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A B S T R A C T   

Four different types of breaking wave impacts on a vertical wall are simulated using a two-dimensional two- 
phase Computational Fluid Dynamic (CFD) model. Air is considered as an isentropic ideal gas without solving an 
additional energy equation and water is treated as an incompressible liquid. The discontinuity in fluid properties 
across the free surface is treated using the Ghost Fluid Method, which accounts for the jump in density and 
compressibility. The numerical results are compared with large-scale experimental data for five cases in terms of 
surface elevations, total forces and pressure distributions along the wall, and a reasonable agreement is obtained 
overall. The characteristics of impact pressures under different breaking wave conditions are discussed and 
compared to each other. The two largest total forces on the wall occur in the ‘flip-through’ and ‘large air pocket’ 
cases. The peak pressure of the flip-through impact is localized in both time and space. The pressure within the 
trapped air pocket is nearly uniform with a smaller peak value and a much longer duration than that of the ‘flip- 
through’ case. The compression and expansion of the air pocket results in pressure oscillations, which are 
overestimated in frequency and amplitude due to the inaccuracy in capturing the air escape. The broken wave 
case has the smallest total force, but the largest local pressure among the present numerical cases, which 
demonstrates the necessity to study all different impact types.   

1. Introduction 

Coastal breakwaters and sea walls can be subjected to extreme wave 
loads when a wave breaks onto the structure, which can cause severe 
damage to the coastal steep-fronted structures. Oumeraci (1994) re-
ported that most of the uncertainties during the design process of 
breakwaters originate from the difficulties to predict the design wave 
load conditions. Breaking waves are the most significant cause of the 
damage to breakwaters. This means that the accurate prediction of wave 
loading is crucial for the engineering design of coastal structures. 

The criteria based on the surf similarity parameter cannot define the 
types of breaking waves properly in the presence of highly reflective 
obstacles. This is due to the high reflection which can strongly affect the 
characteristics of breaking. Different shapes of breakers have an 
important influence on the impact wave load on the structure. There-
fore, many researchers have given their own classification of breaking 
wave loads on vertical structures according to the characteristics of the 
free surface and the impact pressure, see Kirkgoz (1982); Witte (1988); 
Chan and Melville (1988); Oumeraci et al. (1993) and Hattori et al. 

(1994). In general, there are four types of breakers when the waves 
break on a vertical wall, i.e., the breaker with a slightly inclined surface, 
the breaker with a vertical front, the plunging breaker with an air 
pocket, and the broken waves. Kirkgoz (1982) conducted experiments to 
study breaking wave impacts on vertical walls with different slopes. The 
largest shock pressures were observed when the wave front was vertical 
and parallel to the vertical wall, and there was no trapped air between 
the breaker and the wall. Similar phenomena can be found in Chan and 
Melville (1988); Cooker and Peregrine (1991b); Kirkg€oz (1995) and 
Kirkg€oz and Ak€oz (2005). This breaking wave condition is called ‘flip--
through’, and the same nomenclature is used in the present study. Lugni 
et al. (2006) investigated experimentally the flip-through phenomenon 
excited by a sloshing event inside a small scale tank, which is 1 m long 
0.1 m wide and is filled with water up to a height of 0.125 m. It was 
found that the speed of the jet induced by the flip-through wave impact 
was about ten times larger than the speed of the approaching wave, and 
the upward accelerations exceeded 1500g. However, a trapped air 
pocket is also able to produce a large overall force on the wall according 
to some researchers (Wood et al., 2000; Peregrine et al., 2005; Bullock 
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et al., 2007). The kinematic and dynamic evolution of the air-pocket 
wave impact on a liquid tank (see also Lugni et al. (2006)) were inves-
tigated by Lugni et al. (2010a, 2010b). The closure of the air pocket and 
initial compression of the air pocket were considered mainly being 
influenced by the air leakage flowing out of the air pocket. The subse-
quent compression and expansion of the air pocket and its movement 
along the tank were governed by the change of the ambient pressure 
induced by the hydrodynamic outer flow. Bullock et al. (2007) con-
ducted a large number of large-scale experimental tests of breaking 
wave impacts on vertical and sloping walls in Groβer Wellen Kanal 
(GWK). Characteristics of the impact pressures under different breaking 
wave conditions were discussed in detail. Highest pressures were 
captured in the flip-through and the trapped air pocket conditions. 
However, the pressure distribution was not as localized with a trapped 
air pocket, and the rise time of the wave impact was longer when 
compared to the flip-through condition. This resulted in a larger total 
force on the wall with a trapped air pocket than the flip-through con-
dition in some wave periods. Even though the pressures on the wall 
under a breaker with a slightly inclined surface and a broken wave were 
not as large as the other breakers, Bullock et al. (2007) suggested that 
these two types of wave impacts should not be neglected. Their exper-
imental results are also used as validation data in the present numerical 
study. 

