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We study thermalization, hydrodynamization, and chemical equilibration in out-of-equilibrium quark-
gluon plasma starting from various initial conditions using QCD effective kinetic theory, valid at weak
coupling. In nonexpanding systems gauge bosons rapidly lose information of the initial state and achieve
kinetic equilibrium among themselves, while fermions approach the equilibrium distribution only at a later
time. In systems undergoing rapid longitudinal expansion, both gluons and quarks are kept away from
equilibrium by the expansion, but the evolution is well described by fluid dynamics even before local
thermal equilibrium is reached. For realistic couplings we determine the ordering between the separate
hydrodynamization, chemical equilibration and thermalization time scales to be τhydro < τchem < τtherm.
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I. INTRODUCTION

How gauge theories pushed far from equilibrium ther-
malize is a central topic in the study of heavy-ion collisions
[1]. To what extent the postcollisional debris created in the
collision of two nuclei reaches local thermal equilibrium
before the system cools down determines how well a fluid
dynamical description of the system is applicable.
Our ability to perform first principles nonperturbative

real-time calculations in QCD is limited by the infamous
sign problem [2], and considerable efforts have been
invested to understand thermalization and hydrodynamiza-
tion in various approximations of the QCD. A prominent
example is the N ¼ 4 super Yang-Mills theory in the limit
of a large number of colors and strong coupling, which has
been studied extensively with holographic methods [3–6].
The holographic methodology can be applied only to a very
limited set of gauge theories, and for generic theories—
such as QCD—only weak-coupling methods are available.
So far the weak-coupling studies of thermalization of far-
from-equilibrium systems have been limited to either pure
gauge or scalar theories, and studies in QCD have been
restricted only to near-equilibrium systems [7,8]. Here,

we extend the weak-coupling treatment of [9,10] by
including dynamical fermions and study how far-from-
equilibrium systems approach equilibrium in a full leading
order QCD description.
Introducing new degrees of freedom (d.o.f.) to the

system adds new structures. It has been argued [11] that
the off-equilibrium dynamics of quarks may be signifi-
cantly slower than that of the gluons, owing partly to
smaller group theoretic color factors and partly to different
spin statistics and Pauli blocking. It may be then that the
equilibration of quarks could be a bottleneck of thermal-
ization as chemical equilibration may take place in a
significantly longer timescale. In particular, in the weak-
coupling picture of heavy-ion collisions, the initial state in
midrapidity is dominated by a large number of gluons with
only a few fermions. If the production of fermions is
delayed, this could have an impact on the fluid dynamical
modeling of heavy-ion collisions, since the equation of
state of quark-gluon plasma (QGP) is different than that of
plasma consisting of gluons only. Furthermore, chemically
equilibrated QGP is a standard explanation of the strange-
ness enhancement in nucleus-nucleus collisions [12–14],
so understanding fermion production from first principles
provides an important theoretical validation of this picture.
It has been observed in several theories—both weakly

and strongly coupled—that the hydrodynamical constitu-
tive relations are approximately fulfilled in systems that
have sizable anisotropies, that is, hydrodynamization with-
out thermalization [5,10,15,16]. Upon including quark
d.o.f. to the system we may ask the question, when does
the chemical equilibration happen with respect to the
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hydrodynamization and thermalization times τhydro
and τtherm?
The basic tool here is the set of Boltzmann equations that

are applicable in isotropic systems any time the typical
occupancies are smaller than 1=αs. Of course, many
authors have already considered the evolution of quark-
gluon systems under Boltzmann equations [17–25]. What
sets our study apart from these works is that we use the
effective Boltzmann equations derived by Arnold, Moore,
and Yaffe [26], which account for all processes needed
for a description that is accurate to leading order in αs.
These processes include in-medium screening effects [27]
and Landau-Pomeranchuk-Migdal [28–31] corrected split-
ting processes in far-from-equilibrium but isotropic
systems.1 To do so we extend the previously developed
setup of Refs. [6,9,10,33] to include quark d.o.f. and we
briefly summarize the key elements of the description
in Sec. II.
In the following we will consider Nc ¼ 3 QCD plasma

with Nf ¼ 3 flavors of massless quarks in different out-of-
equilibrium conditions, with and without expansion. While
there is only one thermal equilibrium, there are many ways
a system can be out of equilibrium. In Sec. III A we will
first study in detail a particularly simple nonexpanding
system where quarks are absent and gluons are in kinetic
equilibrium among themselves. We discuss the processes
that produce fermions and subsequently lead to chemical
equilibration. In Sec. III B we then move on to discuss
nonexpanding systems which are initialized with an over-
occupied gauge boson distribution. While we are unaware
of a physical system where QCD would be found in these
conditions, cosmological reheating may result in a system
of overoccupied gauge bosons (see e.g., [34]). Following
the time evolution of the overoccupied system, we see that
due to the slower dynamics of fermions, gauge bosons
reach kinetic equilibrium before chemical equilibration.
Once the gauge bosons have reached kinetic equilibrium

the evolution proceeds as in our first example. Finally, in
Sec. IV we turn to a system of overoccupied gluons
undergoing boost-invariant longitudinal expansion. This
is the expected initial condition in heavy-ion collisions in
the asymptotic weak-coupling limit [35,36]. For moderate
values of the coupling constant αs ∼ 0.3 we observe a
rapid memory loss of initial conditions and chemical and
hydrodynamical equilibrium is approached along a univer-
sal curve. Finally, we conclude with the discussion of the
separate equilibration timescales in Sec. V.

