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ABSTRACT Data analytics is rapidly growing field in both academia and industry dealing with processing
and interpreting large and complex data sets. It has got already many successful applications via advancing
machine (ML) and deep learning (DL) techniques, starting to evolve in the upstream petroleum industry as
well. The industry operates now with huge amount of sensors installed in different facilities, particularly
in production and injection wells. These sensors provide millions of measurements, such as pressure,
temperature, and rate every year for every well. The measurements may be highly correlated and carry
crucial information for decision making. This paper concentrates on pressure-rate data sets accumulated with
massive installation of permanent downhole gauges in such wells. The non-linear autoregessive (NARX)
and the long short term memory (LSTM) neural networks were assembled and tested on a synthetic data
set to compare results of pressure prediction, already addressed in the literature. The LSTM provided better
predictions, but did not manage to capture entirely the pattern of the data. The shifting window method
was then applied to improve the LSTM prediction capabilities, based on previous successful application in
forecasting electricity demand. The method implies smooth transition from training to prediction improving
network performance. The LSTM with the shifting window provided more accurate results for pressure
prediction, and it was then successfully applied for rate prediction. Testing of different configurations of
the LSTM network has shown that the pressure prediction performs well with less number of nodes in the
hidden layers if compared with the rate predictions. Significant error decrease is achieved relatively fast
(after 20 iterations) for both prediction tasks, making such predictions feasible for large data sets. The results
provide basis for filling gaps in well monitoring data and short-term performance forecast, crucial tasks for
decision making in all the industries operating with wells.

INDEX TERMS Deep learning, NARX, LSTM, well monitoring, permanent downhole gauge (PDG).

I. INTRODUCTION
Many industries use production and injection wells, origi-
nated from hydrogeology and petroleum industry, wells are
now operated in geothermal energy systems, geological stor-
age of carbon dioxide etc. During well operations (produc-
tion, injection or shut-in), data on well rate and pressure are
collected with respect to time. Over time, the pressure has
either an increasing or a decreasing trend, depending on the
rate and well type (producer or injector). In this paper, it is
considered an injection well distinguishing two cases of rate
behavior: when the rate is kept at a non-zero constant value
and when the rate is zero for a period of time. In the first
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case, the pressure is increasing (pressure build-up) and in
the second case the pressure will suddenly drop as the well
is shut down and not injecting during this time (well shut-in
and pressure fall-off).

In the petroleum industry, Pressure Transient Analy-
sis (PTA) was traditionally associated with well testing,
where a process of executing a set of planned well operations
and data acquisition activities is aimed at acquiring knowl-
edge of properties of in-situ hydrocarbons and characteristics
of the saturated reservoir rocks. Such a knowledge contributes
to the decision making process giving an estimate of hydro-
carbon reserves at the exploration phase and potential well
performance and life-span at the production phase.

In a wider context, PTA is used to characterize different
flow regimes related to well trajectory, completion, reservoir
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boundaries and well interference (like radial, linear, spherical
flows) and well and reservoir parameters: well skin (damage
or stimulation), reservoir flow capacity, average reservoir
pressure etc., [1]. The scope of PTA applications was recently
enlarged with massive installation of Permanent Downhole
Gauges (PDGs) in modern wells, providing millions of pres-
sure measurements per year. Analysis and interpretation of
the massive PDG data sets, for example, applying PTA,
requires a combination with other data sets like rate data.
Such a combination requires a sequence of routines to be
applied: synchronization, filtering, noise reduction and data
mining. The last focuses on filling gaps in one data set, that
may be performed based on the other data set. In many cases,
frequency and quality of pressure and temperature data are
much higher than those of rate data, leading to necessity to
fill in the gaps in rate history for further analysis, e.g. with
PTA.

In this paper, it is discussed a typical data set as recorded
by a PDG, although the approaches developed may be further
applied to other well data such as temperature or distributed
(throughout the wellbore) measurements. PDGs are installed
in oil and gas wells for the purposes of both observation
and optimization and can monitor pressure at a single loca-
tion or multiple points inside a well. Having such a sensor
permanently mounted enables for real-time monitoring and
automatic adjustments of well operational envelope (pressure
and rate), which can help to ensure well integrity and to
optimize the well performance.Widely used in the oil and gas
industry, PDGs have also found applications in other indus-
tries operating with wells like geological storage of carbon
dioxide and geo-thermal energy. Performance optimization
of wells operating in the industries mentioned above will con-
tribute to efficient resourcemanagement (key challenge of the
modern world, considering Earth’s finite resources), relying
on Knowledge Engineering (KE) [2]. Combining PDG data
with Artificial Intelligence (AI), this work aims to solve a KE
problem in the industries mentioned above, which is mainly
related to performance optimization.Machine Learning (ML)
models may be used to establish the relationship between
pressure and flow rate data, and therefore to achieve objec-
tives of the study, namely filling the gaps in the data and
making forward predictions.

