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We demonstrate the existence of an anomaly-induced inhomogeneous phase in a class of vectorlike
gauge theories without the sign problem, thus disproving the long-standing conjecture that the absence of
the sign problem precludes spontaneous breaking of translational invariance. The presence of the phase in
the two-color modification of quantum chromodynamics can be tested by an independent nonperturbative
evaluation of the neutral pion decay constant as a function of an external magnetic field. Our results provide
a benchmark for future lattice studies of inhomogeneous phases in dense quark matter.
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Introduction.—Self-organization of matter into inhomo-
geneous patterns is ubiquitous in nature; after all, most
natural materials develop crystalline order at sufficiently
low temperatures. Yet, in quantum field theory, one usually
assumes that the ground state of a given quantum system is
uniform, unless a specific mechanism for structure for-
mation is in place. The question under what conditions the
ground state can be nonuniform does not seem to have a
satisfactory answer.
Various nonuniform phases are expected to play an

important role for the thermodynamics of quark matter
under extreme conditions [1]. Predictions of such phases for
the phase diagram of quantum chromodynamics (QCD) are,
however, mostly based on model calculations neglecting
order parameter fluctuations, which may be crucial for the
(in)stability of the phase [2]. Scarce attempts to study
inhomogeneous states of quark matter in ab initio simu-
lations are limited to simplified models in two spacetime
dimensions [3] or crude approximations to the QCD func-
tional integral [4]. More systematic first-principle inves-
tigation has been impeded by the notorious sign problem [5].
In fact, Ref. [6] puts forward an intriguing hypothesis,

linking the appearance of nonuniform states in the phase
diagram of a vectorlike gauge theory (hereafter referred to
as “QCD-like theories”) to the very presence of the sign
problem in the theory. If true, this would provide a rare
example of a no-go theorem for spontaneous breaking of a
spacetime symmetry.
In this Letter, we disprove this conjecture. We demon-

strate that a class of QCD-like theories free of the sign
problem features the nonuniform chiral soliton lattice

(CSL) phase [7], previously shown to exist in QCD itself
[9,10]. This state is a remarkable manifestation of the chiral
anomaly and requires subjecting quark matter to a magnetic
field or to global rotation [11]; see also Ref. [12] for closely
related recent work.
To the best of our knowledge, this is the first time that

existence of an inhomogeneous phase in gauge theories
amenable to direct lattice Monte Carlo simulation has been
shown. Our results can thus serve as a benchmark for future
ab initio studies of nonuniform phases in dense quark
matter, or elsewhere.
Absence of sign problem.—We consider the class of

QCD-like theories where quarks transform in a (pseudo)
real representation of the gauge group [13], restricting
ourselves for simplicity to two degenerate quark flavors u,
d with the common current mass m. Let us denote the
Euclidean Dirac operator for a single quark flavor as
Di ≡ γμDiμ þm − μγ0, where i ¼ u, d. Here μ is the quark
number chemical potential and the Hermitian Euclidean
Dirac matrices γμ satisfy the charge conjugation property
ðCγ5ÞγμðCγ5Þ−1 ¼ γ�μ. Finally, the covariant derivative is

defined by Diμ ≡ ∂μ − iTaAa
μ − iqiA

Q
μ , where Aa

μ are the

gluon fields, qi the quark electric charge, and A
Q
μ represents

a background electromagnetic field.
In (pseudo)real QCD-like theories, the color generators

Ta satisfy by assumption T�
a ¼ −PTaP−1. Without loss of

generality, the matrix P can be assumed unitary and
symmetric for real quarks, and unitary and antisymmetric
for pseudoreal quarks [14]. For instance, for a theory
with the SU(2) gauge group and fundamental quarks
(“two-color QCD”), P is given by a Pauli matrix in the
color space, P ¼ σ2.
Provided the electric charges of the u and d quarks

satisfy qu ¼ −qd, their respective Dirac operators are
related by

ðKCγ5PÞDu ¼ DdðKCγ5PÞ; ð1Þ
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where K is the operator of complex conjugation. This
establishes an antiunitary mapping between the eigenvec-
tors ofDu andDd [15]. Hence, the determinant of the Dirac
operator of the theory is real and non-negative,
det D ¼ det Du det Dd ¼ det Du det D�

