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ABSTRACT
This article considers the analysis of complex monitored health data,
where often one or several signals are reflecting the current health
status that can be represented by a finite number of states, in
addition to a set of covariates. In particular, we consider a novel
application of a non-parametric state intensity regression method
in order to study time-dependent effects of covariates on the state
transition intensities. The method can handle baseline, time vary-
ing as well as dynamic covariates. Because of the non-parametric
nature, the method can handle different data types and challenges
under minimal assumptions. If the signal that is reflecting the cur-
rent health status is of continuous nature, we propose the appli-
cation of a weighted median and a hysteresis filter as data pre-
processing steps in order to facilitate robust analysis. In intensity
regression, covariates can be aggregated by a suitable functional
form over a time history window. We propose to study the esti-
mated cumulative regression parameters for different choices of
the time history window in order to investigate short- and long-
term effects of the given covariates. The proposed framework is
discussed and applied to resuscitation data of newborns collected in
Tanzania.
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1. Introduction

Monitoring of health data has rapidly increased throughout the last years. In medicine, it
has always been important to monitor patient data for numerous reasons such as docu-
mentation, the exploration of causes of diseases or to trace treatment effects. In hospitals,
the patients’ health status is monitored in several situations. Examples are the tight mon-
itoring of patients in a intensive care unit [12,28] or during sedation [11]. A further fast
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increasing area includes mobile monitor devices like smart textiles or smart watches by the
availability of low-priced sensors [5,7,20], e.g. offering to track the heart rate (HR) 24 h. In
particular, this is becoming increasingly important in an elderly society [25].

In all these situations, the monitored health data have a common property. They consist
of a complex data structure including baseline data (e.g. age and gender) and time-varying
signals (e.g. expired lung volume, blood and head pressure) that are often a mixture of cat-
egorical and continuous variables. Further, monitored health data usually involves signals
recorded by different sensors that are synchronized by the time offset but sample the sig-
nals at different time points. Examples of sensors are an electrocardiograph (ECG) sensor,
a flow sensor or an acceleration sensor [20,34]. Each time-varying signal is locally depen-
dent (e.g. theHR) and theremight be correlation between signals (e.g. between theHR and
expired volume). Last but not least, sections of recorded signals can be missing or of low
signal quality. All these factors lead to a complex and challenging data structure requiring
robust statistical methods.

In severalmedical applications, one is interested in investigating the association between
the health status and a set of covariates. This is exactly the targeted application of this
manuscript. The health status is often defined by a finite set of states. States can be naturally
defined by the data as for example in cardiac arrest [19]. Furthermore, states are frequently
defined for continuous signals based on medical reasoning. Examples are the definition of
low,medium or high ranges for the blood pressure, the concentration of vitamins andmin-
erals in the blood or the viral load. Although binning of data should generally be avoided,
in this context, given a suitable treatment of the thresholds, e.g. by using a hysteresis filter
as suggested later in Section 3.2.2, the classification of a continuous signal into a finite set
of health states facilitates the medical interpretation andmight introduce robustness in the
presence of large noise or strong local variations.

The objective of this paper is to propose a framework for monitored health data to
achieve insights into the relationship between the health status and a set of covariates. Such
a frameworkwill facilitate amore comprehensive and descriptive data overview. Due to the
observational design of such data and thereby the inherent challenges about causality, the
aim is not to uncover causal effects.

Mixed effect and joint models, described in detail in Rizopoulos [32], might be used
to describe the relationship between a set of covariates and being in a given health state.
However, both are less suited for finding covariates that are associated with state changes
of the health status and for describing how the impact of the covariates change over time
which is the main focus of this article. The understanding of covariates associated with
state changes is important to aid improvements in treatment.

In the statistical literature, substantial effort has been dedicated to multi-state models.
A detailed review can be found in Putter et al. [31], Meira-Machado et al. [27] or Meier-
Hirmer and Schumacher [26]. Thesemethods are often based on assumptions like constant
transition intensities, Markov or semi-Markov properties. For non-homogeneous or non-
Markovianmodels, the proposed non-parametric estimation of the transition probabilities
are often based on a progressive illness-death model. Such models have no period larger
than zero, also called cycles, i.e. there are no transition probability larger than zero to return
to a state i after leaving it. Often, monitored health data includes such cycles, i.e. back and
forth transitions between health states. In addition, the model should incorporate time-
dependent covariate effects. This is essential in the targeted application as one like to know
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what triggers a change in the health status at different time points in order to improve
treatment.

Kvaløy et al. [19] andNordseth et al. [29] suggested the use of a non-parametric intensity
regression method [2] for modeling cardiac arrest data including the state history. Gran
et al. [16] used a similarmodel to study sickness absence after work rehabilitation including
a set of baseline covariates. Due to the non-parametric nature, state intensity regression
can handle data with the described challenges under minimal assumptions given the data
are treated properly as discussed in detail in Section 3. The proposed intensity regression
model does not require Markov or semi-Markov properties.

Hidden Markov Models (HMMs) [13,24] and Gaussian Process State Space Mod-
els (GP-SSMs) [10,17] are alternative approaches in modeling monitored health data.
Both models can also account for most of the above challenges. In addition, they for-
mally incorporate noise within the statistical model. However, their specification is
not straightforward. In HMMs, the definition of a concrete parametric model that
describes the hidden layer is required. In GP-SSMs, a suitable mean function has to
be defined. In addition, both models involve a large number of parameters or hyper-
parameters and require training. The hidden layer or the mean function as well as all
the parameters has to be carefully chosen for each different application. Thus, we believe
that the proposed state intensity regression offers a more simple, intuitive and flexi-
ble approach with minimal tuning of parameters whereas it can handle a wide variety
of data.

