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Abstract: Two-dimensional computational fluid dynamics (CFD) simulations are carried out to
investigate the gap resonance phenomenon that occurs when free-surface waves travel past twin
squares in tandem. The volume of fluid method is used to capture the free surface. Validation studies
of the present numerical model are conducted for different incident wave frequencies. The numerical
results agree well with the published experimental data in terms of the free surface elevations in the
gap. The hydrodynamic characteristics of the water column in the gap are investigated at different
incident wave frequencies and gap widths. It is found that the free surface elevation in the gap
increases and then decreases with the increasing incident wave frequency. The horizontal force on
the weather side square structure (the structure in front of the gap) reaches the peak value at a larger
frequency than the gap resonance frequency, whereas the variation of the horizontal force on the lee
side structure (the structure behind the gap) is in-phase with the free surface elevation in the gap.
Moreover, the added mass of the water column in the gap increases with the increasing gap width,
which results in the decrease of resonance amplitude and frequency in the gap. However, this does
not necessarily reduce the peak value of the horizontal forces on the structures.

Keywords: CFD; gap resonance; hydrodynamic forces; free surface waves

1. Introduction

In a multiple floating body system, such as the ship-by-ship offloading system and the assembly of
very large floating structures (VLFS), the free surface elevations in the narrow gap between structures
can be much higher than the incident wave heights. This phenomenon is called gap resonance, and it is
caused by the proximity of incident wave frequencies to the natural frequency of the fluid vibrations in
the gap. The gap resonance may cause higher wave forces, lead to violent body motions, and influence
the stability of the system.

The sketch of the gap resonance motion is shown in Figure 1. The water column in the gap can
have more than five times higher free surface elevations as compared to the incident waves, according
to the experiments of Saitoh et al. [1]. The water column in the gap can be simplified as a rigid body
(Molin, [2]). The motion of this rigid body then can be solved by considering the gravity force G,
buoyancy force Fb, wave excitation force Fw, and radiation force Fr. Therefore, the oscillation of the
water column in the gap can be influenced by these forces, which are relevant to the dimension of the
gap and the incident wave conditions.

Extensive theoretical analyses, numerical simulations, and experiments have been carried out to
investigate the generation mechanism and hydrodynamic characters of this phenomenon. The potential
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flow theory is an efficient method to investigate gap resonance. Theoretical explanations have been made
to figure out the generation mechanism of the narrow gap, and simplified solutions have been proposed
to estimate the natural frequency of the gap when the gap width is relatively small (Saitoh et al., [1];
Molin, [2]; Liu and Li, [3]; Tan et al., [4]). The estimated two-dimensional (2-D) gap resonance
frequencies agree well with experiments (Saitoh et al., [1]; Iwata et al., [5]; Cong et al., [6]). However,
since the linear potential flow theory over-predicts experimentally determined resonant responses in
the gap under the excitation of sinusoidal waves (Faltinsen et al., [7]; Kristiansen et al., [8]), most of
the potential flow models are semi-analytical or combined with empirical terms (Huijsmans et al., [9];
Newman et al., [10]; Chen, [11]).

Energies 2019, 12, x FOR PEER REVIEW 2 of 27 

 

potential flow theory is an efficient method to investigate gap resonance. Theoretical explanations 
have been made to figure out the generation mechanism of the narrow gap, and simplified solutions 
have been proposed to estimate the natural frequency of the gap when the gap width is relatively 
small (Saitoh et al., [1]; Molin, [2]; Liu and Li, [3]; Tan et al., [4]). The estimated two-dimensional (2-
D) gap resonance frequencies agree well with experiments (Saitoh et al., [1]; Iwata et al., [5]; Cong et 
al., [6]). However, since the linear potential flow theory over-predicts experimentally determined 
resonant responses in the gap under the excitation of sinusoidal waves (Faltinsen et al., [7]; 
Kristiansen et al., [8]), most of the potential flow models are semi-analytical or combined with 
empirical terms (Huijsmans et al., [9]; Newman et al., [10]; Chen, [11]). 

 

Figure 1. The sketch of the water column in the gap (reproduced from Cong et al. [6]). 

As one of the sources of the damping terms in the potential flow model, the viscous effect is 
inevitable while solving the hydrodynamic forces and the resonance amplitudes at the gap between 
structures. Faltinsen and Timokha [7] and Kristiansen and Faltinsen [12] systematically investigated 
the damping in the gap both by experimental measurement and the potential flow method. The 
damping effects of the free surface nonlinearity, the flow separation, and the boundary layer on the 
hull were evaluated. It was concluded that the flow separation from the entrance of the gap is the 
main source of the discrepancy between the potential solver and their experimental results. 
Furthermore, Kristiansen and Faltinsen [13] investigated the coupled ship motion and the piston-
mode flow in a gap. The flow separation at the ship bilge was modeled by an inviscid vortex tracking 
method. In this manner, the potential flow results were effectively suppressed. They further put 
forward a combined potential and viscous solver to deal with the flow separation from the barge 
bilge (Kristiansen and Faltinsen, [13]). Feng and Bai [14] investigated the gap resonance under 
nonlinear waves by a mixed Eulerian–Lagrangian scheme by the high-order boundary element 
method (HOBEM). They demonstrated that the main source of the overestimated response is 
viscosity instead of the free surface nonlinearity. The effect of free surface nonlinearity is negligible 
except for slightly increasing the resonance frequency. Another truth that proves the importance of 
viscosity is the influence of the hull bilge shape on the resonance amplitude. Moradi et al. [15] 
investigated a 2-D gap resonance through numerical simulations including viscosity. They found that 
the resonance amplitude became smaller with the increasing bilge radius. Tan et al. [16] carried out 
large quantities of experiments to investigate the effects of the bilge shape. Their results suggested 
that the energy dissipations of sharp bilge cases are larger than round bilge cases. This was likely due 
to the different flow separation behavior at the bilge. 

Several computational fluid dynamics (CFD) simulations have been carried out to evaluate the 
viscous dissipation of narrow gap resonance problem. Lu et al. [17,18] investigated the 2-D gap 
resonance both by the modified potential model [11] and viscous numerical methods. By optimizing 
the artificial damping of the potential solver, the numerical results based on the potential theory 
agreed well with the turbulent viscous solver in terms of the resonance amplitude and the 
hydrodynamic forces. Tan et al. [16] figured out the relationship between the damping coefficients of 
a theoretical dynamic model (𝜀) and that used in the modified potential model [11,17] (𝜇 ): 𝜇 =3𝜋𝜀𝜔 /8, where 𝜔  is the natural frequency, and the damping coefficient 𝜀 could be calculated 
according to the surface elevation results of the numerical viscous solver. Zhao et al. [19] 
experimentally investigated the 3-D gap resonance under new wave-type transient waves. They 
found that each gap resonance mode had a characteristic damping which was somewhat larger than 

Figure 1. The sketch of the water column in the gap (reproduced from Cong et al. [6]).

