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We discuss the possible phases dual to the AdS hairy black holes in Horndeski theory. In the probe limit
breaking the translational invariance, we study the conductivity and we find a nontrivial structure indicating
a collective excitation of the charge carriers as a competing effect of momentum dissipation and the
coupling of the scalar field to Einstein tensor. Going beyond the probe limit, we investigate the spontaneous
breaking of translational invariance near the critical temperature and discuss the stability of the theory. We
consider the backreaction of the charged scalar field to the metric and we construct numerically the hairy
black hole solution. To determine the dual phases of a hairy black hole, we compute the conductivity. When
the wave number of the scalar field is zero, the DC conductivity is divergent due to the conservation of
translational invariance. For nonzero wave parameter with finite DC conductivity, we find two phases in the
dual theory. For low temperatures and for positive couplings, as the temperature is lower, the DC
conductivity increases therefore the dual theory is in metal phase, while if the coupling is negative we have
the opposite behavior and it is dual to an insulating phase. We argue that this behavior of the coupling of the
scalar field to Einstein tensor can be attributed to its role as an impurity parameter in the dual theory.
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I. INTRODUCTION

One of the first applications of gauge/gravity duality
[1–3] was the building of a holographic superconductor
and the study of its properties. The basic mechanism of
generating a holographic superconductor is the formation
in the gravity sector of a hairy black hole below a critical
temperature and the generation of a condensate of the
charged scalar field through its coupling to a Maxwell field
of the gravity sector [4]. Then it was shown [5] that a
holographic superconductor can be built on a boundary of

the gravity sector first on the probe limit, where the charge
of the scalar field is much smaller than the charge of the
black hole, and then beyond the probe limit, in which the
backreaction of the scalar field to the spacetime metric was
considered [6]. Considering fluctuations of the vector
potential, the frequency dependent conductivity was calcu-
lated, and it was shown that it develops a gap determined
by the condensate. The formation of the gap is due to a
pairing mechanism which is due to strong bounding of
Cooper pairs. This strong pairing mechanism resulted to
2Δ ≈ 8.4Tc, where Δ is the condensation gap, which has to
be compared to the BCS prediction 2Δ ≈ 3.54Tc, which is
much lower in real materials, due to impurities (for a review
see [7,8]).
The presence of impurities plays an important role in the

superconducting materials chancing the properties of
superconductors [9]. A detailed investigation of the effects
of paramagnetic impurities in superconductors was carried
out in [10], while holographic impurities were discussed in
[11]. A model of a gravity dual of a gapless superconductor
was proposed in [12]. Below a critical temperature it was
shown that a black hole solution [13,14] acquired scalar
hair, the DC conductivity was calculated and it was found
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that it had a milder behavior than the dual superconductor
in the case of a black hole of flat horizon [5] which
exhibited a clear gap behavior. This behavior was attributed
to materials with paramagnetic impurities as it was dis-
cussed in [10]. Impurities effects were studied in [15],
while impurities in the Kondo model were considered
in [16,17].
A holographic model of a superconductor was discussed

in [18]. In this model the gravity sector consists of a
Maxwell field and a charged scalar field which except its
minimal coupling to gravity it is also coupled kinetically to
Einstein tensor. This term belongs to a general class of
scalar-tensor gravity theories resulting from the Horndeski
Lagrangian [19]. The main effect of the presence of this
kinetic coupling is that gravity influences strongly the
propagation of the scalar field compared to a scalar field
minimally coupled to gravity. It allows us to find hairy
black hole solutions [20–27], the gravitational collapse of a
scalar field with a derivative coupling to curvature takes
more time for a black hole formation compared to the
collapse of minimally coupled scalar field [28] and acts as a
friction term in the inflationary period of the cosmological
evolution [29–32]. Moreover, it was found that at the end of
inflation, there is a suppression of heavy particle produc-
tion because of the fast decrease of kinetic energy of the
scalar field coupled to curvature [33].
This behavior of the scalar was used in [18] to holo-

graphically simulate the effects of a high concentration of
impurities in a material. If there are impurities in a super-
conductor then the pairing mechanism of forming Cooper
pairs is less effective because the quasiparticles are loosing
energy because of strong concentration of impurities. Then it
was found that as the value of the derivative coupling is
increased the critical temperature is decreasing while the
condensation gap is decreasing faster than the temperature.
Also it was found that the condensation gap for large values
of the derivative coupling is not proportional to the fre-
quency of the real part of conductivity which is characteristic
of a superconducting state with impurities. Also a holo-
graphic superconductor was constructed in [34] with a scalar
field coupled to curvature, and the holographic entanglement
entropy of a Horndeski black hole was calculated in [35].
The real materials composed of electrons, atoms and so

on, except their possible impurities, are usually doped. This
has important consequences in the properties of these
materials and one of these is that they do not possess
spatial translational invariance, and so the momentum in
the inner structure of these systems is not conserved. An
example of such an observable is the conductivity. Under
applied fields, the charge carriers of these systems can
accelerate indefinitely if there is no mechanism for
momentum dissipation, which leads the DC conductivity
to be infinite. However, once the spatial translational
invariance is broken which makes the momentum dissipa-
tion possible, then the peak at the origin of the AC

conductivity spreads out such that the DC conductivity
is finite. Therefore, for the holographic theories it is
important to incorporate the momentum dissipation. In
the literature, there are plenty of studies on the transport
properties of holographic theories which dissipate momen-
tum. The simplest way is to explicitly break the transla-
tional symmetry of the field theory state [36]. Other ways
are by coupling to impurities, introducing a large amount of
neutral scalar fields [37,38], a special gauge-axion [39], or
by breaking translation invariance by introducing a mass
for the graviton field [40].
In the holographic superconductor practically there is a

superconducting state which has a nonvanishing charge
condensate, and a normal state which is a perfect conductor.
The consequence of this is that even in the normal phase
the DC conductivity (ω ¼ 0) is infinite, in spite of the
proximity effect in the interface between the superconduc-
tor and the normal phase [41]. This is a consequence of the
translational invariance of the boundary field theory,
because the charge carriers do not dissipate their momen-
tum, and accelerate freely under an applied external electric
field. Therefore one is motivated to introduce momentum
dissipation into the holographic framework, breaking the
translational invariance of the dual field theory.
In [42] black hole solutions were constructed which were

holographically dual to strongly coupled doped theories
with explicitly broken translation invariance. The gravity
theory was consisted of and Einstein-Maxwell theory
coupled to a complex scalar field with a simple mass term.
Black holes dual to metallic and to insulating phases were
constructed and a their properties were studied. Charged
black brane solutions with translation symmetry breaking
were considered in [43] and the conductivity at low
temperatures was studied.
A generalization of [37] introducing a scalar field

coupled to curvature was presented in [44]. An Einstein-
Maxwell theory was studied in which except the scalar
fields present in [37], scalar fields coupled to Einstein
tensor were also introduced. The holographic DC conduc-
tivity of the dual field theory was studied and the effects of
the momentum dissipation due to the presence of the
derivative coupling were analyzed. In [45] the thermoelec-
tric DC conductivities of Horndeski holographic models
with momentum dissipation was studied in connection to
quantum chaos. It was found that the derivative coupling
represents a subleading contribution to the thermoelectric
conductivities in the incoherent limit.
To explain the generation of FFLO states [46,47] an

interaction term between the Einstein tensor and the scalar
field is introduced in a model [48,49] with two U(1) gauge
fields and a scalar field coupled to a charged AdS black
hole. In the absence of an interaction of the Einstein tensor
with the scalar field, the system possesses dominant
homogeneous solutions for all allowed values of the spin
chemical potential. Then calculating the DC conductivity it
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was found that the system exhibits a Drude peak as
expected. However, in the presence of the interaction
term, at low temperatures, the system is shown to possess
a critical temperature for a transition to a scalar field
with spatial modulation as opposed to the homogeneous
solution.
In this work we spontaneously break the translational