In this article, we will generalize the work of Kvaløy et al. [19] and Nordseth et al. [29]
to the wide variety of complex monitored health data. In addition, we present a new way of
data exploration by using different lengths of time historywindowswhere the covariates are
aggregated by a suitable functional form. This allows significant covariates for state changes
to be found for a family of time history windows. The idea is inspired by the scale-space-
approach as described in Chaudhuri and Marron [8,9] where every relevant bandwidth
of a smoothing Gaussian kernel is investigated in the family of smooth curve estimates in
order to find significant curve features.

The rest of the article is organized as follows. We begin with a motivating example in
Section 2 that involves resuscitation data of newborns. In Section 3, notations are defined,
signal processing methods are presented, the proposed statistical model is introduced and
model assumptions and data challenges are discussed. In Section 4, the merits of the pro-
posed method is illustrated on resuscitation data of newborns, followed by a discussion in
Section 5.

2. Motivating application

In this section, we introduce an example of monitored data consisting of baseline data
and time-varying signals with the main objective to determine time dependent treatment
effects that are associated with a change of the health status.

2.1. Data and problem description

The data considered here is a part of a larger study named Safer Births [1] that is a research
and development collaboration between Tanzanian, Norwegian and international research
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institutions and Laerdal Global Health and aims to save newborn lives with the focus on
low-resource settings. The Safer Births study is ethically approved by the National Insti-
tute forMedical Research inTanzania (Ref.NIMR/HQ/R.8a/Vol.IX/1434) and theRegional
Committee for Medical and Health Research Ethics in Norway (Ref.2013/110). From this
study, resuscitation data of newborns with absence of spontaneous respirations at birth
are investigated. Such newborns need additional care such as stimulation, suctioning or
positive pressure ventilation [14].

Baseline data were recorded by a midwife in addition to data collected by a newborn
resuscitation monitor from Laerdal Global Health. All midwifes were trained to follow the
Helping Babies Breathe guidelines [6] emphasizing to start with positive pressure ventila-
tions for non-breathing newborns within 1minute of birth called the ‘golden’ minute [30].
Non-breathing newborns were brought to the resuscitation table and ECG electrodes were
applied over the abdomen. The resuscitation included a combination of positive pressure
ventilations, stimulations and other activities. These interventions have happened in any
and overlapping order with nonuniform length. The ECG and the ventilation signals were
recorded by the monitor. Recorded ventilation signals include airway pressure, flow and
CO2. The instantaneous HR, inspired and expired volume, leakage, pressure and CO2 are
derived from these signals as described in Vu et al. [34]. In addition, acceleration signals
of the HR sensor were recorded. These signals in combination with the ECG signal were
utilized to detect automatic stimulation activities by a trained classifier described in more
detail in Vu et al. [33,35,36].

In general there are several challenges connected to this data set including missing val-
ues, lowHR signal quality, different onsets and lengths of treatments, and strong correlation
between some of these variables. Furthermore, this study is an observational study which
cause difficulties in interpretation of causal effects. For example, longer time of ventilation
can be associated with a negative impact on the HR but this does not mean that more
ventilation is negative rather that newborns with a critical status are ventilated longer.
These challenges occur in various types of monitored health data and are discussed in
Section 3.4.

The data set was earlier studied by Linde et al. [22] and Vu et al. [18]. In Linde et al.,
the association between HR and a set of covariates including expired volume (ml/kg) was
analyzed by a general additive model (GAM). In their analysis, the data were aggregated in
the first five ventilation and pause sequences of the observed data. A GAM is well suited to
study associations between covariates and an outcome variable and to include non-linear
effects but is less suited for finding covariates associated with state transitions, i.e. with a
higher or lower health status. In Vu et al. [18], an exploratory tool is suggested to study
independently the average of several ventilation parameters for two groups defined by the
change in Apgar score. The Apgar score is a measure for clinical status of a newborn and
is manually recored by the midwifes after 1 and 5min. Both studies give valuable insights
for resuscitation of newborns but aggregate the data to a large extent and do not study time
dependent covariate effects.

In Section 3, wewill introduce a state intensity regressionmodel for this kind of complex
resuscitation data that can tackle the problem of which baseline or time-varying covariates
are related with an improved or declined health status during resuscitation of newborns
at a given time. Only resuscitation data with ventilation signals were included into the
analysis leading to 1111 cases. The response variable was defined by a weighted median
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Figure 1. State transitions during newborn resuscitation between four transient states defined by the
HR categories and the two absorbing states alive and dead.

filtered and categorized instantaneous HR using a hysteretic filter as discussed in fur-
ther detail in Section 3.2. We have categorized the HR in four categories 0–60, 60–120,
120–180, >180 bpm, where 120–180 bpm is assumed to be the normal range of the HR
of a newborn. The category below 60 bpm is based on resuscitation guidelines [37] and
the category 120–180 bpm is based on Linde et al. [23] who studied the heart rate of
healthy newborns. Thus, the four defined HR categories are based on the medical lit-
erature. Given these HR states, only state transitions between adjacent HR states were
observed. This is reasonable as we would expect maybe a quick but always smooth HR
change without jumps. Thus, the corresponding state transition graph can be depicted
as in Figure 1. In addition, we might include the two absorbing states ‘alive’ and ‘dead’
in the model recorded latest after 30min by the midwifes and depicted in gray color in
Figure 1.