The aforementioned studies are mostly based on physical model 
tests. The aeration plays an important role in the wave impact on a 
vertical wall (Peregrine et al., 2005; Bredmose et al., 2015). Therefore, 
scaling effects have a significant influence when the scaling from the 
model test to the prototype, and this is still an active area of research. 
Different scaling models (Mitsuyasu, 1967; Takahashi et al., 1985; 
Cuomo et al., 2010; Bredmose et al., 2015) introduce errors to various 
degrees during the scaling process. The numerical simulations are 
therefore a good alternative to the experimental tests without intro-
ducing any scaling effects or measurement errors. Simple empirical 
formulas to estimate wave impact forces on vertical walls can be found 
in many research papers, such as Minikin (1963); Goda (1975); Black-
more and Hewson (1984); Allsop et al. (1997); Allsop (1999) and 
Oumeraci et al. (2001). Cooker and Peregrine (1991a, 1995) developed 
a mathematical model for the ideal wave induced peak pressures on a 
vertical wall based on “pressure impulse” theory. Zhang et al. (1996) 
studied the impact of a two-dimensional plunging breaking wave trap-
ping an air pocket against a vertical wall using a 
mixed-Eulerian-Lagrangian (MEL) scheme based on incompressible po-
tential flow theory. The transient impact process between the plunging 
breaker and the wall was captured by considering modelling of the 
trapped air cushion using a polytropic gas law. The simulated maximum 
impact pressure on the wall agreed reasonably well with the experi-
ments of Chan and Melville (1988). Wood et al. (2000) proposed a 
“bounce back” model to simulate the trapped air pocket as an oscillating 
circular air bubble. Their simulation results show a satisfactory agree-
ment with their experimental data. Colagrossi and Landrini (2003) 
implemented a numerical model based on the incompressible smoothed 
particle hydrodynamics (SPH) method to deal with a two-dimensional 
dam-break problem with a vertical wall. The numerical results agree 
well with CFD simulations using the boundary element method (BEM) 
and the level set method (LSM). However, the results were unphysical 
when an air pocket was trapped, which indicated the limitation of their 
numerical model for violent wave-structure interactions. The numerical 
model was further improved by Colagrossi et al. (2010) through 
combining with the moving-least-square (MLS) integral interpolators 
(Fries and Matthies, 2003). The wave impact with an air pocket on a 
liquid tank (see also Lugni et al. (2006)) was simulated using the cor-
rected SPH model (cSPH), i.e., an improved numerical model. The cSPH 
model can help reduce the pressure noise as compared to the results 
from the SPH model. The damped pressure oscillations and 
sub-atmospheric pressures after the peak were common features of wave 
impacts with trapped air and similar behaviour has been observed in 

previous studies (Oumeraci et al., 1993; Hattori et al., 1994; Walkden 
et al., 1996); however, these were not captured by the cSPH model in 
Colagrossi et al. (2010). Nielsen and Mayer (2004) used a single-phase, 
incompressible solver based on Navier-Stokes (N–S) equations and the 
volume of fluid (VOF) method to calculate the green water load on ships. 
Faltinsen et al. (2004) applied BEM for fully nonlinear free surface po-
tential flow to calculate slamming on very large floating structures with 
a shallow draft. Greco et al. (2007) modelled the green water load on a 
deck using a coupled two-phase BEM and N–S solver where both air and 
water phases are incompressible. 

When a wave breaks with a trapped air pocket on the vertical wall, 
the pressure oscillates and these oscillations are related to the 
compression-expansion of the air pocket (Obhrai et al., 2005). There-
fore, air compressibility should be included in the numerical models to 
correctly simulate wave impacts with entrapped or entrained air. 
G�omez-Gesteira and Dalrymple (2004) modelled a dam break generated 
wave on a prism structure with a three-dimensional SPH method. Nu-
merical velocities and forces were in good agreement with their labo-
ratory measurements. Bredmose et al. (2009) proposed a coupled model 
to deal with the breaking wave impacts on a vertical wall including the 
aeration effects. The model combined a weakly compressible flow model 
for the air phase and potential flow theory for the water phase. Their 
numerical model was used to reproduce the flip-through and the trapped 
air pocket cases from Bullock et al. (2007). However, due to the as-
sumptions of the potential flow, the flow details could not be captured 
properly. The broken wave case was not able be reproduced using their 
numerical model due to the fact that the turbulence effects were not 
considered. Plumerault et al. (2012) and Ma et al. (2014) developed 
their two-phase compressible models based on a multi-phase N–S 
approach. Good accuracy was shown for wave breaking during shock 
wave propagation (Plumerault et al., 2012). Several basic test cases were 
presented in Ma et al. (2014) including a gravity-induced liquid piston 
motion, a free drop of a two-dimensional water column, water-air 
mixture shock tubes, water entry of a flat plate, and a plunging wave 
impact on a vertical wall. However, the simulated plunging 
wave-induced pressure were not validated by experimental data. 
Wemmenhove et al. (2015) investigated internal wave loading using 
ComFLOW method (Veldman et al., 2011, 2014). The N–S equations 
were solved and a newly-developed gravity-consistent density averaging 
method was applied to prevent spurious velocities around the free sur-
face. The experimental pressure on a LNG tank section was compared 
with both single-phase (water phase) and two-phase (incompressible 
water and compressible air) simulations during the impact involving the 
trapped air pocket. The comparison showed that the single phase model 
overestimated the pressures significantly. The two-phase modelling and 
compressibility effects can be beneficial for simulating wave loading. 

To the authors’ knowledge, very few numerical studies have been 
published on violent breaking wave impacts on a vertical wall or other 
steep-fronted structures. There is no numerical study which has simu-
lated all the aforementioned four different types of breaking wave-wall 
structure interactions completely. In the present study, a two- 
dimensional two-phase CFD model is used to simulate different 
breaking wave impacts on a vertical wall, which models air phase as an 
isentropic ideal gas and water as an incompressible phase. Mesh and 
time-step refinement studies are conducted based on the comparisons of 
surface elevations at four wave gauges. The characteristics of impact 
pressures on the vertical wall under different impact conditions are 
studied in detail. The numerical surface elevations, total forces and 
pressure distributions are compared to the experimental data of Bullock 
et al. (2007). The discrepancies between the simulation and the exper-
iment will be discussed. 

2. Numerical implementation 

The numerical simulations are conducted using foam-extend 4.0 
(Jasak et al., 2015). The numerical implementation is presented in this 

S. Liu et al.                                                                                                                                                                                                                                       



Coastal Engineering 154 (2019) 103564

3

section including governing equations, free surface modelling, turbu-
lence models and boundary conditions. 