The scope of this work is reproducing or prediction of
well flow rate time series based on pressure time series from
PDG and vice versa [3], which is, for example, of special
interest to the data mining routines discussed above (a data-
driven approach). A Deep Learning (DL) [4] technique was
applied for such a prediction, which was not used before for
such task. For comparison, another DL model [3], that was
used for similar tasks before, was also tested. The rate recon-
struction has a value for time-lapse PTA of PDG data [5],
enabling filling gaps in rate measurements. Presence of such
gaps is still a usual case in the petroleum industry due to
installation of flow-meters for clusters of wells and following
rate allocation per well. Constructing pressure evolution at
given rate may be also used for predicting well performance.

Such a prediction is basis for decision making in the upstream
oil and gas industry. The pressure prediction may also be
considered in the context of PTA, where pressure derivative
of the reconstructed pressure transients is of special interest.

II. TECHNICAL BACKGROUND
In this section, details of PDG data and themethods applied to
such data sets are presented. The methods vary from widely
used statistical, mathematical models to some AI models.
Recently, the interest to AI applicability towell data increased
and the advantages of automation became evident [7]. AI rep-
resents the ability of computers to mimic human behavior,
in term of analyzing information andmaking decisions (either
on a classification or a prediction task). In this work, an AI
model is built, which receives as an input raw PDG and
rate data and produces an output as it will be described in
Section III. Traditional approaches are presented in the first
part of the section on different tasks that have been solved,
followed by a description of ML models and the problems,
where these models have been applied.

A. PDG DATA AND EXISTING PTA TECHNIQUES
Data, collected with PDGs, form a basis for monitoring well
and reservoir parameters and well performance as well as for
making predictions about well behavior. For instance, PDG
enables using transient data to analyze and interpret pressure
behavior by taking measurements while intentionally varying
the flow rate. Analyzing the PDG data in combination with
flow rates in a manual manner is a challenge, due to large
amounts of the data sets, synchronization and noise issues.
Usually, PTA is applied on well-by-well basis, however in
the recent years the focus was also shifted to multi-well
interpretation [8].

The PTA methods have progressed from straight lines via
type curve analysis to pressure derivative and deconvolu-
tion [9]. Today, the Log-Log (pressure and its derivative)
plot is the mostly used tool, which is a representation of the
numeric data on a two-dimensional graph, with both axes
having logarithmic scale. A pressure transient obtained in a
shut-in of flowing period is plotted here as dP, which is equal
to the difference between pressure at time ‘‘t’’ andPi, pressure
at initial time (start of the period).

Although these models were widely used in the past
years in a manual mode, they are not fully automated and
human interaction is needed for their application. TheML/DL
approaches have here advantages of performing routine oper-
ations and facilitating modeling based on raw data, using
computational power and minimizing human interaction.

B. DATA ANALYTICS AND MACHINE LEARNING
Machine Learning (ML) techniques have been recently tested
on different PDG data sets, in a single well [10] and multi-
well analysis [11]. The core idea was to learn patterns and
gain insights on future behavior from the PDG data. ML is a
field of Computer Science that gives computers the ability to
learn, based on data and errors, without specific instructions.
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FIGURE 1. Interraction of AI with Oil and Gas Industry.

Within the area of Data Analytics, Machine Learning repre-
sents a way to build complex techniques and algorithms, able
to make future predictions. This is also known as Predictive
Analytics. The models used in predictive analytics enable
developing strategies, that contribute to decision making and
efficient resource management.

Over many years, Neural Networks (NN) were used in
well test analysis with the focus on identifying relevant
interpretation models [12] [13]. One of the recent works by
Ahmadi et al. [14] also used NNwith the scope of diagnosing
the well testing model, incorporating dimensionality reduc-
tion and normalization of the dataset.Moreover, in 2017 aNN
was applied [3] for predicting the pressure and temperature
in a well based on flow rate, experiment which is partially
reproduced in our paper.

Currently, applications of AI in well testing and monitor-
ing, lack approved, tested and universally applicable tech-
niques for reconstruction of one set of well measurements
based on another (like rate based on pressure). Hereafter,
in this work, DL models are tested, which could be capable
of predicting flow rate based on time and pressure as input,
and vice versa. Here, DL represents a set of neural networks
(Deep Neural Networks - DNN) with complex layers and
multiple functions interacting in specific ways.

In practice, challenges in PTA using Machine Learning
models are also related to noisy rate and pressure data.
De-noising is out of the scope of this work, as the dataset ana-
lyzed was generated using reservoir simulations. Advantage
of synthetic data is the fact that the ‘true’ solution is known
making development and testing of new approaches straight
forward.