As one of the sources of the damping terms in the potential flow model, the viscous effect
is inevitable while solving the hydrodynamic forces and the resonance amplitudes at the gap
between structures. Faltinsen and Timokha [7] and Kristiansen and Faltinsen [12] systematically
investigated the damping in the gap both by experimental measurement and the potential flow
method. The damping effects of the free surface nonlinearity, the flow separation, and the boundary
layer on the hull were evaluated. It was concluded that the flow separation from the entrance of
the gap is the main source of the discrepancy between the potential solver and their experimental
results. Furthermore, Kristiansen and Faltinsen [13] investigated the coupled ship motion and the
piston-mode flow in a gap. The flow separation at the ship bilge was modeled by an inviscid vortex
tracking method. In this manner, the potential flow results were effectively suppressed. They further
put forward a combined potential and viscous solver to deal with the flow separation from the
barge bilge (Kristiansen and Faltinsen, [13]). Feng and Bai [14] investigated the gap resonance under
nonlinear waves by a mixed Eulerian–Lagrangian scheme by the high-order boundary element method
(HOBEM). They demonstrated that the main source of the overestimated response is viscosity instead
of the free surface nonlinearity. The effect of free surface nonlinearity is negligible except for slightly
increasing the resonance frequency. Another truth that proves the importance of viscosity is the
influence of the hull bilge shape on the resonance amplitude. Moradi et al. [15] investigated a 2-D
gap resonance through numerical simulations including viscosity. They found that the resonance
amplitude became smaller with the increasing bilge radius. Tan et al. [16] carried out large quantities
of experiments to investigate the effects of the bilge shape. Their results suggested that the energy
dissipations of sharp bilge cases are larger than round bilge cases. This was likely due to the different
flow separation behavior at the bilge.

Several computational fluid dynamics (CFD) simulations have been carried out to evaluate
the viscous dissipation of narrow gap resonance problem. Lu et al. [17,18] investigated the 2-D gap
resonance both by the modified potential model [11] and viscous numerical methods. By optimizing
the artificial damping of the potential solver, the numerical results based on the potential theory agreed
well with the turbulent viscous solver in terms of the resonance amplitude and the hydrodynamic
forces. Tan et al. [16] figured out the relationship between the damping coefficients of a theoretical
dynamic model (ε) and that used in the modified potential model [11,17] (µp): µp = 3πεωn/8, whereωn

is the natural frequency, and the damping coefficient ε could be calculated according to the surface
elevation results of the numerical viscous solver. Zhao et al. [19] experimentally investigated the 3-D
gap resonance under new wave-type transient waves. They found that each gap resonance mode had
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a characteristic damping which was somewhat larger than the damping calculated using the linear
potential flow theory alone. Later, Wang et al. [20] employed OpenFOAM-based Navier–Stokes (N–S)
equations to reproduce the experiment results of Zhao et al. [19]. The grid resolution, mesh topology,
domain size, and boundary conditions were systematically optimized. The transient wave group was
considered to be a better choice for investigating the 3-D gap resonance phenomenon as compared
to the regular incident waves. Based on a CFD solver, Chua et al. [21,22] developed a framework to
evaluate the damping coefficients of a 3-D gap resonance problem. The energy dissipations regarding
wave scattering, frictional force, flow separation, appendages, and hull motions were investigated
thoroughly. It could be concluded that the modified potential model considering the damping effects is
able to predict well regarding the gap resonance problem. The value of damping, however, still relies
on CFD simulations, which are less expensive compared to experiments.

The previous research concerns on the gap resonance problem were usually the viscous effects and
the free surface elevations in the gap. There is still lack of research on the characteristics of hydrodynamic
loads on structures with a narrow gap. In the present study, the hydrodynamic loads, viscous effects,
and free surface elevations related to the narrow gap resonance were investigated thoroughly. The forces
on the floating structures are more important as compared to the surface elevations in the gap, while the
horizontal wave loads are more sensitive to the gap resonance, as compared to the vertical wave
loads [18]. The present study is organized as follows. Firstly, a mesh and time-step refinement study is
conducted for the case with the smallest gap width, which is considered to be the most severe case.
Secondly, the free surface elevations in the gap, the viscous dissipation, and the horizontal wave loads
on the structures are studied at different incident wave frequencies and different gap widths between
structures. Meanwhile, viscous dissipation and horizontal wave loads versus the gap width are also
discussed. The present research can provide a reasonable reference to the engineering design process
in term of nap gap damping.

2. Numerical Modeling and Setup

2.1. Governing Equations

The open source CFD software OpenFOAM [23] was used to solve the N–S equations numerically.
The toolbox waves2Foam (Jacobsen et al., [23]) was applied for the numerical wave tank. The governing
equations for the incompressible viscous flow are given as follows [24]: ∇·v = 0

∂(ρv)
∂t +∇·(ρvv) = ∇·µ∇v−∇prgh − g·(x− xr)∇ρ

(1)

where ∇ denotes the Hamiltonian operator, v is the velocity field, ρ is the fluid density, µ is the
dynamic viscosity coefficient, t is the time, prgh is the pressure in excess of the hydrostatic pressure
prgh = ρ− ρg·(x− xr), g is the gravity vector, x is the Cartesian coordinate vector, and xr is the reference
coordinate vector defined at sea level. The contribution of surface tension effect is less than 1% of the
inertial force when T > 0.35 s, H > 0.02 m [24], where T is the deep-water wave period and H is the
deep-water wave height. Therefore, the surface tension effect is considered negligible in the present
study (see the numerical set-up in Section 3).

2.2. Free Surface Capturing

The volume of fluid (VOF) method was applied to capture the free surface. The water volume
fraction is defined as follows:

α(x, t) =


0 air

0 < αs < 1 f ree sur f ace

1 water

(2)
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where α is the volume fraction of the water phase. The density ρ and the dynamic viscosity µ are
calculated as follows: {

ρ = αρwater + (1− α)ρair
µ = αµwater + (1− α)µair

(3)

The transport equation of the water volume fraction is:

∂α
∂t

+∇·(αv) +∇·[α(1− α)vr] = 0 (4)

where t is the time; α = α(x, t) denotes the cell-based water volume fraction at coordinate x in time t;
v is the local fluid velocity; and vr is the compress velocity at the interface [25]:

vr = vwater − vair (5)

2.3. The Numerical Wave Flume

The relaxation zone technique [24] was applied for making and absorbing waves. In each time-step,
this technique corrects fluid fields in relaxation zones by Equation (6). As a consequence, fluid fields in
these zones change gradually from the computed fields (that are obtained by theories) to the target
fields (according to the selected wave theory):

Φ = (1−ωR)Φtarget +ωRΦcomputed (6)

where Φ denotes the corrected fields; Φtarget and Φcomputed are the target and the computed fields,
respectively; and ωR = ωR(σ) ∈ [0, 1] denotes the weighting function which varies from 1 to 0 as
the relaxation zone local coordinate σ increases from 0 to 1. The default weighting functions used in
waves2Foam is exponential:

ωR = 1−
exp

(
σ3.5

)
− 1

exp(1) − 1
(7)

2.4. The Post-Processing

The nondimensionalized surface elevations inside the gap and the forces on the floating structures
are defined in Equations (8)–(13), which will be used in the post-processing. The free surface elevations
at the wave gauges in the wave flume are normalized by the incident wave height Hi:

η∗ =
η(t)
Hi

(8)

where η(t) is the instantaneous free surface elevation relative to the still water level and Hi is the
incident wave height. Correspondingly, the normalized surface elevation amplitude is:

η∗a =
ηa

Ai
(9)

where ηa is the average value of the elevation amplitudes of several steady-state periods and Ai is the
incident wave amplitude.