invariance in an Einstein-Maxwell-scalar gravity theory in
which the charged scalar field is also coupled kinetically
to Einstein tensor and we study the possible phases
generated on the dual boundary theory. In the probe limit
we calculated the conductivity and we found that depend-
ing on the parameter of the translational symmetry breaking
and on the coupling of the scalar field to curvature we have
on the dual theory a coexistence of phases on the boundary
theory. Then we go beyond the probe limit and considering
the fully backreacted problem we constructed numerically
a hairy black hole solution. To determine the phases of
the dual theory to the hairy black hole, we compute the
conductivity. When the wave parameter of the scalar is
zero, the DC conductivity is divergent due to no mechanism
of momentum relaxation, which is dual to ideal conductor.
While for nonzero wave parameter with finite DC conduc-
tivity, we found two phases in the dual theory. For low
temperatures, we found that for positive couplings, as we
lower the temperature the DC conductivity increases

therefore the dual theory is in metal phase, while if the
coupling is negative we have the opposite behavior and it is
dual to an insulating phase. We attributed this behavior of
the coupling of the scalar field to Einstein tensor to that this
coupling is connected to the amount of impurities present in
the theory. In the procedure, the system first is with the
scalar field spatially dependent and the scalar potential has
a constant chemical potential. Then we perturb the system
around the critical temperature. We find that the scalar
develops an x-dependence backreacted solution, which
implies the spontaneously generated inhomogeneous phase
of the system.
The work is organized as follows. In Sec. II we set up the

problem. In Sec. III we studied the probe limit of the theory.
In Sec. IV we discussed the stability of the theory and
calculated the critical temperature. In Sec. V we calculated
numerically the fully backreacted black hole solution and
studied the DC conductivity and finally in Sec. VI are our
conclusions.

II. THE FIELD EQUATIONS IN
HORNDESKI THEORY

The action in Horndeski theory, in which a complex
scalar field which except its coupling to metric it is also
coupled to Einstein tensor reads

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ
16πG

−
1

4
FμνFμν − ðgμνðDμΨÞ�DνΨþm2jΨj2 þ βGμνðDμΨÞ�DνΨÞ

�
; ð1Þ

where

Dμ ¼ ∇μ − iqAμ ð2Þ

and q, m are the charge and the mass of the scalar
field and β is the coupling of the scalar field to Einstein
tensor of dimension length squared. For convenience we
define

Φμν ≡DμΨðDνΨÞ�; ð3Þ

Φ≡ gμνΦμν; ð4Þ

Cμν ≡ gμν þ βGμν: ð5Þ

Subsequently, the field equations resulting from the action
(1) are

Gμν þ Λgμν ¼ 8πTμν; Tμν ¼ TðΨÞ
μν þ TðEMÞ

μν þ βΘμν;

ð6Þ

where,

TðΨÞ
μν ¼ Φμν þΦνμ − gμνðgabΦab þm2jΨj2Þ; ð7Þ

TðEMÞ
μν ¼ Fμ

αFνα −
1

4
gμνFαβFαβ; ð8Þ

and

Θμν ¼ −gμνRabΦab þ Rν
aðΦμa þΦaμÞ þ Rμ

aðΦaν þΦνaÞ −
1

2
RðΦμν þΦνμÞ

−GμνΦ −
1

2
∇a∇μðΦaν þΦνaÞ −

1

2
∇a∇νðΦμa þΦaμÞ þ

1

2
□ðΦμν þΦμνÞ

þ 1

2
gμν∇a∇bðΦab þΦbaÞ þ 1

2
ð∇μ∇ν þ∇ν∇μÞΦ − gμν□Φ; ð9Þ
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and the Klein-Gordon equation is

ð∂μ − iqAμÞ½
ffiffiffiffiffiffi
−g

p
Cμνð∂ν − iqAνÞΨ� ¼

ffiffiffiffiffiffi
−g

p
m2Ψ; ð10Þ

while the Maxwell equations read

∇νFμν þ Cμν½2q2AνjΨj2 þ iqðΨ�∇νΨ − Ψ∇νΨ�Þ� ¼ 0:

ð11Þ

We note that the matter action in (1) has a 1=q2 in front, so
the backreaction of the matter fields on the metric is
suppressed when q is large and the limit q → ∞ defines
the probe limit. When q goes to zero, we have neutral scalar
field and it has no coupling with the Maxwell field.

III. SIGNATURE OF BREAKING
THE TRANSLATION SYMMETRY

IN THE PROBE LIMIT

We first focus on the probe limit in the above setup,
in which the Einstein equations admit the planar
Schwarzschild AdS black hole solution

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ;

fðrÞ ¼ r2 −
r3h
r
: ð12Þ

By setting Ψ ¼ ΨðzÞ and A ¼ ϕðzÞdt in [18] a holographic
superconductor was built in the probe limit in the back-
ground of the black hole (12).
In this section we will break the translational invariance

leading to momentum dissipation and calculate the con-
ductivity in the probe limit. To this end, we consider the
ansatz for the matter fields as

Ψðr; xÞ ¼ φðrÞe−iτx; Aμ ¼ ϕðrÞdt; ð13Þ

where τ indicates the strength of the breaking of the
translational invariance. Then under the metric (12), the
equations of motion for φðrÞ and ϕðrÞ become

�
1þ β

�
f
r2

þ f0

r

��
φ00 þ

�
2

r
þ f0

f
þ β

�
3f0

r2
þ f02

rf
þ f00

r

��
φ0

þ
�
q2ϕ2

f2

�
1þ β

�
f
r2

þ f0

r

��
−
m2

f

�
φ

−
τ2φ

r2f

�
1þ β

�
f0

r
þ f00

2

��
¼ 0; ð14Þ

ϕ00 þ 2

r
ϕ0 −

τ2

r2f
ϕ −

2q2φ2

f

�
1þ β

�
f
r2

þ f0

r

��
ϕ ¼ 0:

ð15Þ

Because of the breaking of the translational invariance in
both the scalar field and vector potential equations we have
an extra term multiplied by τ. We note that when τ ¼ 0 and
β ≠ 0, the system recovers our previous work [18]. And
when τ ¼ 0 and β ¼ 0, this model goes back to the minimal
holographic superconductor of [5].
Near the boundary, the matter fields behave as

φjr→∞ ¼ φ−

rΔ−
þ φþ
rΔþ

; ϕ ¼ μ −
ρ

r
ð16Þ

and Δ is

Δ� ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2 þ 27β

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3β

p ; ð17Þ

where μ and ρ are interpreted as the chemical potential and
charge density in the dual field theory, respectively.
According to the AdS=CFT correspondence, either of

the coefficients φ− and φþ may correspond to the source
of an operator O dual to the scalar field with the other
dual to the vacuum expectation values hO−i ¼

ffiffiffi
2

p
φ−e−iτx,

hOþi ¼
ffiffiffi
2

p
φþe−iτx, depending on the mass window and

the choice of quantization. In details, from (17), the
condition m2 ≥ − 9

4
ð1þ 3βÞ is needed for the relevance

of the operator. When − 5
4
ð1þ 3βÞ ≥ m2 ≥ − 9

4
ð1þ 3βÞ,

both φ− and φþ are normalizable and we can choose both
modes as source while the other as vacuum expectation
values. When m2 ≥ − 5

4
ð1þ 3βÞ, only φþ is normalizable,

so we can only treat φþ as vacuum expectation value of the
operator while φ− as the source. Moreover, we shall give
two comments about the dual theory. First, β modifies the
mass windows which are different from that in Einstein
case [50]. It is obvious that β ¼ −1=3 leads the dual theory
to be ill-defined and the bulk theory at β ¼ −1=3may have
no good holographic dual description in the boundary.
Second, by redefining m2 → ð1þ 3βÞm2, the dual theory
described above seems to reduce the theory dual to Einstein
scalar theory. This question is worthy to further study
because with the redefinition, the action (1) from the bulk
side does not apparently have similarity as the Einstein-
scalar theory.
Equations (14) and (15) can be solved numerically by

doing integration from the horizon to the infinity by taking
regular condition near the horizon. Then we extract the data
near the boundary. As we decrease the temperature to a
critical value Tc, there exists a phase transition from normal
black to superconducting black hole. We choose the boun-
dary condition φ− ¼ 0. So the solutions correspond to
vanishing φþ for normal phase and nonvanishing φþ for
superconducting phase, respectively. We show the critical
temperature Tc in Fig. 1. We can see that as the derivative
coupling β and the momentum dissipation parameter τ are
increasing, the critical temperature is decreasing, indicating
that the system is harder to enter the superconducting phase.
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This behavior can also be seen in Fig. 2 which shows
the condensation gap at the position x ¼ 0. For a fixed
value of the derivative coupling β, as the temperature of
the system decreases, the strength of the condensation
gap is enhanced as the dissipation parameter τ is
increased.
To compute the conductivity in the dual CFT as a

function of frequency, we need to solve the Maxwell
equation for fluctuations of the vector potential Ax. The
Maxwell equation at zero spatial momentum and with a
time dependence of the form e−iωt gives

