
HÅKON TØMTE
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Creating a blockchain in TrustZone using Rust

Bachelor's Thesis - Computer Science - December 2022

I, Håkon Tømte, declare that this thesis titled, “Creating a blockchain in
TrustZone using Rust” and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

Abstract

Many modern processors have security mechanisms that facilitate the creation

of a Trusted Execution Environment (TEE), which is isolated from the general-

purpose OS. Privacy and integrity challenges arise in IoT scenarios, characterized

by untrusting stakeholders and easily accessible and vulnerable devices. Systems

using blockchain and TEE technology can solve privacy and integrity challenges

by establishing trust between devices, vendors, and stakeholders. ARM proces-

sors are prevalent in IoT scenarios, thus, this thesis investigates the feasibility of

implementing such systems on ARM’s TEE-enabler, TrustZone. To investigate

this, I present a prototype of a core system component, the blockchain issuer, in

an ARMTrustZone-based TEE and evaluate it. It builds the blockchain inside the

TEE, guaranteeing the recordings’ confidentiality, integrity, and immutability. It

is vital that TEE applications, like the blockchain issuer, are secure and safely im-

plemented. The Rust OP-TEE SDK is an open-source SDK that allows for writing

Trusted Applications in the programming language Rust. The main advantage of

Rust is that Rust is memory-safe, and thus greatly increases the security of the

application. Rust also provides a rich infrastructure of public crates for develop-

ers. However, OP-TEE is incompatible with many of these crates. Rust OP-TEE

also lacks documentation, specifically regarding the development of new Trusted

Applications. Therefore, this thesis provides Rust OP-TEEdocumentation for de-

veloping TAs, and challenges the claim that Rust OP-TEE supports developers to

import third-party crates.

The evaluation shows that, with optimizations, a blockchain issuerwritten inRust

OP-TEE on ARM’s TrustZone securely establishes trust from the TEE, with the

price of a 5 times performance overhead compared to a normal world implemen-

tation.

ii

Acknowledgements

I would like to thank my supervisor, Leander Jehl, for their enthusiasm and help

with writing this thesis.

The Rust OP-TEE SDK contributors have been very helpful, and continually elab-

orated on and answered my questions/issues on Github.

Gernot Heiser’s writing guide is a great and comprehensive guide for technical

writing and was used extensively.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 2

1.1 Motivation . 2

1.2 Approach . 3

1.3 Contributions . 3

2 Background 5

2.1 ARM TrustZone . 5

2.1.1 Hardware Architecture . 6

2.1.2 Software Architecture . 9

2.1.3 TrustZone as a key-enabler of TEEs 10

2.1.4 Vulnerabilities . 10

2.2 GlobalPlatform TEE . 12

2.2.1 Hardware Architecture . 14

2.2.2 Software Architecture . 16

2.2.3 OP-TEE . 18

2.3 Rust . 21

2.3.1 Rust OP-TEE SDK . 22

3 RelatedWork 23

3.1 ChainBox . 23

3.1.1 System Architecture . 24

3.2 Other Related Work . 26

iv

4 Implementation 27

4.1 Introduction . 27

4.1.1 Setting up Rust OP-TEE building environment with QEMU 27

4.1.2 Deploying on a Raspberry Pi 3 Model B 28

4.2 Development in the Rust OP-TEE SDK 28

4.2.1 Building a new CA/TA . 29

4.2.2 Working between the worlds 30

4.2.3 Third-party crates . 34

4.3 Implementing the Ordering Service Enclave 35

4.3.1 Design . 35

4.3.2 Implementation . 36

4.3.3 Analysis . 39

5 Experimental Evaluation 41

5.1 Experimental Setup . 41

5.2 Experimental Results . 41

5.2.1 Optimizations . 44

5.2.2 Further work . 47

6 Conclusions 48

Chapter 1

Introduction

1.1 Motivation

Internet-of-Things (IoT) and automation promise increased efficiency and prof-

its. Sensors, sophisticated AI models, and device-to-device integration realize

these promises. New business models are necessary to fully utilize the IoT’s po-

tential, and these technologies may belong to several parties. We can imagine

a scenario in which a farmer’s sensor automatically sends pictures of crops to

another company’s analytical AI model. The model could then responds with

”Ready for harvest” or ”not ready”. Intruders could try to infiltrate these systems

to analyze, steal from, or hurt competitors. This creates the challenge of estab-

lishing trust in data usage and data integrity. A blockchain can establish trust

and prove the integrity of data. However, themajority of consortium blockchains

rely on replication and distribution across numerous locations to establish trust,

and they need advanced agreement protocols among nodes. This introduces sig-

nificant hardware costs and energy use, which acts as a barrier to entry for small

scenarios and businesses. To solve challenges of privacy and integrity in IoT sce-

narios, [Bleeke et al., 2022] presented ChainBox, a TEE-based smart contract ex-

ecution framework. ChainBox uses blockchain and TEE technology to establish

trust between devices, vendors, and stakeholders. By building the blockchain in

a Trusted Execution Environment (TEE), its validity is trusted without the use of

replication and distribution and is therefore applicable in small-business IoT sce-

narios. The TEE guarantees the confidentiality and integrity of the clients’ data

and the blockchain ensures the immutable recording of transactions. However,

2

their ChainBox implementation used an Intel SGX-based TEE, and ARM pro-

cessors are far more prevalent in IoT scenarios, thus, this thesis investigates the

feasibility of porting the ChainBox framework to ARM’s TrustZone. Such an im-

plementation will allow for trusted, cheap communication between IoT devices,

which is crucial for the digitalization of industries and sectors.

1.2 Approach

I implement a prototype of the core ChainBox component, the Ordering Service

Enclave (OSE), using the Rust OP-TEE SDK to investigate the feasibility of port-

ing the complete ChainBox framework to ARM’s TrustZone and investigate the

viability of the Rust OP-TEE SDK. The Rust OP-TEE SDK facilitates the use of

Rust in OP-TEE Trusted Applications (TA), which increases application security,

compared to the traditionally used C. The development process reveals limita-

tions in the Rust OP-TEE SDK and its documentation. The OSE is deployed to a

Raspberry Pi for performance benchmarking and to evaluate the overhead intro-

duced by the increased security of the TEE.

To summarize, themain approach to investigate the feasibility of portingChain-

Box to TrustZone and the viability of Rust OP-TEE SDK is to:

• Set up the OP-TEE environment to facilitate the usage of TrustZone-based

TEE technology

• Implement an Ordering Service Enclave prototype using the Rust OP-TEE

SDK.

• Write in the programming language Rust, to ensure the memory safety of

the application

• Deploy the Ordering Service Enclave to a Raspberry Pi for performance

benchmarking

1.3 Contributions

The successful implementation of an Ordering Service Enclave prototype indi-

cates that the ChainBox framework can be built on ARM TrustZone. Rust’s en-

forced memory-safety features greatly increase the security of the OSE compared

to the memory-unsafe and OP-TEE alternative, the C programming language.

The development process revealed that Rust OP-TEE lacked proper documenta-

tion to guide newdevelopers and revealed limitationswhen importing third-party

Rust crates. Therefore, this thesis provides Rust OP-TEE documentation for de-

veloping TAs, and challenges [Wan et al., 2020]’s claim that Rust OP-TEE sup-

ports developers to import third-party crates. The documentation’s purpose is to

expedite the development process in Rust OP-TEE by providing in-depth guid-

ance on how the SDK is used. Lastly, I evaluated the performance benchmarks of

the OSE and implemented a throughput-optimized version.

To summarize, the main contributions of this thesis are:

• The implementation of an Ordering Service Enclave prototype in Rust on

ARM TrustZone (Source code: [Tømte, 2022])

• ProvidingRustOP-TEEdocumentation for developingTrustedApplications.

• Reveal limitations of the Rust OP-TEE SDK when importing third-party

crates.

• Analyzed the performance benchmarks and implemented a throughput-optimized

OSE

Chapter 2

Background

2.1 ARM TrustZone

Arm processors control the majority of mobile and embedded markets, in over

60% of all embedded devices and 4.5 billion mobile phones [Pinto and Santos,

2019]. Arm has extended TrustZone-support for the smallest low-end devices,

Arm estimates the number of these to reach nearly 1 trillion by 2035. Such a

large number of networked devices will produce and share a large volume of data

containing privacy- and security-sensitive information, which frequently attracts

cybercriminals. To store, manage, and carry out sensitive activities on sensitive

data, a secure environment must be created inside an IoT device. This is the first

step in achieving security in the IoT.

This section describes ARM TrustZone, and how it creates a secure environ-

ment. Hardware and software architecture, TrustZone-enabled technology, and

vulnerabilities are covered.

Arm TrustZone is a hardware security extension introduced to Arm proces-

sors. TrustZone implements System-on-Chip (SoC) and CPU system-wide secu-

rity. The technology’s basis is the concept of partitioning all of the SoC’s hardware

and software into a normal world and a secure world. At any given time, the

processor operates exclusively in one of these worlds. The worlds are hardware

separated and serve different functions. The normal world is rich in features and

flexibility, while the secure world should only perform security-sensitive opera-

tions, have far fewer features, and be isolated from the untrusted normal world.

By limiting the number of features in the secure world, the susceptible surface

5

area is reduced. The worlds are completely hardware-isolated and granted un-

even privileges. Normal world software cannot directly access secure world re-

sources. However, the secure world can access all resources. The normal world

can only request a world-switch.

This robust hardware-enforced boundary between worlds creates new possi-

bilities for application and data security. Particularly, by binding the main Oper-

ating System (OS) to only operate inside the normal world, crucial applications

can reside in the secure world and be isolated from the Rich OS, even if the Rich

OS is infiltrated or corrupted.

Arm TrustZone is key-enabler hardware that is leveraged in Trusted Execu-

tion Environments (TEE) technology. A TEE is a secure area of the main proces-

sor (like the secure world) that a Trusted OS resides in to execute crucial appli-

cations and establish cross-world communication through API calls. Examples

of Trusted OSes on TrustZone technology are Linaro’s OP-TEE and Qualcomm’s

QSEE. Section 2.2 discusses TEEs further.

2.1.1 Hardware Architecture

This subsection describes key architectural features of Arm Cortex-A processors.

Cortex-A is the type of processor found in the Raspberry Pi 3, this type is largely

used in mobile devices.

