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Do EU regions benefit from Smart Specialisation principles?
David L. Rigbya , Christoph Roeslerb, Dieter Koglerc , Ron Boschmad and
Pierre-Alexandre Ballande

ABSTRACT
Smart Specialisation was conceived as a ‘bottom-up’ framework to identify new growth paths connected to knowledge
cores within regions. Although operationalization of Smart Specialisation has proven difficult, recent mappings of
technologies in terms of technological relatedness and complexity suggest a useful cost–benefit framework. We
extend these ideas, locating European Union cities in a Smart Specialisation space and tracking their development of
technology since 1980. Results indicate that European Union cities with the largest gains in complex and related
technologies enjoy an economic performance premium over cities with smaller gains in the complexity and relatedness
of their knowledge bases.
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INTRODUCTION

With growth derailed by the 2008 crisis, a continuing pro-
ductivity gap with the United States, and with uneven pro-
spects for many in Southern and Eastern Europe, the
European Union (EU) announced an ambitious develop-
ment agenda in its Europe Horizon 2020 programme
built around smart, sustainable and inclusive growth
(Foray et al., 2011; McCann & Ortega-Argilés, 2015).
At the core of this development project is Smart Special-
isation (SS), a new vision of regional and national growth
possibilities built around place-based capabilities. Envi-
saged as a ‘bottom-up’ initiative identifying local potentials
for future development, SS seeks to renew and widen the

knowledge and industrial foundations of regional econom-
ies, leveraging existing patterns of competitive advantage
(Kroll, 2015).

While the European Commission has embraced the
concept of SS, concerns have been raised about operatio-
nalization of SS policy (Hassink & Gong, 2019). Since
its introduction, SS has been accused of being under-the-
orized (Boschma, 2014; Foray et al., 2011), lacking an
empirical base (Iacobucci & Guzzini, 2016; Morgan,
2015; Santoalha, 2016; Unterlass et al., 2015), being
poorly implemented (Pugh, 2018; Gianelle et al., 2020),
and unlikely to be effective in peripheral regions (McCann
& Ortega-Argilés, 2015). Crucial questions for SS are
how to set priorities that can extend existing capabilities
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in regions, and how to identify the most promising activi-
ties from an economic development perspective. While SS
aims to target related activities (Foray et al., 2012;
McCann & Ortega-Argilés, 2015), few regions appear
to have made a serious effort to apply relatedness measures
when setting priorities (Capello & Kroll, 2016; D’Adda
et al., 2019, 2020; Iacobucci, 2014; Iacobucci & Guzzini,
2016; Marrocu et al., 2020; Santoalha, 2019b). Further,
there is little consensus on the breadth of activities SS pol-
icy should target. Some scholars call for SS to promote
radical change in regions (Grillitsch et al., 2018). Others
advocate related diversification into a more limited set of
complex activities where growth trajectories can be ident-
ified (Balland et al., 2019).

Although these debates are crucial for the development
of effective SS policy, the discussion so far has remained
rather speculative, as systematic empirical evidence of the
potential impacts of SS is lacking. SS policy was intro-
duced in the EU in 2014 and implemented in the years
after. At this time, it remains far too early to investigate
the economic impact of this ambitious policy framework,
especially because its main objective is to induce structural
economic change in regions (McCann & Ortega-Argilés,
2016; Trippl et al., 2020). Instead of evaluating current SS
policy, we take a look back in time. We follow the frame-
work proposed by Balland et al. (2019), arguing that SS
policy should focus on developing new activities that
increase the complexity of a region’s economy and that
are closely related to existing capabilities in the region.
This comes close to the spirit of SS policy which is
about exploiting established capabilities in a region to
diversify along new, potentially valuable, growth
trajectories.

Thus, the objective of the paper is to investigate
whether EU cities that followed a path of technological
development consistent with the SS framework, as pro-
posed by Balland et al. (2019), outperformed cities that
did not. In other words, we examine if diversifying into
related and more complex technologies improved the
economic performance of urban areas across the EU.
Our analysis uses patent data for a set of 145 EU cities
spanning the period 1981–2015. Results from analysis of
panel models indicate that cities where technological
development adhered more closely to the broad contours
of the SS framework, that is, entering more complex and
related technologies while jettisoning less related and less
complex technologies, enjoyed faster gross domestic pro-
duct (GDP) growth than cities that did not. The results
for employment growth were not as clear.

The remainder of the paper is structured as follows.
The next section briefly reviews the literature on SS and
the core concepts of relatedness and complexity around
which we operationalize SS policy. The third section out-
lines the data employed in this study of technological evol-
ution and economic performance in European cities. The
fourth section presents findings concerning the link
between our model of SS and economic outcomes. The
fifth section concludes, discussing the implications of our
analysis for SS policy and its operationalization.

SMART SPECIALISATION IN A
RELATEDNESS AND COMPLEXITY
FRAMEWORK

The recommendations of the Knowledge for Growth
Expert Group commissioned by the EU to explore
the transatlantic productivity gap provided a technol-
ogy-driven model of place-based policy (Foray et al.,
2009). Their call for SS focused on building competi-
tive advantage in research domains and sectors where
regions possessed existing strengths and leveraging
those capabilities through diversification into related
technologies and industrial sectors. At the core of SS
policy, then, is a focus on knowledge production. For
individual locations, the policy prescription is to
identify those technological assets that comprise the
region’s knowledge core and then extend innovative
capabilities along place-based trajectories that both
reduce competitive overlap with competing regions
while enhancing regional synergies. Selection of policy
targets within the SS approach is viewed as a process
of entrepreneurial discovery, of attempts to identify
the key political-economic actors (inventors, firms, uni-
versities and other organizations), the networks that
link these actors, and the governing institutions that
comprise a viable innovation system, alongside the
domains of activity, the trajectories along which
dynamic forms of competitive advantage would be
developed (Asheim, 2014). In this sense, the concept
of SS extends the earlier focus on learning regions
and regional innovation systems in a more targeted or
directed evolutionary frame (Boschma, 2014; Morgan,
1997).

Effective development of the SS model will require sig-
nificant shifts in regional growth and innovation policy.
Though not a concern in this paper, precisely how SS
should be designed, implemented and assessed within
the policy environment has generated considerable discus-
sion (Foray, 2016; McCann & Ortega-Argilés, 2016;
Moodysson et al., 2015; Nauwelaers et al., 2014; Rodri-
guez-Pose et al., 2014). There remains the following cru-
cial questions:

• How might the concept of SS be operationalized?
• How do we identify the knowledge capabilities of
regional economies?

• How do we assess the trajectories of technological
diversification that make the most sense for regions
to follow?