2.2. Overview of explanatory variables

The included covariates in our model involve characteristics that might affect the HR
during resuscitation by bag mask ventilation. The covariates are a mixture of baseline
covariates and time-varying covariates. All baseline covariates are recorded manually
whereas time-varying covariates are derived from recorded ventilation signals as discussed
in Section 2.1.
Baseline covariates

• Sex (in 0/1): A zero-one covariate defining the gender where 0 indicates female and 1
male.

• BW (in grams): A continuous covariate that defines the birth weight.
• Delivery(in 0/1): A zero-one covariate indicating whether the delivery mode was

vaginal or C-section.
• First HR (in bpm): First HR of the weighted median filtered HR signal indicating the

health status of the newborn at delivery.
• Cord clamp (in sec): A continuous covariate that defines the recorded time between

birth and cord clamp.
• Treatment start (in sec): A continuous covariate that defines the recorded time between

birth and start of ventilation.
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Time-varying covariates

• Ventilation (in %) Fraction of time spend with ventilation within each time history
window.

• Stimulation (in %) Fraction of time spend with stimulation within each time history
window.

• Expired volume (in ml/kg): Sum of the expired volume within each time history
window.

• Peak pressure (in cm/H2O): Mean of peak inflation pressure during bagging mask
ventilation within each time history window.

• BMV length (in sec): Median time between baggingmask ventilations within each time
history window defined by the time between peak pressures.

We suggest in Section 3.3 to investigate a family of time history windows and based
on the results to select one or two specific windows for a more detailed study of the time
dependent covariates effects.

In addition, the proposed framework allows the inclusion of dynamic covariates as
described in more detail in Sections 3.3 and 4.

3. Model andmethod

In this section, first the general workflow of modeling state transitions given a set of
covariates is discussed. Next, data processing methods are presented to facilitate a robust
categorization under certain assumptions in case a continuous signal is reflecting the health
status. This includes the weighted median to filter continuous monitored signals and the
definition of states via a hysteretic filter. Afterwards, the state intensity regression model is
introduced including the time history window in which covariates can be aggregated by a
suitable functional form. Finally, model assumptions and data challenges are reviewed.

3.1. Work-flow

The work-flow of the proposed state intensity regression modeling of health data is
summarized in Figure 2. Given L individuals, we assume that monitored health data
consists of K1 time-varying covariates (X(1)

l1 (t), . . . ,X(1)
lK1

(t)) and K2 baseline covariates
(X(2)

l1 , . . . ,X(2)
lK2

), l = 1, . . . , L as depicted in the top left and middle panel of Figure 2. Base-
line covariates do not change over time and are easy to incorporate. Time-varying covari-
ates require additional care, e.g. due to missingness and unbalanced sampling patterns
between and inside each covariate.

As depicted in the bottom left panel of Figure 2, new or additional features might be
derived from the recorded time-varying signalsX(1)

lk (t) by suitable signal processingmeth-
ods. Examples arementioned in Section 2 by theHR that is derived from anECG signal, the
expired volume that is derived from an air-flow signal or treatment stimulation activities
that are derived from an acceleration signal using a trained classifier. The kind of applied
signal processing depends on the underlying problem and aims to derive signal features
with medical relevance from the recorded signals. As a result of the signal processing,
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Figure 2. The workflow diagram depicts a general overview of data processing steps that are required
for state intensity regression of monitored health data.

we obtain a set of K̃1 covariates X̃(1)
lk (t), k = 1, . . . , K̃1. For usability, the covariates are

uniformly sampled on an equidistant time grid.
The definition of states in the top right panel of Figure 2 is described in detail in the

next section. Finally, in Section 3.3, the state intensity regression is discussed in which each
covariate X̃(1)

lk (t) is described by a suitable summary of the time history of that covariate at
each time point t in addition to the baseline covariates.

3.2. Data processing

In this section, two data pre-processing methods are discussed, which are particularly
suited for the definition of health states from continuous signals. First, we discuss the
weightedmedian as amethod for smoothing a continuous signal that is reflecting the health
status in order to remove noise and outliers before categorization. In the motivating exam-
ple, the data from Safer Birth, we only smoothed the HR signal. The weighted median is
an option among other smoothing methods like Gaussian processes or kernel methods.
It is beyond the scope of this manuscript to compare different smoothing methods. In the
targeted application, we found theweightedmedian is very robust against outliers and intu-
itively applicable with good results. Afterwards, we discuss a robust procedure to categorize
a signal.
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3.2.1. Weightedmedian
Monitored health data often contains variables from continuous signals like the HR that
satisfy some smoothness assumptions, e.g. the assumption of a smooth HR signal without
jumps. However, the recorded signal might contain a lot of noise or outliers, e.g. due to a
weak or changing skin contact of the sensor. We suggest to use a weighted median filter for
the signal defined as follows:

The weighted median for n ordered numbers x1, . . . , xn and positive weights wi, i =
1, . . . , n with

∑
wi = 1 is the element xj such that

j−1∑
k=1

wk ≤ 1
2

and
n∑

k=j+1

wj ≤ 1
2
.