The hardware-based security built into SoCs provides a foundation for im-

proved system security, by creating two protection domains. As mentioned, the

processor operates exclusively in one of these worlds at any time. The value of a

new 33rd processor bit, called the Non-Secure (NS) bit, determines the current

operating world. The Secure Configuration Register (SCR) reads the NS value

and passes it through the system [Pinto and Santos, 2019]. Figure 2.1 illustrates

the concept of the two worlds. When NS is set (1), the processor is in the normal

world and can only access the normal world’s resources. After a world switch, the

secure world is active, the NS bit is unset (0), and the secure world’s resources

become available.

Figure 2.1: The NS bit determines which world the processor executes in. The

worlds only have access to specific resources. In this example, the RAM is par-

tially owned by the normal world and the secure world. Remade from [Genode,

].

TrustZonehas an extra processormode,MonitorMode that preserves the pro-

cessor state when world-switching occurs. Monitor Mode saves the state of the

current world and restores the state of the world being switched to. The proces-

sor enters Monitor Mode when switching worlds. A new privileged instruction,

Secure Monitor Call (SMC), allows Monitor Mode to be invoked. This architec-

ture is illustrated in Figure 2.2. The SecureMonitor controls world switching and

resides in the secure world.

Figure 2.2: The TrustZone architecture for Cortex-A processors. The Secure

Monitor can be used to switch between the worlds. Remade from [Pinto and San-

tos, 2019]

ARM has implemented this split-environment processor with some system

IP additions. These components enforce security restrictions and maintain the

advantages of ARM’s designs, such as low power consumption.

The TrustZone Address Space Controller (TZASC) allows the dynamic clas-

sification of memory as secure or non-secure. Controlled by the secure world,

the TZASC enables the partitioning of a single memory unit, instead of requiring

separate secure and non-secure units. The TZASC allows the partitioning of the

RAM shown in Figure 2.1, in which half of the RAM belongs to the secure world

and the other half to the normal world.

The TrustZone Memory Adapter (TZAM) allows a similar partition of mem-

ory, but for on-chip static memory (SRAM) [Ngabonziza et al., 2016].

The hardware architecture allows the separation of two protection domains by

designating physical memory and resources. The processor operates in only one

domain at any time and can enter Monitor Mode to switch domains. Both worlds

can request to enter Monitor Mode using an SMC instruction.

2.1.2 Software Architecture

The secure world can be implemented as a fully-fledged OS or as a software li-

brary. The considerations when implementing a secure and a non-secure oper-

ating system on TrustZone hardware will be the focus of this subsection. Gener-

ally, a standard operating system, such as Linux or Windows, runs in the normal

world, and a Trusted OS, like OP-TEE, runs in the secure world. The functions of

TrustZone for the device are: first, to securely boot both OSes; second, to provide

a secure and reliable means of communication between the two, while protecting

the secure world from the normal world [Ngabonziza et al., 2016].

Secure boot

Attackersmay attempt to break the softwarewhile the device is powered off, by for

example replacing the OS image in flash with amalicious version. Without verifi-

cation of both OS images at boot time, the device may boot a malicious version of

an OS and expose the system to attacks. ARM has therefore designed TrustZone-

enabled systems to use a Secure Boot Sequence. The sequence establishes a Chain

of Trust (CoT). The Root of Trust (RoT) is the foundation of the chain andmust be

implicitly trusted, then all other components must be authenticated before being

executed. Authentication is done using cryptographic signatures, also called dig-

ital signatures. One creates a digital signature with an asymmetric key pair (e.g

RSA encryption algorithm), by signing some value using the private key and ver-

ifying it later using the public key. Verification proves that the private key signed

the signature. This verification is done at each step of the booting sequence to

ensure that the CoT has not been broken.

This Secure Boot Sequence will prevent the booting of external software, like a

malicious OS image, because that external software does not have the correct sig-

nature. As long as the RoT is secure, the device will securely boot the OSes.

Secure cross-world communication

Normal world to secure world switching is only possible through these excep-

tions: an interrupt, an external abort, or an explicit call with the SMC instruction.

The hardware interrupts and aborts only support full world switching, but SMC

also supports passing messages without a complete switch. Monitor mode and

the Secure Monitor establish the means of cross-world communication.

The software architecture allows for secure booting using a Chain of Trust (Cot),

provided that the Root of Trust (RoT) is secure. Normal world to secure world

switching is strictly controlled, to protect the secure world.

2.1.3 TrustZone as a key-enabler of TEEs

A TEE is an isolated environment that can execute Trusted Applications (TA)

without the interference of the local and function-rich OS. Most importantly, the

TEE must be isolated and insusceptible from the local OS, so the TEE can guar-

antee the confidentiality and integrity of its operations. TrustZone is a natural

enabler for building TEE support systems. Essentially, the secure world provides

an isolated execution environment where the TEE can reside. Monitor Mode and

the SMC instruction facilitate world-switching and message passing.

2.1.4 Vulnerabilities

This subsection describes the key vulnerabilities of TrustZone and TrustZone-

based TEEs. In practice, operations performed in the TEE are implicitly trusted

and the TEE can be treated as a Root of Trust (RoT) in systems. Therefore, it is

crucial to be aware of the underlying vulnerabilities of TrustZone and know that

the TEE is not perfectly secure.

Establishing a Root of Trust in TrustZone

A Chain of Trust (CoT) is never more secure than its Root of Trust (RoT). The se-

crecy of the RoT’s private key ensures the trust of the entire computational system

[Ngabonziza et al., 2016]. AMD and Intel use a Trusted Platform Module (TPM)

as their RoT. Thus, the device’s physical features guarantee the secrecy of that

key. However, TrustZone does not explicitly specify what the RoT of the system

should be or provide secure key storage. TrustZone provides system-wide isola-

tion of two execution environments, but an external physical device is required to

establish a secure RoT. Alternatively, [Zhao et al., 2014] have prototyped an al-

ternative RoT based on physical manufacturing variations and a software-based

TPM.

TrustZone-based TEEs are in practice implicitly trusted, but TrustZone does not

provide a designated RoT. A secure and preferably physical RoT should be estab-

lished for the TEE to be trusted.

TEE Vulnerabilities

[Pinto and Santos, 2019] found more than 130 vulnerabilities regarding Trust-

Zone and TrustZone-based TEEs. The majority of these flaws come from bugs

that exist in some providers’ implementations of the TEEs. These vulnerabili-

ties have for example been exploited to execute arbitrary code in the TEE or in

some cases defeat secure boot. [Rosenberg, 2014] describes a vulnerability in

Qualcomm’s QSEE, which caused any applications using TrustZone for security

assurance to be completely compromised. [Suciu et al., 2020], a more recent ex-

ample, describes vulnerabilities that allowed for Horizontal Privilege Escalation

through applications running in the TEE leaking stored data.

Essentially, even though the security design of TrustZone might be correct,

that is, secure architecture and true isolation, the code running inside the TEE

may contain vulnerabilities. The vulnerability can be in the Trusted OS (OP-TEE,

QSEE, etc.) or in the Trusted Applications that run in the TEE. Attackers may

take advantage of these flaws to corrupt the TEE and jeopardize the system’s trust

state.

Remote Attestation

A key function of a TEE is to provide remote attestation, to prove to third par-

ties that the application is correctly running inside of the TEE. While Intel SGX

provides remote attestation, TrustZone lacks built-inmechanisms for attestation.

Nevertheless, researchers have proposed variants of remote attestation protocols

for Arm TrustZone, thus extending the built-in capabilities for attestation [Mé

nétrey et al., 2022]. These propositions require a root of trust in the secure world;

a secure source of randomness for cryptographic operations; and a secure boot

mechanism.

So although TrustZone lacks built-in support for remote attestation, a TrustedOS

or a Trusted Application can utilize a secure RoT, and cryptographic operations

to issue evidence (digital signatures). Therefore, each Trusted OS (like OP-TEE)

should provide its own remote attestation process. As a result, remote parties or

suppliers may still confirm the validity of the attesters and the issued evidence in

a TrustZone-based TEE. [Li et al., 2015] and [Ménétrey et al., 2022] are examples

of remote attestation features extended to ARM TrustZone.

ARMTrustZone enables the separation of twoworlds, one functionally rich and

one secure world. ARMTrustZone is a hardware security extension, that software

relies on for implementing a secure and a non-secure OS in their respective ex-

ecution environments. The widespread use of ARM processors in IoT scenarios

establishes ARM and TrustZone as the natural foundation on which IoT security

is built.

2.2 GlobalPlatform TEE

A GlobalPlatform-certified TEE is a logical and effective approach for utilizing

TrustZone hardware to split and control system resources in a secure environ-

ment [Globalplatform, 2022f].

AnExecution Environment is a set of hardware and software components that

provide the infrastructure required to allow the execution of programs. Devices,

from smartphones to servers, provide a Rich Execution Environment (REE), a

tremendously extendable and flexible operating environment. Common REEs

are Windows, Android, and iOS. This gives the device flexibility and capability,

but it also makes it susceptible to a variety of security risks. The Trusted Execu-

tion Environment (TEE) exists alongside the REE, to provide an area of higher se-

curity for the device to protect assets and execute trusted code. The REE is abun-

dant with features, while the TEE is reserved for vital functions, often security-

related. Applications executed by the TEE are Trusted Applications (TA).

GlobalPlatform is a technical standards organization that specializes in digital

security. This section outlines a TEE’s hardware and software architectures by the

GlobalPlatform TEE Standard.

GPD TEE

A TEE compliant with the GlobalPlatform TEE Standard is a GPD TEE.

It must meet the following criteria:

• All code executing inside the TEE has been authenticated.

• The TEE resists known remote and software attacks, and a set of external

hardware attacks.

• The TEE must provide separation from other environments in the device.

• The TEE must be compliant with the TEE Client API and the Internal Core

API specifications[Globalplatform, 2022d][Globalplatform, 2022a].

Trusted Application

TrustedApplications are applicationswith distinct privileges that performsecurity-

related functions. This does not mean that the ”Trusted” Application is neces-

sarily safe, or bug-free. However, it is vital that they are implemented as such.