The wave force f is calculated by integrating over the surface Ω of the squares:

f =
∫

Ω

(
−nprgh(r, t) + n·τ(r, t)

)
dΩ (10)

where n is the unit normal vector pointing into the fluid, r is the coordinate vector, prgh(r, t) is the in
excess of the static pressure (see Equation (1)), and τ(r, t) = µ∇v is the shear stress tensor.
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As a consequence, the instantaneous magnitude f of the wave force f contains both the
hydrodynamic components and the hydrostatic components:

f = finertial+viscous + fhydrostatic (11)

where fhydrostatic is the hydrodynamic component—the hydrostatic component fhydrostatic is the variation
of the transient hydrostatic force relative to the initial hydrostatic force in still water.

The normalized parameter f ∗ is introduced to normalize the hydrodynamic force on the squares:

f ∗ =
f

ρgBAi
(12)

where B is the breadth of the square and d is the draft of the square;
Furthermore, the subscript x was introduced for horizontal force components, e.g., f ∗x is the

horizontal normalized force and fx is the horizontal hydrodynamic force.
The normalized horizontal force amplitude is defined as:

F∗x =
Fx

ρgBAi
(13)

where Fx is the average value of the force amplitude of steady-state periods.

3. Simulation Cases

Twin square bodies are fixed side-by-side in regular incident waves—see SQ1,2 in Figure 2. B is
the width of the square, h is the water depth. Several normalized parameters are introduced here:

d∗ = d
B ; h∗ = h

d ; ω∗ = ω/
√

g
B , where ω is the incident wave frequency; B∗g =

Bg
B , where Bg is the gap

width; the Keulegan–Carpenter number (KC number) KC = 2πAi
Bg

. From hereon, the parameter ω∗

indicates the nondimensional incident wave frequency of the cases, while the parameter B∗g indicates
the nondimensional gap width of the cases.

Two variables were considered in the present study, i.e., the incident wave frequency and the
gap width between two squares, which are relevant to the resonance of the water column in the gap.
The variations of the gap width can result in different natural frequencies of the water column in the gap.
The incident wave frequency can influence the behavior of the gap resonance. Both the characteristics
of the hydrodynamic forces and the gap resonance were investigated in the present study. Here B,
d∗, and h∗ are constants which are same as the existing experiments (Saitoh et al., [1]; Tan et al., [16]):
B = 0.5 m; d∗ = 0.5; and h∗ = 2. The KC numbers of the present cases were small, i.e., less than 3 for all
the simulation cases. Therefore, the flows were considered to be inertial dominated [26].
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3.1. Numerical Wave Flumes

The reference length for the wave flume design is the resonance wave length λn, which is estimated
by the first order wave theory: {

λn = 2π/k
ω2

n = gk tanh(kh)
(14)

where g is the gravitational acceleration, k is the wave number, h is the water depth (see Figure 2);
and the resonance frequency ωn is estimated according to [1]:

ωn =

√
g

BgB/(h− d) + d
(15)

Jacobsen et al. [24] recommended that the length of the relaxation zones should be larger than the
incident wave length. Therefore, LR (Figure 2) was set to 2λn, LW was 5λn, and the total length L of the
numerical wave tank was 9λn. The B∗g was fixed as 0.1 to investigate the influence of incident wave
frequencies, which is the same as the experimental set-up of Saitoh et al. [1] and Tan et al. [4].

3.2. Simulation Cases

(i) The Influences of the Incident Wave Frequencies

In the present simulation cases, different incident wave frequencies were set at the input boundary,
which covers the resonance frequency region. However, waves with higher steepness result in larger
viscous dissipation in the process of wave propagation [27,28], and the grid resolution needs to vary
correspondingly to obtain sufficient numerical accuracy. Therefore, the largest wave frequency was
1.1ωn, i.e., the shortest wave length was no smaller than 80% of λn. On the other hand, the waves with
the smallest frequency pertain to the second-order Stokes wave theory. The incident wave frequencies
are listed in Table 1.

Table 1. Summary of the present numerical simulation cases.

Index B*
g ω*

n KC ω*

C1~C9 0.10 1.20 1.51
C1 C2 C3 C4 C5 C6 C7 C8 C9

0.99 1.07 1.11 1.16 1.17 1.20 1.21 1.24 1.28

C10~C17 0.17 1.09 0.89
C10 C11 C12 C13 C14 C15 C16 C17
0.89 1.03 1.08 1.09 1.10 1.13 1.14 1.20

C18~C27 0.25 1.00 0.60
C18 C19 C20 C21 C22 C23 C24 C25 C26 C27
0.77 0.92 0.98 1.00 1.01 1.04 1.06 1.07 1.09 1.11

The incident wave amplitude Ai was fixed to 0.012 m in accordance with existing experiments
(Saitoh et al., [1]; Tan et al., [4]). Besides, four wave gauges (G1–G4) were applied for the free surface
elevations and the wave energy dissipation ratio, Rd = 1−Rr

2
−Rt

2, where Rr =
Ar
Ai

is the reflection

ratio, Ar is the reflected wave amplitude obtained by the two point method [29], Rt = At
Ai

is the
transmission ratio, and At is the transmitted wave amplitude measured at G4.

(ii) The Influences of the Gap Width

The B∗g changed from 0.1 to 0.25 to include the general range of gap width between two squares
in published studies. It should be noted that B∗g is usually small (e.g., B∗g ≈ 0.1 [1,4,5]). For each B∗g,
ωn was calculated by Equation (15) and normalized to ω∗n. The selections of incident wave frequencies
are shown in Table 1 in detail.
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3.3. Boundary Conditions

As shown in Figure 2, the 2-D rectangular computational domain was built around the square
structures with inlet, outlet, top, and bottom boundaries. The boundary conditions used in the present
study are summarized as follows:

(i) At the inlet boundary, the velocity for the water was given according to the linear wave theory
while the air velocity is zero. The normal zero-gradient condition was applied for the pressure.