The technological capabilities of regions change over
time (Hall & Preston, 1988; Kogler et al., 2013; Kogler
&Whittle, 2018). Capabilities expand when new technol-
ogies enter a region, and they contract as established tech-
nologies are abandoned. The process of invention, of
developing new technologies, is a resource-using activity
and, as such, constrained by resources available to actors.
The pace and direction of technological entry and exit in
a region are shaped by expectations regarding the costs
and returns to the exploration and exploitation of different
kinds of ideas. Following Breschi et al. (2003), knowledge
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subsets that demand similar and complementary capabili-
ties and skills for their use are referred to as being related.
When knowledge components are dissimilar and tend not
to be combined, they are considered unrelated. The cost of
diversifying from one technology to another will be rela-
tively low when the two technologies are related. As the
relatedness between technologies declines, the costs of
diversifying from one to the other increases, as there is
less overlap between the required capabilities and more
resources must be used to understand the growing share
of that which is novel. Similar reasoning holds for aban-
doning a technology. The (opportunity) cost of exiting a
technology is relatively low if capabilities are maintained
in related areas. However, that cost will rise steeply
when there are few alternatives and if the technology to
be abandoned is widely used in the development of other
ideas, especially those that are valuable.

The importance of relatedness for innovation and
economic development in regions has been highlighted
by Boschma (2005), Frenken et al. (2007) and Hidalgo
et al. (2018). In early work, studies adopted a static
view on relatedness, concentrating on the relationship
between related variety and economic growth in a region.
Later papers took a more dynamic approach to relatedness,
shifting attention to the processes through which the
industrial or technological structures of regions evolve
(Kogler et al., 2017; Neffke, 2009; Neffke et al., 2011;
Whittle & Kogler, 2020). This work confirmed that the
entry of new activities is enhanced by the degree of relat-
edness with existing activities in a region, and the exit of
current activities is promoted when they are less related
to the technological base of the regional economy
(Boschma, 2017). For knowledge dynamics in particular,
regions are inclined to build new capabilities in technol-
ogies related to their existing strengths, and more likely
to discard capabilities in technologies far from their
knowledge core (Boschma et al., 2015; Rigby, 2015).

The knowledge cores of regions vary not only in terms
of technological composition but also in terms of value.
Currently, there exist few direct measures of the returns
to technologies, such as forward citations or litigation
(Ejermo, 2009; Harhoff et al., 2003; Trajtenberg, 1990).
Following the concept of complexity introduced by
Hidalgo and Hausmann (2009), Balland and Rigby
(2017) define complex technologies as those which com-
bine many knowledge components and that are produced
in relatively few regions with broad sets of capabilities.
These technologies are regarded as valuable because they
generate relatively high rents and their tacit nature
means that they are a persistent source of competitive
advantage (Maskell & Malmberg, 1999). Less complex
technologies, which can be produced by many regions,
tend to have low value and only limited capacity to sustain
regional competitiveness. Antonelli et al. (2020), Mewes
and Broekel (2020) and Pintar and Scherngell (2021) pro-
vide broad support for these claims.

Balland et al. (2019) developed an SS framework
around these core ideas of relatedness and complexity.
This framework rests upon a methodology to

systematically identify new technological opportunities
that complement and leverage the existing knowledge
stocks of regions. These technological opportunities can
be identified as those knowledge fields in which a region
does not yet possess critical development capacity, that
have a high degree of relatedness with the region’s existing
knowledge base, and that would raise the value, or
upgrade, the region’s portfolio of knowledge assets.
Their template for operationalizing SS policy is summar-
ized in Figure 1.

For any region, it is possible to map technological fields
in which the region does not possess a relative technologi-
cal advantage at time t. These potential new technologies
are located in Figure 1 according to their relatedness and
their complexity relative to the existing knowledge core
of the region. The four quadrants highlight the cost–
benefit trade-off that undergirds SS policy. The policy-
maker should consider developing those technologies
that occupy the north-east quadrant because it is these
technologies that promise above-average returns (higher
complexity) at relatively low risk (higher relatedness).
Technologies in the south-west quadrant are poor choices
for SS because they are far removed from the existing
knowledge core of the region and therefore risky, and
they are characterized by relatively low (complexity)
value. The north-west and south-east quadrants represent
risk-return profiles that are less straightforward to
appraise. The high risk-high returns quadrant might
yield significant technological rents to a region, though
the probability of sustained innovation in these unrelated
technologies is low. Technologies that fall in the low
risk-low returns quadrant have a strong likelihood of suc-
cessful development, yet they present little value added to
the regional economy.

While this SS framework highlights the role of related-
ness in shaping regional development trajectories, several
scholars have argued that SS policy should encourage
regions to induce radical change (Wanzenböck &
Frenken, 2018; Grillitsch et al., 2018). Their concern is

Figure 1. The Smart Specialisation framework.
Source: After Balland et al. (2019).
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that pushing a model of development around the concept
of relatedness will narrow the base of regional economies
making them less resilient over time. However, there is lit-
tle systematic empirical evidence that supports such
claims. Indeed, in recent work, Rocchetta et al. (2022)
showed that regions endowed with technologically coher-
ent capabilities that develop new related growth paths
were more resilient. It is important to note that the relat-
edness between different activities is not static but shifts
over time as new activities are developed and new recom-
binations of existing activities appear. These dynamics
may broaden the knowledge core of regions that develop
new technologies related to their existing stocks and
move their economies in completely new directions in
the long run. Indeed, Boschma et al. (2021) have demon-
strated that technological breakthroughs often rely heavily
on relatedness. The current paper contributes to these
broader debates by analysing whether urban areas that fol-
low the logic of the SS framework outlined by Balland
et al. (2019) enjoy higher economic performance over
the long-run.

DATA ANDOPERATIONALIZATION OF THE
SMART SPECIALISATION FRAMEWORK

At its core, the SS initiative rests upon a framework to
identify new technological opportunities that complement
and extend the existing knowledge capabilities of economic
agents located in different regions. These technological
opportunities should satisfy three simple criteria. First,
they should be technologies in which a region does not cur-
rently possess critical development capacity. Second, they
should have a high degree of relatedness with the region’s
existing knowledge base. Third, their development should
raise the value, or upgrade, the region’s portfolio of knowl-
edge assets. We combine patent data from the European
Patent Office (EPO) and regional economic accounts
from Cambridge Econometrics’ regional database to

analyse the technological evolution and economic perform-
ance of 145 EU cities across five-year periods, spanning the
years 1981–2015. The cities examined have generated at
least 50 patents in each of thefive-year timeperiods studied.
These ‘cities’ are defined by combining data fromNUTS-3
regions according to Eurostat (2019). We choose to focus
on cities because they are much closer to functional econ-
omic units than NUTS-2 regions. We examine regions
with a reasonably large number of patents, not because we
believe small cities are not innovative (Fritsch &Wyrwich,
2021), but rather because identification of the knowledge
core of regions is easier with more patents, and because
changes in revealed technological advantage (RTA) in lar-
ger regions index more stable trajectories of technological
diversification. In the analysis below we discuss the con-
struction of an SS index, before exploring the relationship
between that index and city performance.