A00
x þ

f0

f
A0
x þ

�
ω2

f2
−
2φ2

f

�
1þ β

�
f00

2
þ f0

r

���
Ax

−
2qτφ2

r2

�
1þ β

�
f0

r
þ f00

2

��
¼ 0: ð18Þ

We will solve the perturbed Maxwell equation with
ingoing wave boundary conditions at the horizon, i.e.,
Ax ∝ f−iω=3rh . The asymptotic behavior of the Maxwell

field at large radius is Ax ¼ Að0Þ
x þ Að1Þ

x
r þ � � �. Then, accord-

ing to AdS=CFT dictionary, the dual source and expect-

ation value for the current are given by Ax ¼ Að0Þ
x and

hJxi ¼ Að1Þ
x , respectively. Thus, the conductivity is read as

σðωÞ ¼ −
iAð1Þ

x

ωAð0Þ
x

: ð19Þ

We first fix the derivative coupling β ¼ 0.01 and we
vary the dissipative parameter τ. We see in Fig. 3 (left
panel) that when τ ¼ 0 we do not have any peak. As the
τ is increasing, we have a clear formation of peaks. In the
right panel of Fig. 3 we see that as we go beyond
the critical temperature Tc in the supercondacting phase
there is a clear formation of peaks. Finally in Fig. 4 we
fix the dissipative parameter and we vary the derivative
coupling. We see that larger values of β give a clear peak
at larger ω.
This behavior is interesting showing that the AC

conductivity shows a nontrivial structure indicating a
collective excitation of the charge carriers. Similar
behavior was observed in [51] in which the translational
symmetry is broken by massive graviton effects, and also
in holographic models that behave effectively as proto-
types of Mott insulators [52]. A study of competition of
various phases was carried out in [53,54] using as control
parameters the temperature and a doping-like parameter.
This coexistence of phases can be seen more clearly if
you are away from the critical temperature where due to
the proximity effect there is a leakage of Cooper pairs to
the normal phase. There are two competing effects. The
first one is the momentum dissipation which restricts the
kinetic properties of the charge carries and in the same
time the derivative coupling which acts as a doping
parameter magnifying the effect of the momentum dis-
sipation. To have a better understanding of these effects
in the next sections we will study the conductivity in the
fully backreacting theory.
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FIG. 2. The strength of condensation at x ¼ 0 for fixed
β ¼ 0.01.
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FIG. 1. The critical temperature of phase transition depending on τ (left) and β (right).
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IV. SPONTANEOUS BREAKING OF
TRANSLATIONAL INVARIANCE

NEAR THE CRITICALITY

In this section we will discuss the critical tempera-
ture below which the black hole solution will develop
hair and the way we break spontaneously the translational
invariance near the criticality. Our aim is to go beyond the
probe limit and find a fully backreacted hairy black hole
solution. In general the resulted hairy solution could have
two possible sources of instabilities, a negative mass for
the scalar field and from the propagating modes of the
scalar field coming from its kinetic energy. In the con-
text of the AdS=CFT correspondence the first one is
known as the Breitenlohner-Freedman (BF) bound [55,56].

However, this bound corresponds to a conformally coupled
scalar in the background of a Schwarzschild AdS black
hole, and arises in contexts in which the AdS4=CFT3

correspondence is embedded into string theory and M
theory. We should note that our Lagrangian resulted from
the action (1) is not clear how it arises from string or M
theory. On the other hand even if the BF bound is satisfied it
does not guarantee the nonlinear stability of hairy black
holes under general boundary conditions and potentials as
it was discussed in [12].
For the other source of possible instabilities in [20,22]

fully backreacted black hole solutions were found in the
presence of the derivative coupling β. However, these
solutions exists only in the case of a negative sign of
the derivative coupling while if the coupling constant β is

FIG. 3. Real and imaginary part of conductivity. For the left diagrams β ¼ 0.01 and T
Tc

¼ 0.1. For the right diagrams β ¼ 0.01 and
τ ¼ 0.5.

FIG. 4. Real and imaginary part of conductivity for τ ¼ 0.5 and T
Tc

¼ 0.1.
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positive, then the system of Einstein-Maxwell-Klein-
Gordon equations is unstable and no solutions were found.
In [33] a very small window of positive β was shown to be
allowed. For positive derivative coupling the stability of the
Galileon black holes was investigated but there is no any
conclusive result. For example in [57,58] the black hole
quasinormal modes in a scalar-tensor theory with the scalar
field coupled to the Einstein tensor were calculated. In the
following we will calculate the BF bound for the action (1)
and in the next section we will investigate the effects of the
derivative coupling β of both signs.
We consider the following ansatz for the metric,

Maxwell and scalar field respectively

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ e2V1ðrÞdx2 þ e2V2ðrÞdy2;

A ¼ ϕðrÞdt;
Ψ ¼ eikxφðrÞ; ð20Þ

where the functions f, V1, V2, ϕ, φ are all to be determined.
In the normal phase, we have Ψ ¼ 0 and the usual
Reissner-Nordström black hole is a solution to the field
equations where

V1ðrÞ ¼ V2ðrÞ ¼ log r;

fðrÞ ¼ r2
�
1 −

�
r2h þ

μ2

4

�
rh
r3

þ r2hμ
2

4r4

�
;

ϕðrÞ ¼ μ

�
1 −

rh
r

�
: ð21Þ

The Hawking temperature is

T ¼ 3rh
4π

−
μ2

16πrh
: ð22Þ

The near horizon extremal solution is the usual AdS2 ×R2

where the extremal horizon is located at rh ¼ μ
2
ffiffi
3

p and the

AdS2 radius is L2
2 ¼ L2

6
.

From the Klein-Gordon equation (10) in the background
of (20), we see that the scalar Ψ gets an effective
momentum dependent mass

m2
effðrÞ ¼ m2 þ k2Cxx ¼ m2 þ k2

�
1

r2
þ βð2f0 þ rf00Þ

2r3

�
:

ð23Þ

Further considering the expression of (20), we obtain that
an instability in the near horizon region appears when

m2
effðrhÞL2

2 ¼
L2

6

�
m2 þ 12ð6β þ 1Þk2

μ2

�
< m2

BF

¼ −
1

4
ð1þ 3βÞ: ð24Þ

Moreover, to have a well-defined theory, β > −1=3 is
required to satisfy m2

BF < 0. Thus, to fulfill the above
conditions, the range of β is

−
1

3
< β < −

1

6
; ð25Þ

which obviously decreases the effective mass.
In order to find the critical temperature, we have to solve

the Klein-Gordon equation (10) with the ansatz
Ψ ¼ eikxφðrÞ
�
1þ β

�
f
r2

þ f0

r

��
φ00 þ

�
2

r
þ f0

f
þ β

�
3f0

r2
þ f02

rf
þ f00

r

��
φ0

−
�
m2

f
þ k2

r2f
þ βk2

�
f0

r3f
þ f00

2r2f

��
φ¼ 0 ð26Þ

in the background of the Reissner-Nordström black hole.
We have to look for a normalizable solution of the field φ
where the source of φ is zero but the vacuum expectation
value is not. Since the boundary condition of φ is the same
as shown in (16), we will find solutions with φ− ¼ 0 and
φþ ≠ 0. We then integrate the equation numerically shoot-
ing from the horizon and we search for a normalizable
solution. In particular, we fixed the value of the derivative
coupling to β ¼ −1=4, and find out the critical temperature
TcðβÞ corresponding to different momentum. The results
are shown in Fig. 5. We see that the lowest critical
temperature is very small, but certainly happens at a
nonzero value of momentum. As k becomes larger, Tc
increases monotonously, which means that the maximum
critical temperature may go to be infinity. The critical
temperature does not have the bell-shaped behavior as it
was expected [59].
However, to find a finite critical temperature and produce

a bell-shaped diagram, a method of regularization was
proposed in [60] where another term with higher deriva-
tives of the scalar field coupled to Einstein tensor

m2 1

m2 0

5 10 15
k

0.03

0.04

0.05

0.06

0.07

0.08
Tc

FIG. 5. The critical temperature v.s. the wave number.
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−β0jDμGμνDνΨj2 ð27Þ

was added into the action (1). Then by solving the radial
Klein-Gordon equation by setting Ψðr; xÞ ¼ φðrÞ cosðkxÞ,
the authors concluded that when β

