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• Biological reaction kinetic networks can show oscillatory and chaotic behavior.
• We study the effect of integral control in systems that show oscillations.
• We show that integral control has a regulatory effect even during oscillations.
• We study the behavior of the Brusselator with and without added integral control.
• Integral action defends the average value in both periodic and chaotic oscillations.

a r t i c l e i n f o

Article history:
Received 6 May 2018
Received in revised form 14 January 2019
Accepted 17 January 2019
Available online 30 January 2019
Communicated by K. Josic

Keywords:
Reaction networks
Integral control
Chaos
Oscillations
Homeostasis

a b s t r a c t

Integral control is ubiquitously used in industrial processes to keep variables robustly regulated at a
given setpoint. Integral control is also present inmany biological systemswhere it, implemented through
reaction kinetic networks of genes, proteins and molecules, protects the organism against external
variations. One difference between industrial control systems and organisms is that oscillatory behavior
seems to be more common in biology. This is probably because engineers can choose to design systems
that avoid oscillations. Looking at regulation from the viewpoint of biological systems, the prevalence
of oscillations leads to a question which is not often asked in traditional control engineering: how can
regulatory and adaptive mechanisms function and coexist with oscillations? And furthermore: does
integral control provide some kind of robust regulation in oscillatory systems? Here we present an
analysis of the effect of integral control in oscillatory systems. We study nonlinear reaction kinetic
networkswhere integral control is internally present and how these systems behave for parameter values
that produce periodic and chaotic oscillations. In addition,we also study how the behavior of an oscillatory
reaction kinetic network, the Brusselator, changes when integral control is added to it. Our results show
that integral control, when internally present, in an oscillatory system robustly defends the average level
of a controlled variable. This is true for both periodic and chaotic oscillations. Although we use reaction
kinetic networks in our study, the properties we find are applicable to all systems that contain integral
control.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

From a control engineering point of view it is clear that neg-
ative feedback with integral control is an attractive mechanism
for providing robust regulation. Integral control is also common
in biology. Many studies have indeed identified integral control
to be internally present in reaction kinetic networks of regulatory
biochemical systems [1–4], and there is an ongoing effort in syn-
thetic biology to design integral control motifs that can be used in
engineered cells [5–7] . However, because of practical constraints
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and limitations, biological controllers do most often not operate
with the same mathematical simplicity and purity as man-made
controllers in electromechanical systems [5–9].

Although the theory behind integral control is well established,
not much work has been done on its effect in oscillatory systems.
This may be because oscillations are traditionally avoided in man
made control systems. It is relatively straightforward to design
systems that do not oscillate, so why consider systems that do?

There are many biochemical systems that display oscillatory
behavior [10,11]. Examples include metabolic glycolysis [12,13],
circadian rhythms [14,15], and synthetic genetic networks
[16–19]. Oscillatory behavior is also observed in pure chemical
reactions like the Belousov–Zhabotinskii reaction [20,21]. This
reaction is often studied as a model for more complex biochemical
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processes, for instance in relation to synchronization of oscilla-
tions across unicellular populations [22,23]. Most of the oscillatory
systems in biology show periodic oscillations, but there are also
systems that show irregular and chaotic oscillations under specific
conditions [13,24,25]. Such chaotic behavior is seen in chemical
oscillators [26,27], enzyme-catalyzed reactions [28,29], excitable
cells [30,31], and in glycolysis [32,33]. In addition to experimental
observations chaos has also been shown to exist in mathematical
models of metabolic networks, for example in a model of gly-
colysis [33], and in a model of metabolism and redox balance in
mitochondria [34].

In this work we study integral control in reaction kinetic net-
works and focus on regulation from the viewpoint of biochemical
systems. The properties we find should however be generally ap-
plicable to all systems that contain integral control.

1.1. Integral control in reaction kinetic networks

We have previously presented a set of simple two component
networkmotifswith structures that can provide integral control [4,
35]. Two suchmotifs are used in this study to examine how integral
control affects oscillatory networks. An outflow controller (type 5
in [4]) is used here in the main text, and an inflow controller (type
2 in [4]) is used in the Supplementary Material (SM). The outflow
controller is shown in Fig. 1a; the solid lines represent mass flow,
and the dashed lines represent signaling. A chemical species A,
called the controlled species, is regulated through negative feed-
back by a chemical species E, called the controller species. The
controller species compensates for changes in A, caused by distur-
bance in the inflow (or outflow) of A, by adjusting a compensatory
outflow j = k3AE/(KA

M+A). Themotif is called an outflow controller
because it adjusts an outflow.