II. EFFECTIVE KINETIC THEORY

The effective kinetic theory that we use to describe
thermalization is the effective kinetic theory (EKT) of
Arnold, Moore and Yaffe [26], which is leading order
accurate in the QCD coupling constant λ ¼ g2Nc ¼
4παsNc in the combined limit of weak coupling (λ → 0)
and nonperturbative occupancies (λf → 0) for modes
whose momenta are larger than the thermal screening scale
in the nonequilibrium system p2 ≫ m2 ∼ λ

R
d3pfðpÞ=p.

At leading order in the coupling constant, the EKT
describes the time evolution of color- or spin-averaged
distribution function fs with an effective 2 ↔ 2 scattering
and a 1 ↔ 2 effective splitting terms. The resulting
Boltzmann equation for a homogeneous nonexpanding
system is

∂tfsðp; tÞ ¼ −Cs2↔2½f�ðpÞ − Cs1↔2½f�ðpÞ ð1Þ

with massless dispersion relation p0 ¼ jpj ¼ p. The index
s refers to different particle species in the theory.
Expanding upon previous implementations of pure gauge
theories in Refs. [6,9,10,33] to QCD, s now stands for
gluons and 2Nf massless fermions (with quarks and
antiquarks counted separately).2 The symmetrized 2 ↔ 2
collision terms in the right-hand side of Eq. (1) reads

Cs2↔2½f�ðp̃Þ ¼
1

2

1

νs

1

4

X
abcd

Z
pkp0k0

jMab
cd j2ð2πÞ4δð4Þðpμ þ kμ − p0μ − k0μÞ

× fðfapfbkð1� fcp0 Þð1� fdk0 ÞÞ − ðfcp0fdk0 ð1� fapÞð1� fbkÞÞg
× ð2πÞ3½δð3Þðp̃ − pÞδas þ δð3Þðp̃ − kÞδbs − δð3Þðp̃ − p0Þδcs − δð3Þðp̃ − k0Þδds�; ð2Þ

where jMab
cd j2 is a 2 ↔ 2 scattering amplitude squared summed over all d.o.f. of the external legs [νq ¼ 2Nc for quarks and

νg ¼ 2ðN2
c − 1Þ for gluons],Pabcd is a sum over all particle and antiparticle species, and

R
p ¼ d3p

2pð2πÞ3 is a shorthand notation
for Lorentz-invariant momentum integral. The second line is the usual phase-space loss and gain terms, while the Kronecker
and Dirac delta functions in the last line accounts for the possibility of particle s to be on any of the four external lines.
Finally the numerical prefactors in front of the integral correct the double counting of identical processes.

2In this work we consider plasma at a zero chemical potential with quark and antiquark distributions being equal.

1We note that there are also other nonperturbative (in the sense that they involve an infinite number of diagrams) but weak-coupling
(in the sense that they can be expanded in a series in the coupling constant) processes which do not contribute to our leading order
calculation. These processes include for example the sphaleron transitions; see [32].
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The effective matrix elements jMab
cd j2 in Eq. (2) are for

most kinematics the normal tree-level vacuum matrix
element (see Table II in Ref. [26]). For soft small angle
scatterings with energy transfer ω ≪ p, k, the tree-level
Coulomb and Compton scatterings are infrared divergent,
elevating a set of diagrams with an arbitrary number of
loops to the same magnitude as the tree-level diagrams.
These effects become important at the in-medium screening
scale p ∼mg, mq. Here the in-medium effective masses of
gluon and quarks are given, respectively, by

m2
g ¼ 2g2

Z
p

�
2CAfgðpÞ þ 2NfCF

νq
νg

ðfqðpÞ þ fq̄ðpÞÞ
�
;

ð3Þ

m2
q ¼ 2g2

Z
p
½2CFfgðpÞ þ CFðfqðpÞ þ fq̄ðpÞÞ�: ð4Þ

For momentum transfer of this order the dispersion of the
internal line in the computation of jMab

cd j2 gets an Oð1Þ
correction from the in-medium physics. Therefore, for the
problematic soft scattering we replace the matrix element
with that computed in the hard thermal loop (HTL)
approximation that self-consistently treats the medium
interaction correctly to leading order. We perform this
substitution by removing the infrared divergent small angle
approximation from the full matrix element and replace
it with the small angle approximation of the full HTL
rate [37]. Specifically for a soft gluon or fermion exchange
with the momentum transfer q ¼ jp0 − pj in the t channel,
the divergent term ðu − sÞ=t ∼ 1=q2 is replaced by the IR
regulated term

u − s
t

→
u − s
t

q2

q2 þ ξ2sm2
s
; ð5Þ

where ξg ¼ e5=6=2 and ξq ¼ e=2 are fixed such that the
matrix element reproduces the full HTL results for drag and
momentum diffusion properties of soft gluon scattering
[37] and gluon to quark conversion gg → qq̄ [38,39] at
leading order for isotropic distributions.
While the soft ω ∼mg scatterings do not appreciably

change the momentum state of the particle, they may
bring the particle slightly off shell and make it kinemat-
ically possible for the particle to decay through nearly
collinear splitting. This makes the effective 1 ↔ 2 matrix
element a leading order effect. It is included as C1↔2½f�ðp̃Þ
on the right-hand side of the Boltzmann equation (1) and
explicitly

