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Abstract

We present our first results on a direct computation of the complex in-medium heavy quark potential from realistic
lattice QCD simulations. Ensembles with Nτ = 12 from the HotQCD and TUMQCD collaboration offer unprecedented
high statistics, those with Nτ = 16 unprecedented time resolution, making possible a robust extraction of the real part
from the spectral functions of Wilson line correlators. To this end we deploy a combination of a Bayesian reconstruction
(BR method), as well as a Padé-like approximation. We corroborate findings made on less realistic lattices that Re[V]
smoothly transitions from a confining to a screened behavior at high temperatures and its values lie close to the color
singlet free energies. A finite value of the Im[V] is observed in the quark-gluon-plasma phase.

Keywords:
Heavy Quark Potential, Quark-Gluon-Plasma, pNRQCD, Bayesian Inference, Pade Approximation, Spectral Functions

The description of heavy quarkonium properties based on a non-relativistic potential has a long history.
Intuitively it is rooted in the fact that the heavy quark rest mass (mc = 1.3GeV, mb = 4.7GeV) is much
larger than any other relevant scale, be it that of quantum fluctuations in QCD ΛQCD or in the context of a
heavy-ion collision also the scale of thermal fluctuations T . In turn one expects that pair production effects
are highly suppressed and a non-relativistic description of the two-body system is applicable.

In vacuum the well known Cornell model potential VCornell(r) = −α(r)/r+σr+c has been used since the
late 1970’s to explore the multitude of bound states below the open-heavy-flavor threshold. It incorporates
the two hallmarks of QCD: asymptotic freedom from a running coupling at small distances via a Coulombic
contribution, as well as confinement in the form of a linear rise at large distances. Considering the propaga-
tion of static quarks in vacuum, it is possible to link a purely real-valued potential VT=0

QCD(r) between them to
the exponential decay of the rectangular Wilson loop W�(r, τ) at late Euclidean times. It is straight forward
to compute this quantity in lattice QCD and it turns out that VT=0

QCD(r) indeed follows closely the Cornell
form. Spin and velocity dependent contributions to the vacuum potential have also been determined [1].

At finite temperature for a long time only model potentials had been available. Since at T > 0 Euclidean
time becomes compact, the relation between the late Euclidean time Wilson correlator decay and VT>0

QCD(r)
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breaks down. Early works instead proposed to use the correlator evaluated at the latest Euclidean time
τ = 1/T to define a potential. This amounts to an ad-hoc identification of the color singlet free energies
F(1)(r) with the potential. Soon after, different proposals arose based on the internal energies and linear
combinations thereof. Since no Schrödinger equation had been derived for any of these model potentials
from QCD, a long standing discussion ensued on the appropriate choice of model.

In the last decade it has become possible to give meaning to the concept of a heavy quark potential in
QCD, based on the framework of effective field theory (EFT) [2], liberating us from the need for model
potentials. EFT’s provide the means to systematically exploit the above mentioned separation of scales and
to reformulate the dynamics of heavy quarkonium in a language of non-relativistic fields. There are two
ingredients to this process, selection of the relevant degrees of freedom and matching to QCD.

In the perturbatively constructed effective field theory potential Non-Relativistic-QCD (pNRQCD) the
degrees of freedom are color singlet and color octet wavefunctions. They describe the binding properties of
the two-body system, i.e. processes at the energy scale of the binding energy. Writing down the most general
Lagrangian compatible with the symmetries of underlying QCD, one finds that it can be formulated in terms
of time independent quantities V (i), ordered according to powers of the heavy quark velocity v, as well as
gauge field dependent terms connecting singlets and octets [2]. V (i) are the so called Wilson coefficients of
the EFT. We refer to V (0)(O(v0)) as the static potential, those suppressed with v as corrections. The V (i) need
to be determined for each realization of the hierarchy of scales. This is achieved via matching: a correlation
function in the EFT is set equal to a correlation function in QCD containing the same physics content.