u ≥ 0. To con-
clude, (pseudo)real QCD-like theories with two quark
flavors of equal masses are free of the sign problem in
presence of both quark number chemical potential and
external electromagnetic field, as long as the two quark
flavors have opposite electric charges.
(Pseudo)real theories in magnetic field.—We shall

further assume that the color gauge group and its
(pseudo)real quark representation are chosen so that the
theory has a confining, chiral-symmetry-breaking vacuum
just like QCD. The low-energy physics of the theory is then
dominated by the pseudo-Nambu-Goldstone bosons of its
flavor symmetry.
In the limit of zero quark mass (“chiral limit”), (pseudo)

real QCD-like theories with N quark flavors feature an
enhanced G ¼ SUð2NÞ flavor symmetry, which includes as
its generators both the electric charge Q and the baryon
number B. The chiral condensate in the ground state
breaks this spontaneously to H ¼ SOð2NÞ in real theories,
and to H ¼ Spð2NÞ in pseudoreal theories, resulting in
2N2 þ N − 1 pseudo-Nambu-Goldstone bosons in the real
case, and 2N2 − N − 1 ones in the pseudoreal case. Of
these, N2 − 1 are pseudoscalar mesons (“pions”), while the
remaining modes, absent in QCD, are scalar diquarks. All
the modes share the same mass,mπ , assuming equal current
masses of all quark flavors [13].
ForN ¼ 2 and with the choice of charges qu ¼ −qd ≠ 0,

a uniform external magnetic field reduces the symmetry to

GQ ¼ SUð2Þ × SUð2Þ × Uð1ÞQ;
HQ ¼ SUð2Þdiag × Uð1ÞQ: ð2Þ

Note that GQ is not the usual chiral symmetry of two-flavor
QCD: the baryon number B is included as a generator of the
“vector” subgroup SUð2Þdiag. The number of electrically
neutral light degrees of freedom (d.o.f.), given by the
dimension of the coset space GQ=HQ, is three in both real
and pseudoreal theories, including the neutral pion π0 and
an electrically neutral diquark-antidiquark pair d0, d̄0.
Low-energy effective theory.—In magnetic fields

H ≫ m2
π , charged (pseudo)scalars become heavy due to

Landau level quantization, and the low-energy physics will
be dominated by the electrically neutral modes. In this
regime, which we will from now on assume, a low-energy
effective theory (EFT) based on the coset space GQ=HQ can
be constructed by using its isomorphism with that of two-
flavor QCD.
Magnetic fields around the characteristic scale of the

theory, ΛQCD, or stronger, will distort the ground state and
make the low-energy EFTanisotropic, breaking the Lorentz

group SO(3,1) down to SOð1; 1Þ × SOð2Þ. See Fig. 1 for a
sketch of the different regimes of the EFT. We aim at
finding an effective action for the strong-field regime (C).
This can be done by contracting Lorentz indices with
projections, gkμν and g⊥μν, of the Minkowski metric to the
two-dimensional subspaces left intact by the magnetic
field. Our EFT will also be valid in the moderate-field
regime (B), albeit with a reduced predictive power due to
the use of a lower spacetime symmetry.
Taking finally into account the discrete symmetries

C, P, T, the leading-order effective Lagrangian is given
by [16]

Leff ¼
f2π
4
½ðgμνk þ v2gμν⊥ ÞtrðDμΣDνΣ−1Þ þm2

πtrðΣþ Σ−1Þ�
þ LWZ: ð3Þ

Here v is a velocity parameter and fπ, mπ are the pion
decay constant and mass, respectively. All the parameters
fπ , mπ , v are given by a priori unknown functions of the
magnetic field. The 2 × 2 unimodular unitary matrix field Σ
contains the three electrically neutral d.o.f. The covariant
derivative DμΣ, specified below in Eq. (6), introduces the
coupling of diquarks to baryon number chemical potential.
The LWZ piece in Eq. (3), known as the Wess-Zumino

(WZ) term [17], is the contribution of the chiral anomaly.
This can also be found following the analogy with two-
flavor QCD, by swapping the roles of electric charge and
baryon number in the result given in Ref. [9]. For
qu ¼ −qd ≠ 0, it reads