μ2
¼ β0

μ4
¼ 0, the maximum

critical temperature Tc is found at k ¼ 0, which shows that
the homogeneous solution is dominant. Turning on the
higher-derivative interaction terms, the Tc of the system
depends on the coupling constants β, β0, and the homo-
geneous solution no longer dominates. Then it was found
that for β large enough while β0 ¼ 0, the asymptotic
(k2=μ2 → ∞) transition temperature will be higher than
that of the homogeneous solution. In this case, the
transition temperature monotonically increases as we
increase the wave number k having the same behavior
we found in Fig. 5. As they switched on β0 > 0, the
transition temperature attains a maximum value at a finite k
as it was shown in the Fig. 2 of [60]. Thus the second
higher-derivative coupling acts as a UV cutoff on the wave
number,
The physical explanation of this behavior is that the

presence of the first derivative coupling to Einstein tensor β,
is the encoding of the electric field’s backreaction near the
horizon and it is the cause of spontaneous generation of
spatial modulation, while the presence of the second higher
derivative coupling β0 can be understood as stabilizing the
inhomogeneous modes introduced by the first derivative
coupling.
In the next section we will find numerically a fully

backreacted hairy black hole solution of the charged scalar
field coupled to Einstein tensor with the coupling β,
assuming that near the critical temperature T ≈ Tc the
effects of the cutoff are negligible and set β0 ¼ 0. Then,
trusting our linearization below the critical temperature
because it will not rely on a gradient expansion but on an
order parameter proportional to ðT − TcÞ1=2, we will
calculate the conductivity.

V. HAIRY BLACK HOLE SOLUTIONS BEYOND
THE PROBE LIMIT

A. The hairy black hole with full backreaction

To find the black hole solution with full backreaction, we
consider the ansatz of the fields as

ds2 ¼ 1

z2

�
−UðzÞdt2 þ 1

UðzÞdz
2 þV1ðzÞdx2 þV2ðzÞdy2

�
;

A¼ AtðzÞdt;
Φ¼ eikxφðzÞ; ð28Þ

then the horizon is located at z ¼ 1 and the asymptotical
boundary is at z → 0. With this ansatz, the coupled
Einstein-Maxwell-scalar field equations (6), (10) and (11)

become a set of coupled differential equations which are
given in the Appendix A.
To solve numerically the highly coupled system, we need

to analyze the asymptotical solution of the scalar field φ in
the Klein-Gordon equation (10) or its equivalent equa-
tion (16) with the coordinate transformation z ¼ rh=r. In
order to simplify the asymptotical behavior of the scalar
field, we will choose

m2 ¼ −2ð1þ 3βÞ; ð29Þ

so that φjz→0 ¼ φ−zþ φþz2. Furthermore, as pointed out
in [61,62], it is convenient to define

UðzÞ ¼ ð1 − zÞuðzÞ;
AtðzÞ ¼ ð1 − zÞaðzÞ;
φðzÞ ¼ zψðzÞ; ð30Þ

so, we will obtain numerically the functions uðzÞ,
ψðzÞ, aðzÞ, V1ðzÞ and V2ðzÞ with appropriate boundary
conditions.
The boundary conditions at radial infinity (z → 0) read

uðzÞ ¼ −
Λ
3
þOðzÞ; ψðzÞ ¼ λþOðzÞ;

aðzÞ ¼ μ − ρzþOðz2Þ; V1ðzÞ ¼ 1þOðzÞ;
V2ðzÞ ¼ 1þOðzÞ; ð31Þ

and we takeΛ ¼ −3. We impose regularity condition for all
the fields at the horizon. The boundary conditions for the
numerics we imposed, are similar to the boundary con-
ditions which were discussed in details in [42]. In our case
we have an additional β coupling term, but this will not
modify the boundary conditions after we propose the
relation (29). Thus, for fixedm2, our theory is also specified
by three dimensionless parameters T=μ, λ=μ and k=μwhich
are similar to the ones in [42].
Profiles of the fields are shown in Fig. 6–9 for a choice of

parameters. These figures show that we have found hairy
black hole solutions with k ¼ 0 (Figs. 6, 7) or k ≠ 0
(Figs. 8, 9) having the translational symmetry preserved
or broken. We observe that in both cases the found hairy
black hole solutions have the same behavior and the scalar
field is regular on the horizon.

B. Thermodynamics

Now we study the thermodynamics of the black holes we
numerically obtained. We shall use the Euclidean formal-
ism [63]. This method has been used in the study of the
thermodynamics of black holes in Horndeski gravity in
Refs. [25,64–66]. The Euclidean and Lorentzian action are
related by IE ¼ −iI, and the Euclidean time is τ ¼ it. The
Euclidean continuation of the metric (28) is
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ds2 ¼ 1

z2

�
N2ðzÞUðzÞdτ2 þ 1

UðzÞ dz
2

þ V1ðzÞdx2 þ V2ðzÞdy2
�
; ð32Þ

and the electric potential to be considered is

A ¼ AτðzÞdτ; ð33Þ
also, we consider the scalar field is given by Φ ¼ eikxφðzÞ
and we hold k fixed in the following. Requiring the absence
of conical singularity at the horizon in the Euclidean
solution (32), the Euclidean time must be periodic, with
period β̂ ¼ 1=T; therefore, the Hawking temperature is

0.2 0.4 0.6 0.8 1.0
z0.050

0.055
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Ψ z

0.2 0.4 0.6 0.8 1.0
z

0.2363

0.2364

0.2365

0.2366

0.2367

0.2368

a z

FIG. 7. The behavior of the fields ψðzÞ, aðzÞ as a function of z for β ¼ 0.1, λ=μ ¼ 0.3, k=μ ¼ 0 and T=μ ¼ 1.
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0.997
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FIG. 8. The behavior of the fields uðzÞ, V1ðzÞ and V2ðzÞ as a function of z for β ¼ 0.1, λ=μ ¼ 0.3, k=μ ¼ 1 and T=μ ¼ 1.
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FIG. 9. The behavior of the fields ψðzÞ, aðzÞ as a function of z for β ¼ 0.1, λ=μ ¼ 0.3, k=μ ¼ 1 and T=μ ¼ 1.
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FIG. 6. The behavior of the fields uðzÞ, V1ðzÞ and V2ðzÞ as a function of z for β ¼ 0.1, λ=μ ¼ 0.3, k=μ ¼ 0 and T=μ ¼ 1.
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given by T ¼ −U0ð1Þ=4π. The Euclidean action evaluated
for the metric (32), with 8πG ¼ 1, takes the Hamiltonian
form

IE ¼ −β̂σ
Z

z¼0

z¼1

dzðNHþ AτGÞ þ Bsurf ; ð34Þ

where we have performed some integrations by parts. σ is

the area of the spatial 2-section, G ¼ ∂zπ
z, where πz ¼ffiffiffiffiffiffiffiffi

V1V2

p
N A0

τ is the conjugate momenta of the electromagnetic
field, H is the reduced Hamiltonian, which is given by