The situation in a non-perturbative setting is more involved, as the relation between the potential, defined
as Wilson coefficient and the behavior of correlation functions entering the matching is less straight forward
[3]. For infinitely heavy quarks we consider the following definition

VQCD(r) = lim
t→∞

i∂W�(r, t)
W�(r, t)

= lim
t→∞

∫
dω exp[−iωt] ω ρ�(r, ω)
∫

dω exp[−iωt] ρ�(r, ω)
, (1)

which relates the potential among singlet states to the late Minkowski-time behavior of the Wilson loop. To
be more precise, the Wilson loop is governed by the so called static energy E(0), which in the language of
perturbative pNRQCD can only be equated with the static potential V (0) in the presence of a particular scale
hierarchy, i.e. if Ebind � ΛQCD, T . Evaluating Eq.(1) in resummed perturbation theory [4, 5] provided the
vital insight that at T > 0 the potential may actually contain an imaginary part.

Note that VT>0
QCD(r) does not govern the time evolution of the wavefunction but of its unequal time cor-

relation function. An imaginary part hence is not directly related to the decay of the quarkonium state but
instead to the loss of correlation between a state at initial and later time, reflecting wavefunction decoherence
due to interactions with the environment [6]. In practice, due to the cusp divergences of the Wilson loop, we
instead use Wilson line correlators in Coulomb gauge. To lowest order in HTL it has been shown that both
encode the same potential and we have checked that the extraction of Re[V] is truly gauge independent.
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Fig. 1. Wilson loop at T = 0 and T > Tc.

In the temperature regime relevant for heavy-ion collisions, the
potential needs to be evaluated non-perturbatively, but lattice sim-
ulations do not have direct access to the Minkowski time corre-
lator. Instead we can use spectral functions ρ(r, ω) to bridge the
Euclidean simulation and the real-time definition [7]. The same
ρ�(r, ω) governs the Minkowski and Euclidean Wilson correlator,
the former is expressed as its Fourier transform, the latter as its
Laplace transform. If we have access to ρ� we may relate it to
the potential directly. Eq. (1) actually tells us that if there ex-
ists a well defined lowest lying spectral peak, its position encodes
Re[V] and its width Im[V]. In Fig.1 we can also see the main dif-
ference between the old potential model and the proper potential.
The former only takes into account the static information encoded at
τ = 1/T , while the latter utilizes the full information on its Euclidean
time evolution. Only at T = 0 the τ = 1/T datapoint follows the same trend as the exponential falloff but at
T > 0 no obvious connection between the two remains.
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Fig. 2. Mock test: Padé reconstructed perturbative po-
tential using Nτ = 12 datapoints with ΔW/W = 10−2.

In principle ρ�(r, ω) can be obtained from the lattice by
inverse Laplace transform. Computing it from finite and noi-
sy data however is an ill-posed problem, often tackled by
Bayesian inference. Here we deploy two different approaches:
on the one hand the genuine Bayesian BR method [8], which
exploits prior information to regularize the inversion, impos-
ing positivity and smoothness onto the spectrum. On the other
hand we deploy a rational interpolation akin to the Padé ap-
proximation [9], which exploits the analyticity of the Wilson
line correlator. One projects the simulation data in imagi-
nary frequencies onto a set of rational functions and analyt-
ically continues these basis functions to Minkowski frequen-
cies. Taking the imaginary part of the outcome yields ρ�(r, ω).
We have checked the feasibility of the method using mock
data, i.e. reconstructing via Padé the known perturbative Wil-
son line spectrum and the corresponding potential. As shown
in Fig.2, using a realistic Nτ = 12, distorted by noise with
ΔW/W = 10−2 allows us to reproduce Re[V] within uncertain-
ties, while Im[V] is still underestimated. For Nτ = 48 Im[V]
can be robustly extracted up to r ≈ 0.4fm. (Note that we do not
claim that the rational interpolation reconstructs the full spectrum correctly but it here allows us to recover
the position of the lowest lying peak reliably.)

Here we present first results from extracting the potential from state-of-the art lattice QCD simulations
by the HotQCD and TUMQCD collaboration with dynamical u,d, and s quarks, spanning a temperature
range of T ∈ [150, 1248]MeV. These simulations with high statistics, originally designed for the study of the
QCD equation of state [10, 11] and screening properties [12], use inverse couplings β = 6.740 . . . 9.49. They
feature an almost physical mπ = 161MeV, except at β = 8.0, 8.4, where it is set to mπ ≈ 320MeV. Ensembles
with Nτ = 12 reach up to T = 252MeV and Nτ = 16 is used beyond. For calibration, T = 0 lattices are avail-
able up to β = 8.4. The Nτ = 12 ensembles feature unprecedented statistics, providing 2000-9000 realiza-
tions of the Wilson correlators. For the first time Nτ = 16 lattice extent is available for potential extraction.
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Fig. 3. The T = 0 potential at different β’s.