Cs1↔2½f�ðp̃Þ

¼ 1

2

1

νs

X
abc

Z
∞

0

dpdp0dk04πγabcðp;p0; k0Þδðp − p0 − k0Þ

× ffapn̂½1� fbp0n̂�½1� fck0n̂� − fbp0n̂f
c
k0n̂½1� fapn̂�g

×
ð2πÞ3
4πp̃2

½δðp̃ − pÞδas − δðp̃ − p0Þδbs − δðp̃ − k0Þδcs�;

ð6Þ

where the unit vector n̂ ¼ p̃=jp̃j defines the splitting
direction and γabcðp;p0; k0Þ is the effective collinear splitting
rate including Landau-Pomeranchuk-Migdal [28–31] sup-
pression of collinear radiation. Factoring out the kinematic
splitting functions, the rates

γgggðp;p0; k0Þ ¼ p4 þ p04 þ k04

p3p03k03
F gðp;p0; k0Þ; ð7Þ

γqqgðp;p0; k0Þ ¼ p2 þ p02

p2p02k03
F qðp;p0; k0Þ; ð8Þ

γgqq̄ðp;p0; k0Þ ¼ γqqgðk0;−p0; pÞ ð9Þ

are given by an effective vertex resuming an infinite
number of possible soft interactions with the medium
[26]. It is found by solving the following integral equation:

2h ¼ iδEðhÞFsðhÞ þ g2T�

Z
d2q⊥
ð2πÞ2Aðq⊥Þ

×

�
1

2
ðCs þCs −CAÞ½FsðhÞ− Fsðh− k0q⊥Þ�

þ 1

2
ðCs þCA −CsÞ½FsðhÞ− Fsðh− p0q⊥Þ�

þ 1

2
ðCA þCs −CsÞ½FsðhÞ− Fsðhþ pq⊥Þ�

�
; ð10Þ

and F sðp;p0; k0Þ is defined as

F sðp;p0; k0Þ ¼ νsCsg2

8ð2πÞ4
Z

d2h
ð2πÞ2 2h · ReFsðh;p; p0; k0Þ:

ð11Þ

In this work the strength of soft momentum background
fluctuations Aðq⊥Þ is treated using an isotropic screening
approximation [40]:

Aðq⊥Þ ¼
1

q2⊥
−

1

q2⊥ þ 2m2
g
; ð12Þ

the energy difference δE is defined as
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δEðh;p; p0; k0Þ≡ m2
g

2k0
þ m2

s

2p0 −
m2

s

2p
þ h2

2pk0p0 ; ð13Þ

and the effective temperature T� is given by

T� ≡ 1

νgm2
g

X
s

νsg2Cs

Z
d3p
ð2πÞ3 fsðpÞð1� fsðpÞÞ: ð14Þ

Instead of solving Eq. (10) directly, the required two-
dimensional integral Eq. (11) is expressed as the value at
the origin of the Fourier transformed function F̃s, which
solves a Fourier transformed Eq. (10). We solve it using the
basis function method [41] and parametrize the solution for
the Monte Carlo sampling of the collision kernel in
Eq. (6). For the distribution functions we use a previously
developed discretization scheme that does not introduce
additional discretization errors for energy or particle
number densities [6,10,37]. The distribution functions
are discretized in spherical polar coordinates on a loga-
rithmic momentum grid with typical momentum range
pmax=pmin ¼ 1500 and Np ¼ 100. For anisotropically
expanding systems the longitudinal momentum fraction
cos θ ¼ pz=p is discretized on a uniform grid with a typical
value of Nθ ¼ 200. We considered azimuthally symmetric
distributions. The collision integrals were calculated by
Monte Carlo sampling of the phase space with importance
sampling [6]. At each time step the 2 ↔ 2 collision integral
Eq. (2) was calculated using N2↔2NpNθ randomly gen-
erated vector quadruplets p, k, p0, k0 satisfying the
momentum and energy conservation, where N2↔2 ¼ 50,
100. For 1 ↔ 2 collision integral Eq. (6) we used N1↔2Np

samples of momentum p; p0; k0 ¼ p − p0 combinations,
which were reused for each angular direction (here
N1↔2 ¼ 50, 100).

III. CHEMICAL EQUILIBRATION IN ISOTROPIC
NONEXPANDING SYSTEMS

A. Kinetically equilibrated initial conditions

In order to gain intuition to the far-from-equilibrium
dynamics, we start with a particularly simple system where
gauge bosons and fermions are initialized at time t ¼ 0
with thermal distributions

fseqðpÞ ¼
1

ep=Ts;init � 1
; ð15Þ

but with different initial temperatures Tg;init ≠ Tq;init. In
such a situation we say that quarks and gluons are in kinetic
equilibrium among themselves but not in thermal equilib-
rium with each other. The system will relax into a state in
which both the quarks and the gluons are in equilibrium
with the same temperature Tfinal. The energy conservation
dictates that the final temperature will be given by

νgT4
g;init þ 2Nfνq

7

8
T4
q;init ¼

�
νg þ 2Nfνq

7

8

�
T4
final: ð16Þ

If we start with a pure gluon initial state, i.e., Tq;init ¼ 0,
the fermion number is initially zero. In order to reach
chemical equilibrium, the fermion number has to be
subsequently generated by pair production either through
medium-induced g → qq̄-splitting processes or alterna-
tively through gg → qq̄ conversions. Multiplying the
Boltzmann equation (1) by 2Nfνqp2=λ2T3 for quarks,
we obtain the equation for the rate of change of fermion
number (per momentum)