The change in E is described by the following rate equation

Ė = k5A −
k6E

K E
M + E

, (1)

where the removal of E is describedby aMichaelis–Menten expres-
sion. Integral control is most easily implemented by having zero-
order removal of E with respect to itself, but other arrangements
are also possible [36]. Assuming zero-order removal (saturation
with K E

M ≪ E) the rate equation for E becomes

Ė = −k5

(
k6
k5

− A
)

, (2)

which is similar to the standard integral control law [35]. The
equation for Ė has A as its only variable, that is: Ė = h(A). The
steady state condition, h(A) = 0, gives a simple expression for the
defended level of A (the setpoint):

Aset =
k6
k5

. (3)

The function of this controller motif can be illustrated by the
block schematic representation in Fig. 1b. This representation,
which is commonly used in control engineering, shows that the
concentration of the controller E is the integrated difference (error)
between the setpoint and the fed back measurement of A.

2. Methods

We will use two different approaches to examine the effect
of integral control in oscillatory reaction kinetic networks. The
first approach (in Sections 3.1 and 3.2) is to use a reaction ki-
netic network where integral control is already present, i.e., the
controller motif from Fig. 1a, and extend/alter this network until
oscillatory behavior appears. The second approach (in Section 3.3)
is to add integral control to an already oscillating system. For this

Fig. 1. Negative feedback outflow controller. (a) Reaction network representation
and rate equations for the motif. The controller variable E is activated by A and
feeds back by adjusting the outflow of A. We treat a changing inflow of A through
the parameter kip as the primary disturbance to the system, see the text under
Section 2 Methods. (b) Control engineering type block schematic representation
showing how the motif can be separated into a controller and a controlled system.
The primary disturbance (kip) is marked in red. The j() block represents how the
controller (E) affects the controlled system (A), i.e., by a compensatory flow j =

k3AE/(KA
M + A).

we will use the oscillatory reaction kinetic network known as the
Brusselator [37,38] and add integral control in form of only the E-
part from a controller motif, i.e., add Eq. (1) and an E-dependent
outflow of the variable to be controlled.

The first approach can be thought of as similar to how oscil-
latory behavior may develop in existing regulatory reaction ki-
netic networks in cells and organisms, either through evolution, or
through internal changes within a single organism. The second ap-
proach ismore an engineer’s approachwhere one has a system and
then adds something to the system to see how it alters behavior.
Since the systemalready oscillates thismethodmakes it possible to
see how the oscillatory behavior differs with and without integral
control in the system.

We will throughout the work presented here use integral con-
trol motifs that act on the outflow of the species to be controlled.
This is similar to an industrial controller that controls the level in
a water tank by controlling an actuator in the form of an outflow
valve or an outflowpump. In otherwords, the actuator removes the
controlled species, called A, from the system when it is in excess.
Since the actuator is unable to add A to the system, i.e., provide a
negative outflow, it is most suited to compensate for disturbances
in the inflow to the system. We will thus treat parameters that
change the inflow of A as the main disturbances to the system.

Note that the situation is opposite for a reaction kinetic system
where integral control is provided by an inflow controller motif
(see SM6). A controller that compensates by adjusting an inflow
is best suited to compensate against changes in outflow, i.e., dis-
turbances in outflow. For a more detailed discussion about the
differences between inflow and outflow controller motifs, what
type of disturbances they are suited to compensate for, and what
happens when disturbances that they are not fitted to compensate
against start to dominate, we refer to our previous work in [4,39].

Computations were performed by using Matlab (mathworks.
com). Numerical integrationswere donewith the variable step stiff
solver ode15s (supplied with Matlab). A relative tolerance of 10−9,
an absolute tolerance of 10−12, and a maximum step size of 0.1
was specified as solver options. State variables (A, E, Z , etc.) will
typically represent concentrations of chemical compounds.

http://www.mathworks.com
http://www.mathworks.com
http://www.mathworks.com
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Theword equilibriumpoint is herein used to describe a constant
solution to a system of differential equations, i.e., a point where
ẋi = 0 for all i state variables.

2.1. A note on degree of perfectness

The term setpoint is herein used as the theoretical steady state
value of A given perfect zero-order removal of E in the above
controller motifs. In other words, under pure and perfect integral
control. The removal will however never be exactly zero-order
in real biochemical networks, i.e., K E

M will have a value different
from zero. This will shift the actual stationary value of a controller
motif away from the theoretical setpoint. The difference between
the setpoint and the actual stationary value is a measure of the
controller’s accuracy [4], or better put inaccuracy [39], and it is
related to the value of the fraction f (E) given as:

f (E) =
E

K E
M + E

. (4)

This fraction represents the degree of zero order removal of E, and
thus the degree of perfect integral control. To exemplify, consider
a stationary case where E = 10 and K E

M = 0.1. Then f (E) ≈ 1
and we have tight control (small inaccuracy). In another situation
where E = 0.4 and K E

M = 0.1, we get f (E) = 0.8 implying 20%
deviation between A and Aset .