TrustZone’s function is to separate and shield the security-related functions from

the functionality-rich normal world. Attackers can use a vulnerable TA in the

TEE to attack other TAs and the trusted OS itself, defeating the purpose of the

TEE. Therefore, TAs should be as simple as possible and only perform security-

sensitive functions. A TEE should attempt to limit the number of TAs, to reduce

vulnerable surface area.

TEE Security Functionality

The TEE’s function is to securely host and run TAs, enforce their isolation from

another and the REE, and protect the TEE’s assets [Globalplatform, 2022b]. The

core TEE functionalities for the end user are:

• Isolation of the TEE services, the TEE resources, and the Trusted Applica-

tions from the REE.

• Protected communication interface between CAs in the REE and TAs in the

TEE, including communication endpoints. This allows the REE to request

usage of the features of the TEE, without sacrificing the TEE’s integrity.

• Trusted storage of TA and TEE data.

• Random Number Generation (RNG)

• Cryptographic API for end-user, the functionality may include: Generation

and derivation of keys and key pairs, hashing, symmetric and asymmetric

operations

• Instantiating the TAs and ensuring consistency of TA code.

• Monotonic TA instance time.

RNG, the cryptographic API, and monotonic TA instance time are functionalities

called System Services. They are the Trusted OS’s system calls and provide func-

tionality for the TAs. Subsection 4.2.3 shows a consequence of TEEs having their

own system calls.

The TEE is isolated from the untrusted REE, it securely hosts and executes TAs

and provides necessary services and functionality for the TAs. GPD TEEs are

TEEs that complywithGlobalPlatformsecurity standards, includingutilizingGPD-

standardized TEE APIs for cross-world communication. Subsection Libteec and

libutee describes an implementation of the GPD TEE APIs.

2.2.1 Hardware Architecture

The REE and the TEE utilize many resources such as processing core(s), ROM,

RAM, cryptographic accelerators, etc [Globalplatform, 2022c]. Figure 2.3 shows

a simplified example of a device’s resources, and highlights the components that

can host a TEE. This subsection describes how TEEs separate the system’s hard-

ware resources into two Execution Environments.

Figure 2.3: Typical chipset architecture. The figure shows an example of re-

sources that can exist for a device. A Printed Circuit Board (PCB) that connects

components such as SoC processing units, RAM, etc. Remade from [Globalplat-

form, 2022c]

Resources are either controlled by the REE or TEE, however, they are trans-

ferable. Control over parts of or a whole resource can shift between the environ-

ments. If the TEE controls a resource then that resource is isolated from all other

execution environments, unless explicitly authorized by the TEE. The control-

ling TEE regards all of its resources, that it has not shared, as trusted resources.

These trusted resources are isolated from all non-trusted resources and become a

closed system, protected from all other execution environments. Other execution

environments, like the REE, can allow its resources to be accessible by the TEE

without any specific permissions. However, a TEE may not allow the opposite.

Other execution environments can only access a TEE’s resources with specific

permissions.

REE and TEE Resource Separation

Figure 2.4. illustrates the separation of REE and TEE resources. The REE has ac-

cess to untrusted resources, but none of the trusted resources. The access control

can be implemented either through physical-, hardware- or cryptographic isola-

tion. TheREE can only access trusted resources throughAPI entry points, like the

TEE Client API. The separation does not prevent the REE from passing buffers

to the TEE, and vice versa, in a secure manner[Globalplatform, 2022c].

Figure 2.4: The REE and TEE resources are separated, but the TEE Client API

facilitates communication. Buffers can be passed betweenREE andTEE.Remade

from [Globalplatform, 2022c]

2.2.2 Software Architecture

As mentioned, the TEE provides APIs to enable communication from the REE

to facilitate the usage of TA functionality. This subsection outlines the software

architecture of the TEE and the interfaces defined by GlobalPlatform for cross-

environment communication.

The TEE is, as mentioned, reserved mainly for security-sensitive applications.

Such applications usually consist of two separate applications, a Client Applica-

tion (CA) and a TA. This application pair is represented by ”CA/TA”. The CA

resides in the REE and performs non-sensitive functions, such as user interac-

tion. The CA requests TA functionality with the TEE Client API. The TA receives

any needed function parameters from the CA and performs the sensitive oper-

ations. However, the TA and TEE never trust the CA, because it resides in the

less secure REE. The TA runs on a Trusted OS inside the TEE, which validates

the parameters supplied by the CA. TrustZone’s hardware-assisted isolation pro-

tects the integrity and secrets of TAs from the untrusted REE. Figure 2.5 shows a

simplified version of the GlobalPlatform Software Architecture.

Figure 2.5: GlobalPlatform TEE Architecture. Communication is done between

the agents. Memory is shared between the CA and TA, and the APIs facilitate

communication for the applications. The Trusted OS includes System services,

the TA accesses these through the Internal Core API. Remade from [Globalplat-

form, 2022c]

As the CA requests the trusted execution of a particular TA, it relies on the

REE Agent to deliver the Message to the TEE. Initially, the CA calls the GPD

TEE Client API to ask the REE Agent to pass the Message to the TEE. When the

TEE Agent receives the Message, the Trusted OS and the GPD Internal Core Api

connect the agentwith the correct TA andprovide themessage. TheCAexchanges

data by sharing memory with the TA, the TA can then access the shared memory

and write to it.

The architecture allows the CA/TA to perform security-related functions in

the TEE, with normal world inputs, and return the result to the CA.

2.2.3 OP-TEE

Open Portable TEE (OP-TEE) is a Trusted OS designed as a companion to a non-

secure Linux kernel running on Arm’s TrustZone and complies with the Glob-

alPlatform standard. The OP-TEEOS provides communication between a Linux-

based REE and the TrustZone TEE based on the ARMSecureMonitor Call (SMC)

instruction. OP-TEE supports the GPD TEE Client API and GPD TEE Internal

Core API. The main goals of OP-TEE are to:

• Isolate the TEE from the non-secure OS.

• Remain small enough to reside on the on-chip memory of ARM-based sys-

tems, like IoT devices.

• Be easily portable to different architectures.

Most importantly, OP-TEE is a publicly available TrustedOS developed for Trust-

Zone. OP-TEE is open-source and developed by Linaro, now owned by Trusted-

Firmware.org [Doc, 2022]. Other Trusted OSes for TrustZone, like Qualcomm’s

QSEE, are proprietary, so access is restricted from the public. To use OP-TEE,

their GitHub repository must be installed and built. Subsection 4.1.1 explains the

build process.

This subsection describes the architecture of Trusted Applications running on

the OP-TEE OS, referred to as just a TA for the remainder of this section.

Libteec and Libutee

OP-TEEhas developed two libraries that implement theGPDTEEClient andGPD

TEE Internal APIs: Libteec to be used by Client Applications (CA) in the REE, and

Libutee to be used by TAs in the TEE.

Libteec - TEE Client API (Used by CA)

OP-TEE provides the library Libteec, to establish communication between the CA

and the Trusted OS, in accordance with the TEE Client API. TEE Client API ab-

stractions establish communication [Globalplatform, 2022e], these abstractions

are:

• A TEE Context, which is the connection between a CA and the TEE

• A Session, which is the connection between a CA and a specific TA

• A Command, which is the unit of communication between a CA and a TA

within a Session. Commands are sent with a command id, representing a

specific function to invoke.

• The Operation Parameters, which are function parameters that are sent

with a command. They can only be integers or memory references

The Libteec library supplies the CA with these abstractions, opens a session with

a TA, establishes shared memory, and invokes commands.

Libutee - TEE Internal Core API (Used by TA)

OP-TEE provides the static library Libutee, to provide services to the TAs, in ac-

cordance with the TEE Internal Core API. Libutee calls services implemented in

OP-TEE Core (privileged level of the TEE) through system calls. Other services

are statically implemented in the library. The main services provided are:

• Communication means with Client Applications (CAs) running in the REE

(TA entry points and command parameters)

• Cryptographic API

• Time API

• Arithmetical API

• Debugging features (printing to Secure World terminal)

The Libutee library supplies the TA with these functionalities and is necessary

when opening a session with the CA and receiving commands.

These libraries are both written in the programming language C. C is the com-

mon denominator for almost all application frameworks and operating systems

that host CAs and TAs [Globalplatform, 2022d].

Trusted Applications in OP-TEE

Trusted Applications in OP-TEE are Executable and Linkable Format (ELF) files,

their filename is the TAs Universally Unique Identifier (UUID). A UUID is, as the

name suggests, an identifier that should be unique. Every TA requires a UUID,

so it can be specifically requested by the TEE Client API. TAs have the suffix ”.ta”,

and are signed with a digital signature and optionally encrypted; therefore, they

can reside in the untrusted REE filesystem. OP-TEE Core validates and loads

them when executed [Doc, 2022].

OP-TEE TAs must have five mandatory entry points. Entry points are func-

tions in the TA, that are called by the OP-TEE OS during CA/TA communication.

In chronological order for a typical CA/TA:

• Ta_CreateEntryPoint(), is called when the TA loads, returns success

• Ta_OpenSessionEntryPoint(), is called when a session is established, re-

turns success

• Ta_InvokeCommandEntryPoint(), this iswhereTA logic is done, calledwhen-

ever theCA invokes a command. The entry point can containmanydifferent

commands,

• Ta_closeSessionEntryPoint(), is called when the session is closed

• Ta_DestroyEntryPoint(), is called when the TA is finished

Development with cross-world communication is explained thoroughly in Sub-

section 4.2.2.

The Trusted Execution Environments provide an area of higher security

for the device to protect assets and execute trusted code. Hardware isolation like

ARM TrustZone enables TEE systems. The TEE’s main functions are to securely

host and run TAs, enforce their mutual isolation and isolation from the REE, pro-

tect the TEE’s assets and provide system services.

2.3 Rust

Rust is a programming language designed for developing reliable and efficient

systems. Rust’s static type system is safe and expressive and provides strong

guarantees about isolation, concurrency, andmemory safety. The language’s type

system and runtime guarantee the absence of data races, buffer overflows, stack

overflows, and accesses to uninitialized or deallocatedmemory[Matsakis andKlock,

2014]. Thus, the Rust language and compiler help developers create safer appli-

cations.

Rust offers the following mechanisms to achieve reliability in memory safety and

thread safety:

• Claiming the ownership of each data object

• Automatically checking the read/write permissions (mutability) of each ob-

ject

• Disabling dangerous raw pointer operations (such as dereferencing)

During compilation, if the code violates any of Rust’s security criteria, the com-

piler will raise an error and provide helpful error messages.