H ¼
ffiffiffiffiffiffiffiffiffiffiffi
V1V2

p �
βUφ2k2

z2V1

þ φ2k2

z2V1

þ 3βUφ2V 02
1 k

2

4V3
1

þ 2βUφ02k2

V1

þ βφ2U0V 0
2k

2

4V1V2

þ 4βUφφ0k2

zV1

þ βφU0φ0k2

V1

þ βUφV 0
2φ

0k2

V1V2

þ βUφ2V 00
2k

2

2V1V2

þ 2βUφφ00k2

V1

−
2βUφV 0

1φ
0k2

V2
1

−
βUφ2V 00

1k
2

2V2
1

−
βφ2U0V 0

1k
2

4V2
1

−
βUφ2V 0

1k
2

zV2
1

−
βUφ2V 0

1V
0
2k

2

4V2
1V2

−
βUφ2V 02

2 k
2

4V1V2
2

þm2φ2

z4
þ βU2φ02

z2
þ βU2V 02

1 φ
02

4V2
1

þ βU2V 02
2 φ

02

4V2
2

þ Uφ02

z2
þ 3βUU0φ02

z
þ Λ
z4

þ 3U
z4

þ U0V 0
1

4z2V1

þ U0V 0
2

4z2V2

þ UV 0
1V

0
2

4z2V1V2

þ UV 00
1

2z2V1

þ UV 00
2

2z2V2

þ 4βU2φ0φ00

z
−
U0

z3
−
βU2V 0

1φ
0φ00

V1

−
βU2φ02V 00

1

2V1

−
3βUU0V 0

1φ
02

4V1

−
UV 0

1

z3V1

−
UV 02

1

4z2V2
1

−
βU2V 0

2φ
0φ00

V2

−
βU2φ02V00

2

2V2

−
3βUU0V 0

2φ
02

4V2

−
UV0

2

z3V2

−
βU2V 0

1V
0
2φ

02

4V1V2

−
UV 02

2

4z2V2
2

�
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
V1V2

p ðπzÞ2; ð35Þ

and Bsurf is a surface term and is determined by considering that the Euclidean action has an extremum [67]. The equations
of motion are determined varying the action with respect to the fields N, U, V1, V2, φ, Aτ and πz. N and Aτ are Lagrange
multipliers in (34), and varying respect to them yields the Hamiltonian constraint H ¼ 0, which is equivalent to the t − t
component of the gravitational equations, and the Gauss law ∂zπ

z ¼ 0, respectively; therefore, the value of the action on the
classical solutions is just given by the surface term. It can be show that the field equations obtained by varying the Euclidean
action with respect to the fields N,U, V1, V2, φ, Aτ and πz are equivalent to the original ones, and the metric functionN can
be set toN ¼ 1. In order to have a well-defined variational problem, the surface term Bsurf must cancel the surface terms that
arise from the variation of the bulk term in the action (34), and it is explicitly given by

δBsurf ¼ −
β̂σ

4z3ðV1V2Þ5=2
½V2δφ

0ð−8k2βUV2
1V

2
2φz

3 þ 4βU2V2
1V

2
2V

0
1φ

0z3 þ 4βU2V3
1V2V 0

2φ
0z3 − 16βU2V3

1V
2
2φ

0z2Þ

þV2δV 0
1ð2k2βUV1V2

2φ
2z3 þ 2βU2V2

1V
2
2φ

02z3 − 2UV2
1V

2
2zÞ þV2δV1ð−βUV2

1V
2
2U

0φ02z3 − βU2V1V2
2V

0
1φ

02z3

− k2βV1V2
2φ

2U0z3 − 3k2βUV2
2φ

2V 0
1z

3 þV2
1V

2
2U

0zþUV1V2
2ð4k2βφφ0z2 þ 4k2βφ2zþV 0

1Þz− 2z3V2
1V

2
2AτA0

τÞ
þV2δφð4k2βV2

1V
2
2φU

0z3 þ 4k2βUV1V2
2φV

0
1z

3 − 2βUV3
1V2U0V 0

2φ
0z3 − 2βU2V2

1V2V 0
1V

0
2φ

0z3 þ 8βU2V2
1V

2
2V

0
1φ

0z2

þ 8βU2V3
1V2V 0

2φ
0z2 − 2βUV2

1V
2
2ð8φk2 þ zð4k2 þU0V 0

1Þφ0Þz2 − 8UV3
1V

2
2ð3βU − zβU0 þ 1Þφ0zÞ

þV2δV2ðk2βV2
1V2φ

2U0z3 þ k2βUV2
1φ

2V 0
2z

3 −V3
1V2U0ðz2βUφ02 − 1Þz−UV3

1V
0
2ðz2βUφ02 − 1Þz− 2z3V3

1V2AτA0
τÞ

þV2δUð3βUV2
1V

2
2V

0
1φ

02z3 þ k2βV1V2
2φ

2V 0
1z

3 − k2βV2
1V2φ

2V 0
2z

3 −V2
1V

2
2ð4k2βφφ0z2 þV 0

1Þz
−V3

1V2V 0
2ð1− 3z2βUφ02Þz− 4V3

1V
2
2ð3z2βUφ02 − 1ÞÞ þV2δV 0

2ð−2k2βUV2
1V2φ

2z3

− 2UV3
1V2ð1− z2βUφ02ÞzÞ� þ β̂σ

ffiffiffiffiffiffiffiffiffiffiffi
V1V2

p
AτδA0

τ: ð36Þ

In order to determine the surface term, we take into account the behavior of the fields at the horizon z ∼ 1

UðzÞ ∼ U0ð1Þðz − 1Þ þOððz − 1Þ2Þ;
V1ðzÞ ∼ V1H þOððz − 1ÞÞ;
V2ðzÞ ∼ V2H þOððz − 1ÞÞ;
AτðzÞ ∼ A0

τð1Þðz − 1Þ þOððz − 1Þ2Þ;
φðzÞ ∼ φH þOððz − 1ÞÞ: ð37Þ
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and also the asymptotical behavior of the fields at infinity, which is given by

UðzÞ ∼ 1 − ð1þ 5βÞλ2z2 þ ðM þ ð1þ 5βÞλ2Þz3 þOðz4Þ;
V1ðzÞ ∼ 1 − ð1þ 5βÞλ2z2 þ αz3 þOðz4Þ;
V2ðzÞ ∼ 1 − ð1þ 5βÞλ2z2 − ð8ηλð1þ 6βÞ=3þ αÞz3 þOðz4Þ;
AτðzÞ ∼ μ − ðρþ μÞzþOðz2Þ;
φðzÞ ∼ λzþ ηz2 þOðz3Þ; ð38Þ

where, we have considered Λ ¼ −3 as in the previous section. Then, the variation of the surface term at the horizon is

δBsurf jz¼1 ¼ −β̂σ
�
U0ð1ÞV2HðV1H − k2βφ2

HÞ
4V1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p δV1H þU0ð1ÞðV1H þ k2βφ2
HÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p δV2H

þ U0ð1Þk2βV2HφHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p δφH

�
¼ δ

�
σ
2πðV1H þ k2βφ2

HÞV2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p
�
; ð39Þ

where we have used β̂ ¼ 1=T ¼ −4π=U0ð1Þ. From the above expression we obtain the following surface term at the horizon

Bsurf jz¼1 ¼ σ
2πðV1H þ k2βφ2

HÞV2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p ; ð40Þ

On the other hand, the variation of the surface term at infinity is given by

δBsurf jz∼0 ≈ −β̂σ
��

−
4βλ

z
− 8βηþOðzÞ

�
δφ0jz∼0 þ

�
−
2λð1þ 3βÞ

z2
−
4ηð1þ 3βÞ

z
þOð1Þ

�
δφjz∼0

þ
�
−

1

2z2
þOð1Þ

�
δV 0

1jz∼0 þ
�
−

1

2z2
þOð1Þ

�
δV 0

2jz∼0 þ
�
1

z3
þOðz−1Þ

�
δUjz∼0 − AτδA0

τjz∼0
�
; ð41Þ

where

δφ0jz∼0 ≈ δλþ 2δηzþOðz2Þ;
δV 0

1jz∼0 ≈ −4ð1þ 5βÞλδλzþ 3δαz2 þOðz3Þ;
δφjz∼0 ≈ δλzþ δηz2 þOðz3Þ;
δV 0

2jz∼0 ≈ −4ð1þ 5βÞλδλz − ð8ð1þ 6βÞδðληÞ þ 3δαÞz2 þOðz3Þ;
δUjz∼0 ≈ −2ð1þ 5βÞλδλz2 þ ðδM þ 2ð1þ 5βÞλδλÞz3 þOðz4Þ; δA0