The cities examined are distributed over 15 EU
countries, only one of which, Hungary, is in Eastern
Europe. The cities and their immediate hinterlands vary
greatly in size. The smallest city we include in our analysis
is Basel in Switzerlandwith a population of around 222,000
in 2015. Ten other city-regions in our data frame have
populations below 300,000. The median city population
is 760,800; and the largest (London, UK) exceeds 13
million. Marrocu et al. (2020) report the regions selected
by EU countries to take part in the SS programme. These
regions are a mix of NUTS-0 (countries), NUTS-1 and
NUTS-2 regionswhich have an average population not dis-
similar from the median in this study. Table 1 provides
descriptive statistics for key variables in the analysis.

Development of the SS framework demands identifi-
cation of the knowledge core of regions and the value of
different technology fields. Here we follow Kogler et al.
(2013), Boschma et al. (2015) and Balland and Rigby
(2017) who extend the product space arguments of
Hidalgo et al. (2007) into the knowledge space. These
efforts use patent data classified by technology field, by
the timing and location of invention. The EPO places
patents into at least one of 652 different technology classes
in the Cooperative Patent Classification (CPC) system. By
convention, inventions are dated using patent filing dates
rather than grant dates to capture more precisely the
time at which new knowledge is produced. The geography
of inventions is given by the location of patent (co-)inven-
tors. We focus on patents generated by inventors in EU
cities. Individual patents are weighted from 0 to 1 accord-
ing to the share of co-inventors located within the EU.
Patents are fractionally allocated to different technology
fields according to the frequency of knowledge claims
that they make within each CPC class. We recognize
that patents are an imperfect measure of knowledge pro-
duction, in part because not all new knowledge is patented,
yet there is no superior alternative (Griliches, 1990).

Measuring technological relatedness and
relatedness density
To measure technological relatedness between CPC
classes for a given time period, we count the weighted

Table 1. Descriptive statistics for sample cities, 2011–15.
Key variables Minimum Median Maximum

Patent Sum 101 469 11,198

Population 221.6 760.8 13,557.0

Popln Density 1.76 18.05 295.14

GDP Level 6.24 22.41 690.65

Mfg Share 0.036 0.158 0.403

Herfindahl 0.01 0.02 0.22

External Links 5 10 58

Note: The population, density, gross domestic product (GDP) level and
manufacturing share values are reported for 2015. The values of the
other variables are given for the period 2011–15. The population is
reported in thousands. Population density is measured as population
divided by land area. GDP is measured in billions of 2005 euros. The tech-
nology Herfindahl is bounded by the values 0–1, with 0 representing an
even distribution of patents across technology classes, and 1 indicating
that all patents are found in a single class. The number of external links
for each city is measured as the number of K-cores (Seidman, 1983)
using inventor collaboration data.
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number of EU patents that contain a co-class pair, say i
and j, and then standardize this count by the number of
patents in total that record knowledge claims in CPC
classes i and j. Relatedness (ft

ij) in period t is, therefore,
a standardized measure of the frequency with which two
technology classes appear on the same patents. High
values of relatedness indicate that two technology classes
are more frequently combined on patents than the average
of such pairings. This suggests that there are significant
technological complementarities between these classes.
Low values of relatedness indicate that technology classes
are relatively independent of one another.

The relatedness between technologies is readily visual-
ized as a network in the knowledge space. Figure 2 maps
the relatedness between CPC technology classes for
1981–85 and 2011–15, times that bracket the study
period. It shows the seven aggregate technology groupings
recognized by Schmoch (2008), plus the new ‘green tech-
nology’ category. Classes with high relatedness values are
located close to one another. Hence, we see individual
technologies of different aggregate types clustering
together in the knowledge space, capturing the cognitive
proximity between those classes. The size of the nodes
illustrates the number of patents produced in each class.
The nodes are scaled across the two time periods to illus-
trate the rapid growth in the pace of invention over time.

Between 1981 and 1985, 59,823 patents were gener-
ated across the EU cities examined. Between 2011 and
2015, 136,972 patents were developed over the same
areas. These counts comprise approximately 66% and
40% of total EU patents for the two periods, respectively.
During the first period mapped in Figure 2, the three tech-
nology classes generating the most patents were C07D –
Heterocyclic compounds, C07C – Acyclic or carbocyclic
compounds and G01N – Investigating or analyzing
materials. For the 2011–15 period, most CPC patents
were located in the following three classes A61K – Prep-
arations for medical, dental or toilet purposes, H04L –
Transmission of digital information and G06F – Electrical
digital data processing. The changes over time in the rela-
tive positions of the nodes in Figure 2 reflect processes of
creative destruction that alter the frequencies of techno-
logical combinations on patents.

While Figure 2 illustrates the relatedness between
technology classes in the EU, it is also possible to measure
the degree to which patents cluster in knowledge space
around a particular technology field. This measure of clus-
tering is referred to as the relatedness density of a technol-
ogy, following Hidalgo et al. (2007). The relatedness
density of technology class i in city r at time t is found
as the technological relatedness (ft

ij) of technology i to
all other technologies j in which city r exhibits RTA,
divided by the sum of the technological relatedness of
technology i to all other technologies that are found in
city r in period t:

RELATEDNESS DENSITY rt
i =

∑
j[r,j=i f

t
ij∗RTArt

j∑
j=i f

t
ij

and where RTA is a binary variable that assumes the value
1 (0) when a city possesses a larger (smaller) share of
patents in a particular technology than the reference region
(the sum of all metropolitan areas considered in the EU)
for a given period. More formally, city r has an RTA in
technology i at time t such that RTArt

i = 1 when:

patentsrti /
∑

i patents
rt
i∑

r patents
rt
i /

∑
r

∑
i patents

rt
i

. 1.

In the analysis that follows, RTA, the technological
relatedness between patent classes and relatedness density
of all technology fields are constructed for each of our 145
cities for seven consecutive five-year periods running from
1981–85 to 2011–15.