In addition to code security, Rust provides an infrastructure of thousands of

public crates (similar to libraries).

Ownership

One of the main concepts of Rust is that values are generally not copied, but

moved. When a variable gets passed between functions or threads, the associ-

ated ownership is transferred or moved with it.

If Function A passes a variable to Function B, then Function A no longer has ac-

cess to the variable, because ownership of the variable has moved to Function

B.

Rust-unsafe

Rust’s design achieves and follows strict security criteria by default. However, to

guarantee that any program can be written in Rust, it also provides the keyword

unsafe for developers to injectmemory-unsafe code segments. Rust provides this

unsafe option for two primary reasons: to allow developers to create some special

functions that cannot pass the compiler’s default inspection and to allow the code

to directly interact with system/hardware components. By wrapping code inside

the unsafe block, it allows the code to bypass the built-in compiler checks and

conduct vulnerable operations, such as writing on an immutable reference [Wan

et al., 2020].

Rust-unsafe allows the writing of memory-vulnerable code in Rust. The unsafe

blocks also serve to mark unsafe areas of code, which makes the code more easily

peer-reviewed for security.

2.3.1 Rust OP-TEE SDK

OP-TEE expects TAs to be written in C. C is not a memory-safe language; thus

there have been reported numerous memory corruptions on such TAs [lagini-

maineb, 2016]. Researchers have found that Rust, a memory-safe language, can

be used instead of C.

Their research suggests that writing an OP-TEE TA in Rust greatly increases the

application’smemory safety while introducing onlyminor performance overhead

[Wan et al., 2020]. They have published their Rust OP-TEE SDK (Rust OP-TEE)

as an open-source development toolkit [ApacheTeacleave, 2020]. Rust OP-TEE

does the heavy lifting of making Rust work in the OP-TEE environment, it also

provides example TAs to help the development process. Section 4.2 covers devel-

opment using Rust OP-TEE.

Rust OP-TEE crates

The Rust OP-TEE SDK, to port Rust into OP-TEE, implements Rust versions of

OP-TEE’s API-implementing libraries: Libteec and Libutee are replaced by the

crates optee_teec and optee_utee. They serve the same functions as their C coun-

terparts. Subsection 4.2.2 covers how these crates are used in development.

Chapter 3

RelatedWork

This chapter describes the ChainBox framework implemented by [Bleeke et al.,

2022] on Intel SGX. This thesis investigates portingChainBox toARMTrustZone;

therefore, this section presents the architecture of ChainBox andwhat a complete

implementation requires.

3.1 ChainBox

Smart contracts are transaction protocols that execute the contractual terms of

an agreement. Contractual clauses in smart contracts are enforced automatically

when a certain condition is satisfied [Zheng et al., 2020].

ChainBox is [Bleeke et al., 2022]’s proposed solution for establishing trust

between IoT devices. Its basis is a Trusted Execution Environment (TEE), which

generates a blockchain on a single-edge device and enables low-cost on-site de-

ployment. Instead of replication and distribution, ChainBox relies on TEEs to

establish trust. Some form of attestation allows participating parties to trust that

the code executes correctly inside a TEE. That is, the blockchain is created as an

append-only log, and transactions submitted to the blockchain are properly au-

thenticated. Attestation, like Intel SGX’s remote attestation feature, should verify

three things: the application’s identity, that it has not been tampered with, and

that it is running securely within the Intel SGX Enclave (or Trusted Execution

Environment) [Lab, 2019].

The design includes a smart contract runtime secured by a dedicated enclave.

It allows for smart contracts to execute inside the TEE, this execution can be at-

23

tested. Therefore, tenants can know that the smart contract is correctly executed.

The design ensures that tenants can be held accountable for the data shared with

others, and the blockchain ensures that shared data is consistent for all partici-

pants.

ChainBox creates an immutable append-only logbook, and the deployment

and trusted execution of smart contracts while enabling data exchange through

recorded blockchain transactions. It does this without relying on replication and

distribution for establishing trust, thus, reducing costs.

3.1.1 System Architecture

The ChainBox consists of three key components as shown in Figure 3.1. The green

components operate within the TEE and are trusted, while the gray ones are un-

trusted. This subsection presents the ChainBox design and provides context to

the Ordering Service Enclave (OSE).

Figure 3.1: The Runtime Enclave supplies the OSE with smart contract transac-

tions to create the block to be stored in the blockchain.

TheOrdering Service Enclave is the core component. It deterministically

handles smart contract transactions and creates the blocks that are stored in the

blockchain. Since the ordering service is running inside a TEE and its code is

publicly known, vendors can trust that it runs correctly.

The Blockchain Storage appends the newly created blocks and writes them

back into the storage. Each block contains a signature from the ordering service

for verification and ensures that it’s only created once. The blocks are distributed

to all vendors and are regarded as public information. The ordering service’s sig-

nature and the hash chain protect the blockchain’s integrity.

The Runtime Enclave is responsible for the loading, instantiating, and exe-

cution of smart contracts. It supplies the Ordering Service Enclave with smart

contracts to be logged in the blockchain.

The design allows for attestation at three places: vendors can attest that the Run-

timeEnclave executes the contracts correctly; theRuntimeEnclave can attest that

the Ordering Service Enclave runs correctly; the Ordering Service Enclave attests

the integrity of the smart contracts before accepting their transactions.

ChainBox implemented their Ordering Service Enclave in Intel SGX. In [Bleeke

et al., 2022]’s FutureWork they wished to investigate porting the system to ARM

TrustZone.

The Blockchain

A blockchain is an append-only data structure, it’s a distributed ledger used to

record transactions frommultiple vendors. These vendors donot trust each other,

but blockchain can solve the problem of establishing trust in distributed systems.

More specifically, the problem of creating a distributed storage of timestamped

logs where no party can tamper with the content of the data without detection.

Inside a blockchain, blocks are connected by including a cryptographic hash of

the previous block, thus allowing modifications of blocks to be detected, as mod-

ifying one block changes all later blocks.

Figure 3.2 illustrates the structure of the blocks that the Ordering Service En-

clave (OSE) issues, and how they together make up a blockchain. The hash of

each block is cryptographically made from the previous block’s hash, the time of

creation, and the transaction data to store.

Figure 3.2: A Blockchain consists of blocks connected through the previous

block’s hash. The block’s hash is signed with a digital signature. The signature

proves that the Ordering Service Enclave built the block. The genesis block is the

first block in a blockchain and is arbitrarily created.

The block’s hash is cryptographically signed with the OSE’s private key, which

creates a digital signature. Vendors can verify the digital signature by using the

OSE’s private key, verifying that the block was issued by the OSE.

3.2 Other RelatedWork

Currently, there are other works on confidential smart contract execution within

a TEE. Almost all of these works, such as ChainBox, use Intel SGX as the under-

lying TEE technology, instead of TrustZone. Notably, [Müller et al., 2020] is an

exception, they have because of ARM’s prevalence in IoT scenarios implemented

an extension ofHyperledger Fabric to leverageARMTrustZone for smart contract

execution. Their work indicates that the Runtime Enclave component of Chain-

Box, which handles smart contract execution, is portable to ARM TrustZone.

While there are fewer works using TrustZone than Intel SGx, there is almost

no work or cases of implementing Trusted Applications in Rust using Rust OP-

TEE. To the best of my knowledge, the only work of such kind is [Jung et al.,

2022]’s Trusted Monitor, which partially utilizes Rust OP-TEE in an intrusion

detection system that runs inside the ARM TrustZone TEE.

Chapter 4

Implementation

4.1 Introduction

I have implemented the Ordering Service Enclave prototype in OP-TEE because

it utilizes TrustZone hardware, which is abundant in IoT devices, and is open-

source. To increase the security of the TA, I have written it in the language Rust

and used the Rust OP-TEE SDK to port Rust into the C-based OP-TEE. ARM

TrustZone is a security feature implemented in hardware. TrustZone splits phys-

ical computer resources between a normalworld (REE) and a secureworld (TEE).

ARM processors are necessary to utilize TrustZone. ARMCPUs are ubiquitous in

IoT scenarios, but not in personal computers. QEMU, an open-source emulator,

can virtualize a machine that supports TrustZone. I used QEMU as a virtual ma-

chine (VM) during development but deployed the OSE to a Raspberry Pi 3 Model

B for performance benchmarking.

The following chapter presents the implementation of the Ordering Service

Enclave prototype. The first challenge of implementation is building the OP-TEE

environment to facilitate the use of TEE and TrustZone technology. The second

challenge is to understand how to develop CA/TA pairs and perform cross-world

communication using Rust OP-TEE. The last challenge is developing the OSE to

create a blockchain in TrustZone.

4.1.1 SettingupRustOP-TEEbuildingenvironmentwithQEMU

The first step in buildingOP-TEE is tomake the switch to Linux. OP-TEE commu-

nicates with a Linux REE and embracing Linux also makes the building process

27

easier. The OP-TEE maintainers primarily use Ubuntu-based distributions, but

other Linux distributions should work.

The Rust OP-TEE SDK has a setup guide [ApacheTeacleave, 2020]. Before

following that documentation, I recommend installing the prerequisites [Docu-

mentation, 2022a].

To test the CA/TAs, establish a shared folder between the host (the computer)

and the guest (QEMU). This shared folder should contain the executable of the

Client Application and its corresponding TA file (named after its UUID and suf-

fixedwith ”.ta”). Sharing the folder allows us to quickly deploy the code toQEMU,

without having to build QEMU over again, which takes considerable time. After

sharing the folder with QEMU, copy the TAs into ”/lib/optee_armtz” (the stan-

dard location where the OP-TEE OS searches for Trusted Applications), to help

the Trusted OS find the TAs.

This should allow for modifying Rust OP-TEE’s provided examples, compiling

the changes, and testing the applications on QEMU.

4.1.2 Deploying on a Raspberry Pi 3 Model B

To deploy on a Raspberry Pi, the Pi’s SD card must be flashed, and the OP-TEE

image is built on it. OP-TEE build instructions for Raspberry Pi 3: [OPTEE,

2022]. When the OP-TEE image has been built on the SD card, I copy the CA

executable and the TA onto the Pi’s SD card. I then worked directly on the Pi us-

ing HDMI, thus, I did not need UART cables to connect to the Pi. After booting,

I copied the TA files to the Pi’s ”/lib/optee_armtz”. The Raspberry Pi can then

execute the CAs and request the trusted execution of TAs.