τjz∼0 ≈ −δðρþ μÞ þOðzÞ: ð42Þ

Notice that in (41) the divergent terms coming from the purely gravitational contribution exactly cancels the divergent terms
coming from the scalar field, yielding a finite expression for the variation of the boundary term at infinity

δBsurf jz¼0 ¼ β̂σð−δM − 4ð1þ 6βÞδðληÞ − ð1þ 5βÞδλ2 þ 2ð1þ 7βÞλδηþ 4ð1þ 5βÞηδλ − Ψðρþ μÞÞ; ð43Þ

where the chemical potential is given by Ψ ¼ Aτð0Þ − Aτð1Þ ¼ μ. It is necessary to impose boundary conditions on the
scalar field, η ¼ ηðλÞ, in order to remove the variations in the above equation. Considering η ¼ dWðλÞ=dλ, the surface term
at infinity is

Bsurf jz¼0 ¼ β̂σ

�
−M − 2ð1þ 5βÞλ dWðλÞ

dλ
− ð1þ 5βÞλ2 þ 2ð1þ 3βÞWðλÞ −Ψðρþ μÞ

�
: ð44Þ

Working in the grand canonical ensemble, we can fix the temperature and the chemical potential Ψ at the horizon.
Therefore, the on-shell Euclidean action is given by
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IE ¼ Bsurf jz¼0 − Bsurf jz¼1

¼ −σ
2πðV1H þ k2βφ2

HÞV2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p þ β̂σ

�
−M − 2ð1þ 5βÞλ dWðλÞ

dλ
− ð1þ 5βÞλ2 þ 2ð1þ 3βÞWðλÞ −Ψðρþ μÞ

�
: ð45Þ

Using the above expression, we deduce the thermodynamics quantities: mass, electric charge and entropy, which are given
respectively by

M ¼
� ∂
∂β̂ −

1

β̂
Ψ

∂
∂Ψ

�
IE ¼ σ

�
−M − 2ð1þ 5βÞλ dWðλÞ

dλ
− ð1þ 5βÞλ2 þ 2ð1þ 3βÞWðλÞ

�
;

Q ¼ −
1

β̂

∂IE
∂Ψ ¼ σðρþ μÞ;

S ¼ β̂
∂IE
∂β̂ − IE ¼ 2πσðV1H þ k2βϕ2

HÞV2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1HV2H

p : ð46Þ

The condition of positivity of the entropy implies V1Hþ
k2βϕ2

H > 0. The above expression for the mass requires to
determine the boundary conditions at spacelike infinity.
This means that η (¼ φþ) should generally be some func-
tion of λ (¼ φ−). As we are interested in holographic
applications, we demand boundary conditions for the scalar
field to preserve the asymptotic AdS symmetry. The
boundary conditions that the solution satisfies is deter-
mined by demanding that the solution is regular. This in
turn determines what is the boundary condition that the
hairy black holes are compatible with [68,69]. A discussion
about the boundary conditions for computing the mass of
hairy black holes that preserve the asymptotic anti-de Sitter
invariance is given in [70]. In [68,71] a general and syste-
matic method to address multitrace deformations and to
properly account for the fact that the boundary is a con-
formal boundary was presented. We note that when the
mass of the scalar field lies in the range − 5

4
ð1þ 3βÞ ≥

m2 ≥ − 9
4
ð1þ 3βÞ, the scalar hair satisfies mixed boundary

conditions. The boundary conditions in our numerical hairy
black hole solution deserve further studies.
Then, the free energy of the thermal sector is

F ¼ IE=β̂ ¼ M − S=β̂ − ΨQ: ð47Þ
Even though we have discussed the instability of system
and the critical temperatures in last section, it would very
interesting to evaluate the free energy to further figure out
the phase structure of the solutions with possible boundary
conditions. Due to the complexity of the calculations, we
expect to study this question in the near future.

C. Conductivity

Having the fully backreacted solution we will calculate
the conductivity and compare the results with the con-
ductivities we found in the probe limit in Sec. III. To
calculate the conductivity at the linear level we consider the
following perturbations

δgtx ¼
1

z2
e−iωthtxðzÞ; δφ ¼ ieikx−iωtzδφ̃ðzÞ;

δAx ¼ e−iωtaxðzÞ: ð48Þ

We will consider two cases k ¼ 0 and k ≠ 0 depending on
having momentum relaxation or not.

1. k = 0

In this case, the equation of the scalar field perturbation
decoupled from the other equations. The coupled differ-
ential equations for the electromagnetic and gravitational
perturbations are

a00x þ
a0xðV1ð2V2U0 þ UV 0

2Þ − UV2V 0
1Þ

2UV1V2

þ V1V2A0
th0tx − htxV2A0

tV 0
1

UV1V2

þ ω2ax
U2

¼ 0; ð49Þ

2iωz2axV1A0
t − iωV1h0txðβz2Uχ02 − 1Þ

þ iωhtxV 0
1ðβz2Uχ02 − 1Þ ¼ 0; ð50Þ

which control the conductivity. Eliminating htx from the
above equation, we get

2axV1V2

�
2z2A0

t
2

βz2Uχ02 − 1
þ ω2

U

�
þ 2UV1V2a00x

þ a0xðV1ð2V2U0 þUV 0
2Þ −UV2V 0

1Þ ¼ 0: ð51Þ
When z → 0, the asymptotic behavior of the perturbation

is derived to be axðzÞ ¼ a0x þ za1x þOðz2Þ. Then, accord-
ing to holographic dictionary, the conductivity is given by

σðωÞ ¼ 1

iω
a1x
a0x

: ð52Þ

Near the black hole horizon z → 1, we impose purely
ingoing boundary conditions
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axðzÞ ¼ ð1 − z2Þ−iω=uð1ÞðaHx þOð1 − zÞÞ ð53Þ

with uð1Þ ¼ −U0ð1Þ ¼ 4πT. Then, using the results from
the last subsection, we solve Eq. (51) at the boundary and
calculate the conductivity using the relation (52). The
conductivity σðωÞ with k ¼ 0 is shown in Fig. 10. In this
case, the hairy solution is homogeneous in spatial direc-
tions and the translational symmetry is hold. So the
conductivity behaves similarly as that in RN black hole,
the DC conductivity has a delta function at zero frequency
due to the infinity of imaginary part and the real part of σ
approaches to 1 at large frequency limit. Observe that we
have the same behavior of the conductivity for both signs of
the derivative coupling β.

2. k ≠ 0

Now, we turn to the case with k ≠ 0 in which the
coupled system is more complicated because of the highly
coupled three perturbed equations, which are listed in the
Appendix B.
To read off the conductivity, we analyze the boundary

conditions of the perturbed fields. The asymptotic behavior
of the fields are htxðzÞ ¼ h0tx þOðzÞ, axðzÞ ¼ a0x þ za1x þ
Oðz2Þ and δφ̃ðzÞ ¼ δφ̃0 þ zδφ̃1 þOðz2Þ and the expres-
sion of the conductivity is also given in (52). The behavior
of the fields near the horizon is

axðzÞ ¼ ð1 − z2Þ−iω=uð1ÞðâHx þOð1 − zÞÞ;
htxðzÞ ¼ ð1 − z2Þ−iω=uð1ÞðĥHtxð1 − zÞ þOðð1 − zÞ2ÞÞ;
δφ̃ðzÞ ¼ δφ̂H þOð1 − zÞ; ð54Þ

with uð1Þ ¼ −U0ð1Þ ¼ 4πT which are all regular.
The conductivity for different couplings β is shown in

Fig. 11 with fixed k=μ ¼ 1=
ffiffiffi
2

p
, λ=μ ¼ 0.5 and T=μ ¼ 0.1.