At T = 0, we have Nconf = 800 − 1200 configurations per
lattice spacing available with lattice extent between Nτ = 32−
64. We deploy both the BR and the Padé-like method to extract
the spectra and find that both methods yield a well defined
peak, whose position agrees with that found by a naive multi-
exponential fit. A small artificial numerical width is observed
in the reconstructions, which we take as null-baseline for the
finite temperature reconstructions. VT=0

QCD(r) is shown in Fig.3,
exhibiting the characteristic Cornell type form.

At finite temperature the reconstruction becomes more dif-
ficult, since now the lattices are only of Nτ = 12 and Nτ = 16

size and at the same time the accessible physical Euclidean time range is diminished. In addition, above
Tc the spectral peak defining the potential will broaden and it is known that the BR method will thus
eventually display ringing artifacts that make a quantitative extraction of the peak position unreliable.
Up to T = 198MeV both BR and the Padé-like method work reliably and provide the same results for Re[V].
Starting with T = 252MeV the BR method displays ringing and we only use the Padé. In Fig.4 we thus
show only the results from the Padé extraction, where the uncertainty estimates arise from a 10-bin Jackknife
and the variation among reconstructions where the input data is truncated at the latest available Euclidean
times. The results on Re[V] in Fig.4 corroborate a qualitative picture consistent with previous studies [13]
on less realistic lattices: The real part smoothly transitions from a Cornell-type form to a screened, i.e.
asymptotically flat behavior in the QGP at high temperatures. At the same time we find that Re[V] is at all
temperatures compatible with the color singlet free energies in Coulomb gauge within its uncertainties. In
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particular we do not find indications that Re[V] rises more steeply than F(1)(r). As was found in [12] F(1)(r)
deviates less than 2% from its T = 0 form up to r < 0.3/T . Note that while agreement between Re[V] and
F(1)(r) is only expected at T = 0 and T � Tc, the extracted values even around Tc are very similar.
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Fig. 4. (top) Re[V] via the Padé-like method (colored), com-
pared to the color-single free energies F1(r) in gray (shifted
by hand in y-direction). (bottom) tentative values of Im[V]
via the BR method (shifted by hand in x-direction).

Re[V] has been analyzed on some of these lattices
using non-Bayesian approaches in the past. It has been
modelled e.g. by assuming that the Wilson line spectrum
also non-perturbatively follows the skewed Breit-Wigner
plus shoulder form of HTL perturbation theory, with de-
viations encoded in a rescaling of frequencies [14]. On
the other hand an extraction has been proposed using the
first and second moments of the correlator [15], which
in case of a Gaussian spectral function can be unambigu-
ously related to the real- and imaginary part. The out-
come of both studies was that Re[V] remains steeper than
F(1) and lies quite close to the T = 0 behavior. On the lat-
tice the shoulder structure of the spectrum at higher fre-
quencies apparently deviates significantly from the HTL
form and thus the models may be driven artificially to
higher values. While spectral reconstructions appear to
more cleanly separate the shoulder from the actual po-
tential peak contribution, further study is needed.

The mock analysis showed that the Padé-like method
is unable to capture Im[V] in case of Nτ = 12 input
datapoints. Here we instead perform an estimation via
the BR method at T ≤ 198MeV, where it is applicable.
The lower panel in Fig.4 contains the tentative values,
where the artificial numerical width present at T = 0 has
already been subtracted. Once temperatures rise above
T ≈ 160MeV we observe the presence of values in Im[V]
that are significantly different from zero.

We are currently generating lattices with Nτ = 16
to reach similarly high statistics as at Nτ = 12. Subse-
quently an investigation of the screening of Re[V] using
the Gauss-Law parametrization [18] will be performed. Efforts are underway to clarify how the EFT poten-
tial defined here is related to the quantity governing the dynamics in the T-matrix approach of [16]. We are
confident that VT>0

QCD(r), extracted non-perturbatively, will serve as vital input to phenomenological models
(e.g. [17, 19]), improving control over the evolution of heavy quarkonium in heavy-ion collisions from first
principles. A.R. is supported by DFG via ”SFB 1225 (ISOQUANT)”, P.P. by DOE via DE-SC0012704 and
J.H.W. by BMBF via 05P15WOCA1. We thank HotQCD and TUMQCD for their configurations.
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