Now, suppose we observe a signal X(ti) ∈ R, e.g. the HR, at n time points ti ∈ R+ with
ti < ti+1, i = 1, . . . , n. Then, the weighted median X̃(ti) is defined as the weighted median
of κ ∈ N neighboring signals where κ is a smoothing parameter and is manually cho-
sen. For simplicity, κ is assumed to be an even number so that X̃(ti) is the weighted
median of (X(ti−κ/2), . . . ,X(ti−1),X(ti),X(ti+1), . . . ,X(ti+κ/2)). With the application in
mind, we suggest to model the weights wi by a mixture of a signal quality indicator for
each X(ti) and the distance |ti − tk| of each neighboring signal X(tk) to the center X(ti).
The weights can be defined by wi := 1

2w
(1)
i + 1

2w
(2)
i where w(1)

i is the weight for the signal
quality andw(2)

i is the weight for the distance with
∑i+κ/2

j=i−κ/2 w
(l)
j = 1, l = 1, 2. The weights

(w(2)
i−κ/2, . . . ,w

(2)
i+κ/2) can be calculated by

w(2)
j = ωj∑

ωj
, j ∈ J :=

{
i − κ

2
, . . . , i, . . . , i + κ

2

}

withωj = |δM − δj + ρ|, δj = |ti − tj|, δM = maxk∈J δk and ρ ∈ R+ is a weight for the sig-
nal with the largest time distance in thewindow J, e.g. ρ = 1/δM . If ρ = 0 theweight would
be 0.

A suitable choice of the smoothing parameter κ is important. Too small κ will lead to a
noisy signal, whereas too large κ leads to over-smoothing.Wehave studied different choices
of κ in the Supplementary Material with respect to recovering the true signal and with
respect to the stability of the state intensity regression. The weighted median filter is less
suited for signals with very high frequency as there is an increased risk of over-smoothing
as discussed in the Supplementary Material.

At the end, the median filtered signal could be interpolated if signal gaps are not larger
than a certain threshold. Therewith, missing data can be substituted with interpolated data
leading to amore robust analysis. Figure 4 displays the weightedmedian filteredHR of two
selected cases from the introduced resuscitation data. In addition, examples of theweighted
median filtered HR for different choices of the smoothing parameter κ are depicted in the
Supplementary Material.

3.2.2. Definition of states
In several applications, there are natural states given by the data. Examples are the medical
health status of a patient or the different states during resuscitation of cardiac arrest [19].
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However, in certain situations, it might be of interest to derive the health status from con-
tinuous signals, e.g. the HR, motivated by established ranges based onmedical reasons like
very low, low, normal andhighHR [23,37]. In practice these categories or thresholds should
be important, interpretable and of medical interest. If thresholds are not based on estab-
lished medical reasons and are rather arbitrary, a different model approach might be more
suitable or at least a robustness analysis is necessary that can validate these thresholds.

For categorization of a continuous signal, we suggest to apply first a weighted median
or an alternative smoothing method as described above in order to smooth the signal and
to remove outliers. In the weighted median, the smoothing parameter κ has to be cho-
sen carefully as too little smoothing can result in undesirable state transitions induced by
the noise, whereas over-smoothing might remove real state transitions between the health
states. This is discussed in more detail in the Supplementary Material.

Given a reasonably-filtered signal and certain thresholds, the categorization can be per-
formed using a hysteretic filter. The principle is known from threshold models, e.g. in
engineering and economics, and was for example applied to time series models by Li
et al. [21]. The application of a hysteretic filter leads to more robustness as it avoids a high
number of state changes when the signal is close to the threshold.

In the following, we assume a continuous signal Y(ti) ∈ R sampled at n times points
ti ∈ R+, i = 1, . . . , n. For simplicity, we consider first the case of a single threshold τ ∈ R

and two states s1, s2 ∈ S that transform the process Y(ti) into a process Z(ti) by Z(ti) =
s1 if Y(ti) < τ andZ(ti) = s2 otherwise. Now, we define a hysteresis region (rl, ru] with τ ∈
(rl, ru], e.g. (rl, ru] = (τ − α, τ + α] with α ∈ R+. Given the hysteresis region, the process
Z(ti) is defined by

Z(ti) =

⎧⎪⎨
⎪⎩
s1 if Y(ti) ≤ rl,
s2 if Y(ti) > ru,
Z(ti−1) if Y(ti) ∈ (rl, ru],

i.e. the processZ(ti) remains unchanged as longY(ti) falls within the hysteresis region. The
principle is visualized in Figure 3. If the first (k − 1) recorded signals Y(t1), . . . ,Y(tk−1)

are inside the hysteresis region (rl, ru] then we selected the first signal Y(tk) that is outside
of the hysteresis region and applied the hysteresis filter in a backward recursive fashion
starting with Y(tk).

Figure 3. Schematic visualization of two states defined by (a) a simple threshold τ and (b) a hysteresis
region (τ − α, τ + α] given two states s1, s2 ∈ S.
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Figure 4. Continuous and categorized HR of two selected individuals. In (a), the instantaneous HR col-
ored by the signal quality indicator is depicted and (b) shows the weighted median filtered HR. Next,
in (c), the interpolated median filtered HR is visualized and finally in (d) the categorized HR of both
individuals in addition to the two absorbing states alive and dead is presented (Color figure online).