Measuring knowledge complexity
Hidalgo and Hausmann (2009) outline a method for cal-
culating the complexity of products and countries using
trade data. Their complexity index reflects the difficulty
of producing particular commodities as indicated by the
spatial distribution of individual products and the combi-
nation of different product bundles in country export bas-
kets. Balland and Rigby (2017) develop a measure of
knowledge complexity for US regions and technology
classes using an eigenvector reformulation of the method
of reflections outlined by Hidalgo and Hausmann
(2009). He et al. (2016) prove that this measure is a bipar-
tite page-rank algorithm.

Here we follow the approach of Balland and Rigby
(2017) and develop a bipartite network that connects cities
to the technological fields in which they are most active.
We focus on n ¼ 366 cities and k ¼ 652 CPC technology
classes that demarcate the US city-system of technology
production. Hence, we borrow complexity measures for
the 652 CPC patent classes generated from US rather
than EU data. We do this simply because the method of
reflections does not work well for EU regions at the
four-digit level of the CPC.We believe that this is primar-
ily because EU regions are parts of different countries and
so many of the more complex types of technologies that are
found in relatively few US cities tend to be duplicated
across cities and regions within the EU. This duplication
lowers the values of technologies that we understand to
be more complex. Employing US patent data to identify
the complexity of technologies produced in the EU does
not seem problematic to us as technologies that are com-
plex in the United States are also likely to be complex in
the EU. All that said, the correlation between the com-
plexity values for CPC technology classes in the US and
EU systems is about 0.6. Using EU complexity data in
the following analysis produces results that are qualitat-
ively similar to those shown below. Table 2 reports the
top 10 technology fields in terms of complexity for the
period 2011–15. It shows complexity values indexed to
the score of the most complex class.

Table 3 highlights EU cities with the highest and low-
est values of aggregate complexity in the period 2011–15.
The complexity score for each city is built as a weighted

Do EU regions benefit from Smart Specialisation principles? 5
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average of the CPC technology class scores and the share
of each city’s patents in those classes. Complexity values
for the initial period for each of the cities observed are
also provided. Rennes (France) enjoys the highest com-
plexity score for the period 2011–15 as a result of patent
specialization in telecommunications sectors with high
complexity. Reims (France), an older industrial city with
little invention in new technology classes, has the lowest
complexity score of the 145 EU cities in 2011–15. There
is some stability in city complexity ranks over time: the
correlation coefficient in city complexity scores between
1981–85 and 2011–15 is 0.44. Of the top 20 most complex

cities in 2011–15, seven were in the top 20 already in
1981–85: Edinburgh (UK), Eindhoven (the Netherlands),
Grenoble (France), London (UK), Nice, Rennes and Tou-
louse (all France). Of the 20 least complex cities in 2011–
15, nine have remained at the bottom of the complexity
table since 1981–85: Aberdeen (UK), Amiens (France),
Bologna (Italy), Coventry (UK), Iserlohn (Germany),
Odense (Denmark), Osnabruck (Germany), Reggio nel-
l’Emelia (Italy) and Reims. The average change in city
rank by complexity across the entire study period was 33.
Over the 35 years examined, Malmo (Sweden) recorded
faster growth in technological complexity than any other
city, and Ipswich (UK) recorded the fastest decline in
complexity.

Smart Specialisation in EU cities, 1981–2015
From the methods just discussed, it is possible to identify
all technology fields in which EU cities have RTA. To
these measures we add the knowledge complexity of
each technology and the relatedness density of those tech-
nologies within each city across the five-year time periods
examined. Using these variables, individual cities are
mapped in the SS space of Figure 1 to highlight the
relatedness density and complexity of the technology fields
in which they gain and lose RTA between time periods.

The coordinates of this mapping exercise are developed
in the following way. In the case of technological entry, all
technology classes in which the RTA of a city takes the
value 0 in period t are identified. These classes are candi-
dates for technological entry (gaining RTA) going for-
ward. The relatedness density and complexity scores of
these potential entry classes are recorded. Next, the actual
technological fields in which a city gains RTA between
periods t and t + 1 are identified along with the relatedness
density and complexity values of these fields. The mean
relatedness density and complexity scores of the potential

Figure 2. Technological relatedness in the European Union knowledge space: (a) 1981–85 and (b) 2011–15.
Note: The eight aggregate Cooperative Patent Classification (CPC) technology classes are: Electronics, Instruments, Chemicals,
Biotech, Industrial process, Machinery and transport, Consumer goods and Climate change technologies.

Table 2. Top technology fields by complexity, 2011–15.
CPC
Patent Class Technology field

Complexity
(indexed)

H04L Transmission of digital

information

100

H03M Code conversion 96.7

H03K Control of electronic

oscillations

95.3

G06F Electronic digital data

processing

95.2

H01L Semi-conductor devices 89.1

H03K Pulse techniques 88.6

H04N Pictorial communication 88.3

H01S Devices using stimulated

emissions

88.0

B81C Manufacture of

microstructural devices

87.4

G05F Systems for regulating

electric/magnetic variables

84.4

Note: CPC, Cooperative Patent Classification.
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entry classes are then subtracted from the relatedness and
complexity scores of the technology classes in which a city
actually develops new RTAs. The result indicates whether
a city builds RTA in technology classes that have related-
ness density and complexity scores above or below the
average of those classes in which it has not yet developed
a competitive advantage.

Summing these deviations across time periods gener-
ates an overall index of entry complexity and relatedness
density values for each city. We develop the same index
for technological exit. Exit occurs when a city has RTA
in a technology class in time period t, but loses it by period
t + 1. Again we identify the technology classes in which
cities lose RTA and calculate the sum of the complexity
and relatedness density measures for those cities across
technology classes and time periods, relative to the set of
all technology classes in which RTAmay be lost. Calculat-
ing the difference between the potential and realized relat-
edness density and complexity values for entry and exit
controls for differences in knowledge cores between EU
cities and yields measures that report how well cities
exploit the potential to upgrade to technologies character-
ized by high relatedness density and high complexity,
while also abandoning those technologies with low relat-
edness density scores and low complexity.

Figure 3 maps the results of this exercise for the EU
cities examined, with the data on entry shown in the top
panel and that for exit in the bottom panel. The related-
ness density and complexity deviations are normalized.
Note that a few cities (in the core of the spaces) are
dropped from the panels to improve readability. Thinking
back to Figure 1, it is advantageous to enter technology
classes in the top-right quadrant, where relatedness den-
sity to the knowledge core of the city is high and where
the average complexity value of the technology classes
that are entered is also high. Entering technology classes
in the bottom-left quadrant, where density and complexity
values are low compared with those available, is not likely
to improve city performance. In terms of technological exit
(bottom panel of Figure 3), cities located in the lower-left
quadrant, where complexity and relatedness density values
are lower than the average of all technology classes in

which RTA is established, should experience the largest
gains in performance as they are shedding the least attrac-
tive technologies.