2.1. Governing equations and free surface capturing 

A two-phase, immiscible, viscous and turbulent flow is considered, 
where the air phase is assumed to be an ideal gas undergoing adiabatic 
compression/expansion, while water is modelled as an ideally incom-
pressible liquid. Under the aforementioned assumptions, the momentum 
conservation equation becomes: 

∂u
∂t
þr⋅ðuuÞ � r⋅ðRÞ ¼ �

1
ρrpd �

�
1
ρrρg⋅x � ur⋅u

�

; (1)  

where u denotes the velocity field, ρ stands for the discontinuous density 
field and R presents the Reynolds stress tensor, allowing general tur-
bulence modelling. pd stands for the dynamic pressure calculated as 
pd ¼ p � ρg⋅x, where p denotes the static pressure, g is the gravity vector, 
while x denotes the radii vector. For two-phase flow, the volume fraction 
follows αc ¼ 1 � αI, and density ρ ¼ αIρI þ ð1 � αIÞρc, where the 
subscript I is for the incompressible phase and c is for the compressible 
phase. The momentum and mass conservation equations for two phase 
flow can be written as: 

Fig. 1. Schematic representation of a polyhedral control volume P, which 
shares a face f with its immediate neighbour N. 

Fig. 2. Sketch of the numerical wave tank and the coordinate system.  

Fig. 3. Sketch of different types of computation cells at the inlet boundary.  

Fig. 4. Sketch of velocity condition on the interface cell with 0 < α < 1.  

Table 1 
Summary of the simulated cases.  

Case 
index 

Water 
depth 
d (m) 

Water depth 
at wall dw 

(m)  

Wave 
period T 
(s) 

Wave 
height H 
(m) 

Impact 
type 

1 4.25 1.25 6 1.35 slightly- 
breaking 

2 4.25 1.25 7 1.35 flip- 
through 

3 4.02 1.02 8 1.10 small air 
pocket 

4 4.00 1.00 8 1.25 large air 
pocket 

5 3.70 0.70 8 1.00 broken  

Table 2 
Positions of the wave gauges.  

No. WG1 WG2 WG3 WG4 WG5 WG6 

x (m) � 156.14 � 13.29 � 9.29 � 5.29 � 2.14 � 0.02  
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∂u
∂t
þr⋅ðuuÞ �

1
ρru⋅ rμe �

1
ρr⋅ðμeruÞ

¼ �
1
ρrpd � ð1 � αIÞ

�
1
ρc
rρcg⋅x � ur⋅u

� : (2)  

r⋅u ¼ � ð1 � αIÞ
1
ρc

∂ρc

∂p

�
∂pd

∂t
þr⋅ðpduÞ � pdr⋅uþ

∂ðρcg⋅xÞ
∂t

þ u⋅rρcg⋅x
�

:

(3)  

The relation between density and pressure for the ideal isentropic gas is 
expressed by the following equation: 

∂ρc

∂p
¼

1
acγ

p
ac

1� γ
γ ; (4)  

where γ denotes the constant specific heat ratio while ac is the isentropic 
constant. In this paper, the values of γ ¼ 1:4 and ac ¼ 100 000 are used. 

Finite Volume (FV) method is used to discretise governing equations, 
i.e., Equations (2) and (3) (Jasak and Gosman, 2001). The present no-
tation adheres to Vuk�cevi�c et al. (2017), as shown in Fig. 1: sf is the 
surface area vector of a face; df stands for the vector from the cell centre 
P to the cell centre N, where P and N represent two adjacent cells that 
share a face. Terms enclosed in curly braces f⋅g indicate that implicit FV 
discretisation is used, while explicit evaluation is used for the remaining 
terms. 

Equation (2) can be discretised as: 

�
∂u
∂t

�

þ fr⋅ðuuÞg �
�

1
ρru⋅rμe

�

�

�
1
ρr⋅ðμeruÞ

�

¼

�
1
ρrpd � ð1 � αIÞ

�
1
ρc
rρcg⋅x � fur⋅ug

�

:

(5)  

The temporal and viscous terms are continuous across the interface, 
where the special treatment is not needed. The convection, dynamic 
pressure gradient, density gradient and u⋅ru terms require the special 
treatment when calculated across the interface. For the conservation of 
mass, the discretised form of Equation (3), can be written as: 

fr⋅ug ¼ � ð1 � αIÞ
1
ρc

∂ρc

∂p

��
∂ρd

∂t

�

þ fr⋅ðpduÞg

� fpdr⋅ug þ
∂ðρcg⋅xÞ

∂t
þ u⋅rρcg⋅x

�

:

(6)  

Due to the discontinuities across the free surface, all terms in Equation 
(6) require the special treatment stated as follows. The pressure equation 
is obtained from Equation (6) following Jasak (1996). The discretised 
left hand side of the conservation of mass, Equation (6), in integral form 
is: 

Table 3 
Vertical positions of the pressure transducers in the numerical simulations and the experiment.  

No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

z1 (m)  3.48 3.73 4.03 4.38 4.53 4.73 4.93 5.13 5.53 5.88 
z2 (m)  3.65 3.90 4.20 4.55 4.70 4.90 5.10 5.30 5.70 6.55  

Table 4 
Grid resolutions for the plunging breaker case.  

Mesh index M1 M2 M3 M3* M4 

Total number of cells 155180 281476 464610 464610 578240 
Number of cells per 

wavelength 
260 360 520 520 610 

Number of cells per wave 
height 

12 24 36 36 48 

Maximum Courant 
number 

0.5 0.5 0.5 0.3 0.5  

Fig. 5. Mesh of the vicinity of the vertical wall (top), zoom-in view of the mesh 
around the vertical wall (bottom). 