This inaccuracy can be almost impossible to detect if very low
K E
M values like 10−6 are used. We have in this study selected to use

K E
M values that make the effect visible. See [4,40] for more details.

3. Results

We start the first approach with a motif that already contains
integral control. The presented controller motif from Fig. 1a, and
the rest of the complete set of motifs [4], can be extended to create
systems that show sustained oscillations [41]. Such extensions can
be done without changing the structure of the controller part (E),
leaving a functional integral controller in the oscillating system.

3.1. Control of average concentration during periodic oscillations

Consider an oscillatory version of the outflow controller with
added autocatalysis, shown in Fig. 2a. The equation for change in E
is the same as before (Eq. (1)), but the change in A is now described
by:

Ȧ = kip + k2A −
k3AE

KA
M + A

. (5)

The rate constant kip is still the inflow disturbance and k2 is the
autocatalytic part. This motif oscillates for a wide range of param-
eter values. Stronger autocatalysis (higher k2) leads to oscillations
with greater amplitude. Fig. 2b shows a bifurcation diagramof how
the amplitude of the oscillations in A changes with the strength of
autocatalysis.

Examples of the behavior in A and E for a stepwise change in kip
are shown in Fig. 3a and b. Interestingly the average of A, denoted
⟨A⟩ (black line in Fig. 3a), seems to be only transiently affected by
the disturbance. We did several similar simulations/experiments
to this and to other oscillating controller motifs, and they all
indicated the same: The average level of A appears to be regulated.
The results of a full sweep study of the average level of A versus the
strength of inflow disturbance for this outflow motif are shown in
Fig. S1 in SM1.

The general property of integral control, that a controller reg-
ulates A to a setpoint, is derived from the steady-state condition,
Ė = h(A) = 0. The steady-state condition can however not be used
when the controllers are oscillating.

Fig. 2. A negative feedback outflow controller with oscillatory behavior. (a) Out-
flow controller with autocatalysis in A (Eqs. (5) and (1)). The controller variable
E is activated by A and feeds back by adjusting the outflow of A. We treat a
changing inflow of A, the parameter kip , as the primary disturbance to the system.
(b) Bifurcation diagram showing how the amplitude of the oscillations in A changes
with the strength of autocatalysis k2 . Parameters: kip=4, k3=3.8, k5=0.65, k6=5.4,
KA
M=0.15, and K E

M=0.5. Initial conditions: A0=25.95, E0=7.63.

Fig. 3. Response to inflow disturbance changes in an oscillatory outflow controller.
(a) Oscillations in A shown for a stepwise inflow disturbance in kip from 6 to 9 at
t=100, and from 9 to 12 at t=200, as indicated. The black line shows the periodic
average of A, calculated between peaks. Parameters: k2=1.5, k3=3.8, k5=0.65,
k6=5.4, KA

M=0.15, and K E
M=0.5. Initial conditions: A0=33, E0=14. (b) Oscillations

in and average of E during the same disturbance.

In order to derive the property of integral control during peri-
odic oscillations we start by the definition of periodicity. For each
repeating cycle E is back at exactly the same value

E(t + T ) = E(t), (6)

where T is the period time, the time of one cycle. The change in E
cannot be assumed to be zero, as in nonoscillatory systems (steady
state condition), but the integrated change in E over one period
must be zero:∫ t+T

t
Ė dt = E(t + T ) − E(t) = 0. (7)

This must also be the case for any integer number n of periods
from t to t + nT . We now introduce the periodic average value of Ė,
denoted ⟨Ė⟩, which must also be zero:

⟨Ė⟩ ≜
1
T

∫ t+T

t
Ė dt = 0. (8)

The rate equation of E for any motif can be inserted into Eq. (8).
Inserting Ė from Eq. (1) into Eq. (8) gives:

⟨Ė⟩ =
1
T

∫ t+T

t

(
k5A −

k6E
K E
M + E

)
dt. (9)
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By applying zero-order kinetics, i.e., K E
M → 0, this reduces to

⟨Ė⟩ = k5

(
1
T

∫ t+T

t
A dt

)
− k6

(
1
T

∫ t+T

t
1 dt

)
(10)

= k5

(
1
T

∫ t+T

t
A dt

)
− k6, (11)

where the periodic average of A, denoted ⟨A⟩ can be identified.
Using this and ⟨Ė⟩ = 0 (Eq. (8)) we find that the controller
maintains the periodic average of A at a setpoint which we term
⟨A⟩set :

⟨A⟩ ≜
1
T

∫ t+T

t
A dt =

k6
k5

= ⟨A⟩set . (12)

Note that this derivation also holds for nonoscillatory controller
motifs. A system in steady state is a trivial solution of Eq. (6).