4.2 Development in the Rust OP-TEE SDK

The SDK provides two resources for guiding development: Development docu-

mentation and examples. The SDK’s development documentation is not com-

prehensive enough[Teacleave, 2022c]. As a result, the examples provided serve

as the primary source of guidance. The examples do little to explain the logic of

communicating between the worlds. They neither explain the necessary steps to

create your client and trusted application pair (CA/TA), nor the limitations third-

party crates have in the TA. Therefore, I make an effort to clarify these topics in

this section. Hopefully, this can provide insight and expedite the development

process for other RUST OP-TEE developers.

4.2.1 Building a new CA/TA

This subsection describes how to use the SDK to build a CA/TA pair in Rust OP-

TEE. As previously mentioned, Trusted Applications running in the OP-TEE OS

follow a certain structure and require mandatory files, headers, TA entry points,

etc. [Documentation, 2022b]. This can seem daunting, but luckily Rust OP-TEE

provides examples and Makefiles that make the building process rather simple.

Makefiles are computer files that perform a set of operations, in Rust OP-TEE

they are provided frequently and support the developer, e.g., with compiling the

CA/TA. An SDK CA/TA has three main folders:

• Host, which is the Client Application.

• The TA folder, which is the Trusted Application.

• Proto

Proto among other things, defines the commands that CA can give TA. These com-

mands serve as the communication means between the worlds.

Copy an example

The easiest way to create a new CA/TA is to copy one of the examples given by the

SDK and modify it. To create a new CA/TA:

• Duplicate an example

• Decide commands the CA sends to TA and modify proto/src/lib.rs as such

• Modify the folder name in host/Makefile and host/Cargo.toml

• Implement CA logic in host/src/main.rs

• Generate anew randomUniversalUnique Identifier (UUID) and edit uuid.txt

• Implement TA logic in ta/src/main.rs

• Compile the CA/TA (use the SDKMakefiles, see: [ApacheTeacleave, 2020])

Every TA requires a UUID, so the Trusted OS can uniquely identify it. Therefore,

the example UUID cannot be reused. To quickly generate a random UUID one

can use one of many online UUID generators or Linux’s uuidgen command. The

UUID must be 36 characters(32 hex digits, and 4 ”-” symbols).

This concludes building a new CA/TA pair in Rust OP-TEE.

4.2.2 Working between the worlds

Opening a session

Before invoking a command, a session between the CA and TA must be opened.

The TA resides inside the TEE, which is separated from the REE where our CA is.

The SDK provides two necessary crates for establishing cross-world communica-

tion, optee_teec and optee_utee [Apache, 2022a]. Optee_teec implements the

TEE Client API in the REE, while optee_utee implements the TEE Internal Core

API in the TEE. Optee_teec creates an abstraction of the logical connection to the

TEE, called Context. The Context opens a session with the specific TA using the

desired TA’s UUID. Listing 4.1 shows how the CA opens a session with the TA,

which allows the CA to invoke commands.

1 let mut ctx = Context::new()?;
2 let uuid = Uuid::parse_str(UUID).unwrap();
3 let mut session = ctx.open_session(uuid)?;

Listing 4.1: The CA initializes the TEE Context and supplies it with the TAs UUID

to open a session

Listing 4.2 shows the open_session entry point in the TA, which is called when

the session has been successfully opened. This entry point can initialize a Rust

structure, which lasts for the entire session, it maintains the state of the applica-

tion between commands. The optional parameter _sess_cxt (session context) is

passed in Listing 4.2, with the type State. This State structure must implement

Rust’s default trait, which sets the initialization values for that structure.

1 #[ta_open_session]
2 fn open_session(_params:&mut Parameters,_sess_ctx:&mut State){
3 trace_println!("[+] TA open session");
4 Ok(())

5 }

Listing 4.2: The open session entry point in the TA. Uses the optional parameter

session context to initialize a State structure

Optee_utee establishes the entry points for the TA using Rust attributes, which

are recognizedby ”#[]” above the function. InListing 4.2, line 1, the#[ta_open_session]

attribute allocates memory on the heap, with the session context referencing the

State structure[Teacleave, 2022b]. The session context is also supplied as a pa-

rameter to the invoke command entry point, which allows the State to be updated

and used for each command in the session. The memory allocated for the session

context is secure world memory, thus making it inaccessible to the normal world.

Maintaining a state is crucial for the implementation of the Ordering Service En-

clave, as the previous block is used in the creation of the next block.

Invoking commands

A session facilitates the invocation of many commands, a command is essentially

a function call. The session’s invoke_command function takes two arguments,

the command id (defined in Proto) and an Operation structure. The command

id represents which command to invoke. Operation contains four TA parame-

ters, these are arguments sent to the TA, and they can only be in the form of a

ParamTmpRef or a ParamValue. ParamTmpRef is a TA parameter that holds a

temporary memory reference. This memory must be in the form of a byte array

and is shared memory between the CA and TA. Therefore, the TA can write to

this shared memory and CA will be able to read the changes. ParamTmpValue

is similar, but instead of holding a temporary memory reference, it carries small

raw data in the form of integers. ParamTmpValue can hold two integers: a and

b, the TA can change these and the CA can read the changes from the Operation

structure.
This means that the data sent between the worlds can only be in the form of

byte arrays or integers.
Listing 4.3 shows an example of a CA invoking a command.

1 let mut buffer = &mut [0u8; 256];
2 let p0 = ParamTmpRef::new_output(buffer);
3 let p1 = ParamValue::new(32, 0, ParamType::ValueInout);
4 let mut operation = Operation::new(0, p0 , p1, ParamNone, ParamNone);

5 session.invoke_command(Command::Increment as u32, &mut operation)?;
6 let new_integer = operation.parameters().1.a();
7 println!("new integer: {}, new_integer)"; // prints 33
8 println!("updated buffer: {:?}, buffer)"; // prints updated buffer

Listing 4.3: CA invokes a command by supplying a memory buffer and a Param-

Value containing the integer 32. It then reads

In Listing 4.3, ParamTmpRef creates amemory reference, which the TA canwrite

to (output), there is also the option to create an input-only memory reference,

which can not be written to. Likewise, Paramvalue carries the integer 32, and

the ParamType::ValueInout tags the parameter as both an input and output. The

Operation always requires 4 TA parameters, so in Listing 4.3 the Operation in-

cludes two empty ParamNones. When the command has been completed, the

variable new_integer is set to the updated a of ParamValue, which in this case is

33. The CA prints the buffer after the command, therefore, anything written to

this memory in the TA is displayed.

Commands inside the TA

The TA’s invoke_command function is the entry point for all commands, and the
command id identifies the specific action to perform. Listing 4.4 is an exam-
ple invoke_command function, it takes in the command id, the TA Parameters.
Optionally, the session context can be requested by including it as a function pa-
rameter. The function receives the session context from its optee_utee-defined
attribute. If the TA did not initialize the session context when opening the session
but is still requested here, the function will return a security error.

1 #[ta_invoke_command]
2 fn invoke_command(sess_ctx:&mut State,cmd_id:u32,params:&mut Parameters)->Result<()>{
3 match Command::from(cmd_id) {
4 Command::Increment => {
5 return increment(sess_ctx, params);
6 }
7 Command::Decrement => {
8 return decrement(ses_ctx, params);
9 }
10 _ => {
11 return Err(Error::new(ErrorKind::BadParameters));
12 }
13 }

14 }

Listing 4.4: Invoke command (TA side)

The invoke_command entry point matches the command id supplied from CA
with its corresponding function. Inside each function the TA must unpack the
parameters, to access the shared memory and values.

1 fn increment(state: &mut State, params: &mut Parameters) -> Result<()> {
2 let mut p0 = unsafe { params.0.as_memref().unwrap() }; // ParamTmpRef
3 let mut p1 = unsafe { params.1.as_value().unwrap() }; // ParamValue
4 let mut buffer = p0.buffer(); // byte array
5 let integer_value = p1.a(); // 32
6 p1.set_a(integer_value + 1); // sets the parameter to 33
7 buffer.write(&[1u8;256]); // writes an array of 1s to the shared memory.
8 Ok(())
9 }

Listing 4.5: This arbitrary Increment command first unpacks the parameters.

Then accesses and writes changes to the buffer and the integer

Listing 4.5 shows how a command unpacks the Parameters and accesses the data.

The arbitrary Increment command increments the integer and updates that Pa-

rameter’s a value. It also writes to the shared memory buffer.

The TAmust unpack the parameters inside a rust unsafe block because the Pa-

rameter functions themselves contain unsafe blocks [Apache, 2022b]. The Rust

compiler can not know what is being sent between the two programs, only where

to access it. Therefore, the optee utee crate creates a raw pointer to that memory.

The TAmust access the data contained in the Parameter, for reading, writing, and

accessing functions. To perform these operations, the TA must dereference the

raw pointer. A raw pointer is not guaranteed to point to valid memory and is not

even guaranteed to be non-NULL [edu, 2022]. Among other things, this makes

dereferencing a raw pointer a memory unsafe action. Therefore, the TAmust use

an unsafe block, making it the developer’s responsibility to ensure that it’s not

pointing to somewhere that would be incorrect.

Development in the TA is then equivalent to the normal world, except for sys-

tem calls.

4.2.3 Third-party crates

Third-party crates areRust crates that haveno immediate connection to theTrust-

Zone SDK. The SDK publication states that trusted third-party crates can be im-

ported into the TA development [Wan et al., 2020]. Although this is true, using

third-party crates in our TA can be troublesome.

The issue comes from the fact that the TEE operates on the OP-TEE OS, and

has different system calls than for example Linux. System calls are requests to

the operating system’s kernel. If an included crate uses an incompatible system

call then the TA will not compile. If it has none, it can be imported like you would

in a normal Rust application. The crate Serde is an example of such an ”out of

the box” compatible crate, which I used in the development of the OSE. However,

it is quite likely that development includes coming across incompatible crates.