LWZ ¼ −
C
6
ϵμναβAQ

μ trð∂νΣ∂αΣ−1∂βΣΣ−1Þ

þ ibC
4

ϵμναβFQ
μνAB

α tr½τ3ð∂βΣΣ−1 − ∂βΣ−1ΣÞ�; ð4Þ

b being the baryon number of a single quark, FQ
μν the

electromagnetic field strength, AB
μ an external gauge

potential that couples to the baryon number current, and
τ3 a Pauli matrix in the flavor space. The overall normali-
zation of the WZ term is not determined by symmetry,

FIG. 1. Different regimes of the EFT and the corresponding
light d.o.f., depending on the strength of the magnetic field. Forffiffiffiffi
H

p
≪ ΛQCD, the magnetic field can be treated as a perturbation

of the ground state of the QCD-like theory. For
ffiffiffiffi
H

p ≳ ΛQCD, the
ground state is strongly affected by the field and the low-energy
EFT becomes anisotropic. For

ffiffiffiffi
H

p
≫ mπ, the charged d.o.f.

become heavy and decouple from the EFT. (The light charged
diquarks d�, d̄� are only present in real QCD-like theories.)
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but can be fixed by matching the EFT to the underlying
QCD-like theory. One then finds [18]

C ¼ d
8π2

ðqu − qdÞ; ð5Þ

where d is the dimension of the representation of the color
gauge group that a single quark flavor transforms in.
A few remarks are in order here. First, while we

exploited the analogy with two-flavor QCD, the form of
the EFT can as well be obtained by first constructing
the EFT for the full coset space G=H and then discarding
all charged d.o.f. This requires the knowledge of the gauged
WZ term in (pseudo)real QCD-like theories though [19].
Second, the assumption that the external magnetic field

satisfies H ≫ m2
π , that is, lies in the regime (B) or (C), is of

little practical limitation. We shall see that interesting
physics occurs above certain critical value of the field,
which is safely above the (A) regime for light quarks.
Finally, in contrast to the chiral perturbation theory of

QCD (seeRef. [20] for a review), theWZ term (4) contributes
to the leading order of the EFT. This is due to a modified
power counting, whereby the baryon gauge field AB

μ counts,
just like all derivatives, asOðp1Þ, whereas the magnetic field
H counts asOðp0Þ. The latter is required for consistency of
the EFT in the (C) regime and makes the coefficients fπ,mπ ,
v functions of H. The resulting EFT may be valid for
arbitrarily strong fields as long as the ground state breaks the
flavor symmetry by the formation of the chiral condensate,
which is supported by the magnetic catalysis phenomenon
[16]. Note that, in contrast, in the (A) regime fπ ,mπ are true
constants (and v ¼ 1) and the dependence of the EFTonH is
fully fixed by electromagnetic gauge invariance.
In the rest of this Letter, we analyze the ground state of

the EFT at nonzero baryon number chemical potential, μB,
and magnetic field H. Details of excitation spectrum in the
various phases in the phase diagram are reported elsewhere
[18]. We will fix without loss of generality qu ¼ −qd ¼
1=2 and b ¼ 1=2; any other choice can be absorbed into a
redefinition of H and μB, respectively.
To bring the EFT into a form more suitable for the

analysis, we map the matrix Σ on a unit four vector,
Σ≡ n0 þ in⃗ · τ⃗, where τ⃗ are the Pauli matrices and
n20 þ n⃗2 ¼ 1. The nontrivial components of the covariant
derivative DμΣ then read

D0n1 ≡ ∂0n1 − μBn2; D0n2 ≡ ∂0n2 þ μBn1: ð6Þ

The effective Lagrangian (3) now boils down to

Leff ¼
f2π
2
ðgμνk þ v2gμν⊥ Þð∂μn0∂νn0 þ ∂μn⃗ · ∂νn⃗Þ

þ f2πμBðn1∂0n2 − n2∂0n1Þ þ
f2π
2
μ2Bðn21 þ n22Þ

þ f2πm2
πn0 þ CHμBðn0∂zn3 − n3∂zn0Þ þ � � � ; ð7Þ

where we oriented the magnetic field along the z axis and
set AB

μ ¼ ðμB; 0Þ. The ellipsis indicates terms with three
derivatives, coming from the first line of Eq. (4); being
linear in time derivatives, they do not contribute to the
Hamiltonian and thus do not affect the structure of the
ground state [21].
Chiral limit.—The ground state is easy to determine by a