From Figure 3, it is clear that cities occupy quite differ-
ent parts of the SS space in terms of both technological
entry and exit. It is interesting that the most inventive
cities, those that are generally regarded as the most
dynamic parts of the EU, tend to concentrate in the top-
right quadrant of the SS space in the case of entry.
These cities, including Paris (France), Munich, Berlin
(both Germany), Grenoble, Helsinki (Finland) and Nur-
emberg (Germany), are building RTAs in the most com-
plex technology fields available to them, and which are
often closely related to their existing knowledge core.
Other innovative cities such as Eindhoven, Stockholm
(Sweden), Aachen (Germany), Malmo (Sweden), Vienna
(Austria), Rennes, Rome (Italy) and Nice are developing
highly complex technologies, though these are less closely
connected to their existing knowledge bases. Older indus-
trial centres such as Amsterdam (the Netherlands), Ruhr-
gebiet, Reutlingen, Siegen, Iserlohn (all Germany) and
Barcelona (Spain) are generating RTAs in technologies
that build upon their existing strengths, but these are
often low complexity (low-value) fields. A relatively large
number of smaller cities are entering technology classes
that are less related to their existing strengths: these are
the metro areas with negative relatedness density values
in the entry panel of Figure 3. These cities are split in
terms of whether entry is in relatively high complexity
classes – Uppsala (Sweden), Bristol (UK), Regensburg
(Germany) and Tampere (Finland) – or in low complexity
classes – Manchester (UK), Mönchengladbach
(Germany), Reims, Angers (France), Koblenz (Germany),
Salzburg (Austria) and Oldenburg (Germany).

Shifting to the bottom panel of Figure 3 and the results
for technological exit, only a small number of EU cities are
exiting low complexity classes unrelated to their knowledge
cores as SS policy would advocate. Again the cities in this
group, those in the bottom-left quadrant of the exit panel,
are theEU’smosthigh-tech centres: Paris,Munich,Eindho-
ven, Nuremberg, Grenoble and Copenhagen (Denmark). A
number of cities are abandoning technologies that generate

Table 3. Complexity scores in European Union cities.

Rank and city

Complexity score

Rank and city

Complexity score

1981–85 2011–15 1981–85 2011–15

1. Rennes, France 59.02 84.11 136. Bologna, Italy 44.95 44.61

2. Dublin, Ireland 49.23 72.11 137. Ingolstadt, Germany 48.34 44.37

3. Stockholm, Sweden 52.82 70.28 138. Bielefeld, Germany 49.38 44.15

4. Antwerp, Belgium 55.70 70.25 139. Coventry, UK 41.63 44.12

5. Grenoble, France 59.81 69.29 140. Osnabruck, Germany 44.72 43.61

6. Tampere, Finland 46.25 69.21 141. Rouen, France 48.98 41.60

7. Nice, France 59.38 68.08 142. Reggio nell’Emilia, Italy 41.32 41.29

8. Caen, France 50.70 67.45 143. Aberdeen, UK 45.58 41.28

9. Helsinki, Finland 51.84 67.11 144. Amiens, France 43.22 39.67

10. Eindhoven, the Netherlands 73.49 67.03 145. Reims, France 45.15 39.15
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above-average complexity values and which are close to their
existing capabilities. These are the cities in the top-right
quadrant of the exit panel, highlighted by Enschede (the
Netherlands), Padua (Italy), Nantes (France), Odense and
Konstanz (Germany). A few cities, notably Stuttgart
(Germany) and Turin (Italy), are exiting technology fields
that,while relatively unrelated to their knowledge cores, exhi-
bit above-average complexity.

Note that while Figure 3 shows the results for the study
period as a whole, Appendix A in the supplemental data
online reports the relatedness density and complexity
values for each city for the first and last time periods, for

both technological entry and exit. As might be expected,
there is considerable movement of cities in the SS space
over time, though quite some consistency in relative pos-
itions is observed, especially for larger cities.

MIGHT SMART SPECIALISATION
IMPROVE THE ECONOMIC
PERFORMANCE OF EU CITIES?

Do EU cities enjoy improved economic performance if
they develop technology stocks in a manner consistent
with SS as we have defined it above? In other words, if

Figure 3. Smart Specialisation in European Union cities by entry and exit, 1981–2015.
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cities enter and exit technological fields to maximize the
gains in the relatedness density and complexity of their
knowledge portfolios, will they outperform other cities
where technology evolves in some other fashion? To
help answer this question, an SS index is constructed.
This index is found by summing the normalized values
of relatedness density and complexity for entry (taken
from Figure 3) and then subtracting from that sum the
normalized values of relatedness density and complexity
for exit. Cities that enter new technology fields with
above average relatedness and complexity and which exit
technological fields with lower-than-average relatedness
and complexity will score highest on the SS index.
These are the cities in the top-right quadrant of the
entry (top) panel in Figure 3 and in the lower left quadrant
of the exit (bottom) panel. Normalized values of both
relatedness density and complexity are used so that these
two variables have a reasonably similar weight in the
resulting SS index.

In Table 4, EU cities are binned into five quintiles
based on their SS index calculated across all five-year
periods between 1981–85 and 2011–15. A total of 29 cities
are located in each of the quintiles, which are reported in
descending order of SS. Across cities in each quintile the
average rate of employment growth and the average rate
of GDP growth are reported. Table 4 makes it clear
that, at least in cross-section by quintile, cities scoring
higher in terms of the SS index enjoy faster economic
growth. There is a positive monotonic relationship
between SS and employment growth across the quintiles
and a near monotonic relationship for GDP growth. Of
course, within each of the quintiles there is considerable
variation in growth rates of employment and GDP across
cities.

We now explore the relationship between SS and
economic growth in a series of fixed effects panel models.
These models examine whether cities in which the evol-
ution of technology over the last 30 years or so come clo-
sest to the SS framework, as we have defined it, enjoyed
improved economic performance. Two different depen-
dent variables are used for this task, the rate of growth
of employment and the rate of growth of GDP. Growth
rates are preferred over levels to remove some of the

influence of scale. They also fit better with the indepen-
dent variables that comprise the SS indicators, for they
are change variables. Arguably, employment and GDP
growth are the most general indicators of economic
performance.