Luckily, some crates are portable to OP-TEE. By replacing the incompatible sys-

tem calls with alternatives provided in the SDK the crate becomes compatible.

These alternatives are found in the optee_utee crate and are the system services

or TEE functionalities of OP-TEE. Creating a random number or retrieving the

system time are examples of common system calls [man, 2022]. If there is a crate

that, for example, uses Linux’s getrandom system call, it’s OP-TEE incompatible.

However, by replacing getrandom with optee_utee::Random, one ports the crate

to OP-TEE. If a crate uses a system call without a Rust OP-TEE equivalent, the

system call is irreplaceable and, thus, the crate cannot be ported.

Because the SDK is open source, others have ported some originally incom-

patible crates to OP-TEE. In these cases, an SDK example showcasing the ported

crate will be added [Teacleave and HakonToemte, 2022]. Although as of writing,

there are only two such examples, for the crate Ring and Rustls.

To conclude, Rust OP-TEE TAs does as claimed support third-party crates. How-

ever, development may include porting these crates to OP-TEE, and some crates

are unsupported(i.e. not portable).

I have in this chapter attempted to demystify theRustOP-TEESDK. In particular,

building your own CA/TA and how to perform inter-world communication.

4.3 Implementing the Ordering Service Enclave

In this section, I will present a prototype of ChainBox’s Ordering Service Enclave

(OSE). The prototype shows that a TrustZone-based TEE can create a blockchain,

and issue it to the normal world. This section will be mostly illustrations as I

have already described most of the SDK-related code in Subsection 4.2. The im-

plementation of hashing, digital signatures, and block creation in code is not the

focus of this thesis.

4.3.1 Design

My implementation of the Ordering Service Enclave is not within the ChainBox

system (described in Section 3.1). Therefore, I have made some simplifications: I

have not implemented any Blockchain storage, the data to log is a string instead

of a smart contract, and the orderer exists in the untrusted world; therefore, the

orderer is not attested. I justify these simplifications with the fact that the main

purpose of the OSE is to create and issue signed blocks from the TEE, and this

thesis investigates the feasibility of doing this in OP-TEE. Therefore, the storage

of the blocks, the data content of the blocks, or the source of the data is not of

importance in this thesis. The OSE does not execute the smart contracts, only log

the transactions as blocks, therefore a string serves essentially the same purpose.

The purpose of the Ordering Service Enclave is to be a block issuer, as shown

in Figure 4.1. The CA serves as the block orderer and sends data to the issuer for

logging, the TA returns the data contained in a block. Subsection 3.1.1 describes

the blockchain created by the OSE.

Figure 4.1: TheOrdering Service Enclave prototype in its simplest form. TheOSE

receives data and returns that data contained in a block to the orderer.

The Ordering Service Enclave’s (OSE) functions are to build and issue blocks

from the TEE. The blocks work to log data and because they come from the TEE,

they are implicitly trusted. Later, any vendors can ensure that the OSE created

the block because it is signed with a digital signature. The defining trait of a

blockchain is that every block depends on all previous blocks. This means that

one would only need to verify the latest block’s signature to know that all blocks

in the blockchain come from the OSE.

4.3.2 Implementation

The OSE is a TA with 209 lines of code and provides two commands. New_block

and get_public_key. New_block is the heart of the application, and creates a

block and writes it to the sharedmemory provided by the normal world. The REE

can then access and store the block by reading that memory. The block can then

be used and stored in the normal world by reading that memory. Get_public_key

is a command that gets the OSE’s public key. The OSE uses an ED25519 key pair.

The private key signs the digital signature and the public key verifies it.

The implementation requires maintaining the state between blocks, therefore, a

state structure is stored for each session. The state consists of two objects.

• The previous block

• An ED25519 key pair

These are stored in the state because they need to linger from one creation to the

next.

New block

The new block command takes three parameters from the normal world.

• Memory buffer to write the Block to

• Data (string) to log

• An output Paramvalue that represents the array length of the serialized

block. This makes deserializing easier for the CA.

Figure 4.2 shows the OSE’s block generation process. The data is hashed with

the previous block’s hash and a timestamp, using the SHA256 algorithm, then

an ED25519 digital signature is signed on this hash. The REE’s system time is

used as a timestamp, using optee_utee::Time in the TA.When the block has been

issued, the state’s previous block is updated.

Figure 4.2: The OSE generates the new block’s hash from the data, the previous

hash, and the timestamp, then it creates the block and writes it to the shared

memory.

1 pub struct Block {
2 pub id: u32,
3 pub hash: String,
4 pub previous_hash: String,
5 pub timestamp: String,
6 pub data: String,
7 pub signature: String,
8 }

Listing 4.6: Block structure

Listing 4.6 shows the Block structure in the code. Because communication be-

tween the worlds is done through the Parameters, which are only in the form of

integers or byte arrays, theBlock cannot be returned as aBlock. Towrite theBlock

structure to the buffer, the Block structure must be serialized, and to be used in

the normal world it must be deserialized. I use the third-party crate Serde for

serializing. Serde serializes the block to a JSON string, this JSON string is trans-

formed into bytes and written to the buffer.

There are two third-party crates used in the OSE. Serde for serializing, and

the crate Ring for ED25519 key generation and signing. I have not implemented

any digital signature verification in the OSE, because in practice this will be done

in the normal world by participating parties.

Get public key

The get public key command takes a memory buffer and writes the OSE’s public

key to that shared memory. The public key is necessary for verification purposes.

Verification

Anyone can verify that the block has beenmade by the OSE by verifying it with its

public key. Verification is done by hashing the block’s data, previous hash, and

timestamp using the same algorithm as the OSE (SHA256), this must return a

hash equal to the hash of the block. Then verify the hash and signature using the

public key. If this verification is a success, then all blocks before this block in the

chain are also verified.

4.3.3 Analysis

This subsection discusses the implementation of the OSE, not in respect of per-

formance, but in respect of potential errors, security and future work to be done.

Errors

If the Block created by the OSE is larger than the sharedmemory buffer the appli-

cation will return an Error::Errorkind::ShortBuffer. The TA also has a RAM size

reserved for the TA heap; it’s called TA_DATA_SIZE and is defined in the TA

configurations at the bottom of each TA. If TA_DATA_SIZE is too small the ap-

plication will freeze, without giving any error. This happens when available heap

memory is not enough, e.g, the session context (state structure) grows too big or

the Operation Parameter buffers are too big. TA_DATA_SIZE can be configured

by each TA but is limited by several factors, such as the total memory available

for the TAs [Teacleave, 2022a].

Security

The Ordering Service Enclave TA includes four unsafe blocks. All of them are

fromunpacking the parameters, and althoughunsafe, they are necessary to access

the shared memory and values. There can also be unsafe code in the crates that

are used.

FutureWork

In terms of security, future work should be done to evaluate the security of the

unpacking of Operation Parameters.

Future work is to place the OSE within the ChainBox system and expand the

prototype into a complete and production-ready OSE. This includes implement-

ing Runtime Enclave and Blockchain Storage compatibility, a constant key pair,

and doing attestation and logging of the Runtime Enclave’s smart contracts. As

mentioned, TrustZone does not have built-in support for remote attestation, and

neither has OP-TEE implemented remote attestation (though they have tried)

[Teacleave and elias vd, 2022]. Therefore, a remote attestation scheme must be

implemented through a TA, luckily, there is literature on such schemes for Trust-

Zone.

As a component of their upcomingArmv9CPUdesign, Armunveiled Confidential

Compute Architecture (CCA), an architecture that will offer remote attestation

procedures [Mé nétrey et al., 2022]. So TrustZone built-in support for attesta-

tion is coming.

My implementation is a prototype of an Ordering Service Enclave to be used in

the Chainbox framework. The prototype establishes that a more complete imple-

mentation can be made in Rust OP-TEE, which supports ARM TrustZone.

Chapter 5

Experimental Evaluation

This chapter presents the performance evaluation of theOrdering Service Enclave

on a Raspberry Pi 3Model B. The OSE ismeasured by the Client Application. The

OSE implementation is expected to introduce significant overhead compared to

a strictly normal world implementation. Therefore, these are compared, such

that the TEE’s sluggishness and the cost of increased security can be evaluated.

Finally, optimizations are hypothesized and implemented.

5.1 Experimental Setup

A Raspberry Pi 3 Model B version 1.2 has 1GB RAM and a Quad Core 1.2GHz

Broadcom BCM2837 64bit CPU. I am doing the evaluations on the Raspberry Pi,

as opposed to QEMU, because the Raspberry Pi is more interesting in the context

of real implementations and IoT scenarios. It is also easier to analyze the data,

as there are fewer variables with the Pi than on a VM with among other things,

turbo-boosting CPUs. The function time measurements were performed in the

CA using the rust std::time module. The TA performed measurements using the

optee_utee::Time module.

5.2 Experimental Results

First, I evaluate the execution time of the two available commands and an empty

command, on theRaspberry Pi. The empty commandhas no logic and returns im-

mediately. It serves as a reference for howmuch of the execution time is context-

41

switching (world-switching) and how much is logic inside the TA. These com-

mands are invoked after the TA is loaded and a session is opened, thus, these

operations are not part of the latency.

To test the variance in latency, I measured the latency for each command and

then used the Rust module statrs::Statistics to calculate the average-, minimum-

, and maximum latency, and the standard deviation (σ). 1000 iterations were

measured. Table 5.1 shows the result.

Command average (ms) min (ms) max (ms) σ throughput

Empty command 2.38 2.35 2.52 0.02 426/s

GetPublicKey 2.38 2.35 3.718 0.02 426/s

NewBlock 4.20 4.11 4.952 0.05 238/s

Table 5.1: Performance of the different commands.

Expectedly, Table 5.1 shows that the standard deviation increases with the

complexity of the command. Still, the standard deviation for the New Block com-

mand is very low at 0.05. The maximum time for the New Block command is 15

standard deviations away from the mean. Such a result must be an outlier, im-

plying that the vast majority are much closer to the average of 4.20.

I have calculated the throughput in Table 5.1 from the average latency. It

shows that evenwith no logic in the TA, the throughput is only 426 commands per

second. When including the logic of creating blocks, the throughput decreases to

238 blocks issued per second.