The extension tom>1 thresholds τj ∈ R with τ1 < . . . < τm is straightforward under
the assumption of non-overlapping hysteresis regions. Two examples of categorized signals
can be found in Figure 4.

3.3. State transition

In this section, first the non-parametric additive intensity regression model as suggested
by Aalen [2] and Aalen et al. [4] is introduced that associates the conditional intensity of a
state transition at a given time point with a set of time-varying covariates. Afterwards, the
time history window and dynamic covariates will be discussed in more detail.

3.3.1. The state intensity regressionmodel
Given a finite number of states S = {1, . . . , S}, we denote a transition from state i to state j
by i → j with i, j ∈ S. In order to analyze the event history of monitored health data given
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a set of covariates, we denote by λij(t) the conditional intensity of a transition i → j for an
individual at time t ∈ R+ as a function of the past with i, j ∈ S, i �= j. Then, the conditional
intensity process given the history up to time t can be written by

λij(t) = β
ij
0 (t) + β

ij
1 (t)X1(t) + . . . + β

ij
K(t)XK(t) (1)

where Xk(t), k = 1, . . . ,K are the covariates that might influence the intensity including
baseline and time-varying covariates, e.g. age of an individual or lung pressure. Further-
more, β ij(t) = (β

ij
0 (t), . . . ,β ij

K(t))T are the regression parameters indicating the effect of
the covariates Xk(t) where β

ij
0 (t) is the baseline intensity. Notice that these regression

parameters are allowed to vary non-linearly over time.
Now, given L individuals and a transition i → j, the process (1) can be written by

λij(t) = X(t)β ij(t) (2)

with λij(t) = (λ
ij
1(t), . . . , λ

ij
L(t))

T and X(t) is a (L × (K + 1))-matrix defined by

X(t) =

⎛
⎜⎝

δ1(t) δ1(t)X11(t) · · · δ1(t)X1K(t)
...

...
. . .

...
δL(t) δL(t)XL1(t) · · · δL(t)XLK(t)

⎞
⎟⎠

with δl(t) = 1 if an individual l is at risk at time t and δl(t) = 0 otherwise, l ∈ {1 . . . , L}.
The cumulative or integrated regression parameters Bij(t) = ∫ t

0 β ij(u)du with Bij(t) =
(Bij0(t), . . . ,B

ij
K(t))T can be estimated [2,4] by

B̂ij(t) =
∫ t

0
X(u)−dNij(u) (3)

where X(u)− denotes a generalized inverse and Nij(t) = (Nij
1 (t), . . . ,N

ij
L(t))

T with Nij
l (t)

the counting process of state changes from state i to state j until time t for an individual
l ∈ {1, . . . , L}. For the analysis of monitored health data, we suggest to center all covari-
ates by (Xl1(t) − X1(t), . . . ,XlK(t) − XK(t)) with Xk(t) the average of the k-th covariate
at time point t. Thereby the cumulative baseline intensity Bij0(t) can be interpreted as
the cumulative intensity of an average individual which is identical to the Nelson-Aalen
estimator [4].

The estimated integrated regression parameters B̂ij(t) can be depicted by plots together
with 95% confidence intervals. The estimated regression parameters β̂ ij(t) are reflected by
the slope in the corresponding plots. A positive slope means that the intensity is increasing
as the covariate increases, and a negative slope means that the intensity is decreasing as
the covariate increases. In general, β̂

ij
(t) can be understood as the change in intensity for

one unit change of the covariate at time t. A significance test for the covariate effects is also
given in Aalen [2].

3.3.2. Time history window
Suppose we have K covariates Xlk(t), k = 1, . . . ,K for each individual l = 1, . . . , L. Often,
the interest is to describe the effect of a certain time history of each covariate on the
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intensity process (2) at time t ∈ R+. For this reason, we define for each covariate Xlk(t)
a suitable functional form fk that describes the time history of the corresponding covariate
at time t ∈ R+ by

Xlk(t) = fk(Xlk(τ ) | 
(t)),

where 
(t) ⊂ [0, t] defines the time history window. An example is 
(t) = (t − h, t]
if t ≥ h and 
(t) = (0, t] otherwise, given a history length h ∈ R+. The appropriate
choice of the functional form depends on the corresponding covariate and the under-
lying research question. Simple examples are the mean or the cumulative value of the
covariate, e.g. fk(Xlk(τ ) | (t − h, t]) = ∫

τ∈(t−h,t] Xlk(τ ). There are no limitations to use dif-
ferent time history lengths h for different covariates X·k(t) in the state intensity regression
model (2).

The choice of the time history window has an effect on the association of Xlk(t) with
the state intensity λ

ij
l (t). Thus we suggest to investigate the model (2) for a larger family

of time history windows and to examine the effects in more detail for one or two selected
time history windows. In Section 4.1, a graphical visualization is presented for studying
the intensity regression model (2) for different choices of h. In addition, medical criteria
might guide the choice of the time history window.

Notice that missing values have to be treated carefully by the functional form fk in order
to avoid to bias the results. An example is the expired volume and the airway pressure from
the resuscitation data introduced in Section 2. The expired volume could be aggregated by
a mean in (t − h, t]. If we have two individuals, one with one expired volume record of
size γ in (t − h, t] and the other individual with two records of size γ in (t − h, t], then the
meanwould be γ for both individuals. Therefore, the sum or the average by the time length
h is more reasonable in this situation. In case of pressure, we might indeed be interested
in the mean peak pressure. Thus, the suitable choice of the functional form depends on
the medical meaning and relation of the covariate with the outcome and the influence of
missingness in this process.