The primary independent variables in the analysis are
the SS index and its main components. All variables in
the regression model, illustrated below, are measured
within EU cities for each five-year time slice. Using a
fixed effect panel format in our regression model focuses
attention on temporal shifts in technology development
within cities and removes the influence of fixed city-
specific influences on performance. The analysis incorpor-
ates a time lag in that we examine technological entry and
exit in regions between time periods t and t + 1 and then
link that to changes in the rate of growth of GDP and
employment over the same periods. We add time fixed
effects to the regression model to control for period-
specific shocks that might impact urban growth. Employ-
ment or GDP in levels form, for the base year of the
growth period of each city, is added to control for city
size, consistent with standard growth models. Finally, we
add a series of covariates to our models to remove the
influence on our dependent variables of a series of different
processes. A measures of population density serves as a
crude proxy for agglomeration, the manufacturing share
of employment reflects the age of a city’s economy, a tech-
nology Herfindahl captures the impact of specialization,
and a measure of external linkages between cities extracted
from patent collaboration data controls for the relative
centrality of a city in terms of the EU urban system. We
do not have R&D or education data for the cities we
examine over the period since 1980. However, we do
have proxies of these variables. R&D is an input to the
knowledge production process and patents are perhaps
the most widely used measure of knowledge output. We
thus use lagged values of the sum of patents generated
within each five-year period as a proxy for city-level
R&D input. In similar fashion we use lagged values of
scientific publications per capita, derived from the Web
of Science, for each time period as a proxy for the higher
education population share within each city. Theory
would suggest that both of these variables should be posi-
tively related to GDP and employment growth rates.

Given the nature of our data, we are concerned with
issues of spatial dependence and endogeneity, the latter
driven by simultaneity bias. In a simple test, Moran’s I
measures of spatial autocorrelation were constructed for
employment growth and GDP growth across our units
of observation for different periods. Two different
measures were used to capture the relative locations of
cities in the tests for spatial autocorrelation, first a set of
distance measures between all pairs of cities and second
a more restricted set of city neighbours. Using both geo-
graphies, for almost all periods the Moran’s I coefficient
was insignificant for both dependent variables, though it
did turn significant in the final period for the employment
growth variable. A more comprehensive test of spatial
dependence made use of spatial panel models. Tests of

Table 4. Relationship between Smart Specialisation and
economic growth.
Smart Specialisation
quintiles
(normalized)

Employment:
rate of growth

GDP: rate
of growth

1 0.30184 0.68426

2 0.29769 0.66836

3 0.25388 0.58820

4 0.21746 0.55201

5 0.19738 0.56507

Note: Gross domestic product (GDP) data are in constant 2005 euros.
Simple growth rates for employment and GDP are measured between
consecutive five-year periods and then summed.
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spatial lag and error effects in R using the package spml
indicated no significant concerns with either form of
spatial dependence.

Endogeneity is a more serious concern that demands
an instrumental variables (IV) approach. Unfortunately,
we do not have readily available instruments for our inde-
pendent variables, in particular the SS index and its com-
ponents. One possibility is to use temporal lags of the
independent variables as instruments, though with only
six to seven periods of analysis, this means discarding criti-
cal observations. Bellemare et al. (2017) also raise ques-
tions regarding this approach. An alternative method is
to take advantage of spatial dependence in the indepen-
dent variables, if present, through the development of a
series of synthetic instruments built using a spatial filter.
Here we follow Le Gallo and Paez (2013) who develop
the eigenvector technique discussed by Griffith (2003).
For our system of 145 cities, this method is outlined in
the following steps:

. Build a spatial weights matrix to capture the distances
between all pairs of cities under analysis.

. Choose a distance value such that neighbours can be
identified for each city. This value will be smaller than
the distance between a city and its most distant potential
neighbour. The result is a binary spatial contiguity
matrix with row sums somewhere between 1 and 144.
We chose a distance cut-off that ensured all 145 cities
in our sample have at least one neighbour. There is no
clear theoretical guidance on what value to choose in
order to construct the binary contiguity matrix.

. Find all eigenvectors associated with the contiguity
matrix. There are 145 such eigenvectors, each orthog-
onal to one another, that represent a portion of the var-
iance in the spatial contiguity matrix. The spatial filter
is constructed as a linear combination of a subset of
these eigenvectors.

. The filter for each independent variable is typically
found by regressing the independent variable on the
subset of eigenvectors with p-values below a chosen
threshold and using the predicted value of the indepen-
dent variable as the synthetic instrument.

. For each independent variable, we used all eigenvectors
that exhibited a p-value < 0.1. For a few variables we ran
into weak instruments problems as revealed through
first-stage diagnostics and we then generated synthetic
instruments for these variables using all eigenvectors
with p < 0.2. The variables affected were the GDP
level, population density, the manufacturing share of
employment, and complexity. It is important not to
let the p-value creep too high because then the
researcher would simply be recreating the original vari-
ables. It is a matter of some debate what ‘too high’
might mean in this context.

The resulting synthetic variables replicated the original
independent variables with correlations ranging from 0.35
to 0.60.

It is important to note that our synthetic instrumental
variables are built using a spatial contiguity matrix only.
Thus, by design, they are exogenous of the dependent vari-
ables. However, even though the synthetic instruments are
created only from the spatial contiguity data, if the depen-
dent variable also shows clear evidence of autocorrelation
across the spatial units under study, the instruments
might still be suspect. Fortunately, as noted above, the
rate of growth of GDP and employment do not show evi-
dence of spatial autocorrelation and thus we are safe to
proceed. As the tables below reveal, our instruments are
not weak and they pass standard diagnostic tests. Note
that adding an extra instrument to models 5 and 6 in
Tables 5 and 6 provides an over-identification condition
that allows us to run the Sargan test of the exogeneity of
our instruments. In the GDP growth models of Table 5
we added the lagged employment level, and in the employ-
ment growth model of Table 6 we added the lagged GDP
level as additional instruments. The Sargan tests in all
cases did not reject the null hypothesis of the exogeneity
of instruments.

The results of our analysis are displayed in Table 5
(where GDP growth is the dependent variable) and in
Table 6 (where employment growth is the dependent vari-
able). Overall, the results indicate a positive and significant
link between the rate of growth of metropolitan GDP and
the SS index. In the case of employment growth, there is
mixed evidence of the positive and significant role of SS.
Estimated in fixed effects panel form this link is estab-
lished at the city level, rather than in cross-section and
this is important from a policy viewpoint. In model 1,
across Tables 5 and 6, the SS index is the key independent
variable. The SS variable is positively and significantly
related to GDP growth in cities, but while positive, it is
not significantly related to the growth of employment.
In model 2, the two primary components of the SS
index are separated to examine the differential impacts
of relatedness density and complexity on urban perform-
ance. In both Tables 5 and 6, model 2 reveals that increases
in city complexity are a positive and significant predictor of
GDP and employment growth, while the increases in
relatedness density have no significant impact on urban
growth.