(ii) At the outlet boundary, the pressure was specified as normal zero-gradient, and the velocities
for both water and air were set to zero.

(iii) The top boundary of the computational domain was set as an atmospheric condition,
which allowed the air to flow in and out of the domain. The pressure at the top boundary was calculated
by pT = p0 − 0.5u2. The velocity u was obtained from the flux at the patch for the inflow and a normal
zero-gradient condition for the outflow.

(iv) The no-slip wall boundary condition was used at the bottom and the structures’ surface,
where the velocity was zero. The pressure was set as the normal zero-gradient condition.

(v) The “empty” boundary condition was employed at the front and back boundaries due to the
present 2-D simulations in OpenFOAM.

4. Mesh and Time-Step Refinement Studies

Mesh and time-step refinement studies were carried out for case C6, which was the case with
the smallest gap. The numerical results with different meshes and time-steps were compared to each
other in terms of the normalized free surface elevations at G2 (in front of the squares), G3 (in the gap),
G4 (behind the squares; see Figure 2), and the hydrodynamic forces on SQ1. As B∗g becomes larger,
the resonance amplitude in the gap decreases (Moradi et al., [15]). Therefore, the verified grid settings
could be utilized for the other cases with larger B∗g. Figure 3 shows the zoom-in view of the mesh
around the twin squares of case C6. The vertical grid size over the free surface region is noted as ∆y f ,
the horizontal grid size in the free surface region is ∆x f , and the grid size in the gap and in the vicinity
of the square structure boundaries is ∆ybn. The grid size changes gradually at different locations,
e.g., between the free surface and the bottom region the grids distribute in the form of hyperbolic
cosine function vertically according to the water wave velocity. Details of the grid resolutions are
shown in Table 2. An adaptive time-step scheme was used for simulations with a maximum Courant
number of 0.25.

Table 2. The three different grid resolutions used in the present study.

Mesh Index ∆xf ∆yf ∆ybn Cell Number

A λn/80 Hi/8 Bg/40 139,270
B λn/200 Hi/20 Bg/100 723,362
C λn/250 Hi/25 Bg/125 1,100,640

Figure 4 shows the results of the different grid resolutions over five wave periods after the results
repeat their cycles. Figure 4a is the normalized surface elevation η∗ at G2, G3, and G4 versus the
normalized time t∗ = t−t0

Tn
, where t is the simulation time and t0 is the start time of the captured

steady-state periods. The relative error of η∗ between different grid resolutions is noted as ε, and the
numerical model is considered converged when ε < 5%. In Figure 4a, the largest ε (the ε at G4) between
the numerical results of mesh A and mesh B is 19.79%, and the largest ε between the numerical results
of mesh B and mesh C is 4.95%. Therefore, mesh B is considered to give the sufficient accuracy in
terms of the prediction of η∗. Figure 4b illustrates F∗x1 versus t∗ over the same duration as in Figure 4a,
where the largest ε between the numerical results of mesh A and mesh B is 2.55%, and the largest
ε between the numerical results of mesh B and mesh C is 0.40%. The results show that mesh B is
sufficiently fine for predicting both the surface elevations and the horizontal wave forces. Therefore,
mesh B was employed for the numerical simulations in the present study.
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A time-step refinement study was carried out based on mesh B. A simulation with a maximum
Courant number of 0.15 was performed to verify the convergence of the time-step settings. Figure 5
shows the results of C6 using different time-steps over five steady-state periods. The maximum ε

between η∗ with two time-steps was 1.91%; the ε between F∗x1 with two different time-steps was 2.83%.
Therefore, a maximum Courant number of 0.25 was employed for the present numerical simulations.

The verified grid resolution and time-step settings were further applied to the cases with B∗g = 0.17
and the cases with B∗g = 0.25. The mesh for cases with B∗g = 0.17 (cases C10~C17) contained 730,410 cells,
while the mesh for the cases with B∗g = 0.25 (cases C18~C27) contained 899,190 cells; see Table 2 for
more information.
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5. Results and Discussions

5.1. The Influences of Incident Wave Frequencies

Simulations were performed for cases C1~C9 (B∗g = 0.1) to investigate the influence of incident
wave frequencies. Discussions were carried out in terms of the surface elevation amplitudes in the
gap, the viscous dissipation in the gap, the phase-frequency characters of the wave field, and the
horizontal wave forces on squares. The subscripts 1 and 2 were introduced to distinguish the forces on
the SQ1 and the SQ2, e.g., fx2 denotes the horizontal force on SQ2. The present numerical results were
compared with the existing experimental and numerical results.

Figure 6 is the comparison of elevation amplitudes inside the gap (η∗a) versus the incident wave
frequency ω∗ between the present study and the experiment by Saitoh [1]. The relative difference ε
here was the relative error between the interpolation points of the simulations and the experiment data
points. For case C1~C7, εwas less than 5%, and εwas slightly larger, i.e., less than 15% for cases C7~C9.
The good agreement shows that the present numerical model is able to predict the elevation amplitudes
in the gap with reasonable accuracy. As the incident wave frequency ω∗ became larger, the elevation
amplitude inside the gap η∗a increased rapidly and reached its peak at ω∗ = 1.195, before decreasing.
This tendency is in accordance with the resonance phenomenon. The mechanism of the resonance can
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be explained by considering the motion of fluid in the gap as rigid body motion. The motion equation
of the fluid vibration in the gap can be expressed as:

(m + ma)
..
η+ c

.
η+ ksη = fexcitation (16)

where η is the fluid displacement or the surface elevation inside the gap, fexcitation is the excitation
force, m is the mass of fluid inside the gap, ma is the added mass, c is the damping coefficient, ks is the
stiffness. Based on Equation (16), the natural frequency of the fluid vibration in the gap is:

ωn =

√
ks

m + ma
(17)
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Resonance occurs when the incident wave frequency is equal or nearly equal to ωn. To be specific,
the stiffness ks is the coefficient of y in the buoyancy variation term as the fluid moves, ks = ρgBg.
The first order mass of the fluid inside the gap is the fluid mass inside the gap of still-water state,
m = ρBgd. Equation (17) can further be simplified according to these formulas:

ωn =

√
g

ma
ρBg

+ d
(18)