Fig. 6. Surface elevations at different wave gauges with different grid 
resolutions. 
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Z

CV
r⋅u dV ¼

Z

∂CV
ds⋅u ¼

X

f
sf ⋅uf ; (7)  

where CV stands for the control volume, V is the cell volume, f is the 
control volume face index, ds is the infinitesimal surface normal vector, 
and sf stands for the face area vector. Cell-centred velocity is expressed 

by using the semi-discretised form of the momentum equation: 

uP¼
HðuNÞ

aP
�

1
ρaP
ðrpd þrρg ⋅ xÞ; (8)  

where aP denotes the summed diagonal coefficient for cell P, while 
HðuNÞ represents a linearised operator containing off-diagonal and 
source contribution resulting from the discretisation of implicit velocity 
operators. In order to substitute face centred velocity uf using Equation 
(8), it must be interpolated to cell faces: 

uf ¼
ðHðuNÞÞf

ðaPÞf
�

�
1
aP

�

f

�
1
ρ

�

fΓ

�
ðrpdÞfΓ þð rρÞfΓ g ⋅ x

�
; (9) 

Fig. 7. Surface elevations at different wave gauges with different maximum 
Courant numbers. 

Fig. 8. Comparison of simulated and experimental surface elevations at different wave gauges for Case 1: d ¼ 4.25 m; T ¼ 6 s; H ¼ 1.35 m.  

Fig. 9. Comparison of the simulated and experimental wave forces on the 
vertical wall for Case 1: d ¼ 4.25 m; T ¼ 6 s; H ¼ 1.35 m, Fp ¼ 18.54 (447.6 kN), 
tI ¼ 0.24 (88.5 ms). 
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where index fΓ denotes terms that need special attention across the 
interface. By substituting Equation (9) into Equation (7), the discretised 
conservation of mass can be written as: 

X

f
sf ⋅
�

1
aP

�

f

�
1
ρ

�

fΓ

ðrpdÞfΓ ¼
X

f
sf ⋅
�
ðHðuNÞÞf

ðaPÞf
�

�
1
ρ

�

fΓ

ðrρÞfΓ g⋅x
�

þ

Z

CV
fCðpd; ρÞdV;

(10)  

where 

fCðpd; ρÞ ¼ � ð1 � αIÞ
1
ρc

∂ρc

∂p

��
∂pd

∂t

�

þ fr⋅ðpduÞg

� fpdr⋅ug þ
∂ðρcg⋅xÞ

∂t
þ u⋅rρcg⋅x

�

:

(11) 

In the present numerical framework, the Ghost Fluid Method (GFM) 
(Desjardins et al., 2008; Huang et al., 2007; Queutey and Visonneau, 
2007) is used to implicitly account for the abrupt change in fluid 
properties across the interface, and to satisfy the free surface boundary 
conditions. Additional equations describing the jump conditions are 
derived, and they need to be satisfied along with the governing equa-
tions. The jump conditions are embedded into the solution process via 
specialised discretisation schemes that are used for operators near the 
free surface. By employing the GFM, the terms in Equations (2) and (3) 
responsible for compression have a sharp change in value across the 
interface. That means that for a cell adjacent to the interface on the 
water side, the last term in Equation (2) and the right hand side of 
Equation (3) are equal to zero, since rρ ¼ 0, r⋅u ¼ 0, and ∂ρ=∂p ¼ 0 for 
incompressible phase. For a cell on the air side next to the interface, 
these terms are fully evaluated, giving a complete compressible model. 
This approach is different from most numerical models where the 
compressibility properties are blended using the volume fraction field. 
The present implementation including the compressible air phase is an 
extension of the existing incompressible numerical model with GFM 
developed by Vuk�cevi�c et al. (2017), who reported that the approach 
removes the spurious air velocity problems near the interface. 

From the dynamic free surface boundary condition the following 
jump condition arises: 

½p� ¼ p� � pþ ¼ 0; (12)  

stating that the pressure needs to be equal on both sides of the interface. 
Here, ½ ⋅� denotes the jump operator, þ and � indices denote the value 
infinitesimally close to the interface from the water side and air side, 
respectively. When written in terms of the dynamic pressure, the above 
equations reads: 

½pd� ¼ � ½ρ�g⋅x; (13)  

which in effect states that the dynamic pressure has a jump across the 
interface. The kinematic free surface boundary condition states that the 
velocity must be continuous across the interface: 

½u� ¼u� � uþ ¼ 0 (14)  

Apart from the two jump conditions arising directly from the free surface 
boundary conditions, additional conditions arise from the governing 
equations (Desjardins et al., 2008; Huang et al., 2007; Queutey and 
Visonneau, 2007). The jump condition arising from the momentum 
equation (Equation (2)) states: 
�

1
ρrpd

�

¼

�

� r ⋅ ðuuÞþur ⋅ u � 1
ρrρg ⋅ x

�

(15) 

Equation (15) shows that the dynamic pressure gradient divided with 
the discontinuous density field has a jump related to the compressibility 
of the gas phase. Note that if there are no compressible effects, the right 
hand side of Equation (15) reduces to zero, correctly yielding the 
expression for incompressible flow reported byVuk�cevi�c et al. (2017). 

In addition to above mentioned jump conditions, the jump in density 
also needs to be taken into account: 

½ρ� ¼ ρ� � ρþ; (16)  

where ρþ is constant, while ρ� needs to be calculated. Since the air is 
considered as an adiabatic ideal gas, the following holds: 

Fig. 10. Comparison of the simulated and experimental maximum pressure 
along the vertical wall for the slightly-breaking case. 