III. WORKFLOW
The main goal of this work is to develop and apply DL
techniques to well data, without having major knowledge
regarding the extraction process and physical relationship
between the measured parameters. In other words, to test the
chosen model’s performance on raw data from oil and gas
industry, as presented in Figure 1.

The diagram from Figure 1 emphasizes the effect of com-
bining AI with data from the sensors installed in wells. In the
intersection we see NN (neural networks), a highly used class
of AI for predictions, applied to PDG data (from the sensors).

TABLE 1. Sample of dataset from single well.

FIGURE 2. Sample of dataset from single well, pressure and rate with
respect to time.

A successful outcome of this combination will enlarge the
applicability of AI in different fields and contribute to effi-
cient modeling in the oil and gas industry with less human
interaction. Although, in this work, a specific pressure-rate
data set is considered, the tested methods may be further
applied to other data sets, like temperature at a specified
location from PDG or distributed through the wellbore from
DTS (Distributed Temperature Sensing) etc.

A. DATA
A synthetic pressure and rate dataset representing a water
injection into a geological formation was simulated on a
reservoir model and used in this study for testing different
ML techniques. Due to the fact that the dataset is synthetic,
it is clean, and there is no noise present during training and
testing. The dataset contains three parameters as it follows:
time, pressure and flow rate. A sample of the data is presented
in Table 1.

The sample as seen in Table 1, represents the first 5 rows
from the whole dataset, and it offers an insight on the range of
these values. On the other hand, in Figure 2, the whole dataset
is plotted, where the x axis represents the time, and the y axis
the flow rate (represented with blue) and the pressure (repre-
sented with green). This plot is crucial for understanding the
pressure and rate pattern, but more importantly, the response
of the pressure to rate change, which is visible in the plot.

This is a typical data set, where time and pressure values
are continuous, however only the starting and the ending
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points of a constant rate were reported. The process of trans-
forming the data is presented in Section V.

B. SCOPE
The focus was split on 2 types of computational experiments
for the given dataset, as follows:
1) Pressure Prediction: when giving as input the time and

the flow rate. We expect that the network should reproduce
the increasing and deceasing pressure patterns.
2) Flow Rate Prediction: when giving as input the time

and pressure. The network should reproduce a sequence of
constant rate periods for the sequential pressure transients.

The same dataset was used for 2 different scenarios,
by exchanging the inputs and outputs. Moreover, 2 different
DL models were designed for prediction tasks, and the moti-
vation behind these models was as follows:

1) BASED ON EXISTING RESULTS
A recent work [3] served as inspiration for the pressure
prediction, where a DL model was successfully imple-
mented, the Non-Linear AutoRegressive with eXogenous
inputs (NARX) recurrent NN, which is in fact a DNN. Pres-
sure prediction was successfully addressed with NARX in [3]
in a combination with predicting the temperature based on
the same inputs. DNNs have more complex structure than
simple NNs, with layers interacting in a special way [15]. In a
simpleNN there are 3 layers (input, hidden and output) and all
the nodes are fully connected. By adding extra hidden layers,
these become DNNs.

2) IMPROVEMENT AND EXTENSION
While in the work [3] it was successful, on the dataset pre-
sented in this paper, NARX offered weaker performance than
expected. As a next step, another DL model was designed,
Long Short Term Memory (LSTM), from the same class,
recurrent NN (RNN), in an attempt to carry out better pre-
dictions for the pressure. And second, a powerful model was
needed, in order to address the ‘‘2)Flow rate Prediction’’ task.
The LSTM was successfully applied in numerous energy
related works [16]–[19]. RNNs represent a class of NNs
where the connection between the nodes form a directed
graph and these are capable of ‘‘remembering’’ information
over time.

IV. PREDICTION METHODS
Thus, two different types of Recurrent Neural Net-
works (RNN) were built and tested in this study: NARX [3]
and LSTM. When the current values in the dataset are
strongly correlated with the past values, it is straight forward
the choice of RNN for forecasting future values. Because
of the directed cycle formed by the nodes in the RNN,
the information is facilitated to persist in time. This aspect
is important, as the information carries, over time, features
and hidden patterns which may have major impact on future
data points.

FIGURE 3. Interaction of the layers in NARX neural network.

A. NARX
In order for NARX to produce an output at any given time,
it needs to receive two parameters: a new input value and
previous output values (called further as ‘‘steps’’). Thus,
the current output represents a combination of new inputs and
steps. The number of steps (one or more) can be customized
for a given problem. Figure 3 is a graphical representation of
the concept.