Similar to the stationary case (Eq. (3)), the setpoint ⟨A⟩set in
Eq. (12) is a theoretical setpoint that depends on K E

M → 0. The
actual average ⟨A⟩may thus differ somewhat from ⟨A⟩set at realistic
conditions when K E

M has a nonzero value (see Section 2.1).

3.2. Controller action in the chaotic regime

We will in this section extend our results and look into the
function of integral control in systems with sustained nonperiodic
oscillations. To do this we will first show how systems based on
the presented controller motifs can be extended from periodic to
chaotic oscillating systems.

In systems of ordinary differential equations chaos can only
appear if the system has a dimension of three or higher and only
if at least one of the equations is nonlinear. These conditions do
not, however, guarantee the presence of a chaotic solution. Even
if we do not know all the necessary and sufficient conditions for
chaos, the composition of chaotic systems in three dimensions is
relatively well known [42,43].

One way to build a systemwhich should be able to show chaos,
at least for some parameter values, is to combine a two dimen-
sional oscillator with a switch; a type of structure first conceived
by O. Rössler in some of the earliest studies of chaotic systems [44,
45]. The idea is best explained by the behavior in phase space. A
trajectory spirals outwards from an unstable focus towards where
the oscillator in two dimension would have formed an attractive
limit cycle. Somewhere on this path the switch is activated and it
lifts the trajectory up and into an area in phase space where the
flow is reversed. The trajectory is then brought back down closer to
the unstable focus than it was before it was lifted out. This is called
reinjection [43,44]. For this to work the state variable defining the
switch should have comparably fast dynamics, so that it creates a
manifold in phase space that guides themovement of the other two
oscillating state variables.

With this in mind we expanded the oscillating outflow con-
troller (Fig. 2a) with an extra state variable Z that acts as a single
threshold switch. The reaction kinetic structure is shown in Fig. 4a
where the original oscillating structure is colored in green and the
new addition is colored in blue. The rate equations for this new
motif are:

Ȧ = kip + k2A −
k3AE

KA
M,1 + A

−
k4AZ

KA
M,2 + A

(13)

Ė = k5A −
k6E

K E
M + E

(14)

Ż = k7A −
k8Z

K Z
M + Z

. (15)

The equation for Z is similar to E and is really just an extra negative
feedback and outflow controller on A, but its dynamics is faster
with relative high values on rate constants k7 and k8.

The surface created by the fast dynamics of Z divides the phase
space into two regions, shown in Fig. 4b. The surface is given by

FZ (A, E, Z) = k7A −
k8Z

K Z
M + Z

= 0. (16)

Fig. 4b also illustrates how this system, for a certain set of pa-
rameters, shows reinjection. A trajectory starts to move on the
horizontal part of the surface withoutmuch change in Z . When the
oscillations cause the value of A to rise above a threshold at around
A = 10 the switch is activated and the trajectory is lifted upwards
in phase space by an increasing Z; the trajectory is guided by the
manifold. As Z increases Ȧ is reduced (Eq. (13)). Ultimately Ȧ turns
negative and we have reversed flow compared to the lower part of
phase space. As A is reduced so is Z and the trajectory is reinjected
into the horizontal part of the surface. This then repeats before the
trajectory again starts tomove on the horizontal part of the surface,
only somewhat closer to the focus which it oscillates around. This
behavior continues indefinitely; the trajectory moves on a chaotic
attractor as shown in Fig. 4c. A more detailed view of the direction
of flow is given in Fig. S2 in SM2.

Whether the system displays this chaotic behavior or more
simple periodic oscillations is dependent on the parameter values.
As noted we are mainly interested in changes in behavior due to
changes in inflow, andwill thus focus on how the system responds
to changes in the strength of autocatalysis k2 and the disturbance
kip.

Fig. 4d shows a bifurcation diagram for the amplitude of A for
an increasing inflow disturbance, kip, and Fig. 4e shows the same
for increasing autocatalysis k2. These bifurcation diagrams reveal
the characteristic period doubling route to chaos. Further studies
of the chaotic attractor for this system, including Poincaré sections,
first-return maps, and a movie or the movement of the attractor in
phase space, are given in SM3.

The interesting questions are now: What happens with the
average level of A during chaos? Will the integral action in E
still provide robustness against disturbances in inflow? We first
examined this by simulating the chaotic system for a range of
different disturbances, and studied how the average level of Awas
affected. Before presenting the results we note that the definition
of a periodic average ⟨A⟩ from Eq. (12) is not useful for chaotic sys-
tems since there is no defined period T . Instead of calculating the
periodic average,we have calculated the average over a sufficiently
long length of time τ as:

⟨A⟩τ ≜
1
τ

∫ t0+τ

t0

A dt. (17)

The results from many simulations with kip in the range from 4
to 40 are combined in Fig. 5, which shows the average level of A
and E. We have here used τ = 50 (what makes a sufficiently long
τ is discussed towards the end of this section). The results indicate
that the average level of A is still defended and that the presence
of chaos does not alter the regulatory properties of the system. The
average level of the controller species E increases with the level
of the kip disturbance. This makes sense from the structure of the
reaction kinetic network, Fig. 4a; an increased inflow of A through
kip is compensated by an increased E-mediated outflow of A.