3.3.3. Dynamic covariates
In modeling the state transitions of monitored health data, the inclusion of dynamic
covariates is often of interest as they describe the development of the event history. The
development of the event history might be important for the further development of
the intensity process. Examples of dynamic covariates are the number of previous state
transitions or the time spent in a current state since the last transition. As discussed in
Aalen et al. [4], dynamic covariates can be incorporated in the non-parametric intensity
regression model (2).

Because dynamic covariates contain parts of the event history, by conditioning on them
we potentially lose important relationships between the state intensities and the baseline
and time-varying covariates. Thus, dynamic covariates cannot be simply added to the
model (2). In order to avoid that they ‘steal’ the effect of the covariates, dynamic covari-
ates are orthogonalized based on the other covariates [15]. As (2) is an additive regression
model, this can be done by aGram-Schmidt orthogonalizationwhere each dynamic covari-
ate is replaced successively by its residuals from a least square regression on the other
explanatory variables.
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3.4. Assumptions and challenges

Because state intensity regression is a non-parametricmethod, themethod can incorporate
a wide variety of data under minimal assumptions, including baseline and time-varying
data, binary and continuous data. The state intensity process (2) is modeled similar to ordi-
nary linear regression. The main assumptions are additivity, no or little multicollinearity,
heterogeneity and independence between the intensity processes. In opposite to ordinary
linear regression models, there is no assumption about multivariate normality in state
intensity regression due to the non-parametric nature of the method.

Additivity: In (2), it is assumed that the relationship between the state intensities and the
covariates is additive at each time point t ∈ R+, i.e. there is a linear relationship. However,
the regression parameters are dependent on time t and are estimated non-parametrically.
Therefore, the regression parameters as well as the state intensities can have a non-linear
structure over time. Thus, the model is very flexible and suitable for monitored health
data.

Multicollinearity: As in ordinary linear regression, strong multicollinearity will cause
problems for state intensity regression. If covariates are too highly correlated with each
other, we suggest to remove covariates. For example, in Section 2.2, we have removed the
additional covariate inspired volume from the list because of strong correlationwith expired
volume.

Heterogeneity: The basic model assumes no frailty, i.e. there is no unexplained varia-
tion between the baseline intensities of individuals. However, when dynamic covariates
are added to the model, this is equivalent to allowing frailty between individuals [3, Chap-
ter 8]. Yet, we still need to assume that there is no further heterogeneity which is not already
accounted for through the measured dynamic covariates.

Independence: Intensity regression requires independence between processes, i.e.
between individuals.

3.4.1. Missing values within each process
In general, missing values affect the intensity regression process. We have to distinguish
between two different cases. For simplicity, we assume that the health status and covari-
ates are measured on an equidistant time grid with time points ti, i = 1, . . . , n. First, if
a baseline covariate is missing, the individual is excluded from the analysis. Second, the
health status and time-varying covariates can be missing by (i) no measurements from
start of the monitoring, (ii) no measurements in an interval during the monitoring and
(iii) no further measurements after a time point ti before the end of the monitoring. The
describedmissingness can be understood as interval or right censoringwhich is assumed to
be independent. The independent censoring assumption for the state intensity process (2)
is essentially the same as sequential missingness at random [3, Chapter 2]. If the miss-
ingness is informative, i.e. the censoring is not independent, the state intensity process is
biased as this information is not captured by the model. Individuals with missing covari-
ates or health status will be excluded only during the time of any missingness but they are
included again as soon all information is available.

However, in Section 3.3, we have seen that the intensity process at a time point ti is
usually notmodeled by the exact covariate values at this time point, rather by a summary of
the history of these covariates up to this time point. Therefore, missingness at time points ti
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might be replaced by information available in the time history window. This leads to more
robustness.

It is assumed that missingness inside an individual corresponds to independent cen-
soring. For the introduced resuscitation data, this can be justified by the data collection
process and the underlying guidelines as described in Section 2.

3.4.2. Different onsets and lengths of records
The onset and length of the recorded monitored health data for each individual is usually
different. Thus, the data have to be aligned according to the medical problem. The pre-
sented resuscitation data was aligned by the onset of birth for each individual. However,
the lengths of the records might reflect information, e.g. about the severity of the resusci-
tations in the introduced data. Thus, a careful interpretation of the results is important, in
particular for observational studies.

3.4.3. Outliers and signal quality
Outliers and weak signal quality can influence the state intensity regression process (2).
Therefore, in Section 3.2, we proposed a weighted median filter as a method to remove
outliers and to smooth continuous signals, which is particularly suited as a pre-processing
step for the categorization of health states from continuous signals. The signal quality can
be incorporated into the weights. Similar to missing values above, potential outliers and
noise in the time-varying covariates might be reduced by the functional form of the time
history window.

3.4.4. Sampling
For each individual, the continuous covariates might be recorded at different time points
due to different sensors. Since the covariates at each time point are described by their
history, uneven sample patterns can be handled by the state intensity regression.