Models 3 and 4 in both tables of results, add the city-
level covariates to the analysis. Four of seven of the city-
level covariates are significant in Table 5 focusing on the
variance in GDP growth. Lagged values of GDP are posi-
tive, suggesting there is little catch-up in terms of GDP
from cities with lower levels to cities with higher levels
of output. The lagged value of population density is nega-
tive in models 3 and 4 of Table 5 which is a little surprising
to us. If this variable is taken as a proxy for potential
agglomeration economies, then we would have expected
a positive sign. The positive and significant coefficient
on the manufacturing share of employment is not unex-
pected, as advanced manufacturing remains a source of
high valued output. However, if the manufacturing share
is used as an index of the age of the economy of a city or
region, then the sign of this variable suggests that older
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cities enjoy more robust growth. The Herfindahl index of
technological specialization has no impact on the growth
process. The more connected a city is, measured in this
case through inventor collaborations that span EU cities,
the more robust is a city’s GDP growth. While lagged
values of the patent sum and Web of Science listings per
capita both have positive coefficients, neither is statistically
significant in model 2.

Most important for us are the signs on the SS index
and its components, entry–exit relatedness and entry–exit
complexity in models 3 and 4 of Table 5. The positive
and significant coefficient for the SS index indicates that
if cities adjust their technology stocks in the direction of
more related technologies that are more complex, they
will enjoy higher GDP growth. A one unit increase in
the normalized value of the SS index on average will
raise GDP growth by 4.1% over a five-year period.
Model 4 indicates that the primary driver of the

significance of the SS index is the change in the complexity
of a city’s patent stocks. A one-unit change in the normal-
ized value of knowledge complexity will raise GDP growth
in a city on average by 5.3%.

In models 5 and 6 of Table 5, we employ our synthetic
instrumental variables in generalized method of moments
(GMM) models that explore the potential impacts of
endogeneity on our results. All the independent variables
in these models are considered endogenous and instru-
ments built for each as described earlier. Model 5 reveals
that in instrumented form, the overall SS index remains
a positive and significant predictor of the growth of city
GDP with a coefficient that is a little larger than that
reported in model 3, something that we expect with IV
estimation. Note that in model 6, both the relatedness
component and the complexity component of the SS
index have positive coefficients and both variables are sig-
nificant. Diagnostic tests report that our instruments are

Table 5. European Union city gross domestic product (GDP) growth and Smart Specialisation (dependent variable: GDP
growth).

Independent variables Model 1 Model 2 Model 3 Model 4
Model 5: (IV)

GMM
Model 6: (IV)

GMM

Smart Spec Index 0.0308*

(0.0172)

0.0411**

(0.0174)

0.0706**

(0.0353)

EE Relatedness 0.0084

(0.0255)

0.0277

(0.0256)

0.1200**

(0.0535)

EE Complexity 0.0512**

(0.0243)

0.0534**

(0.0244)

0.0917**

(0.0405)

Lag GDP Level 0.0035*

(0.0016)

0.0032*

(0.0015)

0.0044**

(0.0022)

0.0043**

(0.0022)

0.0042

(0.0051)

0.0041

(0.0052)

Lag Pop Density −0.0422***
(0.0126)

−0.0421***
(0.0126)

−0.1103**
(0.0472)

−0.1116**
(0.0475)

Lag Mfg Share 2.7288**

(1.2829)

2.6721**

(1.2858)

6.5087*

(3.6640)

6.1779**

(3.7068)

Lag Herfindahl −0.1419
(2.0620)

−0.2687
(2.0703)

−0.4019
(4.4369)

0.0552

(4.4707)

Lag External Links 0.0271***

(0.0083)

0.0273***

(0.0083)

0.0209

(0.0203)

0.0209

(0.0205)

Lag Patent Sum 0.0000

(0.0001)

0.0000

(0.0001)

0.0003**

(0.0001)

0.0004***

(0.0001)

Lag WoS per Capita 0.0434

(0.0428)

0.0421

(0.0428)

−0.0955
(0.0921)

−0.1118
(0.0926)

Constant 0.6134***

(0.0793)

0.6071***

(0.0795)

0.8789*

(0.4579)

0.8901*

(0.4583)

Time fixed effects Yes Yes Yes Yes Yes Yes

Observations 870 870 867 867 867 867

R2 within 0.39 0.40 0.43 0.43

Anderson LM-statistic 43.270*** 43.251***

Cragg–Donald F-statistic 5.650*** 5.013***

Sargan statistic 0.664 0.569

Note: Smart Specialisation measures (relatedness and complexity) are normalized. EE, entry and exit. All standard errors are robust and reported in par-
entheses. *Significant at 0.1, **at 0.05 and ***at 0.01. In the instrumental variables (IV) estimation of model 5 and 6, the Anderson LM-statistic tests for
under-identification and the Cragg–Donald F-statistic tests for weak identification. These test statistics assume heteroscedastic robust standard errors
rather than errors that are i.i.d. All models are city-level fixed effects panel regressions that include period fixed effects.
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not weak and the Sargan test (developed using an
additional instrumental variable) reveals they are
exogenous.

The results in Table 6, focusing on city employment
growth tell a broadly similar story as those in Table 5, at
least through models 1–4. Of the covariates in models 3
and 4, only the lagged employment level and population
density are statistically significant. The former variable
again suggests that there is no catch-up in terms of
employment between smaller and larger cities overall.
The population density variable is again negative, indicat-
ing slightly slower employment growth in cities with
higher population density. Consistent with the results
for GDP growth, the SS index is significant, though
only at the 0.1 level, and positively related to employment
growth. The coefficient suggests a one unit increase in the
index would raise employment growth around 3.7%. From
model 4, it is clear that increases in complexity have the
most important impact on employment growth. A one
unit gain in the complexity of a city’s knowledge stocks
might be expected to increase employment growth on
average by 5.1%. In terms of the IV estimates, the SS
index is not significantly related to employment growth

within the cities examined. And, in model 6, the related-
ness component of the SS index is positive and significant,
while the complexity variable is insignificant.

CONCLUSIONS

SS represents an important new policy platform for EU
regions. The programme is ambitious, seeking to raise
aggregate regional productivity across EU regions and to
reduce interregional variations in economic performance.
Whether the SS initiative can overcome well-known
trade-offs between efficiency and equity remains to be
seen. Furthermore, whether the policy framework will
work for all regions is an open question. At this time,
the SS programme is in early stages of operationalization
and little is known about its likely impact. Yet, the impor-
tance and the size of the initiative call for attention. We
argue that some sense of the possibilities of SS might be
generated through exploration of historical data. We pur-
sue this task by generating an index that maps how well
EU cities have followed a technology development path
that corresponds to the principles of SS outlined in Bal-
land et al. (2019). The relationship between this index of

Table 6. European Union city employment growth and Smart Specialisation (dependent variable: employment growth).