direct minimization of the Hamiltonian in the chiral limit,
mπ → 0. For any nonzero μB, there turn out to be two
phases. For CH < f2π, the ground state is hn0i ¼ hn3i ¼ 0

and hn1i2 þ hn2i2 ¼ 1. This describes a Bose-Einstein
condensate (BEC) of diquarks, which appears in the phase
diagram of (pseudo)real QCD-like theories generally for
μB > mπ [13].
For CH > f2π, on the other hand, the ground state

features a spatially dependent chiral condensate and
neutral pion condensate, but no diquark condensate: hn1i ¼
hn2i ¼ 0 and

hn0i ¼ cos
CHμBz
f2π

; hn3i ¼ sin
CHμBz
f2π

; ð8Þ

up to an arbitrary translation of the z coordinate. This
corresponds to the CSL state in the chiral limit [8,10]. By
Eq. (5), the CSL state appears in the phase diagram for

H > Hcr ¼
8π2f2π
d

: ð9Þ

The competition of the CSL and BEC phases is in a stark
contrast to QCD, where in the chiral limit, the CSL state is
triggered by arbitrarily weak magnetic fields. In (pseudo)
real QCD-like theories, a nonzero critical field is required
to overcome the energy gain of diquark BEC.
Full phase diagram.—To get insight into the phase

diagram away from the chiral limit, it is convenient to
parametrize the unit four-vector variable in terms of three
spherical angles

n0 ¼ cos θ cosϕ; n3 ¼ cos θ sinϕ;

n1 ¼ sin θ cos α; n2 ¼ sin θ sin α: ð10Þ

We also introduce dimensionless variables that allow us to
scale out trivial dependence of observables on fπ and mπ

x̄μ ≡mπxμ; x≡ μB
mπ

; H̄ ≡ CH
f2π

: ð11Þ

It is easy to see that the ground state has to be independent
of time and the transverse coordinates. The task to find the
ground state thus reduces to that of minimizing (the spatial
average of) the one-dimensional effective Hamiltonian
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Heff

f2πm2
π
¼ 1

2
½ðθ0Þ2 þ ðϕ0Þ2cos2θ þ ðα0Þ2sin2θ�

−
x2

2
sin2θ − cos θ cosϕ − xH̄ϕ0cos2θ þ 1; ð12Þ

where the primes denote derivatives with respect to z̄ [22].
The ground state is realized by constant α; hence we are
dealing with a one-dimensional system of two variables θ
and ϕ.
Restricting first to uniform field configurations, it readily

follows that there are two candidate states: the trivial vacuum
with hθi ¼ hϕi ¼ 0 and H̄vac ≡Heff=ðf2πm2

πÞ ¼ 0, and, for
x ≥ 1, the diquark BEC state with

coshθi ¼ 1

x2
; hϕi ¼ 0; H̄BEC ¼−

1

2

�
x−

1

x

�
2

: ð13Þ

The nonuniform CSL state, found in Ref. [10], can be
embedded into the present EFT for (pseudo)real QCD-like
theories by setting hθi ¼ 0. It satisfies

cos
hϕðz̄Þi

2
¼ sn

�
z̄
k
; k

�
; ð14Þ

where sn is one of Jacobi’s elliptic functions and k the
corresponding elliptic modulus. This describes a periodic
soliton with lattice spacing l ¼ 2kKðkÞm−1

π , KðkÞ being
the complete elliptic integral of the first kind. The optimum
value of k is found by minimization of the average energy
density carried by the soliton and fulfills the condition

EðkÞ
k

¼ πxH̄
4

; ð15Þ

EðkÞ being the complete elliptic integral of the second kind.
The energy of the CSL state can be cast implicitly as

H̄CSL ¼ 2

�
1 −

1

k2

�
: ð16Þ

Owing to 0 ≤ k ≤ 1, this state always has a lower energy
than the trivial vacuum, but only exists for H̄ ≥ 4=ðπxÞ.
Comparing the energies of the BEC and CSL states leads

to the phase diagram in Fig. 2. While this was found with
simple ansatz stationary states, we have strong, analytical
and numerical, evidence based on a variational treatment of
the Hamiltonian (12) that no other state of even lower
energy exists [18]. We can also conclude rigorously that the
ground state in the “CSL” region in Fig. 2, whatever it is,
has to be nonuniform.
Discussion and summary.—According to Fig. 2, fields

with H̄ > 1 are required to generate a spatially modulated
ground state. While our EFT is in principle valid for
arbitrarily strong fields, it is nevertheless not clear without
detailed knowledge of the function fπðHÞ whether H̄ > 1
can be satisfied for any physical values of H.