4. Analysis of newborn resuscitation data

In order to illustrate the application of the proposed framework to the analysis of moni-
tored health data, this section presents findings from the resuscitation data of newborns
introduced in Section 2. Our objective is to investigate potential treatment factors during
resuscitation that are associated with an improvement of the newborn HR. The included
data consist of 1111 individuals. Included data consist of those with a HR signal of at least
40 sampling points, any activity signal and a recorded time between birth and start of treat-
ment. Furthermore, two patients with different delivery mode than vaginal or C-section
were excluded due to the small number. The data were transformed into an equidistant
time grid of 0.25 sec in order to facilitate the data set-up.

As explained in Section 2, based on medical reasoning the state space S was defined by
four HR categories 0–60, 60–120, 120–180, >180 bmp, where 120–180 bpm is assumed
to be the range of a normal newborn HR. In addition, we included the two absorbing
states alive and dead defined by the 30min outcome. The transition into the absorbing
state was defined after the end of monitoring when no further information was available.
The corresponding state transition graph is depicted in Figure 1.
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Figure 5. (a) Number of individuals in eachHR category at time t not including the absorbing states and
(b) cumulative number of state transitions until time t (Color figure online).

The HR was categorized by three steps: First, a weighted median filter was applied to
the instantaneous HR signal as described in Section 3.2.1 with κ = 30. Records with very
good signal quality have doubleweight compared to normal quality signals as they aremore
certain.Moreover, bad quality signals have weight 0. Second, themedian filtered signal was
interpolated if signal gaps were not larger than a threshold of 10 s. Third, a hysteretic filter
was applied to the filtered signal as described in Section 3.2.2 with α = 5 bpm. The process
is shown in Figure 4 for two selected individuals.

In Figure 5(a), the number of individuals in each state, i.e. in eachHR category, at a time
point t ∈ R+ are depicted. In the very beginning, the proportion of individuals in the state
60–120 is highest. However, after around 1min the proportion of individuals in the state
120–180 is higher and reaches its maximum around 4min. Only very few individuals are
in the state 0–60. The frequency for all states flattens out after a certain time due to the
transition of each individual into an absorbing state at some time point t ∈ R+. If there
would be nomissingness and absorbing states then the number of all four state frequencies
would sum up to 1111 at each time point t. Furthermore, we can observe that the peaks of
the four curves are in a sequential order which indicates a positive treatment effect by the
transition of individuals in a higher HR category over time.

In Figure 5(b), the cumulative number of state transitions until time t ∈ R+ is visu-
alized. In general, we have most transitions from 60–120 to 120–180 which corresponds
with the higher number of individuals in the category 120–180 in Figure 5(a). Moreover,
the number of state transitions flattens out after circa 8min due to the fact that an increas-
ing fraction of individuals are finishing the resuscitation treatment and moving into an
absorbing state. Further, we observe a positive treatment progression as the upward tran-
sition, i.e. the transitions into a higher HR category, are always more frequent than the
downward transitions.

4.1. Intensity regressionmodel

For studying the intensity regression model, we have applied a modified version of the R-
package Addreg [4]. We have included 15 covariates in the intensity regressionmodel (2)
composed of 6 baseline covariates (sex, BW, delivery, first HR, cord clamp, treatment start)
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and 5 time varying covariates (expired volume, peak pressure, BMV length, ventilation (%),
stimulation (%)). The corresponding covariates were described in detail in Section 2.2. In
addition, we have included 4 dynamic covariates:

• HRdispersion (in bpm): Mean of distance between weightedmedian filtered HR signal
and the instantaneous HR within each time history window.

• HR slope (in bpm): Mean of the HR slope within each time history window where
the slope θ ∈ (−1, 1) is defined by a simple linear model inside a sliding window of
30 neighboring HR records.

• Passed ST(in number): Number of previous State Transitions (ST) since the start of
records.

• Time since LST (in sec): Time spend in a current state, i.e. time since Last State
Transition (LST).

The dynamic covariates were orthogonalized based on the other covariates as described
in Section 3.3.3. All five time varying covariates and the two dynamic time varying covari-
ates HR dispersion and HR slope were aggregated in the time history window (t − h, t],
whereas the dynamic covariate passed ST was aggregated in (0, t]. The definition and inclu-
sion of the baseline and time-varying covariates as well as the functional form of each time
history window depends on the application and has to be adapted correspondingly.

The integrated regression parameters (3) are estimated in a chosen time interval. From
Figure 5(a), it can be seen that most of the transitions occur between 1 and 8min depicted
by the two gray dashed vertical lines. Thus, we have selected a starting time of 1min and
a stop time of 8min for the intensity process. For reasons of space and clarity, we present
only results for the two upward transitions 1 : (0−60) → (60−120) and 2 : (60−120) →
(120−180) in Figure 6 and elaborate in further detail the state transition 2 for a selected
time history.

In Figure 6, P-values for each covariate for the two upward transitions and different time
history lengths h are presented. The left column shows results obtained from univariate
models, i.e. only one covariate in addition to the intercept is included in the model (2).
The P-values are colored (color figure online) red (0) to white (0.05) to blue (1) where
white correspond to a chosen significant level of α = 0.05. The right column shows the
final multiple model for the two upward transitions and different time history lengths h.
Covariates were excluded by an iterative backward procedure based on the largest P-value.
Significant covariates are depicted by red (0) to white (0.05) colored dots. Covariates that
were excluded from the model are depicted by small black circles.