First, the inputs get transmitted to the hidden layer, then
the values which are carried on by the activation function, are
further sent to the output layer. To compute the current output
Yt , its previous steps are used in combination with the current
inputs, as shown in the equations below:

Mt = FH (
xs∑
i=0

Xt−i × Uhi +
ys∑
j=1

Yt−j × Vhj + Bh) (1)

Yt = FO(Mt ×

N∑
k=1

WOk + Bo) (2)

where, FH , FO are respectively the hidden layer’s activation
function and the output layer’s mapping function, Uhi, Vhj,
Wok , Bh, Bo are weights and biases corresponding to the
hidden and the output layers. The limits xs and ys represent
the number of inputs and respectively the number of steps
transmitted to the hidden layer from both directions (input
and output layers), and finally N is the number of output
nodes.

As the communication of the layers is bidirectional,
it computes the linear combination of the current inputs
and steps, add biases and run it through FH activation
function. It obtains the middle values Mt , multiplies again
these results with weights and add biases, and function
FO will generate the outputs. Since the hidden layer’s size
and the activation function is problem dependent, these will
be determined in the optimization process. A generalized
representation of Equation 1 and Equation 2 is written as
follows:

H = FH (X× U+ Y× V+ Bh) (3)

O = FO(H×W+ BO) (4)

In order to assess the performance of the proposed model,
the Mean Squared Error (MSE) was computed as measure
of effectiveness, which is the sum of squared differences
between the true values and predictions, divided by the size
of test set.
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FIGURE 4. Unrolled structure of LSTM network.

FIGURE 5. Communication between layers in NARX.

B. LSTM
LSTM is enumerated among the special types of recurrent
neural networks. All RNNs contain loops which make it easy
for the information to persist and be transmitted between the
specified points of the network.

LSTM has been successfully used over the past years in
numerous forecasting/prediction problems, therefore the aim
in this work is to apply it to the oil and gas industry as
well. In the Energy field, LSTM was used on solar power
forecasting problems [16], together with Deep Belief Net-
work and an AutoEncoder, and it outperformed the traditional
Multi Layer Perceptron (a multi layered feed forward, back
propagation neural network). In [17], on an electricity con-
sumption forecasting problem, a variation of LSTM, named
Sequence to Sequence LSTM offered better results than the
standard LSTM, and the performance was comparable to
that of the Restricted Boltzmann Machine in [18]. Recently,
in 2018, LSTM outperformed, on an electricity consumption
forecasting task, for buildings, a set of traditional ML models
such as Random Forest, Ridge Regression, Artificial Neural
Network and Gradient Boosting [19]. One of the reasons, for
LSTM being so highly used, is that the network performs
remarkably on time series data and PDG data is of same type,
with the past values highly influencing the future values.

LSTMs have a chainlike structure, with four layers (func-
tions) interacting in a specified manner. In Figure 4,
the unrolled LSTM cell, with the information flow, is
presented.

One of the main differences between NARX and LSTM
is the communication of the input, hidden and output layers.
In NARX there is a one directional information transfer from
the input layer to the hidden layer and a two directional infor-
mation transfer between the hidden and the output layers.
Figure 5 is the graphical representation of this concept.

In the LSTM cell, the information flows in a specific way,
based on the special interaction of the layers (functions)
inside the cell. Some functions are designed to keep infor-
mation and relevant values, others are designed to eliminate
irrelevant values, all working together to decide the output
in the end. This process is presented in Figure 6 and the
equations below (describing the role of all four layers).

FIGURE 6. Structure of LSTM network.

In the first step the forget gate layer will neglect informa-
tion from the cell state:

Ft = sigmoid(Wf [ht−1, xt ]+ Bf ) (5)

The store information layer will compute the input state:

It = sigmoid(Wi[ht−1, xt ]+ Bi) (6)

Then, also in store information, tanh function will create a
vector of new values, Gt , to be added to the state.

Gt = tanh(WC [ht−1, xt ]+ BC ) (7)

In the update layer, the old cell state Ct−1 is updated into
the new cell state Ct :

Ct = Ft ∗ Ct−1 + It ∗Gt (8)

To compute the output, it first runs a sigmoid function
which will determine the part of the cell state that will be
the output. Then the cell state is run through tanh and will be
multiplied by the output of the sigmoid:

Ot = sigmoid(Wo[ht−1, xt ]+ Bo) (9)

Ht = Ot ∗ tanh(Ct ) (10)

where Wf , Wi, WC , Wo are corresponding weights and Bf ,
Bi, BC , Bo are biases.
The main goal of testing these two models is to design a

method for predicting flow rate based on pressure, over time.
However, pressure predictionwas the first scope and both will
be treated in the upcoming section.