The results show that even an empty command takes about two and a half

milliseconds. This time is time used for context-switching and I will call this for

invoke time. [Amacher and Schiavoni, 2019] found their invoke time to be 1.31

milliseconds for their OP-TEE TA, developed in C (”..time spent to execute an

empty function inside the TA once it is loaded (1.31 ms), to give a baseline of

comparison”). They deployed on an equivalent Raspberry Pi, thus, the cause of

the discrepancy between their and my invoke time is uncertain. Further research

should establish if Rust OP-TEE is the cause of this increased invoke time.

The latency of a simple command like GetPublicKey is almost entirely decided

by invoke time. NewBlock has far more logic and thus, a considerable TA logic

latency.

I assume that the latency is affected by the invoke time and the time it takes

to perform TA logic. Therefore, latency is given by Equation 5.1.

Latency = InvokeT ime+ TALatency (5.1)

Invoke time was found to be about 2.38; therefore, while optimizations on

the New Block logic could reduce latency, it will still be at least 2.38 ms. Invoke

time currently stands for more than half of the latency, thus, optimization efforts

should be to lower the total invoke time, by invoking the command fewer times.

I have also evaluated the latency of theNewBlock commandwith varying block

sizes, Table 5.2 shows the result.

Block size (bytes) latency (ms)

512 4.20

8192 4.38

131072 5.44

262144 7.92

Table 5.2: Generating big blocks takes more time.

The result shows that generating big blocks takes more time. Although the

size of the hash is constant, hash computation takes longer for larger data inputs.

Only the data to log increases the block’s size, and that relationship is one-to-one.

The buffer size (the size of the shared memory) ha s to be big enough to contain

the block, thus, it too increases when logging big data entries. This buffer size

affects the invoke time, as shown in Table 5.3.

Buffer size (bytes) Invoke time (ms)

512 2.38

8192 2.41

131072 3.18

262144 3.90

Table 5.3: This table shows that invoke time increases with the size of the shared

memory

Strictly Normal World Implementation

I implemented a strictly normal world Ordering Service Enclave; it builds an

equivalent block in a single untrusted application. The throughputs of the trusted

and untrusted applications are compared in Table 5.3. It shows that the untrusted

application is almost 14 times faster. A cost of trusted execution is performance.

Ordering Service Enclave block throughput

Trusted 238/s

Untrusted 3220/s

Table 5.4: A strictly normalworldOSE is significantly faster than the secureworld

implementation

5.2.1 Optimizations

The optimization that follows aims to increase the number of blocks the OSE can

issue per second: the throughput. To reduce total invoke time, the CA can pass

multiple data entries to the OSE in the same invoke command. In a real imple-

mentation, this could be done by invoking when a fixed-sized batch of entries is

ready, or after exceeding a timer. TheOSEwould then have to issue a list of blocks

back to the CA, instead of just one. The method of reducing context switches to

increase throughput is known, particularly in Intel SGX. [Tian et al., 2018] found

that their switchless calls could reduce latency significantly (5 to 8 X speedup).

Unfortunately, I have not found similar evaluations in ARM TrustZone, but the

idea is the same. By reducing the number of context switches, there is less total

invoke time and thus a lower latency.

Optimization Hypothesis

This subsection proposes a hypothesis of the effect batching will have, to estimate

the effectiveness of batching, explain why it works, and help find the natural next

step in optimizations. With batching, and expecting a full batch, our latency per

block issued would be given by Equation 5.2.

LatencyPerBlock =
InvokeT ime+BatchSize ∗ TALatency

BatchSize
(5.2)

By only invoking the command once per batch, the invoke time has a smaller

total effect. Equation 5.3 shows the expected latency per block when issuing 10

blocks with an original buffer size of 8192 and a batch size of 10. With batching,

the buffer size needs to be at least 8192 ∗ 10= 81920. Therefore, the invoke time

per command call is slightly increased, but the batching reduces the number of

command calls, which overshadows this effect. For the case of this calculation, I

use Table 5.3 to approximate that a buffer size of 81920 has an invoke time of 2.80

ms.

LatencyPerBlock =
2.80ms+ 10 ∗ (4.38ms− 2.38ms)

10
= 2.28ms (5.3)

My hypothesis estimates that it would take 22.8ms to issue 10 blocks with batch-

ing, compared to 43.8ms without batching.

Optimization result

I implemented an alternative to the OSE that supports batching, to test my hy-

pothesis and hopefully improve the OSE’s throughput.

Batching latency (ms) latency per block (ms) throughput (per second)

10 21.4 2.14 467

100 173 1, 73 578

Table 5.5: Batching improves performance

Table 5.4 shows that batching increases throughput as expected, and it does

so to a greater degree than my hypothesis suggested. This discrepancy between

my hypothesis and the measured effect of batching can be due to my hypothesis

not accounting for time saved from serializing and unpacking parameters once

per batch, rather than once per block.

I measured how many blocks the OSE issued per second, for ten seconds. The

test was performed with varying batch sizes, to compare performance, the result

is shown in Figure 5.1.

Figure 5.1: Big batches improve performance

Figure 5.1 shows that batching increases throughput. The difference between

no batching and a batch size of ten is great, but further increasing the batch size

has a reduced effect. The invoke time per block decreases from 2.38ms to about

0.24 ms with just a batch size of ten; therefore, there is a diminished return in

time saved by increasing the batch further.

There is also the option to combine data entries, such that one block contains

multiple data entries. This would allow the logging of more data entries per sec-

ond. Combining data entries for each block would also increase the buffer size

needed.

The evaluations show that theOrdering Service Enclave has a latency of 4.2msper

block issued. Which is about 14 times slower than the equivalent normal world

implementation. [Göttel et al., 2019] found that TEE throughput yields a 12 to 17

times performance overhead on the Raspberry Pi. Batching the commands can

reduce performance overhead to about 5 times a normal world implementation.

The implementations are compared in Figure 5.2.

Figure 5.2: The Ordering Service Enclave is slow compared to an equivalent nor-

mal world version, even with batching

5.2.2 Further work

This section details what should be investigated further to optimize the through-

put of the OSE or other RUST TAs.

Further work should be done to find out if there’s a way to reduce the latency

of the invoke command, which we have named invoke time. Batching is not al-

ways a viable solution, and an invoke time of two milliseconds can greatly reduce

the throughput of Trusted Applications. Further optimization will be to reduce

the latency inside the TA, by having faster hashing, signing, and serializing. As

previously mentioned, verifying a block in the blockchain validates all previous

blocks, this allows us to create fewer signatures. This can be utilized by for exam-

ple only signing the last block of a batch.

To compare the performance of the variousTEEs, implementations of theOSE

for other TEEs like Intel SGX or AMD SME should be examined.

Chapter 6

Conclusions

Establishing a trusted and distributed ledger in systems of non-trusting parties is

traditionally done through resource-heavy replication and distribution. By cre-

ating the blockchain in a Trusted Execution Environment (TEE), and performing

verification, it can be trusted with lower development costs.

In this thesis, I presented a Trusted Application (TA) that executes the trusted

creation and issuance of blocks. The TA is a prototype of [Bleeke et al., 2022]’s

Ordering Service Enclave (OSE), but on ARM TrustZone technology and written

in Rust. The OSE receives data to be logged from the REE and returns a block,

as a part of a blockchain, with a digital signature proving that the block was cre-

ated by the OSE. In this thesis, I have also demystified the development process

using the Rust OP-TEE SDK, which showed that OP-TEE TAs can be effectively

implemented in Rust. Rust makes it easier to write safe code and gives access

to a rich infrastructure of public crates; however, some of these crates are not

compatible and must be ported to OP-TEE for TA development. Rust’s enforced

memory-safety features increase the security of the TA; however, my implemen-

tation introduced four unsafe Rust blocks, which were necessary for passing pa-

rameters. These unsafe blocks bypass Rust’s security features, thus, future work

should be done to evaluate their and included crates’ security. All other code

is certain to be memory safe, as they pass Rust’s built-in compiler checks. The

Ordering Service Enclave is considerably slower than a normal world implemen-

tation, as is expected when using TEE technology. The OSE can be optimized to

reduce the sluggishness of the TEE by sending batches of commands, thus, re-

ducing the number of world switches. With optimizations, the Ordering Service

48

Enclave establishes trust from the TEE, with the consequence of a 5 times per-

formance overhead compared to a normal world implementation. This overhead

is an acceptable cost for the security and trust of the TEE. This thesis establishes

that the OSE can be ported to the IoT prevalent TrustZone technology, and for

security reasons, should be written in Rust rather than C.

Bibliography

[Amacher and Schiavoni, 2019] Amacher, J. and Schiavoni, V. (2019). On the

performance of arm trustzone. In Pereira, J. and Ricci, L., editors,Distributed

Applications and Interoperable Systems, pages 133–151, Cham. Springer In-

ternational Publishing.

[Apache, 2022a] Apache, T. (2022a). Optee_teec documentation.

https://teaclave.apache.org/api-docs/trustzone-sdk/optee-teec/
optee_teec/index.html.

[Apache, 2022b] Apache, T. (2022b). Optee_utee documentation.

https://github.com/apache/incubator-teaclave-trustzone-sdk/blob/
master/optee-utee/src/parameter.rs.

[ApacheTeacleave, 2020] ApacheTeacleave (2020). Teaclave trustzone sdk.

https://github.com/apache/incubator-teaclave-trustzone-sdk.

[Bleeke et al., 2022] Bleeke, K., Mahhouk, M., Almstedt, L., Jehl, L., and

Kapitza, R. (2022). Chainbox: Using tees and webassembly to run smart con-

tracts on the edge.

[Doc, 2022] Doc, O.-T. (2022). Op-tee documentation. https://readthedocs.
org/projects/optee/downloads/pdf/latest/.

[Documentation, 2022a] Documentation, O.-T. (2022a). Prerequisites

for op-tee. https://optee.readthedocs.io/en/latest/building/
prerequisites.html.

[Documentation, 2022b] Documentation, O.-T. (2022b). Trusted applications

in op-tee. https://optee.readthedocs.io/en/latest/building/trusted_
applications.html.