For the state transition (0−60) → (60−120), the covariates first HR, BMV length and
ventilation are statistically significant for most of the time history lengths h. From the
univariate model, we can see that for expired volume, BMV length, ventilation and also
for stimulation a certain time history length is necessary in order to be significant. This
shows that the effect of resuscitation of newborns with low HR between 0−60 might
take longer time compared to newborns within 60–120. The expired volume and par-
tially peak pressure and stimulation are not significant in the final model compared to the
univariate model. This can be explained by the correlation of related parameters expired
volume, peak pressure, BMV length, ventilation and stimulation during bagging mask
ventilation.
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Figure 6. Unadjusted univariate models for state transitions (a) 0-60 → 60-120 and (c) 60-120 →
120-180, and final multiple models for state transitions (b) 0-60 → 60-120 and (d) 60-120 → 120-180
given different time history lengths h. Univariate model: Each covariate is colored by their P-value. Final
model: Included covariates are marked by colored dots accordingly to their P-value. Excluded covariates
are marked by small black circles (Color figure online).

For the second state transition (60−120) → (120−180), the covariates expired volume
and ventilation are rather significant in a short time history window whereas stimulation
is rather significant for larger h in Figure 6(c). This shows that stimulation is an important
factor in a longer time scale whereas the other two covariates have rather an immediate
effect on the transition intensity and are smooth out over time. In all final models, first HR
is significant for all time scales.

In Table 1 and Figure 7,more detailed results for the transition (60−120) → (120−180)
are presented given a time history length of h=60. The P-values in Table 1 correspond to
the colored points of the final model at 60 s in Figure 6(d). The estimated integrated regres-
sion parameters B̂ij(t) (3) are depicted together with 95%-confidence intervals in Figure 7.
The estimated regression parameters β̂

ij
(t) are reflected by the slope in the corresponding

plots. As argued inKvaløy et al. [19], an average effect sizemay be calculated if the estimated
regression parameter is fairly constant over time. This could be done for BMV length, ven-
tilation, Time to LST and maybe sex were we observe a constant positive effect over time.
BW has a strong positive effect between ca. 2.5 and 3.5min, peak pressure has a positive
effect in the first 4.5min afterwards the effect flattens out. Moreover, expired volume has a
steep positive slope in the first 2.5min. This means that the impact of expired volume on
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Table 1. Summarized results for the state transition (60−120) →
(120−180) given a time history length of 60 s.

Covariate Coefficient 95% CI P-value

Constant 9.199 8.165 10.233 0.000
Sex (male) 1.534 0.230 2.839 0.042
BW 0.001 0.000 0.002 0.002
First HR 0.135 0.105 0.164 0.000
Expired volume 0.016 0.009 0.022 0.000
Peak pressure 0.032 −0.022 0.086 0.009
BMV length 4.705 2.924 6.487 0.000
Ventilation (%) −8.945 −12.601 −5.288 0.000
Time to LST −0.031 −0.047 −0.016 0.000

Figure 7. Plots of estimated integrated regressionparameterswith approximated95%confidence inter-
vals (dashed lines) for the state transition (60−120) → (120−180) given a time history length of
60 s.
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the state transition (60−120) → (120−180) is higher in the beginning of the resuscitation
compared to a later time point. This observation is an important medical observation and
highlights the need and benefit of having a model which allows for time dependent effects.

The estimated cumulative regression parameters are fairly stable for different choices of
the smoothing parameters κ for the weighted median as discussed in detail in Section 1.4
of the Supplementary Material,

5. Discussion and future work

The article proposed an innovative application of intensity regression to monitored health
data. In general, state intensity models can be applied in situations where the interest is to
study the effect of the time history of a set of variables on state transitions. This is a com-
mon question in medicine. Because state intensity regression is a non-parametric method,
there are no distributional assumptions and the model can be adapted for a wide range of
data types. Further, state intensity regression allows for time-varying covariate effects and
enables the inclusion of dynamic covariates. Thus, we believe that the proposed framework
will support the utilization of intensity regression models in this field. In addition, we pre-
sented a novel view by studying multiple scales of the time history windows. This can help
to visualize and separate between short and long term effects.

The presented results are based on the analysis window of 1–8min, i.e. only data inside
this interval was included for the intensity regression model. Similar, to the exploration
of effects for different time history lengths, a set of different analysis windows could be
explored. This can lead to further understanding of the impact of covariates on the state
transition intensity.

The proposed model (2) can analyze the association between given state intensities and
baseline, time-varying and dynamic covariates. The model is not suited for making pre-
dictions. Alternative models have to be considered if the main interest is in predictions.
Further, if the health state signal is continuous and has to be categorized, noise and out-
liers should be removed before categorization because both have a direct influence on the
number of state transitions. In this article, we have proposed the use of a weighted median
where a smoothing parameter has to be chosen manually by visual inspection as the true
underlying signal is usually unknown.

An automatic selected adaptive hysteresis regions could further increase the usability of
the procedure when the health status is reflected by a continuous signal. The implementa-
tion of such adaptive regions is left for future work. The application to resuscitation data of
newborns emphasizes the potential of the framework in studying monitored health data.
However, a principal limitation with this as well as other analysis approaches is the obser-
vational design of the study. For example, there are selection effects involved in the study as
difficult cases are likely to be resuscitated longer. Therefore, results have to be interpreted
carefully in terms of causality.

The approach can be extended to a multivariate state model [4], e.g. modeling of
monitored health data where more than one variable describe the health status.
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