The response to stepwise changes in inflow disturbance (kip) is
shown in Fig. 6. The system is challenged with a step in kip from
a periodic region (kip = 13) to a chaotic region (kip = 15), and
the controller responds by increasing the average level of E, which
again increases the compensatory outflow of A. Fig. 6 also shows
the response to a further step in the disturbance from kip = 15 to
kip = 20.

Consequently, the integral controller E maintains the average
level of A near the theoretical setpoint, as shown in Fig. 5. The
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Fig. 4. Extended outflow controller capable of showing chaotic behavior. (a) Chaotic outflow controller built by combining an oscillating controller (green, identical to
Fig. 2a) with a switch (blue, made out of a negative feedback similar to the controller structure, but with faster dynamics). (b) Phase space with the manifold created by the
fast dynamics of the Z-switch (given by Eq. (16)). Blue arrows show the vector field of Z . A trajectory (in black) spiraling outwards from a focus point is reinjected, enabling
the occurrence of chaos. Parameters: kip = 4, k2=1.5, k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=KA
M,2=0.15, K E

M=0.5, and K Z
M=0.03. The trajectory starts in

[5.5, 4.5, 0.04] (red cross). (c) The chaotic attractor for this system shown in phase space. (d) Bifurcation diagram showing how the amplitude of the oscillations in A changes
with disturbance in inflow kip (other parameters as above). (e) Bifurcation diagram showing how the amplitude of the oscillations in A changes with the strength of the
autocatalysis k2 (other parameters as above). Simulations in (d) and (e) are run for 500 time units before collection of data to avoid transients. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Control of the average of A under chaotic conditions. (a) Average level of A,
⟨A⟩50 (blue circles), for the chaotic outflow controller in Fig. 4a (Eqs. (13)–(15)) for
different levels of inflow disturbances. The black squares show the average level of
E, and the dashed blue line shows the theoretical setpoint of A, ⟨A⟩set = k6/k5=8.3.
The averages are calculated over a time length of τ=50. Parameters: k2=1.5,
k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=KA
M,2=0.15, K E

M=0.5, and
K Z
M=0.03. Initial conditions: A0=8.30, E0=3.18 and Z0=0.16. Transient effects are

avoided by letting simulations run for a time length of 100 before starting the
calculation of averages.

average value of A is maintained even though the system moves
in and out of chaotic behavior as the inflow disturbance changes.
The system changes between chaotic and periodic behavior as
indicated in the bifurcation diagram in Fig. 4d. The small difference
between ⟨A⟩τ and the theoretical setpoint can be attributed to the
level of E and the parameter K E

M . Higher level of E means that its
removal becomes more saturated, hence the f (E) fraction (Eq. (4))
is closer to 1 and the controller becomes more accurate, see also
Section 2.1.

Analytically deriving the properties of integral control during
chaotic conditions may not seem as straightforward as in the
periodic case. We can no longer use periodicity as we did in Eqs.
(6)–(12). The integrated change of E from a point in time t0 to a
point in time t0 +τ will for an arbitrary value of τ be equal to some
number ϵ, which is the difference between E(t0+τ ) and E(t0). That
is:∫ t0+τ

t0

Ė dt = E(t0 + τ ) − E(t0) = ϵ. (18)

For a systemwith a chaotic attractor we have that ϵ is bounded
when τ → ∞, given that the trajectory is on the attractor at
time t0 (transients have died out). A trajectory already on a chaotic
attractor (after transients) will forever move on the attractor, and
thus E(t0+τ ) cannotmove further away from E(t0) than the extent
of the attractor along the E-axis in phase space.
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Fig. 6. Example response for the chaotic outflow controller to a stepwise change
in inflow. (a) Response to an inflow disturbance given as a stepwise change for
the chaotic outflow controller in Fig. 4a (Eqs. (13)–(15)). The disturbance kip is
stepped from 13 to 15 at t=50, and from 15 to 20 at t=150, as indicated. The level
of A is shown in blue while the average of A, ⟨A⟩50 , is shown in black. (b) Level
and average of E. (c) Level and average of Z . Parameters: k2=1.5, k3=3.8, k4=3.7,
k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=KA
M,2=0.15, K E

M=0.5, and K Z
M=0.03. Initial

conditions: A0=6.91, E0=6.65 and Z0=0.07. The averages are calculated over fixed
intervals with a length of τ=50 starting from t=0 to t=50, from t=50 to t=100,
and so on.