Equations (16)–(18) are the basis of follow-up discussions in the present study. It should be noted
that these equations are not limited to the rigid body assumption. It is a general motion equation of
the vertical flow motion in the gap. The coefficients ma and c change significantly between different
theoretical models. For example, Equation (15) (derived by Saitoh, [1] using the energy method) is

equivalent to take ma as
ρBB2

g
h−d . In Tan et al. [4], ma was

ρB∗B2
g

4(h−d) , where B∗ is the artificial coefficient.
The viscous dissipation influences the flow field around the squares pronouncedly. In analytical

and potential methods, damping is usually obtained from CFD simulations or experimental data.
It is generally agreed that the vorticity near the entrance of the gap is the main source of the viscous
dissipation. Figure 7 shows the variation of the vorticity contour in the water phase for case C6
(ω∗ equals to ω∗n) at t∗ = 0, 0.17, 0.33, 0.50, 0.67, 1. When t∗ = 0, the water level in the gap was at
the lowest position, and the average flow velocity in the gap was nearly zero. As the wave gradually
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travels past the square bodies at t∗ = 0 ∼ 0.25, part of the waves reflected back and overlapped
with the incident waves, part of the wave energy was absorbed by the movement of the elevation in
the gap, and the rest was the transmitted waves. Due to the large velocity gradient at the corners
of the SQ1 and SQ2, two vortices began to grow symmetrically in the gap to dissipate the energy.
From t∗ = 0.25 ∼ 0.5, the decreasing flux in the gap resulted in the hydrodynamic pressure gradient,
which was at the same direction as the flow direction in the gap, and pushed the vortex back to the
gap entrance. From t∗ = 0.5 ∼ 1, the vortices gradually spread to the bottom region below the square
structures as the water level in the gap returned back to the lowest position.

Figures 8 and 9 present the variations of the vorticity contour of case C2 (ω∗ smaller than ω∗n) and
C9 (ω∗ larger than ω∗n). In these two cases, the flow in the gap produced smaller vortices as compared to
case C6. Furthermore, Figure 10 shows the square of transmission ratio Rt

2, the square of the reflection
ratio Rr

2 and the dissipation ratio Rd versus the incident wave frequency ω∗. The present simulation
results were compared with the experimental data from Tan et al. [16]. The linear interpolation method
was applied for the numerical results according to the sample points from the experimental data.
The root mean square errors (RMSE) of the interpolated numerical results relative to the experimental
data were calculated. For the mth wave frequency, R1m and R2m represent the interpolated numerical

results and the experiment data, and the RMSE was calculated by: ε =

√∑M
m=1[(R1m −R2m)

2/M],

where M is the total number of frequencies of the experiments. In Figure 10, the RMSE of R2
r , R2

t , and Rd
are 0.061, 0.04, and 0.053, respectively, which are relatively small values. There was a slight difference
of peak frequency in the present simulation and experiments—i.e., R2

t was approximately 1.17 in the
present numerical results, and in the experiments, the peak frequency for R2

t was 1.15. Though the
difference was only around 1.7%, it was able to result in a significant difference when the resonance
interval was narrow and R2

t was nearly zero out of the resonance interval. Another reason for the
discrepancies was the uncertainties of the experiments. For example, when the incident wave frequency
ω∗ was approximately 1.02, the Rd in the experiment was negative, Tan et al. (2016) believed that
this unphysical phenomenon was caused by the measurement uncertainties. In general, the present
numerical results are in good agreement with the experiments.

When gap resonance happens, the wave reflection ratio decreases a lot, which is mainly caused
by the increased dissipation ratio. Assuming that the energy loss in the gap is equal to the energy
loss of the whole wave field in each period, the value of damping coefficient c (Equation (16)) can be
estimated as:

ρgω
4k

[
1 +

2kh
sinh(2kh)

]
A2

i Rd =
1
T

T∫
0

c
.
η

2dt ⇒ c =
ρg

2kω

[
1 +

2kh
sin h(2kh)

]
Rd

(η∗a)
2 (19)
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2, and the dissipation
ratio Rd versus the incident wave frequency ω∗ in the present study and in the experiments conducted
by Tan et al. [4] (B∗g = 0.1).

The damping coefficient c versus ω∗ is illustrated in Figure 11. As ω∗ approaches ω∗n, the damping
coefficient c gradually converges to a constant value. Tan et al. [16] suggested that the linearized damping
coefficient is proportional to the excitation frequency ω: c = εωM, where ε is a non-dimensional
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damping coefficient obtained from the CFD results of the resonance case. In order to make comparisons,
the damping coefficient c in present simulations was reformulated as:

c = cωω (20)

where cω is the damping coefficient c of the resonance case divided by the resonance frequency ωn.
In cases with the gap width B∗g = 0.1 (cases C1~C9) the value of cω = 5.858

ωn
= 1.107, which agrees well

with that of the cases with the same gap width B∗g of Tan et al. [16] (cω = 1.010). It should be noted that
their results were obtained from CFD calculations including turbulence modeling. This demonstrates
that the present laminar model has enough accuracy for predicting the viscous dissipation in the gap,
as mentioned in Section 3.

Energies 2019, 12, x FOR PEER REVIEW 14 of 27 

 

𝑐 = 𝑐 𝜔 (20)

where 𝑐  is the damping coefficient 𝑐 of the resonance case divided by the resonance frequency 𝜔 . In cases with the gap width 𝐵∗ = 0.1 (cases C1~C9) the value of 𝑐 = . = 1.107, which agrees 

well with that of the cases with the same gap width 𝐵∗ of Tan et al. [16] (𝑐 = 1.010). It should be 
noted that their results were obtained from CFD calculations including turbulence modeling. This 
demonstrates that the present laminar model has enough accuracy for predicting the viscous 
dissipation in the gap, as mentioned in Section 3. 

 
Figure 11. The damping coefficient 𝑐  versus the incident wave frequency 𝜔∗  in the present 
numerical study. (𝐵∗ = 0.1) 

To simplify the problem, in later discussions, it was assumed that the only influence of viscosity 
is to determine the surface elevation inside the gap, while the flow outside the gap is irrotational. 
Firstly, as shown in Figures 7–9, the vorticity mostly gathered in the bottom area of the gap and had 
little influence on the flow tendency of the entire flow field. Secondly, several studies [9–11,17,18] 
indicated that the linear potential flow theory based results are reasonable after taking into account 
the damping inside the gap. 

From Figures 7–9, the phase retardation of the elevation inside the gap relative to the wave 
profile in front of SQ1 varied visibly. This interesting character was further investigated. The phase 
of the elevation inside the gap (𝜙 ) was evaluated from the elevation time history inside the gap 
( 𝜂(𝑡)): 𝜙 = 𝜔𝑡  (21) 

where 𝑡  is the time corresponding to the peak of 𝜂(𝑡) and 𝜔 is the incident wave frequency. 
In the present simulations the incident wave phase in front of SQ1 (𝜙 ) was: 𝜙 = 𝑘𝑥 + 2𝜋𝑛  (22) 

where 𝑘 is the wave number, 𝑥  is the x coordinate in front of the SQ1, and 𝑛  is the number of 
the wave period.  