Fig. 11. Pressure variation and distribution along the vertical wall during an 
impact for Case 1: d ¼ 4.25 m; T ¼ 6 s; H ¼ 1.35 m. 
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ρ� ¼
�

p�

ac

�1
γ

¼

�
p�d þ ρ� g⋅x

ac

�1
γ

(17)  

The presented equations form a closed system describing a two–phase 
flow model with an incompressible liquid phase and an ideal gas phase 
undergoing adiabatic compression/expansion. Readers are referred to 
Gatin (2018) for details regarding the implementation of the present 
model, while the implementation of the GFM for incompressible two 
phase flow can be found in Vuk�cevi�c et al. (2017). 

In this work, interface capturing is performed using the isoAdvector 
(Roenby et al., 2016) method, which is a geometric VOF approach. The 
isoAdvector provides a sub–grid resolution of the free surface giving 
superior definition of the free surface in violent impact events. Readers 
are referred to Roenby et al. (2016) for further details. 

2.2. Relaxation method 

The wave relaxation method presented by Jacobsen et al. (2012) is 
employed to generate waves in the inlet relaxation zone and absorb 
waves in the outlet relaxation zone. Inside the relaxation zones, the 
relaxation function γR is applied with the expression of: 

γR¼ 1 �
exp
�
χ3:5

R

�
� 1

expð1Þ � 1
; (18)  

φ¼ γRφcomputed þ ð1 � γRÞφtarget; (19)  

where φ is either the velocity vector u or the volume fraction α, 
χR 2 ½0;1�, γ ¼ 1 at the interface between the working zone and the 
relaxation zones. The values in the relaxation zones ramp up to the 
target values, which depend on the selected wave theory in the inlet 
relaxation zone whereas they are zero in the outlet relaxation zone. In 
the present study, the inlet and outlet relaxation zones are one wave-
length long. 

2.3. Turbulence modelling 

Free surface k � ω SST turbulence model (FS k � ω SST) is imple-
mented and used in the present study. The basic idea of the FS k � ω SST 
is to use a laminar regime around the free surface to prevent over- 
prediction of wave damping. The laminar layer around the free sur-
face can be controlled precisely and the k value in the surf zone can be 

Fig. 12. Density, water velocity magnitude and pressure variations at different time instants during one impact for Case 1: d ¼ 4.25 m; T ¼ 6 s; H ¼ 1.35 m, from left 
to right: t1 ¼ 38.57, t2 ¼ 38.65, t3 ¼ 38.68, t4 ¼ 38.70 and t5 ¼ 38.73. 
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predicted reasonably. The forms of the transport equations for k and ω 
are the same as the original k � ω SST turbulence model (see more in-
formation in Menter (1994)): 

∂k
∂t
þr ⋅ ðukÞ � Pk þ β�kω � r ⋅ ½ðνþ σkνTÞrk� ¼ TðkÞ ¼ 0; (20)  

∂ω
∂t
þr ⋅ ðuωÞ¼ δS2 � βω2þr ⋅ ½ðνþ σωνTÞrω� þ 2ð1 � F1Þ

σω2

ω rk⋅ðrωÞT ;

(21)  

where TðkÞ is the implicit form of the transport equation for k. The term 

k is blended implicitly with a function γ to obtain a laminar region in the 
vicinity of the free surface: 

γTðkÞ þ ðkFS � kÞð1 � γÞ ¼ 0;

kFS ¼
βlνl maxða1ω; SF2Þ

a1
;

γ ¼ max
�

ψl

lb
; 1
�

;

(22)  

where kFS is the turbulent kinetic energy around the free surface; βl ¼

νT=νl is the ratio between the turbulent eddy viscosity and the laminar 
viscosity; γ ¼ γðx; tÞ approaches zero around the free surface. The 

Fig. 13. Comparison of simulated and experimental surface elevations at different wave gauges for Case 2: d ¼ 4.25 m; T ¼ 7 s; H ¼ 1.35 m.  

Fig. 14. Comparison of the simulated and experimental wave forces on the 
vertical wall for Case 2: d ¼ 4.25 m; T ¼ 7 s; H ¼ 1.35 m, Fp ¼ 47.68 
(1 150.8 kN), tI ¼ 0.03 (11.6 ms). 

Fig. 15. Comparison of the simulated and experimental maximum pressures 
along the vertical wall for the flip-through case. 
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original transport equation for k is recovered when it is away from the 
free surface, i.e., γ ¼ 1. The term ψ l is the incident level set field defined 
as the least distance towards the incident free surface, which is 
employed to guarantee numerical stability where the total level set field 
has a distortion. The term lb is the user-defined blending length, which 
represents the distance from the free surface where the target viscosity 
(laminar viscosity in the present study) is imposed. The term lb should be 
as small as possible to ensure that the laminar region is confined to the 
vicinity of the free surface, which is around one cell height in the present 
study. 

2.4. Computational domain and boundary conditions 

The experimental data used for the validation study were breaking 
wave impacts on a vertical wall conducted by Bullock et al. (2007) at a 
model scale of 1:4. The tests were performed in GWK and wave pressures 
were measured with a sampling frequency of 10 kHz. More details of the 
experimental tests can be found in Bullock et al. (2007). 

The present two-dimensional computational domain is set up ac-
cording to the experimental arrangements, and the layout of the nu-
merical wave tank is presented in Fig. 2. The origin of the coordinate 
system is at the intersection point of the front face of the vertical wall 
and the still water line. The distance between the end of the wave 
generation zone and the vertical wall is 237.29 m, which is consistent 
with the distance between the wave maker and the vertical wall in the 
experiment. Two different bottom slopes connect to each other in front 
of the wall, and the slope values match the slope profiles in the exper-
iments. The incident waves in the numerical wave tank are generated 
based on non-linear stream function theory (Dean, 1965). 