2Nfνq
λ2T3

∂t½p2fqðp; tÞ� ¼ Cq
22 þ Cq

12 ð17Þ

and similarly for gluons. In Fig. 1 we show the rates Cs
22

and Cs
12 separately and as a sum for coupling constant

λ ¼ 0.1 and temperature T ¼ Tg;init. We see that the 2 ↔ 2

processes dominate fermion production around p ∼ T
(blue dashed line), while for p ∼mD ¼ ffiffiffi

2
p

mg the splitting
processes become roughly equally important (blue dotted
line). The changes in the gluon distribution mirror the
fermionic ones. We see that gg → qq̄ conversion reduces
the number of gluons at the same momentum scale p ∼ T
where fermions are created (blue and red dashed lines),
while soft collinear radiation from p ∼ T gluons (red dotted
line) produces soft fermions. Importantly, the resulting
fermion spectrum is nonthermal.
We now turn to study how the above system evolves

toward equilibrium as a function of time. For the same
λ ¼ 0.1 as above, Fig. 2 displays the time evolution of
several different effective temperatures Teff

g=q;α, defined

FIG. 1. The rate of change of total fermion number density
(blue lines) for a thermal gluon system with no initial quark
density and λ ¼ 0.1. The dashed and dotted lines show the
contributions to the rate from elastic 2 ↔ 2 and inelastic 1 ↔ 2
processes, while the solid lines are the sum of the two. The
corresponding changes in the gluon number density (multiplied
by −1) are shown by red lines.
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through the αth moments of the fermion (F ¼ 1) and boson
(F ¼ 0) distribution functions

Teff
g=q;α ¼

�
N α;F

Z
d3p
ð2πÞ3 p

αfðpÞ
� 1

αþ3

: ð18Þ

The effective temperatures are normalized such that when
the system is in thermal equilibrium all Teff

g=q;α (for all α) are

equal to the equilibrium temperature Teff
g=q;α ¼ Tfinal, that is,

N α;F ¼ ½1 − 2−α−2�−F 2π2

Γðαþ 3Þζðαþ 3Þ :

Lower α values are more sensitive to the infrared of the
distribution, whereas larger α values describe the UV part
of the distribution function. In particular, Teff

1 ∝
ffiffiffi
e4

p
cor-

responds to the temperature of a fictitious thermally
equilibrated system with the same energy density.
We display the effective temperatures as a function of

relaxation time of the final thermalized system

τR ¼ 4πη=s
Tfinal

; ð19Þ

where η=s is the specific shear viscosity, whose relation to λ
is discussed in the Appendix. This relaxation time is
parametrically of order of the transport mean free path
of the thermalized system τR ∼ ðλ2TfinalÞ−1, but it has been
observed in [6,10,42,43] that expressing the coupling
constant λ in terms of the specific viscosity accounts for
large numerical corrections that go beyond the parametric
expression and leads to better scaling behavior for different
values of λ.

We first note that the effective temperatures of gluons
(red lines in Fig. 2) decrease while those of the quarks (blue
lines) increase. During this evolution the gluon effective
temperatures approximately overlap, signifying that gluons
remain close to the kinetic equilibrium through the whole
evolution. In contrast to gluons—and consistent with the
nonequilibrium spectrum of the fermion production rate in
Fig. 1—the fermion effective temperatures differ until full
chemical equilibration is achieved. During this evolution
the fermion spectrum is harder than that in kinetic equi-
librium as seen from the ordering of the effective temper-
atures Teff

4 > Teff
3 > � � � > Teff

−1.
In chemical equilibrium Nf ¼ 3 fermions constitute

eq;eq=eq;total ≈ 0.66 of the total equilibrium energy density
[see Eq. (16)]. It can be seen in Fig. 3 that by the time
tchem ≈ 1.4τR for λ ¼ 0.1 the fermion energy density eq has
reached 90% of its equilibrium value eq;final, which we take
as our somewhat arbitrary definition of the chemical
equilibration time, i.e.,

eqðtchemÞ
eq;final

¼
�
Teff
1;qðtchemÞ
Tfinal

�4

¼ 0.9: ð20Þ

To study the coupling dependence of the chemical
equilibration, we repeat the above calculation with the
same initial conditions but with several different values
of λ ¼ 10, 1.0, 0.1, corresponding to η=s ≈ 1; 35; 1900,
respectively. Figure 3 shows the time evolution of fermion
energy fraction for these different values of ’t Hooft
couplings, for which the chemical equilibration time varies
by 3 orders of magnitude. However, as is seen from the
figure, the functional forms of the time evolutions of the
energy densities follow closely a common form when
described in terms of the relaxation time τR, with the
system reaching chemical equilibrium around

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

FIG. 3. Chemical equilibration of fermion energy density
(as a function of equilibrium energy density) for different
coupling constants λ ¼ 10, 1.0, 0.1, which correspond to effec-
tive η=s ¼ 1, 35, 1900. Two cases shown: with zero initial
fermion energy eq ≈ 0 and with zero initial gluon energy eg ≈ 0.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

gluons

fermions

FIG. 2. The various effective temperatures [see Eq. (18)] as
a function of time for a nonexpanding system with initial
conditions of thermal gluons and no fermions. The time axis
is scaled by τR ¼ 4πη=s=T final, where η=s ≈ 1900 for λ ¼ 0.1.
The red lines are the gluonic effective temperatures; the blue
lines are the effective temperatures of the fermionic sector
with Teff