Taking the time average of Ė as in Eq. (17) we have that:

⟨E⟩τ =
1
τ

∫ t0+τ

t0

Ė dt =
ϵ

τ
. (19)

By continuing the derivation as in Eqs. (8)–(12) we find that in-
tegral control (implemented by zero-order kinetics) defends the
average level of the controlled variable A at:

⟨A⟩τ =
1
τ

∫ t0+τ

t0

A dt =
k6
k5

+
ϵ

k5τ
. (20)

Furthermore when τ → ∞, this reduces to the same theoretical
setpoint as in the periodic case (Eq. (12)), that is:

lim
τ→∞

⟨A⟩τ =
k6
k5

= ⟨A⟩set . (21)

This proves that integral control provides robust regulation even
when the system behaves chaotically.

In practice τ does not have to go to infinity; it is sufficient to
have τ large enough to make the contribution from ϵ negligible.
From our experience it is enough to have a τ value that allows
the trajectory to cover most of the attractor. Around 10 times the
quasi-period, or 10 times around the attractor, is usually sufficient.

It is possible to relate the setpoint of ⟨A⟩τ and the behavior of
⟨E⟩τ seen in Fig. 5 to an unstable equilibrium point of the overall
system. This is shown in SM4 and discussed further in the next
section where we add integral control to an already oscillating
system.

The above method for calculating the average of a variable is
convenient as it works well for stationary, periodic, and chaotic
behavior without much need for prior information about how the
system behaves or the shape and position of the attractor in phase
space. An alternative approach that is arguablymoremathematical
elegant, and equivalent to the periodic average, is to calculate the
average between two successive intersections with a Poincaré sec-
tion. This method is used in SM5 to calculate the averages during a
change in inflow disturbance in the chaotic outflow controller (the

same experiment as in Fig. 6), and themethod gives similar results.
However elegant, this method is more cumbersome as it requires
prior information about the attractor in order to choose a fitting
placement of the Poincaré section.

3.3. Adding integral control to an already oscillating reaction kinetic
network

In the preceding parts we started with a reaction kinetic net-
work that already contained an integral controller, and extended
this system to show its behavior under periodic and chaotic oscil-
lations. We will now take a different approach by starting with an
oscillatory reaction kinetic network that does not contain integral
control, and study how its behavior changes when integral control
is added to the system.

The Brusselator is a widely studied theoretical reaction ki-
netic network that shows limit cycle oscillations. It was proposed
by Lefever, Nicolis and Prigogine and is named after the city of
Brussels where they were based [37,38]. The Brusselator can be
expressedwith two chemical species,X andY , having the following
rate equations [38,46]:

Ẋ = kip − k2X + k3X2Y − k4X (22)

Ẏ = k2X − k3X2Y . (23)

A reaction network representation of the Brusselator is shown in
Fig. 7a (do not consider the green part yet). To illustrate the effect
of integral controlwehave selected to treat the independent inflow
of X as a disturbance to the system, i.e., we let the rate constant kip
vary. The Brusselator system has one equilibrium point,

X∗
=

kip
k4

, Y ∗
=

k2k4
kipk3

, (24)

that may be stable or unstable depending on the value of the
rate constants. When the equilibrium is unstable the system has
a stable limit cycle that gives rise to periodic oscillations. Note that
the equilibrium value of X is dependent on the amount of inflow of
X through the reaction described by the disturbance kip.

The goal here is not to give a thorough examination of the
stability and behavior of the Brusselator, which has been done
elsewhere [38,46–48], but to look at how its behavior changes
when an integral controller is added to the system.

The response of the Brusselator to stepwise changes in the dis-
turbance kip is shown in Fig. 7b and c. For the parameter values that
we use (listed in the caption of Fig. 7) we see that the Brusselator
is stable and that there are steady state solutions for kip = 0.5 and
kip = 0.3. TheBrusselator starts to oscillatewhen kip is stepped from
0.3 to 0.25. The simulation results show that the value of X (and Y )
during steady state and the periodic average ⟨X⟩ (and ⟨Y ⟩) during
oscillations change with varying disturbance values, as expected
from Eq. (24).