The wave phase in front of the SQ1 may deviate slightly from the result of Equation (22) as a 
consequence of the superposition between the incident wave and the reflected wave. However, the 
effect is negligible. It was assumed that the incident wave completely reflected back at the left side of 
SQ1. Based on the wave superposition theory, this generated a standing wave with the following 
profile function: 𝜂 = 𝐴 cos(𝜔𝑡 − 𝑘𝑥) + 𝐴 cos 𝜔𝑡 + 𝑘𝑥 − 2𝑥  = 2A cos 𝜔𝑡 − 𝑘𝑥 cos[𝑘(𝑥 − 𝑥 )] (23) 

Figure 12 is the comparison between the surface elevations in front of SQ1 in the present 
simulations and of the presumed standing waves in front of SQ1. The time history curves of the 
surface elevation in front of SQ1 were almost coincident with the elevation time histories of the 
presumed standing wave in front of SQ1, which were calculated based on Equation (22). This 
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study (B∗g = 0.1).

To simplify the problem, in later discussions, it was assumed that the only influence of viscosity is
to determine the surface elevation inside the gap, while the flow outside the gap is irrotational. Firstly,
as shown in Figures 7–9, the vorticity mostly gathered in the bottom area of the gap and had little
influence on the flow tendency of the entire flow field. Secondly, several studies [9–11,17,18] indicated
that the linear potential flow theory based results are reasonable after taking into account the damping
inside the gap.

From Figures 7–9, the phase retardation of the elevation inside the gap relative to the wave profile
in front of SQ1 varied visibly. This interesting character was further investigated. The phase of the
elevation inside the gap (Φ1) was evaluated from the elevation time history inside the gap ( η(t)):

Φ1 = ωtcrest (21)

where tcrest is the time corresponding to the peak of η(t) and ω is the incident wave frequency.
In the present simulations the incident wave phase in front of SQ1 (Φ2) was:

Φ2 = kx f ront + 2πnp (22)

where k is the wave number, x f ront is the x coordinate in front of the SQ1, and np is the number of the
wave period.

The wave phase in front of the SQ1 may deviate slightly from the result of Equation (22) as
a consequence of the superposition between the incident wave and the reflected wave. However,
the effect is negligible. It was assumed that the incident wave completely reflected back at the left side
of SQ1. Based on the wave superposition theory, this generated a standing wave with the following
profile function:

ηsw = Ai cos(ωt− kx) + Ai cos
(
ωt + kx− 2x f ront

)
= 2Ai cos

(
ωt− kx f ront

)
cos

[
k
(
x− x f ront

)] (23)
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Figure 12 is the comparison between the surface elevations in front of SQ1 in the present simulations
and of the presumed standing waves in front of SQ1. The time history curves of the surface elevation
in front of SQ1 were almost coincident with the elevation time histories of the presumed standing
wave in front of SQ1, which were calculated based on Equation (22). This indicates that most parts of
the incident wave reflected back because of the strong shielding effect of the twin square structures.
By comparing Equations (22) and (23), it could readily be drawn that the wave profile in front of SQ1
was almost in-phase with the incident wave profile at the left side surface of SQ1.

Therefore, the phase retardation of the elevation inside the gap relative to the wave phase in front
of SQ1 (Hereinafter referred to as the phase leg Φ) was:

Φ = Φ1 −Φ2 (24)
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In order to clarify the character of the phase leg Φ, a further investigation on the excitation force
( fexcitation) of the liquid inside the gap was made. As a matter of investigating the excitation force,
the liquid inside the gap was considered stationary. The twin squares and the liquid inside the gap
could be regarded as an entire rectangular obstacle with a width of Bt = 2B+ Bg. In the control volume
below the obstacle (see region CV in Figure 13), the velocity potential ψ followed the impermeable
boundary condition at the boundaries ad and bc; it could therefore be written as (Cong et al., [6]):
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ψ = A0x e− jωt +
∞∑

n=1

[
Aneµnx + Bneµn(Bt−x)

]
cosµn(y + h)e− jωt (25)

where µn = nπ
h−d is the eigenvalue (n = 1, 2, . . .); A0, An, and Bn are complex constants; and j is the
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Equation (25) indicates that the flow in the region CV was composed of two parts, i.e., the first
part is the horizontal uniform oscillation with the velocity potential of A0x e− jωt, and the second part is
the disturbance of velocity with the velocity potential of

∑
∞

n=1

[
Aneµnx + Bneµn(Bt−x)

]
cosµn(y + h)e− jωt.

In fact, the free surface wave velocity on the left side of the boundary ab decays with the water depth.
When the relative draft d/λ is sufficiently large, the disturbance of velocity at the boundary ab becomes
small quantity. The fluid flow in the control volume is mainly the horizontal uniform oscillation.
The pressure distribution in the uniform flow field is the same everywhere. This indicates that the
pressure inside the whole control volume CV was in-phase with the pressure at the boundary ab,
which is the pressure of the wave field on the left side of boundary ab. When the wave profile in
front of SQ1 rose up, the pressure inside the control volume CV increased and vice versa. Therefore,
the excitation force ( fexcitation) on the liquid inside the gap synchronized with the wave elevation in
front of SQ1. The phase leg Φ was the same as the phase retardation of the response relative to the
excitation of the vibration system.

Liu [30] carried out a series of experiments to investigate the phase leg Φ and concluded that the
change of the phase leg Φ versus the incident wave frequency satisfied the phase-frequency character
of the vibration system under harmonic excitation. For verification of the present simulation results,
the phase leg Φ was theoretically estimated based on Equations (16)–(18) and the structural dynamics
theory (relevant theories could be found in textbooks like Humar, [31]):

Φ = arctan
2ζγ

1− γ2 (26a)

ζ =
c

2
(
ρBgd + ma

)
ωn

(26b)

γ =
ω
ωn

(26c)

At present, the parameters
(
ρBgd + ma

)
, ωn in Equation (26b,c) are known constants. The damping

coefficient c is proportional to the incident wave frequencyω (Equation (20)). Therefore, the phase legΦ
versus the incident wave frequency ω could be plotted immediately based on Equation (26a–c). On the
other hand, the phase legΦ in the present simulations was evaluated based on Equation (24). Figure 14
shows the comparison of the phase leg Φ of the theoretical estimation (based on Equation (26a–c) and
the simulation results (based on Equation (24)). The theoretical estimation curve and the simulation
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results are in good agreement with each other. A brief summary could be made from the above
results. Firstly, in the present simulations, the excitation force ( fexcitation) on the liquid inside the
gap synchronized with the wave elevation in front of SQ1, which was almost in-phase with the
incident wave profile in front of SQ1. Secondly, the phase leg Φ could be estimated by referring to the
phase-character of the vibration system, i.e., Equation (26a–c).
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Figure 14. The comparison of the dimensionless phase leg (Φ/π) of the elevation inside the gap
in the present simulations (evaluated based on Equation (24)) and the theoretical curve based on
Equation (26a–c) (B∗g = 0.1).