V. COMPUTATIONAL EXPERIMENTS
This section describes the types of experiments conducted
and obtained results. After building the models, these will
be trained and tested on different prediction tasks. There will
be 2 different scenarios, by varying the inputs and outputs.
Therefore, this section is divided in 3 subsections, Neural
Network design - describing the process of building the
models, and 2 different scenarios: Pressure Prediction and
Rate Prediction, including the detailed results. For the sake
of convenience, the term rate is used, to express flow rate
further in the text.

A. NEURAL NETWORK DESIGN
The NARX neural network built contained an input layer, one
hidden layer and an output layer. While designing the exper-
iments it was clear that the input layer must have 2 nodes,
as we will pass either [time, rate] or [time, pressure] as input
vectors. As a baseline, the hidden layer will have 1 node,
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FIGURE 7. Layers in the LSTM network.

element which can be changed during the parameter opti-
mization process. Consequently, the output layer will have
1 node, producing either pressure or rate.

Next, the LSTM neural network is built on the same basis,
for the sake of comparison. All the hiper parameters, such as
number of hidden layers, hidden nodes, iterations, input and
output size, are set as for NARX. The scope is to conduct
basic experiments with both models, in order to assess their
performance. Important to mention is, that LSTM is chosen
for this problem on the base of exemptional performance on
other energy related time series prediction problems, such as
electricity load forecasting [6].

A crucial step in preparing the dataset to be fed to the net-
work, is normalization (scaling), which translates to bringing
all values in the dataset to the same range. The advantages of
normalization are presented in [20]. This is even more crucial
in the present dataset, since the range of the values differ
substantially, as it will be presented in thePressure Prediction
section. Regarding the performance of both models, another
crucial step for efficiency is the parameter optimization.
Common steps in the parameter optimization of both models,
include the following: number of hidden layers and nodes,
as described in the baseline and in Figure 7, type of activation
function, and number of iterations.

The activation functions for LSTM are, by default, sigmoid
and hyperbolic tangent (tanh), and for the NARX, again the
tanh function was chosen, for the sake of gradients. It has the
benefit of faster convergence since tanh is a function sym-
metric about zero (origin), with range between [−1,1] [20].
Concerning the number of iterations, for both models it
started from 10 and further increased as necessary. At 10 iter-
ations, the results still presented potential improvement,
therefore, the limit was set higher to accurately spot the
point where the results stop improving. In addition to these
parameters, in case of NARX, a number of steps (defined
in NARX subsection of the Prediction methods section) must
be provided. This parameter was established based on trial
and error, varying from 2 to 10 steps. The optimal number
of steps was 5 (with 4 input values). For the implementation
of LSTM a high level neural network API, Keras [21], with
Tensorflow [22] backend was used.

B. PRESSURE PREDICTION
In this subsection the focus is on predicting the pressure,
by using time and rate. Therefore, we have:

O[t,Q]− > P (11)

where, P is the predicted pressure, based on rate Q as a func-
tion of time t . A similar work has been conducted recently
in [3], where the two main tasks were to predict Pressure
and Temperature, based on Rate as function of Time. NARX
was used in this work and tested on raw data and noisy
data. Predicting the temperature is beyond the scope of this
work, instead, the focus is on predicting the rate based on
pressure as function of time. This represents a challenging
task, as it will be described in the next subsection, and it
was not addressed before, to the best of our knowledge, using
DL. The scope is to use both models, NARX and LSTM for
pressure prediction.

As only the starting and the ending points of rate were pro-
vided in the dataset, first interpolation was performed in order
to obtain correspondence between pressure and rate points at
each time t . Next, the types of pressure transients were ana-
lyzed (in terms of how the pressure values are increasing), and
aimed to find similarities in specific periods. On the plot there
are two different behaviors. For the first period of time, from
beginning to 3000 (hr), the pressure monotonically increases
with some slope for each constant rate period (a pressure
transient). On the other hand, from time 3000 to 6000 (hr),
the pressure grows suddenly and remains relatively constant
for several transients, due to superposition effects [1] related
to declining rate during this period of time. Therefore, for
training and testing our models, the pre-processed dataset is
used, for a period which has: first, the similar type of tran-
sient behavior (between 0 and 3000 on x axis), and second,
2 different types of transient behavior (between 0 and 3000,
and between 3000 and 6000). Moreover, as seen in Table 1
and Figure 2, the range of the datapoints is extremely high
(roughly in the intervals (−10000, 0) for rate and (2000,
5000) for pressure). Thus, it is essential to scale the values
before feeding these to any network [20].

In the first case, the scope is to build and test the accuracy
of NARX and LSTM for a period with same consistency.
Let us call this ‘‘Period 1’’ (having similar pressure transient
behavior, which means the same trend for pressure increase
and decrease), where the training is on 75% of the data and
predicting on remaining 25%. Training represents the ML
term for learning the relationship between the pressure and
flow rate datapoints, with respect to time, also called further
as history matching, as usually used in reservoir simulations.
The predicted dataset consists here of only time and rate as
input, while the ’true’ pressure is used to assess the correct-
ness of the predicted pressure values.