Consider now that we want to control the (average) value of X
in the Brusselator by adding an integral controller in the form of
the controller motif marked with green in Fig. 7a. The extended
equations for this controlled Brusselator are:

Ẋ = kip − k2X + k3X2Y − k4X − k7XE (25)

Ẏ = k2X − k3X2Y (26)

Ė = k5X −
k6E

K E
M + E

. (27)

The key point now is that the integral controller changes the
equilibrium value of X , making it independent of the parameters in
the original Brusselator. As in Eqs. (3), (12), and (21) the controller
introduces a setpoint for X at k6/k5, which is only dependent



44 K. Thorsen, T. Drengstig and P. Ruoff / Physica D 393 (2019) 38–46

Fig. 7. Behavior of the Brusselator with and without added integral control. (a) Brusselator (white background) and an added outflow controller motif (green background)
that provides integral control of X . The system behavior will be analyzed for varying production of X , i.e., the kip parameter is treated as a disturbance. (b) and (c) Behavior
of the pure Brusselator, Eqs. (22)–(23) (without added integral control). The plots show the concentration of the chemical species X and Y in blue for different values of
the disturbance kip . The periodic average is plotted in black when the system oscillates. The disturbance kip is changed from 0.5 to 0.15 in steps at the times indicated in the
figure. Parameters: k2=0.95, k3=0.23, k4=0.15. Initial conditions: X0=Y0=0.1. (d)–(f) Behavior of the Brusselator with added integral control, Eqs. (25)–(27) (from t=100).
The plots show the concentration X , Y , and E in blue, in addition to the average of these variables in black calculated over fixed intervals with a length of τ=200 starting
from t=200 to t=400, from t=400 to t=600, and so on. The controller is activated at t=100 by changing the value of parameters k5 to k7 from zero to their value listed in
the following. The disturbance kip is changed from 0.5 to 0.25 in steps at the times indicated in the figure. Parameters: k2=0.95, k3=0.23, k4=0.15, k5=2.7, k6=1.2, k7=0.16,
and K E

M = 0.03. Initial conditions: X0=3.3, Y0=1.3, E0=0.1.

on the parameters in the controller part of the system. The new
equilibrium point is (assuming K E

M ≪ E):

X∗
=

k6
k5

, Y ∗
=

k2k5
k3k6

, E∗
=

kipk5 − k4k6
k6k7

. (28)

Given the previous results from Sections 3.1 and 3.2 we should
now expect that the integral controller does not only hold X at the
setpoint for parameters where the equilibrium is stable, but also
that it for parameters that cause the system to oscillate (periodic
or chaotic) keeps the average value of X at the setpoint. Simulation
results shown in Fig. 7d to f confirm that this indeed is the case.
When the controller is activated (at t = 100 in Fig. 7d) the value of
X ismoved from3.33 (kip/k4) to the setpoint of the controller at 0.44
(k6/k5). The controller then defends the setpoint as the disturbance
kip is changed. The system with integral control starts to oscillate
as kip is reduced to 0.4 (at t = 200 in Fig. 7d) and to 0.3, but the
average level of X is, apart from some transient behavior, kept at
the setpoint. This is also the case when the system displays chaotic
oscillations, as seen with a kip of 0.25 (from t = 800 in Fig. 7d).

The introduction of an integral controller seems to make the
solutions of the combined system less stable, or more oscillatory,
than for the system without added control. We see that a lesser
change in kip is needed to induce oscillations. This makes sense as
an integral controller from linear theory is known to reduce the
stabilitymargin of a system by causing phase lag. Nevertheless, the
integral controller provides a controlling effect during oscillations

in that it keeps the average level of A at a defined setpoint indepen-
dent of disturbances.

4. Discussion

Our results show the ability of integral control, implemented
by reaction kinetics, to regulate the average level of a controlled
variable in systems showing either periodic or chaotic oscillations.

4.1. The controller motif and integral control

All the examples presented here use the same outflow con-
troller motif (type 5 in [4]). The motif essentially provides a set-
point for the controlled variable, and acts as an integral controller
that changes the value of the controller variable E until the con-
trolled variable (A, or X) is equal to the setpoint. A key feature
is that the setpoint only depends on parameters related to the
kinetics of the controller species E itself; it is independent of the
parameters of the surrounding system that the controller controls.
Thismeans that ifwe are able to add a controllermotif to an already
existing reaction kinetic network, for example by use of gene
editing and synthetic biology, we can, at least as far as the practical
methods allow, design it to have the setpoint we want [4,8].

What the setpoint really is, and what integral control man-
ifests itself as in the combined process-controller system, is an
equilibrium point where the controlled variable has the value
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of the setpoint. This is clearly demonstrated by the addition of
integral control to the Brusselator in Section 3.3. The equilibrium
of X is moved from a point dependent on the parameters of the
Brusselator system, kip/k4 (Eq. (24)), to a point dependent on the
parameters of the controller system, k6/k5 (Eq. (28)). It is from
this easy to understand how integral control in the case when the
equilibrium is stable provides setpoint tracking, and disturbance
rejection against disturbances in any parameters apart from k5 and
k6.