We see with nonzero k, the DC conductivity σð0Þ is finite
which according to the holographic dictionary our hairy
black hole solution in the bulk is dual to a material with
momentum relaxation on the boundary. If β ¼ 0we recover
the results of the Q-Lattice [42] in which the translational
invariance is explicitly broken. We observe that as the
derivative coupling β is increased in positive values the
electric conductivity σð0Þ becomes lower while if β is
negative, σð0Þ is enhanced.
It is interesting to see how the DC conductivity varies

with the temperature for various values of the coupling β.
We expect in the dual theory at low temperatures T ≪ μ,
the DC conductivity to increase as the temperature is lower
and the material to enter a metal phase, while as the
temperature is increased the material to enter an insulating
phase with the DC conductivity to decrease.
We observe these changes of phases as we vary the

coupling β. In Fig. 12 we fix β ¼ 0.1 and show the
conductivities for different low enough temperatures. We
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see that the dual theory is in a metal phase because DC
conductivity increases as the temperature decreases. In
Fig. 13 for β ¼ −0.2, the DC conductivity decreases as we
decreases T and the dual theory is in an insulating phase.
The Q-Lattice model in [42] also supports two phases of a
doped material in the boundary theory. However, these two
phases are dual to two different black hole solutions in the
bulk. In our case the coupling β plays the role of the doping
parameter.
In Figs. 14 and 15 we show the conductivity for different

momentum dissipation numbers k for positive and negative
coupling β and for fixed low temperature. They show a
competing effect between k and the coupling β. In the metal
phase Fig. 14 shows that if the momentum dissipation is

large the conductivity is low. This can be understood from
the fact that the charge carriers for large momentum
dissipation have more chances of finding impurities,
because of the presence of a non-zero coupling β, so they
loose energy and for this reason the conductivity is low. In
the insulating phase Fig. 15 shows that even for large
momentum dissipation the conductivity is low, because the
charge carriers do not have the freedom to travel.
In [18] it was shown that in the probe limit the bulk

theory is dual to a material in a metal phase and the positive
coupling β signifies the amount of impurities in the
material. In the fully backreacted theory we study in this
work if the coupling β is positive we still have impurities
but their concentration is not high enough to prevent
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FIG. 12. The real and imaginary part of the conductivity σðωÞ for different temperatures with positive coupling β ¼ 0.1. We set
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conductivity. However, if β is negative then the friction on
the velocities of the charge carriers is so high that the
system enters the insulating phase. A change of sign of the
coupling β in the gravity sector corresponds to a change of
sign of the kinetic energy of the scalar field coupled to
Einstein tensor. It is interesting to note that in the
boundary theory due to proximity effect [72] there is a
reflection of the charge carriers on the interface between
the normal and the superconducting phases of the
material. This is known as the Andreev Reflection effect
[73]. Note also, this only happens in very low temper-
atures which means that there is no thermal energy to
influence the transition. This behavior of the coupling β is
a very interesting effect, it is a pure gravity effect because
the derivative coupling is showing how strong is the
coupling of matter to curvature.

VI. CONCLUSIONS

In this paper, we analyzed the possible dual phases in
Horndeski theory with a coupling between the scalar field
and the Einstein tensor. Extending the holographic study in
[18], we considered the simple inhomogeneous matter field
in the probe limit, and studied the holographic super-
conducting phase transition and the conductivities of the
dual boundary theory. The AC conductivity shows a
nontrivial structure indicating a collective excitation of
the charge carriers as a result of the breaking of translation
invariance and the presence of the coupling of the scalar
field to the Einstein tensor.
We then discussed possible instabilities in the theory and

we analyzed the spontaneous breaking of translation
invariance near the critical temperature. We studied the
fully backreacted system of Einstein-Maxwell-scalar equa-
tions and numerically found the hairy black hole solution,
and then we also analyze the thermodynamic of the hairy
black hole solution. We computed the conductivity of the
dual theory and studied the generated phase. For the zero
wave number of the scalar field, the DC conductivity was
divergent as expected and the system is dual to ideal
conductor. For nonzero wave number, the DC conductivity
was finite having momentum dissipation on the dual

boundary theory. At low temperatures, we found that for
positive coupling the DC conductivity increases as the
temperature is lower, indicating that its dual phase is a
metal. For negative coupling we found the DC conductivity
to decrease as the temperature is lower indicating that the
dual phase is an insulator.
Our results are interesting and deserve a further study.

We found that there is a change of a phase in the boundary
theory as we change the value and the sign of the coupling
of a charged scalar field to the Einstein tensor. This
coupling shows the way matter is coupled to curvature
and it is a pure gravity effect. On the dual theory our results
show that the variation of this coupling influences the
kinetic properties of the charge carriers. In a way this
coupling parameterizes the amount of impurities present in
a material on the boundary. On the other hand, a change on
the sign of the kinetic energy of the scalar field allows the
transition from one phase to an another in the boundary
theory.
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APPENDIX A: INDEPENDENT EQUATIONS OF
MOTIONS WITH FULL BACKREACTION

In this Appendix, we show the equations of motion we
solve to determine the hairy black hole solution in Sec. VA.
The Einstein field equations are
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(i) tt component

0 ¼ −V3
1ð2V2

2ðz4A0
t
2 þ 2Λþ 2m2φ2 þ 2Uðz2φ0ðφ0ð3βzU0 þ βU þ 1Þ þ 4βzUφ00Þ þ 3Þ − 2zU0Þ

þ zV2ðzU0V 0
2 þ Uð2zV 00

2 − V 0
2ð3βz3U0φ02 þ 4ÞÞ − 2βz3U2φ0ðV 00

2φ
0 þ 2V 0

2φ
00ÞÞ þ z2UV 02

2 ðβz2Uφ02 − 1ÞÞ
þ z2V1V2ðV 0

1ðβk2z2V2φ
2U0 þ UðV2ð4βk2zφð2zφ0 þ φÞ þ V 0

1Þ þ βk2z2φ2V 0
2Þ − βz2U2V2V 0

1φ
02Þ

þ 2βk2z2UV2φ
2V 00

1Þ − zV2
1ðV2ðβk2z3φ2ðU0V 0

2 þ 2UV00
2Þ þ 4βk2z3UφV 0

2φ
0 þ zUV 0

1V
0
2ð1 − βz2Uφ02ÞÞ

þ V2
2ðUð8βk2z3φ02 − V 0

1ð3βz3U0φ02 þ 4Þ þ 2zV 00
1Þ þ 4βk2z2φððzU0 þ 4UÞφ0 þ 2zUφ00Þ

þ 4k2zφ2ðβU þ 1Þ þ zU0V 0
1 − 2βz3U2φ0ðV 00

1φ
0 þ 2V 0

1φ
00ÞÞ þ βð−k2Þz3Uφ2V 02

2 Þ − 3βk2z4UV2
2φ

2V 02
1 ðA1Þ

(ii) zz component

0 ¼ V2
1ð2V2ðz4A02

t þ 2Λþ 2m2φ2 þ 2Uðz2φ02ð3βzU0 − 9βU − 1Þ þ 3Þ − 2zU0Þ
þ zðzU0 − 4UÞV 0

2ð1 − 3βz2Uφ02ÞÞ þ βð−k2Þz3φ2V 0
1ðzV2U0 þUðzV 0

2 − 4V2ÞÞ
þ zV1ðzV 0

2ðβz2ðk2φ2U0 þ 4k2Uφφ0 − 3U2V 0
1φ

02Þ þUV 0
1Þ þ V2ð4βk2z2φðzU0 − 4UÞφ0

− 4k2zφ2ðβU − 1Þ þ ð4U − zU0ÞV 0
1ð3βz2Uφ02 − 1ÞÞÞ ðA2Þ

(iii) xx component

0 ¼ V1ð2V2
2ð−zðz3ðA02

t þ βU02φ02Þ − zU00 þ 4U0Þ þ 2Λþ 2m2φ2 þUðz2φ0ðφ0ðβzð6U0 − zU00Þ þ 2Þ
− 2βz2U0φ00Þ þ 6Þ þ 2βz2U2φ0ð4zφ00 þ φ0ÞÞ − 2zV2ð−zU0V 0

