Dp, B −0.293 0.010 0.000 k, std dev B 0.175 0.024 0.000
L, std dev B 0.121 0.024 0.000
Dp, B −0.223 0.011 0.000

Network A random
dependency
Network B random
dependency with 10%
source nodes

Intercept 2.222 0.010 0.000 Intercept 1.198 0.009 0.000 Intercept 0.275 0.010 0.000
k, mean A 0.234 0.012 0.000 k, mean A 0.422 0.016 0.000 k, mean A 0.537 0.020 0.000
Dp, A −0.874 0.009 0.000 Dp, A −0.979 0.010 0.000 Dp, A −1.153 0.012 0.000
Dk, mean A −0.164 0.010 0.000 Dk, mean A −0.392 0.016 0.000 Dk, mean A −0.531 0.018 0.000
Bc, mean B −0.042 0.009 0.000 Bc, mean B −0.031 0.010 0.002 k, std dev B 0.081 0.017 0.000
Dp, B −0.313 0.008 0.000 Dp, B −0.277 0.009 0.000 Bc, mean B −0.063 0.020 0.001

Dk, mean B 0.021 0.009 0.024 L, std dev B 0.082 0.026 0.001
Dp, B −0.215 0.011 0.000
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