Figure 15 shows the horizontal force amplitudes on the twin squares. The results of the present
simulations were compared with the results of Lu et al. [18] using a viscous flow solver based on
the three-step Taylor–Galerkin finite element method. The normalized horizontal force amplitude F∗x
in resonance interval of Lu et al. [18] was smaller than that of the present simulation, whereas the
variation tendencies of force amplitudes were similar in both the present solver and Lu et al. [18]’s
solvers. It was found that the horizontal force amplitude on SQ2 (F∗x2) has the same phase with the
elevation amplitude in the gap (η∗a). However, the peak frequency of the horizontal force amplitude on
SQ1 (F∗x1) was considerably larger than that of SQ2 (F∗x2).
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To explain the generation mechanics of the horizontal forces, first order theoretical estimations of
the horizontal force amplitudes were conducted. The first order free surface elevation in the gap was
harmonic and can be expressed as:

η = ηa cos(ωt−Φ) (27)

Assuming that the flow in the gap is uniform, the horizontal force produced by the vibration in
the gap can be estimated using the Lagrange integral from the free surface to the target location:

f (1)xg =

∫ 0

−d
(−ρ

∂ψ

∂t
) dy +

∫ 0

−d
ρgηdy = (ρgdηa −

ω2d2

2
ηa) cos(ωt−Φ) (28)

where ψ =
.
ηy is the velocity potential of the uniform flow inside the gap.

Using the standing wave theory, the first order wave force on the left side of SQ1 could be
estimated by:

f (1)xw =

∫ 0

−d
ρgξa

cos hk(y + h)
cos h(kh)

cos(ωt) dy = ρgξa
sinhkh− sinhk(h− d)

k cos h(kh)
cos(ωt) (29)

where ξa is the equivalent standing wave amplitude in front of SQ1. According to the energy
conservation law, ξa is limited between two times the reflection wave amplitude and is two times the
incident wave amplitude. Therefore, it is estimated as 2Ar+2Ai

2 .

The horizontal force on SQ1 includes the effects of both f (1)xg and f (1)xw :

f (1)x1 = f (1)xw − f (1)xg =

√(
Fxw − Fxg cosΦ

)2
+

(
Fxg sinΦ

)2
cos(ωt−Φ1) (30)

where Φ1 is the phase difference between f (1)x1 and f (1)xw .
The horizontal force on SQ2 is mainly induced by the vibration in the gap:

f (1)x2 = f (1)xg (31)

Figure 16 shows the comparison between the horizontal force amplitudes that were estimated by
Equations (30) and (31) and in the present simulation results. F∗x1 and F∗x2 (F∗ and F respectively denote
the normalized amplitude and amplitude of corresponded force term (see Section 2.4) estimated by
Equations (30) and (31) agree well with the results from the present CFD simulations.
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As a summary, firstly, the phase difference between fxw and fxg influenced Fx1 significantly. To be
specific, fxw and fxg counteracted each other whenω∗was smaller thanω∗n, resulting in a smaller Fx1 than
Fxg; fxw and fxg mutually promoted when ω∗ was larger than ω∗n; the peak frequency of Fx1 therefore
fell behind the resonance frequency. Secondly, due to the shielding effect of the up-stream structures,
the wave forces from the transmitted waves were negligible compared with the hydrodynamic forces
in the gap fxg. Therefore, the force amplitude on SQ2 Fx2 was almost equal to the hydrodynamic forces
in the gap Fxg. Aforementioned discussions reveal the mechanism of the horizontal forces on the
square structures.

5.2. The Influences of Gap Width

Figure 17 shows the elevation amplitude inside the gap η∗a versus the incident wave frequency ω∗

for the cases with different gap width B∗g. The resonance frequency and the resonance amplitude became
smaller as the gap width increased. A similar relationship has also been reported in the experiments
conducted by Saitoh et al. [1] and the numerical simulations of Lu et al. [17] and Moradi et al. [15].
As the gap width B∗g increased, the resonance frequencyω∗n in the present simulations gradually became
smaller than the theoretical estimations based on Equation (17) (Saitoh et al., [1]), which is due to the
stronger transverse flow in the gap. However, Equations (18)–(20) could still be applied to describe
the mean vertical flow in the gap, as described in Section 5.1. For the cases with larger gap width
B∗g, the value of the resonance frequency ω∗n could be estimated based on the characteristics of the
phase leg Φ of the elevation inside the gap relative to the wave phase in front of SQ1. According to
Equation (26a), the phase leg Φ approached π/2 when the incident wave frequency approached to
the gap resonance frequency ωn. For example, the phase leg Φ of cases C23 and C24 were most close
to π/2. among the cases with the gap width B∗g = 0.25. Note the value of the phase leg Φ of case
C23 as Φπ/2−, which was slightly smaller than π/2; the phase leg Φ of case C24 as Φπ/2+, which was
slightly larger than π/2. The resonance frequency ω∗n of the cases with the gap width B∗g = 0.25 could
be estimated by interpolation:

ω∗n = ω∗C23 +
π/2−Φπ/2−

Φπ/2+ −Φπ/2−

(
ω∗C24 −ω

∗

C23

)
(32)

where ω∗C23, ω∗C24 are, respectively, the incident wave frequencies of case C23 and case C24.
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Figure 17. The elevation amplitude inside the gap η∗a versus the incident wave frequency ω∗ of cases
with different gap width B∗g in the present simulations.

The resonance frequency ω∗n of the cases with different gap width B∗g and the dimensionless added

mass ma/
[
ρBB2

g/(h− d)
]

that were deduced from the resonance frequency ω∗n based on Equation (18)
are illustrated in Figure 18. The dissipation ratio Rd and the damping coefficient c of the cases with
different B∗g were calculated and shown in Figure 19, and the phase leg Φ is illustrated in Figure 20.

The resonance frequency ω∗n and the corresponding dimensionless added mass ma/
[
ρBB2

g/(h− d)
]



Energies 2019, 12, 2669 20 of 26

decreased with the increase of B∗g. Meanwhile, the damping coefficient c increased with the increase of
the gap width B∗g, which indicates that the viscous dissipation in the gap became stronger when the gap
width B∗g became larger. However, in Figure 20, the phase leg Φ estimated based on Equation (26a–c)
shows a big difference from the present simulation results when B∗g was large. To be specific, as the
incident wave frequency increasing, the phase leg Φ estimated based on Equation (26a–c) increased
faster than the data points of the present simulations, which indicates that the damping ratio ζ and the
damping coefficient c that are used in Equation (26a–c) were smaller than the corresponding values
that the simulations indicate. The reasonable explanation is that when the gap width B∗g was relatively
large, the reduction of the piston flow in the gap was not only caused by the viscous dissipation—it
was also caused by the sloshing mode flow in the gap. For example, Figure 21 shows the comparison
of the flow structures in the gap between cases C6 (B∗g = 0.1) and C21 (B∗g = 0.25). For case C6, the flow
in the gap was mostly in the vertical direction. However, for case C21, the sloshing mode of the
flow became much stronger and extracted a large part of the mechanical energy from the vertical
flow in the gap. The damping coefficient c in Equations (16) and (26) could not simply be estimated
according to the dissipation ratio Rd (Equation (19)). The coupling between the piston and the sloshing
types of flow motion in the gap was very complex, which could be captured well using the present
numerical method.
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Figure 21. The transverse flow in the gap becomes violent as the gap width increases. (a) the velocity
profile of case C6; (b) the velocity profile of case C21.