In the second case, the goal is to verify the strength of
the models by learning on the entire Period 1 and pre-
dicting on Period 2 (with a different transient behavior).
In Period 2 the pressure transients are quickly stabilized. The
pressure increases quite rapidly in the beginning and then
stays relatively constant throughout the build-up (unlike in
Period 1, where the pressure change happened in a slower
manner, with a lower slope). Moreover, there is a change in
the rate. While in the first period it was ranging between
negative 10000 and negative 8000 (excluding the shut in
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FIGURE 8. Pressure prediction of NARX neural network on the two
periods.

when rate is zero), in the second period it keeps decreasing
(in absolute values).

1) RESULTS
The performance of NARX in Period 1 and Period 2 is shown
in Figures 8a and 8b respectively, and the performance of
LSTM on the same periods is plotted in Figures 9a and 9b.
The red points indicate the predicted pressure values on the
25% prediction dataset. The green point and the blue points
represent the true pressure and rate values respectively.

There are two different behaviors observed for NARX and
LSTM. The predictions made by NARX, did follow the initial
pressure pattern, but these form rather straight lines (not
transients). It tends to learn the increasing trend in pressure,
however in Figure 8b, struggled to follow the shape of the last
transient, which changed direction. On the other hand, LSTM
seems to perform differently. Following the trend of the
pressure transients slightly better than NARX, the predicted
values are not smooth enough to simulate accurately the
transients. However, LSTM presents a better performance.
It outperformed NARX in both test periods, managing to
learn the transient pressure trends.

At this point, NARX and LSTM had in the hidden layer 2
hidden nodes and the models were run for 50 iterations. Same
experiments were also conducted after adding hidden layers

FIGURE 9. Pressure prediction of LSTM neural network on the two
periods.

and nodes to the network (the network build-up is presented
the design from Figure 7). Increasing the complexity of the
DL models did not offer satisfactory results. Due to the small
number of inputs, no more than 2 hidden nodes were neces-
sary. Also, more hidden layers increase the risk for overfitting
on a dataset of such size. In addition the learning did not
improve after 50 iterations (in fact the improvement from
10 to 50 is relatively small, but still visible).

LSTM showed slightly higher performance thanNARX for
pressure prediction, that is visible if comparing MSE values
for both periods. NARXproduced anMSE equal to 0.0123 for
the first period and 0.0221 for the second period, whereas
LSTM produced an MSE equal to 0.0119 and 0.0214 for the
first and second period respectively.

Based on the preliminary tests described above, we aim
to build a more accurate model providing better prediction.
LSTMwas chosen for further tests, taking into account better
performance and potential of transferring of the successfully
implemented idea from the electricity load forecasting stud-
ies [6]. The idea is further called the shifting window method
and it works as follows:
1. a window of 10 values is created and filled with true
pressure values as starting point;
2. at each next step, one true value from the window is
substituted with a predicted value from the previous step;
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FIGURE 10. Pressure prediction in Period 1, including the history
matching and prediction datasets, and a close visualization of the
difference between the true and predicted values.

3. after 10 steps, the window consists of only predicted
pressure values, and the process continues to the end of the
prediction dataset.

In other words, the input is extended with one predicted
pressure value every time. Moreover, for ensuring that the
model carries out smooth predictions, the previous time and
rate values are also added to the input.

2) WINDOW PREDICTION RESULTS
The shifting window method has increased size of input data
and more complexity in the training or history matching
process. This resulted in a much larger neural network with
the following hyper parameters: 1 hidden layer, 50 hidden
nodes and 500 iterations. Naturally, the number of hidden
nodes was first kept at 2 as in the initial step, then decided
based on trial and error method

The results are presented in Figures 10 and 11 for Period 1
and Period 2 respectively. In Figure 10a, the true pressure
is represented in green, the corresponding flow rate in blue,
the history matching in black and the predicted pressure val-
ues, using the shifting window method in red. The improve-
ment is first visible in the pattern of the predicted values.
In addition, the closeness of these values to the true pressure is

FIGURE 11. Pressure prediction in Period 2, including the history
matching and prediction datasets, and a close visualization of the
difference between the true and predicted values.

further revealed in Figure 10b, by using a zoom of a random
short period. Similarly, Figures 11a and 11b, designate the
aforementioned characteristics for Period 2.
The MSE in these cases are 0.001 and 0.0011 for Period 1

and Period 2 respectively. For the sake of comparison,
the error values during the training period are represented
in Figure 14, for the best (50 hidden nodes) and worse (2 hid-
den nodes) cases.