50

https://teaclave.apache.org/api-docs/trustzone-sdk/optee-teec/optee_teec/index.html
https://teaclave.apache.org/api-docs/trustzone-sdk/optee-teec/optee_teec/index.html
https://github.com/apache/incubator-teaclave-trustzone-sdk/blob/master/optee-utee/src/parameter.rs
https://github.com/apache/incubator-teaclave-trustzone-sdk/blob/master/optee-utee/src/parameter.rs
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://readthedocs.org/projects/optee/downloads/pdf/latest/
https://readthedocs.org/projects/optee/downloads/pdf/latest/
https://optee.readthedocs.io/en/latest/building/prerequisites.html
https://optee.readthedocs.io/en/latest/building/prerequisites.html
https://optee.readthedocs.io/en/latest/building/trusted_applications.html
https://optee.readthedocs.io/en/latest/building/trusted_applications.html

[edu, 2022] edu, M. (2022). Mit rust the programming language.

https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/
doc/rust/html/book/first-edition/raw-pointers.html.

[Genode,] Genode. An exploration of trustzone technology. https://genode.
org/documentation/articles/trustzone.

[Globalplatform, 2022a] Globalplatform (2022a). Internal

core api. https://globalplatform.org/specs-library/
tee-internal-core-api-specification/.

[Globalplatform, 2022b] Globalplatform (2022b). Protection profile. https://
globalplatform.org/specs-library/tee-protection-profile-v1-3/.

[Globalplatform, 2022c] Globalplatform (2022c). System architecture. https:
//globalplatform.org/specs-library/tee-system-architecture/.

[Globalplatform, 2022d] Globalplatform (2022d). Tee client api. https://
globalplatform.org/specs-library/tee-client-api-specification/.

[Globalplatform, 2022e] Globalplatform (2022e). Tee client api.

https://higherlogicdownload.s3.amazonaws.com/GLOBALPLATFORM/
transferred-from-WS5/TEE_Client_API_Specification-V1.0_c.pdf.

[Globalplatform, 2022f] Globalplatform (2022f). Tee white paper.

https://globalplatform.wpengine.com/wp-content/uploads/2018/
04/GlobalPlatform_TEE_Whitepaper_2015.pdf.

[Göttel et al., 2019] Göttel, C., Felber, P., and Schiavoni, V. (2019). Developing

secure services for iot with op-tee: A first look at performance and usability. In

Pereira, J. and Ricci, L., editors, Distributed Applications and Interoperable

Systems, pages 170–178, Cham. Springer International Publishing.

[Jung et al., 2022] Jung, B., Eichler, C., Röckl, J., Schlenk, R., Hönig, T., and

Müller, T. (2022). Trusted monitor: Tee-based system monitoring. In

2022XII Brazilian SymposiumonComputing SystemsEngineering (SBESC),

pages 1–8.

[Lab, 2019] Lab, S. S. . S. (2019). Sgx attestation. https://sgx101.gitbook.
io/sgx101/sgx-bootstrap/attestation.

https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/raw-pointers.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/raw-pointers.html
https://genode.org/documentation/articles/trustzone
https://genode.org/documentation/articles/trustzone
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/tee-system-architecture/
https://globalplatform.org/specs-library/tee-system-architecture/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://higherlogicdownload.s3.amazonaws.com/GLOBALPLATFORM/transferred-from-WS5/TEE_Client_API_Specification-V1.0_c.pdf
https://higherlogicdownload.s3.amazonaws.com/GLOBALPLATFORM/transferred-from-WS5/TEE_Client_API_Specification-V1.0_c.pdf
https://globalplatform.wpengine.com/wp-content/uploads/2018/04/GlobalPlatform_TEE_Whitepaper_2015.pdf
https://globalplatform.wpengine.com/wp-content/uploads/2018/04/GlobalPlatform_TEE_Whitepaper_2015.pdf
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/attestation

[laginimaineb, 2016] laginimaineb (2016). Qsee privilege escalation vulnerabil-

ity and exploit (cve-2015-6639).

[Li et al., 2015] Li, W., Li, H., Chen, H., and Xia, Y. (2015). Adattester: Secure

online mobile advertisement attestation using trustzone. In Proceedings of

the 13th Annual International Conference on Mobile Systems, Applications,

and Services, MobiSys ’15, page 75–88, New York, NY, USA. Association for

Computing Machinery.

[man, 2022] man, L. (2022). Getrandom manual. https://man7.org/linux/
man-pages/man2/getrandom.2.html.

[Matsakis and Klock, 2014] Matsakis, N. D. and Klock, F. S. (2014). The rust

language. In Proceedings of the 2014 ACM SIGAda Annual Conference on

High Integrity Language Technology, HILT ’14, page 103–104, New York,

NY, USA. Association for Computing Machinery.

[Mé nétrey et al., 2022] Mé nétrey, J., Göttel, C., Khurshid, A., Pasin, M., Felber,

P., Schiavoni, V., and Raza, S. (2022). Attestation mechanisms for trusted ex-

ecution environments demystified. In Distributed Applications and Interop-

erable Systems, pages 95–113. Springer International Publishing.

[Ménétrey et al., 2022] Ménétrey, J., Pasin, M., Felber, P., and Schiavoni, V.

(2022). Watz: A trusted webassembly runtime environment with remote at-

testation for trustzone. In 2022 IEEE 42nd International Conference on Dis-

tributed Computing Systems (ICDCS), pages 1177–1189.

[Müller et al., 2020] Müller, C., Brandenburger, M., Cachin, C., Felber, P., Göt-

tel, C., and Schiavoni, V. (2020). Tz4fabric: Executing smart contracts with

arm trustzone : (practical experience report). In 2020 International Sympo-

sium on Reliable Distributed Systems (SRDS), pages 31–40.

[Ngabonziza et al., 2016] Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and

Martin, S. (2016). Armexplained.

[OPTEE, 2022] OPTEE (2022). Optee build. https://optee.readthedocs.io/
en/latest/building/devices/rpi3.html#build-instructions.

[Pinto and Santos, 2019] Pinto, S. and Santos, N. (2019). Demystifying arm

trustzone: A comprehensive survey.

https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://optee.readthedocs.io/en/latest/building/devices/rpi3.html#build-instructions
https://optee.readthedocs.io/en/latest/building/devices/rpi3.html#build-instructions

[Rosenberg, 2014] Rosenberg, D. (2014). Qsee trustzone kernel integer over-

flow vulnerability. https://www.blackhat.com/docs/us-14/materials/
us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf.

[Suciu et al., 2020] Suciu, D., McLaughlin, S., Simon, L., and Sion, R. (2020).

Horizontal privilege escalation in trusted applications. In 29th USENIX Secu-

rity Symposium (USENIX Security 20). USENIX Association.

[Teacleave, 2022a] Teacleave (2022a). Ta data size limit. https://github.com/
OP-TEE/optee_os/issues/1429.

[Teacleave, 2022b] Teacleave (2022b). Ta open session attribute.

https://github.com/apache/incubator-teaclave-trustzone-sdk/blob/
master/optee-utee/macros/src/lib.rs.

[Teacleave, 2022c] Teacleave (2022c). Teacleave develop-

ment. https://teaclave.apache.org/trustzone-sdk-docs/
overview-of-optee-rust-examples/.

[Teacleave and elias vd, 2022] Teacleave and elias vd (2022). Poc attestation

pull request. https://github.com/OP-TEE/optee_os/pull/4011.

[Teacleave and HakonToemte, 2022] Teacleave and HakonToemte

(2022). Third party crates. https://github.com/apache/
incubator-teaclave-trustzone-sdk/issues/99.

[Tian et al., 2018] Tian, H., Zhang, Q., Yan, S., Rudnitsky, A., Shacham, L., Yariv,

R., and Milshten, N. (2018). Switchless calls made practical in intel sgx. In

Proceedings of the 3rdWorkshop on System Software for Trusted Execution,

SysTEX ’18, page 22–27, New York, NY, USA. Association for Computing Ma-

chinery.

[Tømte, 2022] Tømte, H. (2022). Blockchain github repo including optimized

version. https://github.com/HakonToemte/BlockChain.

[Wan et al., 2020] Wan, S., Sun, M., Sun, K., Zhang, N., and He, X. (2020). Rus-

TEE: Developing Memory-Safe ARM TrustZone Applications. In Proceedings

of the 36th Annual Computer Security Applications Conference, ACSAC ’20.

https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://github.com/OP-TEE/optee_os/issues/1429
https://github.com/OP-TEE/optee_os/issues/1429
https://github.com/apache/incubator-teaclave-trustzone-sdk/blob/master/optee-utee/macros/src/lib.rs
https://github.com/apache/incubator-teaclave-trustzone-sdk/blob/master/optee-utee/macros/src/lib.rs
https://teaclave.apache.org/trustzone-sdk-docs/overview-of-optee-rust-examples/
https://teaclave.apache.org/trustzone-sdk-docs/overview-of-optee-rust-examples/
https://github.com/OP-TEE/optee_os/pull/4011
https://github.com/apache/incubator-teaclave-trustzone-sdk/issues/99
https://github.com/apache/incubator-teaclave-trustzone-sdk/issues/99
https://github.com/HakonToemte/BlockChain

[Zhao et al., 2014] Zhao, S., Zhang, Q., Hu, G., Qin, Y., and Feng, D. (2014). Pro-

viding root of trust for arm trustzone using on-chip sram. In Proceedings of

the 4th InternationalWorkshop on Trustworthy EmbeddedDevices, TrustED

’14, page 25–36, New York, NY, USA. Association for Computing Machinery.

[Zheng et al., 2020] Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J.,

and Imran, M. (2020). An overview on smart contracts: Challenges, advances

and platforms. Future Generation Computer Systems, 105:475–491.

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Hein Meling

© 2022 Håkon Tømte

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Approach
	Contributions

	Background
	ARM TrustZone
	Hardware Architecture
	Software Architecture
	TrustZone as a key-enabler of TEEs
	Vulnerabilities

	GlobalPlatform TEE
	Hardware Architecture
	Software Architecture
	OP-TEE

	Rust
	Rust OP-TEE SDK

	Related Work
	ChainBox
	System Architecture

	Other Related Work

	Implementation
	Introduction
	Setting up Rust OP-TEE building environment with QEMU
	Deploying on a Raspberry Pi 3 Model B

	Development in the Rust OP-TEE SDK
	Building a new CA/TA
	Working between the worlds
	Third-party crates

	Implementing the Ordering Service Enclave
	Design
	Implementation
	Analysis

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Optimizations
	Further work

	Conclusions