Fig. 3 shows three different states for the computational cells adja-
cent to the domain boundary, i.e. completely in the water (wet cell), 
completely in the air (dry cell), and intersected by the free surface 
(interface cell). For interface cells, I and II are the intersection points, η�
is the linear approximation to the real free surface η, see Fig. 4. The 
shaded part represents the wet area Aw. The wet geometry centre point is 
Cw, and α at the boundary is defined as Aw=A, where A is the area of the 
boundary face. 

The boundary conditions used in the present computational domain 

are shown as follows:  

(i) Inlet boundary: the boundary conditions for the dry boundary 
cells are: 

n ⋅rprghair ¼ 0; u ¼ 0; α ¼ 0 (23)  

the boundary conditions for the wet boundary cells are: 

n ⋅rprghwater ¼ 0; u¼uwaveðx; z; tÞ; α¼ 1 (24)  

where n is the unit normal vector to the boundary cell; prghair and prghwater 
are the pressures in excess of the static pressure in air and water, 
respectively. The uwaveðx; z; tÞ is the velocity according to the chosen 
wave theory. The boundary conditions for the interface cells can be 
obtained from Equation (24) and applied at the Cw point. The turbulence 
terms k and ω are calculated according to Menter (1994).  

(ii) Outlet boundary: prgh, k and ω are prescribed with the normal 
zero-gradient boundary condition, and u ¼ 0 is applied along the 
boundary.  

(iii) Top boundary: the top of the computational domain is a free 
boundary which allows air and water to flow out freely and only 
air to flow in. A normal zero-gradient boundary condition is 
applied for the outflow velocity. For the inflow, the velocity is 
obtained from the flux in the patch-normal direction. The pres-
sure at the top boundary is set as ‘total pressure’, which is 
calculated by: 

pT ¼ p0 � 0:5u2 (25)  

where pT is the total pressure, p0 is the reference pressure and is set as 
0 at the top boundary. The normal zero-gradient boundary condition is 
also applied for k and ω at the top boundary.  

(iv) Vertical wall and bottom: a no-slip wall boundary condition is 
used on the vertical wall and the bottom. The fluid velocities at 
the boundary are zero. The normal zero-gradient boundary con-
dition is applied for prgh. 

2.5. Numerical scheme 

Equations are solved with the Finite Volume Method (Versteeg and 
Malalasekera, 2007) approach and the PIMPLE (pressure-implicit 
method for pressure-linked equations) (Holzmann, 2017). The convec-
tion terms, the diffusion terms and the gradient terms are discretised by 
second-order Gauss scheme with Gamma differencing (Jasak et al., 
1999), second-order limited Gauss linear scheme and second-order 
face-limited Gauss scheme (Jasak, 2009), respectively. Second-order 
backward scheme is used for time discretisation. Special treatment for 
dynamic pressure across the interface can be seen in Gatin (2018). 

3. Results and discussion 

There are four distinct types of wave impacts on a vertical wall as 
mentioned previously. A summary of different types of wave impacts is 
given as follows:  

(i) Slightly-breaking: the wave does not break before reaching the 
wall and hits the wall with a slightly inclined surface.  

(ii) Flip-through: the wave breaks exactly on the wall with a nearly 
vertical wave front as it impacts the wall.  

(iii) Trapped air pocket: two different types of trapped air pocket are 
included, i.e., a plunging breaker entraps a small air pocket 
located higher on the wall; a well-developed plunging breaker 
entraps a larger air pocket. 

Fig. 16. Pressure variation and distribution along the vertical wall during an 
impact for Case 2: d ¼ 4.25 m; T ¼ 7 s; H ¼ 1.35 m. 
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(iv) Broken: the wave already breaks before the wall and hits the wall 
with a turbulent foamy bore. 

The distance between the breaking point and the wall increases from 
the slightly-breaking to the broken wave case. Five simulation cases are 
presented which corresponds to the different impact types, as shown in 
Table 1. There were many test cases in the experimental study (Bullock 
et al., 2007) under different incident waves. The most severe cases for 
each impact type were selected for use in the present study. 

Table 2 gives the x coordinates of six wave gauges along the nu-
merical wave tank. WG1 is in the flat region before the slope. WG2 to 
WG5 are located at different locations along the two slopes, WG6 is 2 cm 
in front of the vertical wall. 

In the experiment, ten pressure transducers were installed on the 
wall in a vertical array. The vertical distances between the pressure 
transducers and the flat bottom in the present numerical simulations are 
shown in Table 3, and are consistent with the experiments (Bullock 
et al., 2007). The positions of pressure transducers changed slightly 
during different phases of the experiments. Two arrangements of pres-
sure transducers are presented here, i.e., z1 for Case 1, 2 and 4; z2 for 
Case 3 and 5. The total experimental force on the wall is calculated by 
the integral of the pressures along the wall from the vertical array of 

pressure transducers, and the numerical total force on the wall will be 
calculated in the same way. Wave pressures from the numerical simu-
lations will be compared to the measured wave pressures at these spe-
cific elevations. 

3.1. Mesh and time-step refinement studies 

Case 4 is selected for the mesh and time-step refinement studies due 
to the large wave impacts and the complex wave surface profile with an 
air pocket. The refinement studies are conducted under four sets of 
meshes, as shown in Table 4. The number of cells per wavelength and 
per wave height is calculated based on the grid resolution at the slope. 
The overall and zoom-in view of M3 around the wall structure is shown 
in Fig. 5. The mesh is refined around the wall and the still water level. 
The time-step is controlled by the maximum Courant number, which 
varies from 0.5 to 0.3 for the converged mesh. Stream function theory is 
applied to generate regular waves with a ramp-up time (required 
duration to vary from 0 to the target value) of 4T. The time origin of the 
numerical results starts from the first wave impact after the initial wave 
reaches the wall. Several examples of the measured pressures can be 
found in Bredmose et al. (2009). 