2 þUð2V 0
2ðβz3U0φ02 þ 1Þ − zV 00

2Þ
þ βz3U2φ0ðV 00

2φ
0 þ 2V 0

2φ
00ÞÞ þ z2UV 0

2
2ðβz2Uφ02 − 1ÞÞ þ k2z2φ2ð−2βzV2ððzU0 − 2UÞV 0

2 þ zUV 00
2Þ

− 2V2
2ðβzðzU00 − 4U0Þ þ 6βU þ 2Þ þ βz2UV0

2
2Þ ðA3Þ

(iv) yy component

0 ¼ 2V3
1ð−zðz3ðA02

t þ βU02φ02Þ − zU00 þ 4U0Þ þ 2Λþ 2m2φ2 þ Uð−2βz4U0φ0φ00 þ z2φ02ðβzð6U0

− zU00Þ þ 2Þ þ 6Þ þ 2βz2U2φ0ð4zφ00 þ φ0ÞÞ þ z2V1ð−V 0
1ð2βk2z2φ2U0 þ Uð4βk2zφð2zφ0 þ φÞ þ V 0

1Þ
− βz2U2V 0

1φ
02Þ − 2βk2z2Uφ2V 00

1Þ þ 2zV2
1ðk2zφ2ðβz2U00 þ 2βU þ 2Þ þUð4βk2z3φ02

− 2V 0
1ðβz3U0φ02 þ 1Þ þ zV 00

1Þ þ 4βk2z2φððzU0 þ 2UÞφ0 þ zUφ00Þ þ zU0V 0
1 − βz3U2φ0ðV 00

1φ
0 þ 2V 0

1φ
00ÞÞ

þ 3βk2z4Uφ2V 0
1
2 ðA4Þ

The time component of the Maxwell Equations gives

−2V1V2A00
t − A0

tðV2V 0
1 þ V1V 0

2Þ ¼ 0 ðA5Þ

and the Klein Gordon equation has the form

0 ¼ z2V1ð2βzV2ðUð2k2φð2V 0
2 − zV 00

2Þ þ 3zU0V 0
1V

0
2φ

0Þ − 2k2zφU0V 0
2 þU2ðzV 0

1V
0
2φ

00 þ φ0ðzV 00
1V

0
2 þ V 0

1ðzV 00
2 − 4V 0

2ÞÞÞÞ
þ 2V2

2ð−2k2φðβzðzU00 − 4U0Þ þ 6βU þ 2Þ þ βzUðzU0 − 4UÞV 0
1φ

00 þ φ0ðβzUðzU0 − 4UÞV 00
1

þ V 0
1ðβz2U02 þUðβzðzU00 − 10U0Þ þ 2Þ þ 10βU2ÞÞÞ þ βz2UV 0

2
2ð2k2φ −UV 0

1φ
0ÞÞ

þ V2
1ð8V2

2ðzðzUφ00ð−βzU0 þ 3βU þ 1Þ − φ0ðzU0ðβzU0 − 1Þ þUðβzðzU00 − 7U0Þ þ 2Þ þ 6βU2ÞÞ
−m2φÞ þ βz3Uð4U − zU0ÞV 0

2
2φ0 þ 2z2V2ðβzUðzU0 − 4UÞV 0

2φ
00 þ φ0ðβzUðzU0 − 4UÞV 00

2

þ V 0
2ðβz2U02 þUðβzðzU00 − 10U0Þ þ 2Þ þ 10βU2ÞÞÞÞ − βz3UV2V 0

1
2φ0ðzV2U0 þ UðzV 0

2 − 4V2ÞÞ: ðA6Þ
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APPENDIX B: COUPLED PERTURBED EQUATIONS DETERMINING THE CONDUCTIVITY

In this Appendix, we show the perturbed equations of motion we solve to determine conductivity for k ≠ 0 in Sec. V C 2.
The perturbed Maxwell equation is

0 ¼ U2ð−V2ÞV 0
1a

0
x þ U2V1V 0

2a
0
x þ 2U2V1V2a00x þ 2UV1V2U0a0x þ 2V1V2ω

2ax þ 2UV1V2A0
th0tx − 2UV2htxV 0

1A
0
t; ðB1Þ

the tx—component of Einstein equation for the perturbed htx gives

0 ¼ 2V2
1V2ωz2axA0

t þ V1V2ðβð−k2Þωz2φ2h0tx þ ωhtxV 0
1ðβUz2φ02 − 2Þ − iβkUzδφ̃0φðzU0V 0

1 − 2UðV 0
1 − zV00

1ÞÞ
þ iβδφ̃kUzφ0ðzU0V 0

1 þ 2UzV 00
1 − 2UV 0

1ÞÞ þ βkV2z2V 0
1ðkωhtxφ2 þ iU2V 0

1ðδφ̃0φ − δφ̃φ0ÞÞ
− iV2

1ðβkUzV 0
2ð2U − zU0Þðδφ̃0φ − δφ̃φ0Þ þ V2ð4kUðδφ̃φ0 − δφ̃0φÞ − iωh0txðβUz2φ02 − 2ÞÞÞ ðB2Þ

and the perturbed Klein-Gordon equation is

0 ¼ zβV1ð−4ð6ð2δφ̃0 − zδφ̃00ÞV2
2 þ zðV 0

2ð2zδφ̃00 − 5δφ̃0Þ þ 2zδφ̃0V 00
2ÞV2 − z2δφ̃0ðV 0

2Þ2ÞV2
1

þ zð4ðV 0
1ð5δφ̃0 − 2zδφ̃00Þ − 2zδφ̃0V 00

1ÞV2
2 þ 2zðzδφ̃0V 0

2V
00
1 þ V 0

1ðV 0
2ðzδφ̃00 − 4δφ̃0Þ þ zδφ̃0V 00

2ÞÞV2 − z2δφ̃0V 0
1ðV 0

2Þ2ÞV1

þ z2V2δφ̃
0ðV 0

1Þ2ð4V2 − zV 0
2ÞÞU3 þ zV1ð−βV2

2U
0δφ̃0ðV 0

1Þ2z3 þ 2V1ðð−12βδφ̃k2 þ V 0
1ðβU0δφ̃00z2 þ δφ̃0ðβU00z2

− 10βU0zþ 2ÞÞ þ z2βU0δφ̃0V 00
1ÞV2

2 þ zβð2δφ̃ð2V 0
2 − zV 00

2Þk2 þ 3zU0δφ̃0V 0
1V

0
2ÞV2 þ k2z2βδφ̃ðV 0

2Þ2Þz
þ V2

1ð−βU0δφ̃0ðV 0
2Þ2z3 þ 2V2ðβU0δφ̃0V 00

2z
2 þ V 0

2ðβU0δφ̃00z2 þ δφ̃0ðβU00z2 − 10βU0zþ 2ÞÞÞz
− 8V2

2ðδφ̃0ðβU00z2 − 7βU0zþ 2Þ þ zðzβU0 − 1Þδφ̃00ÞÞÞU2 − 2ð−3ikβωhtxV2
2φðV 0

1Þ2z4 þ iβωV1V2ðkhtxφV 0
1V

0
2

þ V2ð2kφðh0txV 0
1 þ htxV 00

1Þ þ V 0
1ð4khtxφ0 − iδφ̃ωV 0

1ÞÞÞz4 þ V2
1ðð2δφ̃ð−4zβU0k2 þ z2βU00k2 þ 2k2 þ 2zβω2V 0

1

− z2βω2V 00
1Þ þ iβð12kωhtxφðzÞ þ zðizδφ̃0V 0

1ðU0Þ2 − 4kωφh0tx − 4kzωh0txφ0ÞÞÞV2
2 þ zβðzδφ̃ð2k2U0 − ω2V 0

1ÞV 0
2

− 2ikωhtxφð2V 0
2 − zV 00

2ÞÞV2 − ikz2βωhtxφðV0
2Þ2Þz2 þ V3

1ðβδφ̃ω2ðV 0
2Þ2z4 − βV2ð2δφ̃ðzV00

2 − 2V 0
2Þω2

þ zðU0Þ2δφ̃0V 0
2Þz3 þ 4V2

2ðU0ðzβU0 − 1Þδφ̃0z2 þ δφ̃ðm2 − 3z2βω2ÞÞÞÞU
þ 2z2ωV1V2ðδφ̃ωV1 − ikhtxφÞðβV2U0V 0

1z
2 þ V1ðβU0V 0

2z
2 þ V2ð4 − 4zβU0ÞÞÞ: ðB3Þ
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