4 > Teff
3 > � � � > Teff

−1.
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tchem=τR ∼ 1.1–1.4 ð21Þ

for all studied values of λ.
We note however that for moderate values λ≳ 10, we

expect substantial next-to-leading order corrections to
transport properties of QGP [44]. Nevertheless, while the
kinetic theory suffers from large systematic uncertainties
for these values of λ, the fact that the kinetic theory
calculation itself does not fail catastrophically may allow
one to extrapolate the results for semiquantitative order of
magnitude estimates even at larger values of λ using τR
scaling, where the dependence on the coupling constant
only enters through the specific shear viscosity η=s. Note
that other transport coefficients in units of η=s, e.g.,
τπ=ðη=ðsTÞÞ, are much less sensitive to the changes of
the coupling constant [45].
We note in passing that similar qualitative features of the

equilibration are seen by varying the initial starting gluon
and fermion temperatures. In particular, the gluons remain
in approximate kinetic equilibrium throughout evolution
even if one starts with fermion-dominated initial conditions
(data not shown). In this case the fermion energy fraction
approaches equilibrium ratio from above (see Fig. 3)
and the chemical equilibration takes place at tchem=τR ∼
0.5–0.9, where now eqðtchemÞ=eq;final ¼ 1.1 in this case.

B. Overoccupied initial conditions

We now turn to a system starting with an overoccupied
distribution of gluons and no fermions. This system has
initially too many gluons, fg ≫ 1, with too soft momenta
compared to a thermal ensemble with the same energy
density, that is, Teff

2 ≪ Teff
1 ≪ Teff

0 . As the fermions cannot
be overoccupied, such a system is necessarily dominated by
the gluons in the early stages. As discussed in detail in
[9,37,46–51], overoccupied gluonic systems thermalize via
a self-similar cascade which carries the energy and particle
number from the infrared to the ultraviolet via elastic and
inelastic scattering. As long as the system is parametrically
overoccupied fg ≫ 1, the cascade is self-similar; that is,
the gluon distribution function at a given time t is given by
an approximately stationary scaling function f̃ which is
insensitive to the initial conditions

fgðpÞ ¼ ðQtÞ−4=7f̃ðp=pmaxÞ; pmax ¼QðQtÞ1=7; ð22Þ

where Q4 ¼ 2π2λ
R
p pfgðpÞ. This scaling form is reached

in a time that is proportional to the scattering rate of the
initial condition [9], which is parametrically faster than the
thermalization time for a parametrically overoccupied
system. The approach to the scaling form is discussed in
detail in [51]. Once the typical momentum of the cas-
cade pmax reaches the thermal scale Tfinal, the system
equilibrates. How the presence of fermions may affect the
cascade has been studied using (semi)classical Yang-Mills

simulations in the regime where the gluons are still highly
overoccupied and pmax ≪ Tfinal [52]. We now answer the
question of what happens when pmax ∼ T.
The green lines in Fig. 4 show the time evolution of a

pure Nc ¼ 3 gauge theory with overoccupied gluon initial
conditions.3 For the effective temperatures, this scaling
form Eq. (22) corresponds to a power-law behavior

Teff
α ∝ t

1
7
α−1
αþ3: ð23Þ

If the system is parametrically overoccupied, the effec-
tive temperatures are also parametrically separated
Teff
α ≫ Teff

αþ1, but when the system thermalizes around
t ≈ 0.3τR, the effective temperatures again collapse.
Figure 4 also shows the time evolution of a QCD plasma
(Nc ¼ 3, Nf ¼ 3) with the same initial condition of over-
occupied gluons with no quarks present. The time evolution
differs now from the pure glue system as the fermion
number is dynamically generated. At early times the quark
effective temperatures are small and gluonic temperatures
approximately follow the classical power laws. The cascade
ends and the gluonic sector reaches a kinetic equilibrium
among themselves again around

t ∼ tgkinetic ≈ 0.2τR; ð24Þ

where we have defined the kinetic equilibration time—
in analogy with the chemical equilibration time—by
demanding

YM gluons
QCD gluons

QCD fermions

FIG. 4. Chemical equilibration for an isotropic overoccupied
gluon state with no initial fermions present. The effective
temperature Tα of gluon (red lines) and fermion (blue lines)
distribution functions are shown for λ ¼ 0.1. Note that for
fermions Teff

4 > Teff
3 > � � � > Teff

−1, but overoccupied gluons start
with inverted ordering.

3The initial condition of the simulation is given by Eq. (29)
with λ ¼ 0.1 and ξ ¼ 1. However as the system very quickly
reaches the self-similar scaling form, the details of the initial
condition matter only at very early times t ≪ τR.
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�
Tg
0ðtkineticÞ

Tg
1ðtkineticÞ

�
4

¼ 0.9: ð25Þ

This timescale is significantly faster than the timescale for
chemical equilibration tchem. Indeed at the time the kinetic
equilibrium among gluons is reached, there are only a few
quarks present and the state of the system is approx-
imately the same as in the case of thermal initial
conditions studied in the previous section. From this
point on, the chemical equilibrium follows the same
pattern which was described in the previous section. To
emphasize this point, in Fig. 5 we show the fermion
energy fraction for overoccupied initial conditions (col-
ored lines) on top of the thermal initial conditions (gray
lines), which were shown in Fig. 3.