Wave impacts on a wall are highly-sensitive to variations in the free 

Fig. 17. Density, water velocity magnitude and pressure variations at different time instants during one impact for Case 2: d ¼ 4.25 m; T ¼ 7 s; H ¼ 1.35 m, from left 
to right:t1 ¼ 69.07, t2 ¼ 69.13, t3 ¼ 69.14, t4 ¼ 69.16 and t5 ¼ 69.18. 
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surface profiles (Peregrine, 2003; Bullock et al., 2007). Therefore, wave 
surface elevations for different grid resolutions are compared, and 
shown in Fig. 6. M1 underestimates the surface elevations compared to 
the other grid resolutions due to the larger numerical diffusion caused 
by the coarser mesh. The surface elevations for M2, M3 and M4 are 
similar to each other. The difference in the surface elevations between 
M3 and M4 is slightly smaller than that between M2 and M4, especially 
at the positions close to the wall. The relative variation is defined as the 
difference between the two results divided by the mean value of these 
two results. The maximum relative variation of the peak surface eleva-
tions between M3 and M4 is 3.6%. Therefore, M3 is considered to give 
sufficient numerical accuracy in the present study. 

The time-step refinement study is conducted by decreasing the 
maximum Courant number from 0.5 to 0.3. The results of the time-step 
refinement are shown in Fig. 7. The relative variation of the surface 
elevations between these two Courant numbers is 4.5%. Therefore, the 
grid resolution of M3 with the maximum Courant number 0.5 is 
considered to give satisfactory numerical accuracy and will be used in 
the subsequent simulations. In addition, an extensive verification study 
on different cases based on the same numerical method can be found in 
Gatin (2018). 

3.2. Characteristics of impact force and pressure under different breaking 
conditions 

The free surface elevations, total impact force on the wall and the 
maximum pressure distribution are compared with the experimental 
measurements (Bullock et al., 2007) in this section. The total force (FTot) 
and the pressure (p � p0) on the vertical wall is normalized by the ρgH3 

and ρgH, respectively; while the time has been normalized with ðH=gÞ1=2, 
where H is the incident wave height, p0 is the atmospheric pressure. The 
impact force on the wall varies significantly every wave period even 
though the incident waves are regular (Bagnold, 1939). One important 
reason mentioned by Bullock et al. (2007) is due to the strong interac-
tion of the reflected wave with incoming waves. The period with the first 
large impact on the wall is selected, which has the least disturbance from 
wave reflections. 

3.2.1. Slightly-breaking wave impact 
Slightly-breaking refers to the transitional conditions from non- 

breaking waves to fully developed wave impacts. The comparisons of 
the numerical and the experimental wave surface elevations for the 
slightly-breaking case are shown in Fig. 8. The surface elevations are 
plotted for one wave period at six different locations. The root mean 
square error (RMSE), denoted by E, is calculated with respect to the 
experimental surface elevations. The numerical surface elevations 
compare well with the experimental data generally. The predicted wave 
peaks agree with the measurements better when compared to the pre-
dicted wave troughs, especially at the location near the inlet. The RMSE 
of surface elevations is smallest at the nearest wave gauge to the wall, 
which is a positive indication for the wave force prediction. 

Fig. 9 shows the comparison of the numerical and the experimental 
total forces on the vertical wall over one wave period. A zoom-in 

Fig. 18. Maximum magnitude of water acceleration on the wall along x and z 
axes during one wave period for Case 2: d ¼ 4.25 m; T ¼ 7 s; H ¼ 1.35 m. 

Fig. 19. Comparison of simulated and experimental surface elevations at different wave gauges for Case 3: d ¼ 4.02 m; T ¼ 8 s; H ¼ 1.10 m.  
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window around the peak value is presented at the top-right corner. The 
relative difference is shown in the lower figure of Fig. 9, which is defined 
as ðFE � FNÞ=maxðFEÞ, where FE and FN are the experimental and nu-
merical total forces on the wall, respectively. A sharp spike in the total 
force is observed which is known as the impact force. There is a sec-
ondary bump after the main impact peak, which is the quasi-hydrostatic 
force. The maximum quasi-hydrostatic force, maximum total force Fp 

and impulse duration tI of the impact force are indicated in Fig. 9. The 
peak impact force is 4.96 times the maximum quasi-hydrostatic force. 
This value is beyond the limits of the slightly-breaking given by Bullock 
et al. (2007), i.e., 1.0 to 2.5 times the maximum quasi-hydrostatic force. 
However, there are no clear boundaries between different impact types. 
The impact type is selected based on the slightly inclined surface profile 
as the wave impacts the vertical wall. The numerical total force agrees 
well with the experimental data in terms of quasi-hydrostatic force and 
the peak of the impact force. However, the duration of the impact force 
is underestimated when compared to the experimental total force. This 
is mainly due to the inconsistent pressure distribution along the wall 
between the simulation and the experiment, as shown in Fig. 10. 

Fig. 10 shows the distributions of the maximum pressures along the 
wall from both the simulation and the experiment. The horizontal axis 
Pzmax=Pmax is the ratio of maximum pressure at different vertical loca-
tions and the overall maximum pressure over one wave period. The 
vertical axis z indicates the vertical location. The general trend of the 
pressure distribution is well captured by the present numerical model, i. 
e., a sharp peak occurs just above still water level and then decreases 
rapidly on both sides. However, the position of the numerical Pmax is 
around z ¼ 0.1 m, which is lower than z ¼ 0.48 m in the experiment. This 
means that the simulation has a slightly lower initial impact point than 
the experiment. The numerical pressures are almost zero when 
z >0.9 m. However, the pressure is around 0:3Pmax and nearly uniform 
along the wall when z >0.9 m in the experiment. This discrepancy in 
pressure is due to that the different pressure gradients along the wall 
between the simulation and the experiment eventually result in the 
different wave run-up actions after the impact. 