C. FLOW RATE PREDICTION
This subsection represents an inverse of the previous task
and it is also more challenging. Here, the rate is predicted
based on time and pressure, using only the LSTM neural
network, due to its performance on pressure prediction and
previous successful experiences in the energy field. There-
fore, we have:

O[t,P]− > Q (12)

which represents that the rate is a function of time and pres-
sure. The shifting window method was proven to be effective
for the pressure prediction task, therefore it is adopted for rate
prediction in similar manner.
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FIGURE 12. Flow Rate prediction in Period 1, including the history
matching and prediction datasets, and a close visualization of the
difference between the true and predicted values.

By analyzing the rate data in Table 1 and Figure 2, it is
noticeable that the values are constant for a specific period of
time and even when it changes, it goes to constant for another
specific period. Whereas the pressure is either constantly
increasing or decreasing over the whole time, sometimes
slowly and other times suddenly, as it was shown in the
previous subsection. As another observation on the dataset,
if we analyze Period 1, we notice that the constant rate
intervals for pressure build ups are shorter than in Period 2.

1) WINDOW PREDICTION RESULTS
For consistency, the experiments are conducted similarly
to the pressure predictions above. First, LSTM is run on
Period 1, keeping the 75% of data for history matching and
25% for predictions. Then, as in the previous case, LSTM is
learning on the entire Period 1 and predicting on the entire
Period 2, for robustness. As a baseline, the model has only
1 hidden layer and 2 nodes, as for pressure prediction, then
the model is built up, as seen in Figure 7, and the final struc-
ture of the neural network is established. The first objective
is to determine whether the same network structure, from

FIGURE 13. Flow Rate prediction in Period 2, including the history
matching and prediction datasets, and a close visualization of the
difference between the true and predicted values.

pressure prediction, carries out satisfactory results in the rate
prediction as well. If not, changes will be made in the model
parameters.

After the baseline experiment is run, the model with 1 hid-
den layer and 2 hidden nodes is not accurate enough (although
it learned the pattern in the dataset). Such situation was
expected, due to the different nature and size of the input (as
seen from true data, pressure has transient trend with many
values for a constant rate period).

Therefore, the number of hidden nodes is increased to 50,
as for pressure prediction. However, the results still show
potential improvement, as the predicted values are quite far
from the true rate. Consequently, the number of nodes is
further increased to 100 and 200, in order to seek for more
accurate predictions. All the models, with varying number of
hidden nodes, are run to be able to verify where the prediction
accuracy stops improving. Meanwhile, the aim is to observe
how other parameters, such as number of iterations, need to
be adjusted.

Figures 12a and 12b present the best performance of
LSTM on rate prediction, for Period 1. For being more space
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TABLE 2. Summary of the results for LSTM, for predictions in both Period 1 and Period 2. In both cases the best model runs with 200 nodes and the
decreasing of MSE (final error) is represented over changing the number of hidden nodes.

efficient, we only plot the best case, which was proven to
be with 200 nodes, and compare the prediction loss later
on in Figure 14. In Figure 12a we have the true rate values
(blue), the history matching (black) and the prediction values
(red), as well as the pressure (green) for reference points.
However, in Figure 12b there are zoomed rates only for
better visualization. The reason for choosing that specific
period for zooming in is that it contains multiple different rate
observations, so that it makes it easier to read the plot.

Similarly, all the experiments are run on Period 2. Inter-
estingly, this validates the model for the previous period,
with 200 hidden nodes, however, the final error, MSE
decreases slower when increasing the number of nodes
from 2 to 50, 100 and finally 200. All errors occurred, at
500 iterations, while changing hidden nodes number are pre-
sented in Table 2.

The results for Period 2 are presented in Figures 13a and
13b, in the same manner as Figure 12. It is noticeable that for
some pressure transients the model produced quite accurate
predicted values, however, for other transients the predictions
and the true values are more easily distinguished from each
other. This is more visible in Figures 12b and 13b, for both
periods.

Figure 14 presents the loss during the training period for
the minimum and maximum number of hidden nodes. The
difference lies in how rapidly MAE (Mean Absolute Error
- loss function used during optimization) is decreasing, over
same number of iterations. For verifying the accuracy of final
rate predictions, MSE was computed, which, for Period 1 is
0.049 (2 nodes) and 0.033 (200 nodes), and for Period 2 is
0.030 (2 nodes) and 0.019 (200 nodes).