Rewriting this condition as H=ð4πfπÞ2 > 1=ð2dÞ, and
recalling that the loop factor 4πfπ controls the derivative
expansion of the EFT [23], we expect that the critical field
for the formation of CSL can be reached in theories with
sufficiently large d. Indeed, a one-loop calculation within
the chiral perturbation theory of QCD gives, in the chiral
limit [24]

½4πfπðHÞ�2 ¼ ½4πfπð0Þ�2 þ 2H log 2þOðH2Þ: ð17Þ

The same result applies to all pseudoreal QCD-like
theories, since the H-dependent correction to fπ comes
from a charged pion loop, and is thus insensitive to the
presence of electrically neutral diquarks. By Eq. (17), the
one-loop correction to the critical magnetic fieldHcr will be
suppressed by 1=d and thus negligible for large d.
Sufficient accuracy is then achieved by treating fπ as an
H-independent constant.
For theories with small d such as two-color QCD where

d ¼ 2, theH dependence of fπ has to be taken into account
to see whether a field for which H̄ > 1 exists. Here Eq. (17)
alone, implying a one-loop correction to Hcr of about 50%
at d ¼ 2, is not conclusive enough. The function fπðHÞ can
be further constrained by utilizing the results of Ref. [16],
giving its strong-field asymptotic behavior in two-color
QCD

4π2½fπðHÞ�2 ¼ H þ � � � for H → ∞: ð18Þ

Equations (17) and (18) fix the asymptotics of fπðHÞ in the
H → 0 and H → ∞ limits. Both are clearly consistent with
the existence of the CSL phase in two-color QCD: the latter
implies that H̄ ¼ 1þ � � � for H → ∞. However, to make a

FIG. 2. Tentative phase diagram in the H̄ ≡ CH=½fπðHÞ�2 and
x≡ μB=mπðHÞ variables at zero temperature. The solid lines
denote phase transitions. The dashed lines are the spinodal curves
of the first-order transition between the BEC and CSL phases,
obtained from the analysis of the excitation spectrum [18].
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firm conclusion, we would need to know more about the
behavior of fπðHÞ between the two limits, or at least the
sign of the correction to the leading term in Eq. (18). Such
input does not seem to be available at the moment, as
existing results (see, e.g., Ref. [25]) are not conclusive
enough for our purposes.
To summarize, we have constructed a class of counter-

examples to the conjecture that in vectorlike gauge theories,
positivity of the determinant of the Dirac operator (i.e.,
absence of the sign problem) implies absence of inhomo-
geneous phases in the phase diagram [6]. The nonuniform
order is realized by a topological crystalline condensate of
neutral pions and requires a sufficiently strong background
magnetic field. The conjecture might still hold under more
restrictive assumptions, for instance, when full rotational
invariance is imposed.
Our analysis utilizes low-energy EFT and is thereby

model independent. Hence, Fig. 2 represents the mapping
of the true phase diagram of (pseudo)real QCD-like
theories to the space of the dimensionless variables H̄
and x. Our results are not limited to weak magnetic fields.
Consistency of the derivative expansion requires moderate
chemical potentials though: using Eq. (8) to estimate the
gradients involved in the CSL state leads to the bound
H̄μB ≪ 4πfπ , or H̄x ≪ 4πfπ=mπ.
For theories with a large enough gauge group and its

representation on the quark fields, an inhomogeneous
phase can be demonstrably realized with moderate mag-
netic fields controlled by the derivative expansion of the
EFT. In the simplest and most well-studied QCD-like
theory—two-color QCD—the question of the existence
of a nonuniform phase remains open. Assuming that our
EFT remains valid in strong magnetic fields, that is, the
ground state at zero chemical potential carries a chiral
condensate [16], this question can, however, be answered
by an independent nonperturbative evaluation of the neutral
pion decay constant as a function of magnetic field.
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