IV. CHEMICAL EQUILIBRATION IN
EXPANDING SYSTEMS

In the weak-coupling description of heavy-ion colli-
sions the state of the system right after the initial particle
production is given by an overoccupied distribution of
gluons [35,36]. The novel feature compared to the
previous section is that the geometry of the collision
system is such that the overoccupied matter is undergoing
a rapid, approximately boost-invariant longitudinal expan-
sion. Such a system has been studied in detail in pure
gauge theory [10,33] and it forms the link between the
initial condition and the hydrodynamic stage in phenom-
enological multistage simulations of heavy-ion collisions
[42,43]. Here, we study the expanding plasma in
full QCD.
Assuming a boost-invariant form of the distribution

function, the Boltzmann equation can be written in the
form [18]

∂τfsðp; τÞ −
pz

τ
∂pzfsðpÞ ¼ −Cs2↔2½f�ðpÞ − Cs1↔2½f�ðpÞ;

ð26Þ

where τ is the Bjorken time τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
. The expansion

redshifts the distribution in the pz direction, making it more
anisotropic along the longitudinal momentum, while 2 ↔ 2
scatterings act to isotropize the system [53]. While aniso-
tropic systems could suffer from the presence of unstable
plasma modes [54–56] affecting the kinetic dynamics
[50,57], the detailed 3þ 1D classical-statistical Yang-
Mills simulations [49,58] found that late time evolution
of anisotropic systems is in agreement with kinetic theory
expectations neglecting plasma instabilities [53]. In the
absence of a general nonequilibrium formulation of QCD
kinetic theory [50], we use QCD kinetic theory with
isotropic approximations, which remove the unstable
modes, to study the equilibration in expanding systems.
Note that there are no unstable fermionic modes [59,60].
While the expansion conserves total energy, the local

energy density in a given rapidity slice decreases as a
function of time. At late times when the system is close to
local thermal equilibrium, the time evolution of the temper-
ature is given by ideal hydrodynamics with constant
TðτÞτ1=3. As the target temperature to which the out-of-
equilibrium system aims to thermalize changes, so does
the kinetic relaxation time. In the following we follow the
practice of [42] and, for each simulation, we determine the
asymptotic value of TðτÞτ1=3jτ→∞, use the ideal hydro-
dynamics relation to extract what the temperature of the
system would have been at earlier times if the full time
evolution of the system were described by ideal fluid
dynamics

T idðτÞ ¼
ðTðτÞτ1=3Þjτ→∞

τ1=3
; ð27Þ

and use that in our definition of time-dependent kinetic
relaxation time

τRðτÞ ¼
4πη=s
T idðτÞ

: ð28Þ

We consider an expanding system with an overoccupied
initial condition motivated by the color-glass-condensate
framework

fgðp; τ ¼ τ0Þ ¼
2A
λ

Q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

zξ
2

p e
−2
3

p2⊥þξ2p2z

Q2
0 ; ð29Þ

where the values of A, Q0, and ξ are adjusted to reproduce
the mean transverse momentum squared hp2

Ti and energy
density eðτ0Þ at the initial time τ0 extracted from the
classical lattice simulations of initial stages of the
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FIG. 5. Chemical equilibration of fermion energy density
(as a function of equilibrium energy density) for different
coupling constants λ ¼ 10, 1.0, 0.1, which correspond to
effective η=s ¼ 1, 35, 1900 for the system initialized with
overoccupied gluon density (colored lines) and thermal initial
conditions (gray lines).
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collision [10,61]. The anisotropy parameter ξ determining
the ratio of longitudinal to transverse pressure is chosen
such that PL ≪ PT and is set in the following ξ ¼ 10. The
same initial conditions have been studied in pure gauge
theory in [10,33,42]. Here, as in [10,33,42], we use τ0 ¼
1=Qs and Q0 ¼ 1.8Qs and we set A ¼ 5.24. Here Qs is the
saturation scale of color glass condensate and is of order
Q−1

s ∼ 0.1 fm.
In Fig. 6 we show the time evolution of the effective

temperatures Teff
α for the initial conditions Eq. (29) and

λ ¼ 5, which corresponds to η=s ≈ 2.75. The rapid longi-
tudinal expansion quickly inverts the hierarchy of temper-
atures from an overoccupied state fg ≫ 1 (Teff

α > Teff
αþ1) to

an underoccupied state fg ≪ 1, which is well understood as
the first stage of the bottom-up thermalization [53]. This
transition takes place well before a substantial number of
fermions are produced as can be seen from the good overlap
of the time evolution of the effective temperatures in pure
gauge theory with the full theory in Fig. 6. This suggests
that during this early phase the presence of fermions does
not significantly affect the evolution of bulk quantities.
Note that the effective temperatures are sensitive only to the
angular averaged distribution function, but because of the
longitudinal expansion the system is highly anisotropic.
Next we look at the chemical equilibration of fermion

energy fraction of the equilibrium energy density. In Fig. 7
we show the approach to chemical equilibrium for different
values of the coupling constant λ and an overoccupied
initial state. Using the same ad hoc criterion of chemical
equilibration as in nonexpanding system Eq. (20), we find
that chemical equilibration happens for τchem ∼ 1–2τR for a
wide range of coupling constants 0.5 ≤ λ ≤ 20 and only
for very small coupling λ ¼ 0.1, we get τchem ≈ 2.8τR.