In Figure 14a, all loss values from the training are plotted
for Period 1. In case of 2 nodes, it is noticeable that for
both pressure and rate, the loss decreases more slowly. While
increasing the number of nodes to 50 for pressure and 200 for
rate, the model starts to learn faster, the error decreasing more
drastically before 100 iterations and slowly improving until
the end. The same statement stands for Figure 14b, which
naturally represents the training loss values for Period 2.
Consequently, for the present dataset, we can affirm that:

LSTM with 1 hidden layer and 50 nodes, for pressure, and
LSTM with 1 hidden layer and 200 nodes, for rate, are the

FIGURE 14. Learning loss of LSTM on both periods (plotted for 2 nodes
and the best case, 50 and 200 nodes, for pressure and rate respectively).

most accurate. Adding more nodes or even layers to this
network doesn’t seem to improve accuracy.

Table 2 presents a summary of LSTM’s performance on
both Period 1 and Period 2. It is structured as follows: the
top half and the bottom half of the table summarize Period 1
and Period 2 respectively; for both cases, the first column
indicates the time duration of the history matching (train-
ing) dataset, the second column represents the time duration
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of the prediction period (testing), and the remaining five
columns contain the MSE values for all tested scenarios,
with 2, 10, 50, 100, and 200 hidden nodes in LSTM. The
smallest error, at 200 nodes, is represented in bold on blue
background.

Analyzing Figure 14 and Table 2, a general conclusion is
that increasing the number of nodes in the LSTM training
gives much faster learning (fast reduction of Mean Absolute
Error, MAE) and much lower error for the same iteration
(Figure 14), while predictions (Table 2) are less sensitive
to this number. The best LSTM network (based on MAE
curve) with 200 nodes learned quite fast providing reason-
able results after 20 iteration, while showing minor MAE
decline afterwards. A balance between number of nodes and
the iterations required to achieve requested error level is
subject to further studies. Another interesting observation
is that the pressure prediction task requires a network with
less number of nodes comparing to the rate prediction task.
In practical applications, attention may be paid to assembling
neural networks with balancing between number of nodes and
iterations, which will be related with size and nature of data
sets in focus, like in this work it was shown on comparison of
pressure and rate predictions.

While in general, LSTM is successfully applied on large
datasets, in the presented work, it was chosen due to its
ability to process complicated data. It was able to establish
complex relationships between the pressure and rate points,
more importantly, predict rate based on pressure, which con-
sequently means that by increasing the number of iterations
and the depth of the layers, it can be applied to real case PDG
data.

Finally, with this performance, LSTM further extends the
applicability of DL in all the industries operated with wells,
the goal mentioned in Section III. Workflow, and sketched
in Figure 1. LSTM demonstrates efficient handling of pres-
sure and flow rate data from PDG sensors, and it can be
customized for other sensor data in the industries. This way,
modeling becomes more automated allowing the user to con-
trol pressure and rate based on the knowledge gained from
the designed model, facilitating decision making.

VI. CONCLUSION
The purpose of this work was to test and further develop Deep
Learning (DL) techniques to be applied for filling data gaps
and predictions of well behavior in the upstream petroleum
and other industries. Synthetic pressure and rate data, as mea-
sured with Permanent Downhole Gauges (PDG) installed in
injection (and production) wells, was used as an example
data set and two tasks of well pressure prediction based on
specified rates and rate prediction based on pressure were
addressed. Pressures and rates are interconnected parame-
ters and physical models may be used to relate them, like
physical-based simulation was used to generate the synthetic
data set. In this study, DL techniques were solely employed
to reveal such interconnection without physical models (data-
driven analysis). The NARX and LSTM neural networks

were assembled and tested on pressure prediction. Although,
LSTM slightly outperformed NARX, neither model offered
the expected performance in the first round.

The LSTM network has been proven to successfully gen-
erate predictions in the energy consumption field, early
addressed by the authors [6], where shifting window method
has improved the network performance. In this work, LSTM’s
performance was also further improved by adopting shifting
window method: a moving window with size of 10 values
was created in addition to the ordinary input to address
transition from training to prediction and further on, where
predicted values for previous steps were accounted for while
predicting the value at a new time step. Including predicted
values to the input has proven to be successful, and as
a result LSTM managed to follow the pressure and rate
patterns.

The main contribution of the paper is an efficient applica-
tion of LSTM to rate prediction, helping in filling the gaps in
rate data, which is still a challenge in well monitoring and
performance analysis. The DL based pressure predictions,
progressed in this paper, may be further used to forecast
short-term well performance. Both tasks are crucial for sup-
porting decision making in the upstream petroleum industry.
In future, experiments with larger datasets and parameter
optimization would contribute to understanding of how ML
and DLmay be universally applied to a diversity of wells and,
furthermore, to a diversity of sensors. Integrating physical
models into DL frameworksmay help in constrainingDL out-
put and facilitating better performance via reflecting physical
principles in the network structure / interconnections.
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