Independent variables Model 1 Model 2 Model 3 Model 4
Model 5: (IV)

GMM
Model 6: (IV)

GMM

Smart Spec Index 0.0319

(0.0201)

0.0373*

(0.0208)

0.0467

(0.0420)

EE Relatedness 0.0120

(0.0260)

0.0221

(0.0303)

0.1115*

(0.0620)

EE Complexity 0.0504*

(0.0285)

0.0514*

(0.0291)

0.0410

(0.0479)

Lag Employment Level 0.0004

(0.0003)

0.0003

(0.0004)

0.0007**

(0.0004)

0.0007*

(0.0004)

0.0004

(0.0009)

0.1115*

(0.0620)

Lag Pop Density −0.0490***
(0.0151)

−0.0489***
(0.0151)

−0.1080*
(0.0569)

−0.1104*
(0.0571)

Lag Mfg Share 2.4795

(1.5217)

2.4163

(1.5250)

5.9684

(4.1524)

5.8948

(4.1725)

Lag Herfindahl 2.8065

(2.4463)

2.6595

(2.4566)

6.6494

(5.1936)

7.1718

(5.2142)

Lag External Links −0.0003
(0.0098)

−0.0001
(0.0098)

−0.0236
(0.0232)

−0.0236
(0.0233)

Lag Patent Sum 0.0001

(0.0001)

0.0000

(0.0001)

0.0003*

(0.0001)

0.0003**

(0.0001)

Lag WoS per Capita −0.0085
(0.0508)

−0.0100
(0.0508)

−0.0430
(0.1083)

−0.0630
(0.1087)

Time fixed effects Yes Yes Yes Yes Yes Yes

Observations

R2 within

Anderson LM-statistic

Cragg–Donald F-statistic

Sargan statistic

870

0.12

870

0.12

867

0.14

867

0.14

867

43.265***

5.649***

0.244

867

43.428***

5.035***

0.259

Note: See Table 5.
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SS and regional economic performance forms the analyti-
cal core of this paper.

The SS framework rests upon identification of the
knowledge core of regions and a mapping of new techno-
logical trajectories for each region that builds on existing
capabilities.We demonstrate how to capture the knowledge
profiles of EU regions and how to identify new knowledge
possibilities that rest upon existing stocks of technology.
Those possibilities can be ordered in terms of the costs
and benefits of their development. The cost of knowledge
development is linked to the relatedness of new technol-
ogies to the existing knowledge core of the region. When
new technological alternatives are closely related to that
core, the cost of their development is relatively low. Tech-
nology alternatives that are unrelated to a region’s existing
set of capabilities are risky to develop and thus pose higher
costs. The benefits of developing different technologies
depend upon the rents they generate. Those rents will
tend to be greater for forms of knowledge that are more
complex, those that are difficult to produce and to imitate.

Analysis focused on whether European cities that fol-
lowed a path of technological development consistent with
SS outperformed cities that did not follow this path over
the period 1981–2015. For each city across five-year
time periods, patterns of technological entry and exit
were used to measure how closely changes in knowledge
stocks corresponded to the SS framework of Balland
et al. (2019). If cities developed (abandoned) new technol-
ogies more (less) complex and more (less) related to their
current knowledge assets than the average of those tech-
nologies available to them (currently in use), they scored
high on the SS index. The SS index, and its two core com-
ponents of relatedness and complexity, were then used as
the primary independent variables in a series of fixed effect
panel regressions explaining variance in the economic per-
formance of EU cities. Two separate dependent variables,
employment growth andGDP growth, measured that per-
formance. The panel regressions paid explicit attention to
concerns with spatial dependence in the data, and they
made use of a novel form of synthetic instrumental vari-
ables to examine the impact of endogeneity.

The results showed that EU cities following knowl-
edge development trajectories that are closer to our pro-
posed SS framework experienced higher GDP growth
and somewhat higher employment growth than cities
that scored lower on the SS index. Of the two components
of the SS index, both exert a positive and significant influ-
ence on GDP growth, while only relatedness was signifi-
cantly related to employment growth. We are excited by
these results that imply SS policies that assist cities and
regions to diversify their knowledge cores into related
and more complex technological fields might well generate
gains in economic performance.

Still, some words of caution are necessary. First, much
more work is required to bolster these initial findings.
While preliminary investigation suggests that our results
are robust to analysis at the NUTS-2 regional level, across
a broader set of 274 regions, whether they will hold in a
much more carefully developed causal model of economic

performance remains to be seen. Second, our study has
focused on larger urban areas which is a clear limitation.
Not all innovation activities are concentrated in large cities
(e.g., Fritsch & Wyrwich, 2021). Subsetting regional
accounts to explore how well SS might work across smaller
regions, those that are more or less specialized, those that
are less innovative, and those that are more generally ren-
dered ‘peripheral’ in different ways, represent critical next
steps. This would also respond to serious concerns that SS
might not deliver in peripheral, lagging regions (Hassink
& Gong, 2019; McCann & Ortega-Argilés, 2015).
Third, and very much related to the previous point, our
paper focuses on technological dynamics using patent
data only. Future research should look at capabilities in
regions that are not well represented by patents. It should
cover a broader range of activities within the economy,
including low and medium-tech industries, covering ser-
vices such as tourism and health, and human capital, skills
and occupations, as these will provide different types of
opportunities for regions to develop new growth paths.
These activities can be readily incorporated into the
applied SS framework and studied accordingly (Balland
& Boschma, 2019). Fourth, the relevance of having access
to related capabilities outside the region should also be
explored further as Balland and Boschma (2021) and
Whittle et al. (2020) reveal. There is still little understand-
ing of the role of interregional linkages for new path devel-
opment, although this is considered a crucial component
of SS policy (Iacobucci & Guzzini, 2016; Radosevic
et al., 2018; Santoalha, 2019a; Uyarra et al., 2018).
Fifth, the effectiveness of SS clearly depends on more
than relatedness and complexity alone. Formal and infor-
mal institutions at both national and regional scales play a
crucial role in shaping the environment within which SS
policy is enacted (Cortinovis et al., 2017; Rodriguez-
Pose et al., 2014; Rodríguez-Pose & Di Cataldo, 2015).
And, finally, whether or not there is a most efficient spatial
scale at which the SS programme might be implemented
remains a critical question that we have not tackled in
this paper.
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