We would like to remind that parametrically the chemical
equilibration scales as ∼ðλ2TÞ−1, so in physical units the
equilibration times change by several orders of magnitude.
Scaling with relaxation time Eq. (28) reduces this vast
separation of scales, and for couplings λ > 1 we observe
the collapse of equilibration dynamics to the same curve
and the chemical equilibration is reached at τchem ≈ 1.2τR.
The difference in equilibration times for λ ≤ 1, which was
not present in the nonexpanding case, arises from the
additional scale—the expansion rate 1=τ. Since the starting
time τ0 ¼ 1=Qs is kept fixed, for smaller values of the
coupling constant, the system experiences a longer phase
where the anisotropy is still increasing, i.e., the first stage of
bottom up, which delays equilibration.
We note that the chemical equilibration takes place

when the system is still highly anisotropic. This is seen
in Fig. 8(a) depicting the time evolution of the ratio of the
longitudinal and transverse pressures

PL ¼
Z

d3p
ð2πÞ3

p2
z

p0
ðνgfg þ 2NfνqfqÞ; ð30Þ

PT ¼ 1

2

Z
d3p
ð2πÞ3

p2
x þ p2

y

p0
ðνgfg þ 2NfνqfqÞ: ð31Þ

The system becomes isotropic only at very late times. At
the time of chemical equilibration (τ ≲ 3τR) the pressure
anisotropy is still large PL=PT < 0.8 for all values of λ.
However similarly to the pure gauge theory, the
system’s time evolution is well described by fluid
dynamics well before pressure anisotropies become
small; that is, the system exhibits “hydrodynamization
without thermalization.”
We quantify the approach to thermal equilibrium and

hydrodynamization by defining two additional timescales
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FIG. 7. Fermion energy fraction in a longitudinally expand-
ing system with different coupling constants λ. The system is
initialized with an anisotropic overoccupied gluon state, Eq. (29)
(ξ ¼ 10). The time axis is scaled by corresponding kinetic
relaxation time τRðτÞ, Eq. (28), for each value of λ.
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FIG. 6. The effective temperature Teff
α (α ¼ −1;…; 4) evolution

in a longitudinally expanding system for QCD (Nc ¼ 3, Nf ¼ 3)
and Yang-Mills (Nc ¼ 3, Nf ¼ 0). Initial conditions given by an
anisotropic overoccupied gluon state (λ ¼ 5, ξ ¼ 10, η=s ≈ 2.75)
with no initial fermions, Eq. (29). Axes are scaled by time-
dependent relaxation time and asymptotic temperatures τRðτÞ ¼
ð4πη=sÞ=T idðτÞ and T idðτÞ.
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τtherm and τhydro, in analogy to Eq. (20). We require the
combined gluon and fermion energy density e ¼ eg þ eq to
be within 10% of ideal and viscous hydrodynamic esti-
mates of energy density

eðτthermÞ
eid

¼
�

TðτthermÞ
T idðτthermÞ

�
4

¼ 0.9; ð32Þ
				1 − eðτhydroÞ

e1st

				 ¼
				1 −

�
TðτhydroÞ
T1stðτhydroÞ

�
4
				 ¼ 0.1: ð33Þ

Here T id is the ideal estimate of the local temperature
Eq. (27) and T1st is the first order viscous hydrodynamic
solution of longitudinally expanding system with the same
late time asymptotics as T id. The analytical solution for first
order conformal hydrodynamical equations of motion can
be written in units of τR as [62,63]

T1stðτÞ
T idðτÞ

¼ 1 −
2

12π

τR
τ
: ð34Þ

In Fig. 8(b) we show the time evolution of the total energy
density scaled by ideal estimate, i.e., e=eid ¼ ðT=T idÞ4. We
find that 90% of equilibrium energy is reached at τtherm ∼
2τR for the coupling constant values 0.5 ≤ λ ≤ 20. Only for
λ ¼ 0.1 is the approach to equilibrium slower and this
criterion is satisfied at τtherm ∼ 2.5. Next, we use the first
order hydrodynamic estimate for temperature Eq. (34) and
compare it to the kinetic theory.4 We achieve agreement
with full kinetic theory evolution at very early times and by
the time τhydro ≲ 0.5τR the criterion Eq. (33) is satisfied for
0.5 ≤ λ ≤ 20. For λ ¼ 0.1 thus defined hydrodynamization
takes place somewhat later at τ ∼ 1.3τR.

V. CONCLUSIONS

In this paper we presented a complete simulation of
chemical equilibration in leading order QCD kinetic theory
in stationary and expanding systems with infinite transverse
extent. By analyzing how out-of-equilibrium plasma of
Nc ¼ 3 gluons and Nf ¼ 3 quarks relaxes to the common
thermal equilibrium for different values of the coupling
constant λ, we determined the chemical equilibration time
in nonexpanding isotropic systems, which we define by
requiring the quark energy fraction to bewithin 10% of their
equilibrium value. For initial conditions with no quarks
present, thus defined chemical equilibrium is reached at time
tchem ∼ 1.1–1.4τR, where τR ¼ ð4πη=sÞ=Tfinal is the kinetic
relaxation time and η=sðλ ¼ 10; 1.0; 0.1Þ ≈ 1; 35; 1900. We
also note faster gluon dynamics, which results in gauge
bosons reaching kinetic equilibrium among themselves
before thermalizing with fermions. Consequently, for the
case of the overoccupied gluon initial state, gluons first
equilibrate through a self-similar cascade as in pure glue
theory at times tgkinetic ∼ 0.2τR, and then the equilibrium
quark densities are produced by the quasithermal gluon
background. We would like to emphasise that the chemical
equilibration time dependence on the coupling constant λ—
the only microscopic parameter of the theory—is very well
captured by the specific shear viscosity η=s, which is the
macroscopic QGP property. As the relaxation time τR
changes by orders of magnitude, the equilibration dynamics
in rescaled units t=τR remains largely unchanged.
Next we studied the QCD equilibration in homogeneous,