The horizontal force amplitude versus the incident wave frequency of the cases with B∗g = 0.17 and
B∗g = 0.25 are presented in Figures 22 and 23, respectively. The variation tendencies of the horizontal
force amplitudes were well predicted by the theoretical estimations based on Equations (30) and (31).
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As the gap width B∗g increased, the decreasing resonance amplitude in the gap did not necessarily
reduce the peak value of the horizontal force amplitude F∗x. For example, the maximum F∗x1 increased
from 1.85 to 1.92 as B∗g increased from 0.17 to 0.25. The maximum F∗x2 increased from 1.63 to 1.68
as B∗g increased from 0.1 to 0.17. The above results are reasonable. In Equation (28), the horizontal
force amplitude induced by the fluid motion inside the gap (Fxg) includes two parts, namely the

hydrostatic part ρgdηa and the hydrodynamic part −ω
2d2

2 ηa. As the resonance amplitude decreases,
the hydrostatic part decreases proportionally. However, the hydrodynamic part may increase due to
the rapid decrease of the resonance frequency ωn. As a consequence, the horizontal force amplitude on
the SQ2 (Fx2) was likely to increase. On the other hand, due to the effect of the wave field at the left
side of SQ1, the probability for a horizontal force amplitude on the SQ1 Fx1 increased even greater.
The aforementioned discussions indicate that the gap width influences the hydrodynamic forces from
various aspects. Enlarging gap width can reduce resonance amplitude; however, it does not directly
result in the decrease of the maximum horizontal force amplitude on the floating structures.
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6. Conclusions

Two-dimensional computational fluid dynamics (CFD) simulations were carried out to investigate
the gap resonance phenomenon that occurs when free-surface waves propagate past twin alongside
placed squares. The laminar model was used to solve the governing equations, and the volume of
fluid method was used for free surface capturing. Both mesh and time-step convergence studies were
carried out to ensure sufficient numerical accuracy. The influences of the incident wave frequency,
as well as the gap width, were investigated. Detailed discussions were carried out based on the motion
equation of the fluid inside the gap in terms of the damping coefficient, the phase retardation of the
elevation inside the gap relative to the wave phase in front of the weather side structure, and the
horizontal force amplitudes on the square structures. The following conclusions can be drawn from
the discussions:

1. For the cases of free surface waves past through twin alongside placed 2-D identical rectangular
squares, the laminar model with the volume of fluid method was able to predict the gap resonance
amplitudes, the viscous dissipation effects, and wave forces on the structures accurately when the
KC number was small (e.g., KC = 2πAi

Bg
< 3, where Ai is the incident wave amplitude and Bg is

the gap width).
2. As the incident wave frequency increased, the surface elevation amplitude inside the gap first

increased and then decreased, a tendency which is in accordance with resonance phenomena.
The horizontal force amplitude on the lee side square structure changed in-phase with the
elevation amplitude inside the gap, while the horizontal force amplitude on the weather side
structure reached the peak value at a larger frequency than the gap resonance frequency.

3. In present simulations, the phase retardation of the elevation inside the gap relative to the wave
phase in front of the weather side structure satisfied the phase-frequency characteristics of the
vibration system and determined the change tendency of the horizontal force amplitude on the
weather side structure. To be specific, the horizontal wave force on the left side of the weather
side structure and the horizontal force on the right side of the structure (induced by the fluid
inside the gap) counteracted each other when the wave frequency was smaller than the gap
resonance frequency. This resulted in a smaller horizontal force amplitude on the structure
than the horizontal fluid force inside the gap. The forces on each side of the structure mutually
promoted when the incident wave frequency was larger than gap resonance frequency, making the
peak frequency of the horizontal force on the structure fall behind the gap resonance frequency.

4. The increase of the gap width resulted in the increase of the added mass and reduced the resonance
frequency. Moreover, as the gap width increased, the decrease of resonance amplitude in the gap
did not necessarily reduce the peak value of the horizontal forces on the squares.

5. As the gap width increased, the viscous dissipation and the sloshing mode flow inside the gap
both became stronger.
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Nomenclature

A nomenclature table used in the present study is provided as follows.
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The subscripts
i The parameter of the incident wave
r The parameter of the reflected wave
t The parameter of the transmitted wave
d The subscript for the wave energy dissipation ratio
n The resonance parameter of the surface elevation in the gap
x The horizontal physical quantity

xw The horizontal physical quantity produced by waves
xg The horizontal physical quantity produced by the fluid vibration in the gap
1 The hydrodynamic parameter for the square structure 1
2 The hydrodynamic parameter for the square structure 2

The flow parameters
ρ The fluid density
µ The dynamic viscosity coefficient
t The time
v The flow velocity
p The fluid pressure

pexcess The excessive pressure
α The water volume fraction
Φ The general symbol of the fluid variables v, p, pexcess and α
g The gravity vector
g The gravitational acceleration

The geometrical parameters
h The water depth
B The breadth of the square structures
Bg The gap width between the square structures
d The draft of the square structures

The hydrodynamic parameters
A The wave amplitude
H The wave height
ω The wave frequency
ω∗ The dimensionless wave frequency, ω∗ = ω/

√
g/B

T The wave period
t∗ The dimensionless time coordinate, t∗ = (t− t0)/Ti, where t0 is the start time
λ The wave length
k The wave number
η The instantaneous surface elevation in the gap
η∗ The dimensionless (normalized) surface elevation in the gap, η∗ = η/Hi
ηa The surface elevation amplitude in the gap
η∗a The dimensionless surface elevation amplitude in the gap, η∗a = ηa/Ai
f The instantaneous force on the square structures
f The instantaneous force on the square structures
f ∗ The dimensionless force magnitude, f ∗ = f /ρgBAi
F The force amplitude on the square structures
F∗ The dimensionless force amplitude, F∗ = F/ρgBAi
m The mass of the fluid in the gap
ma The added mass of the fluid motion in the gap
c The damping coefficient of the fluid motion in the gap
ks The stiffness of the fluid motion in the gap
Rr The wave reflection ratio
Rt The wave transmission ratio
Rd The wave dissipation ratio
Φ1 The wave phase of the surface elevation in the gap
Φ2 The wave phase in front of the square structure 1
Φ The phase leg of the surface elevation inside the gap, Φ = Φ1 −Φ2
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