However, although adding integral control provides a new (con-
trollable) equilibrium point, there is no guarantee about the reach-
ability and stability of this point. What our results show here is the
effect integral control has when the equilibrium point it provides
is unstable and enclosed by a limit cycle or a chaotic attractor. Our
results show that integral control in this case keeps the average
level of the controlled variable equal to the value it has in the
unstable equilibrium point (setpoint). Mathematically speaking, if
the controlled variable is X then the integral controller fixes the
X coordinate position of the attractor in state space. Disturbance
rejection for the average level of the controlled variable readily
follows, because the value of the controlled variable in the unstable
equilibrium point still depends only on the controller parameters
(k5 and k6).

4.2. Oscillations, chaos, and steady states

Robust control of the average level of a variable can be seen
as a generalization of the well known steady state property of
integral control, as the average level and the steady state level are
overlapping for nonoscillatory systems. The steady state condition,
i.e., assuming steady state by setting the derivatives equal to zero,
is normally used to derive theproperty of integral control. This con-
dition cannot be used directly when the system, which the integral
controller is a part of, shows oscillatory behavior. Nevertheless, as
long as there is an attractor, enclosing the unstable equilibrium
point, that attracts and confines the trajectories, the system is still
in what we can call a stable regime. The trajectories are not di-
verging, but bounded with repetitive (although not always exactly
predictable) behavior. Seen from its outside borders the attractor
behaves just like an asymptotically stable equilibrium point. The
conditions we have used in Eqs. (7) and (19) can be viewed as
an extension, or replacement, of the steady state condition. The
condition in Eq. (7) can be used for systems that show periodic
oscillations; and it can also be used for nonoscillatory systems, for
which it becomes the same as the ordinary steady state condition.
Likewise, the condition in Eq. (19) can be used for chaotic, periodic,
and ordinary nonoscillatory systems.

While the ability to robustly defend an average value is exciting,
there are some caveats. Disturbances do not change the average
value, but they do change the amplitude and frequency of the
oscillations. The variation in amplitude is clearly seen in the two
bifurcations plots in Fig. 4d and e for the chaotic outflow controller.
For example a k2 of 0.6 and 2.4 both produce simple periodic
oscillations with the same average value of A, but with almost a
twofold difference in amplitude.

4.3. Biological significance

According to the classical concept by Cannon, homeostasis
keeps the concentrations of certain compounds within tolerable
limits and thereby contributes to the internal stability of cells and
organisms [49]. Our results explain how integral control enables
biological systems to maintain robust homeostasis in the average,
even when they show periodic or chaotic behavior. In other words
it shows that internal regulation against external disturbances

(parameter changes) can bemaintained evenwhen systems are os-
cillating. Integral control provides an active regulatorymechanism
that extends beyond just the stability of the attractor.

Some may argue that the concepts of chaos and homeostasis
appear incompatible even though there are examples of chaotic
behavior in biological systems [50–52]. On one hand we have
homeostasis as a mechanism to achieve adaptation and stability
(and some would argue constancy), while on the other hand chaos
is generally associated with processes which look unpredictable
and random. In the end the question of whether a chaotic system
with internal integral control can be said to be homeostatically
regulated is a question of whether to strictly define homeostasis as
only constancy. Such a strict definition has before led to new con-
cepts like homeodynamics being introduced to cover the broader
range of regulatory behavior [52]. However, instead of dividing
it all up, it may be more constructive to generalize and extend
the concept of homeostasis to include regulatory networks with
oscillatory and chaotic behavior [53].

Oscillatory behavior is, as mentioned in the introduction, quite
common in biological systems. One explanation for this is that
regulatory networks that provide adaptation and control with very
small modifications can be made to show oscillatory behavior. The
evolutionary step from an adapting reaction kinetic network to an
oscillating one is small. Evolutionary processes may havemodified
reaction kinetic networks in a way that opens up for oscillations
without necessarily having them display this behavior right away.
Organisms may then, by further evolution, have evolved signaling
mechanisms based on oscillations of regulated compounds.

The step from simple periodic oscillations to chaotic oscilla-
tions also seems to be within relatively easy evolutionary reach,
as illustrated by the presented reaction kinetic networks. New
interconnections and feedbacks are created as organisms evolve
to become more complex. Similar to the here presented networks,
the presence of multi-looped negative feedbacks has been known
to enhance complex and chaotic dynamics [11,54,55]. Our results
indicate that such behavior can exist side by side with homeosta-
sis; active regulation by integral control defends homeostasis even
under oscillatory and chaotic conditions by keeping the average
level under control.
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Appendix A. Supplementary material

Supplementary text and movies. SM1–SM4: Further studies on
the outflowmotif, including illustrations of the flow in phase space
and reinjection, a movie showing Poincaré sections, first-return
maps, and movement of the attractor in phase space. SM5: Av-
eraging over successive intersections of a Poincaré section. SM6–
SM7: Study showing the same regulatory effect of integral control,
but with a different inflow motif as example. SM8: An example
showing control of the average level of A for a motif with spiky
chaotic behavior.

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.physd.2019.01.002.
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