but longitudinal expanding systems, which is a relevant
situation for heavy-ion phenomenology. There the expan-
sion prevents the system from ever reaching static thermal
equilibrium and one instead may define thermalization
time τtherm by requiring the total energy density to be within
10% of the value given by ideal hydrodynamic evolution
eidðτÞ ¼ ðeτ4=3Þ∞τ−4=3. Here we note that in the expanding
case the effective temperature of the plasma is decreasing
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FIG. 8. (a) Total pressure anisotropy PL=PT evolution in
kinetic theory with overoccupied initial conditions Eq. (29).
(b) Total energy density evolution relative to ideal estimate
e=eid ¼ ðT=T idÞ4 given by Eq. (27). Comparison with first order
viscous temperature Eq. (34) shown by the black dashed curve.

4Note that substituting Eq. (34) in Eq. (33) generates terms
which are formally higher in viscous gradients and could be
dropped at first order. We do not do such expansion in Fig. 8 and
use the full temperature estimate Eq. (34).
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and so we defined time-dependent kinetic relaxation time
τRðτÞ ∼ τ1=3 which grows in time; see Eq. (28). For color-
glass-condensate-motivated, anisotropic and overoccupied
initial conditions, Eq. (29), such thermalization happens at
τtherm ∼ 2τRðτÞ for a range of the coupling constants 0.5 ≤
λ ≤ 20 but is somewhat delayed for λ ¼ 0.1. The chemical
composition of the plasma changes rapidly in the first couple
units of relaxation time. Similarly to the nonexpanding
systems, gluons undergo a kinetic equilibration faster than
fermions, in agreement with two-stage QGP equilibration
argued in Ref. [64]. However only when the expansion rate
slows down and viscous corrections to the particle distri-
bution function are small enough, particle distributions
are well approximated by the equilibrium Bose-Einstein
or Fermi-Dirac distributions. Keeping in mind that the
effective kinetic relaxation time τR is growing in time as
the temperature is decreasing, the chemical equilibration in
longitudinally expanding systems for moderate values of the
coupling constants λ ¼ 5, 10, 20 (αs ∼ 0.1–0.5) proceeds
very similarly in rescaled units to the nonexpanding case and
chemical equilibration is reached at τchem ∼ 1.2τRðτÞ. For
smaller values of the coupling constant λ ≤ 1 we do not see
the collapse to the same universal curve and the chemical
equilibration (in units of τR) takes place later.
In summary, the chemical composition is an important

property of the expanding QGP fireball, which is not
captured by conventional hydrodynamic modeling of
heavy-ion collisions but is essential for the hadrochemistry
and photon production, and determines which equation of
state best describes the medium. It would be therefore
interesting to study if a generalization of hydrodynamics
involving nearly conserved charges could be used to
describe this nonequilibrium evolution. For realistic values
of the coupling constant αs ∼ 0.3, we find that even in
expanding systems the coupling constant dependence can
be factored out by rescaling time with kinetic relaxation
time τR ¼ ð4πη=sÞ=T id., which results in the following
ordering of hydrodynamization, chemical equilibration and
thermalization timescales

τhydro|ffl{zffl}
≲0.5τR

< τchem|ffl{zffl}
∼1.2τR

< τtherm|ffl{zffl}
∼2τR

; ð35Þ

according to criteria given in Eqs. (20), (33) and (32).
Such universality allows one to convert the dimensionless
time τ=τR to physical units by matching the late time
constants ðτ1=3TÞ∞ and η=s from hydrodynamical model-
ing of heavy-ion collisions and which is explored in our
companion paper [65].
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APPENDIX: SPECIFIC SHEAR VISCOSITY
IN QCD KINETIC THEORY

The dynamical simulations of the Boltzmann equation
with leading order QCD kinetic theory collisions kernels,
Eq. (1), allows for the direct determination of the QGP
transport properties, for example, the shear viscosity over
entropy ratio η=s. The transport coefficients extracted this
way can be compared to calculations of η=s using diag-
onalization of (linearized) collision kernels around thermal
equilibrium [7]. In Fig. 9 we show the specific shear
viscosity as a function of the coupling constant λ obtained
from the effective kinetic theory simulations with different,
but leading order equivalent IR regulators of the elastic
scattering matrix element Eq. (2). The first regulator
corresponds to the scheme given by Eq. (5), while in the
second case we insert additional m2

s=ðq2 þm2
sÞ ∼Oðg2Þ

factors to guarantee the positivity of the scatter matrix
element jMab

cd j2. For λ≲ 2 different implementations of
the kinetic theory agree with each other at ∼10%. The same
level of agreement is also seen with the next-to-leading-log
formula, which is a good approximation for the full leading
order results [7] (and which corresponds to yet another IR
completion of the kinetic theory). For completeness below
we summarize the extracted values of η=s used in the paper:

λ 0.1 0.5 1.0 5.0 10 20
η=s 1900 114 35 2.75 1.0 0.39

0.1
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FIG. 9. Shear viscosity over entropy ratio as a function of the
coupling constant λ ¼ Ncg2 in our leading order kinetic theory
implementation with two regularization schemes of the elastic
collision kernel (see the text). The dashed line corresponds to the
next-to-leading-log result from Ref. [7].
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