Rise time tr is defined here as the time needed for the pressure signal 
to attain its maximum from the quasi-static pressure, and fall time tf is 
defined as the time for the pressure signal reducing from the maximum 
to the quasi-static pressure. Fig. 11 shows the pressure variations during 
the impact at five locations and the pressure contour along the wall at 
different time instants. p � p0 represent the pressure subtracted by the 
standard atmospheric pressure. The pressure signals at the lowest two 
transducers (z ¼ � 0.60 m, � 0.35 m) are without impact characteristics. 
The initial impact point between the inclined wave front and the wall is 
between z ¼ � 0.35 m and z ¼ � 0.05 m. The peak pressure upon the 

Fig. 20. Comparison of the simulated and experimental wave forces on the 
vertical wall for Case 3: d ¼ 4.02 m; T ¼ 8 s; H ¼ 1.10 m, Fp ¼ 36.57 (477.5 kN), 
tI ¼ 0.07 (24.3 ms). 

Fig. 21. Comparison of the simulated and experimental maximum pressures 
along the vertical wall for the breaking wave cases with a small air-pocket. 

Fig. 22. Pressure variation and distribution along the vertical wall during an 
impact for Case 3: d ¼ 4.02 m; T ¼ 8 s; H ¼ 1.10 m. 
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initial impact point increases until z ¼ 0.10 m and then decreases. The 
maximum pressure on the wall is around 15:47ρgH, which is charac-
terized by a very short rise time and a slightly longer fall time. For the 
pressure variation at z ¼ 0.10 m, the rise time is 1.9 ms and the fall time 
is 2.7 ms. There is a phase delay between different impact pressures due 
to the wave front moving up the wall. The pressure contour shows high 
pressure values distributed around the still water level while the pres-
sure is almost uniform below z ¼ � 0.5 m. 

Fig. 12 shows the density, water velocity magnitude and pressure 
variations at five time instants (from left to right): t1 ¼ 38.57, t2 ¼ 38.65, 
t3 ¼ 38.68, t4 ¼ 38.70 and t5 ¼ 38.73. Time instants t3, t4 and t5 are the 
time instants that correspond to the peak pressures at z ¼ � 0.05 m, 
0.10 m and 0.35 m. Five locations presented in Fig. 11 are indicated by 
five black points on the wall. A sharp interface between the water phase 
and the air phase is captured in the density field, as shown in Fig. 12a. 
The characteristic of the slightly-breaking impact is clearly shown in 
Fig. 12a and 12b at time t1, i.e., the wave hits the wall with a slightly 
inclined surface. The pressure around the wall is low at t1 before the 
impact. The wave front with a large velocity acts on the wall at around 
z ¼ � 0.15 m from time instant t2. The largeest pressure on the wall is 
observed where the water velocity is highest. The contact point with the 
large water velocity then travels up along the wall to z ¼ � 0.05 m; 

0.10 m and 0.35 m at t3, t4 and t5, respectively. The pressures at these 
three locations reach their peak values rapidly with the large velocity 
reducing to zero on the wall. The maximum pressure on the wall occurs 
at t3, which also corresponds to the time of the peak total force in Fig. 9. 
During the impact pulse, the pressure is largest at the impact point and 
decreases downward along the wall within a diameter of approximately 
0:27dw (dw is the water depth at wall). 

3.2.2. Flip-through wave impact 
The wave for the flip-through case is more developed when 

compared to the slightly-breaking case, and approaches the wall with a 
nearly vertical front face instead of an inclined face. Fig. 13 shows the 
comparisons of the numerical and the experimental wave surface ele-
vations at six wave gauges for Case 2. The numerical surface elevations 
generally agree well with the experiments at different locations. The 
numerical maximum surface elevation at WG6 is slightly higher than the 
experimental data. 

Fig. 14 presents the comparison of the numerical and the experi-
mental total forces on the vertical wall over one wave period for Case 2. 
The zoom-in window at the top-right corner shows a very good agree-
ment between the numerical and experimental impact forces. The peak 
value, variation tendency, rise time and fall time of the impact are well 

Fig. 23. Density, water velocity magnitude and pressure variations at different time instants during one impact for Case 3: d ¼ 4.02 m; T ¼ 8 s; H ¼ 1.10 m, from left 
to right: t1 ¼ 64.35, t2 ¼ 64.54, t3 ¼ 64.56, t4 ¼ 64.58 and t5 ¼ 64.65. 
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captured in the numerical simulation. A much sharper spike of the flip- 
through total force with a larger peak value and a shorter duration can 
be seen in Fig. 14 when compared to the slightly-breaking total force. 
The ratio of the maximum total force and the maximum quasi- 
hydrostatic force is 11 for the flip-through case, which is more than 
twice of that for the slightly-breaking case. Both the numerical and the 
experimental maximum pressure (Pzmax) distributions along the wall are 
shown in Fig. 15. The peak of the numerical Pzmax occurs at z ¼ 0.25 m, 
which is close to z ¼ 0.28 m as measured in the experiment. The distri-
bution of Pzmax of the flip-through case is more localized in space than 
the slightly-breaking case, shown as a sharper variation of Pzmax in 

Fig. 15. The numerical Pzmax decreases rapidly from Pmax to nearly zero 
in the range of z ¼ 0.25 m to z ¼ 0.70 m. In the range of z ¼ 0.25 m to 
z ¼ � 0.68 m, the numerical Pzmax decreases from the Pmax to 0.18Pmax 
and then remains constant when z ¼ � 0.68 m. The experimental data 
have similar vertical spatial variations. 

The pressure variations during the impact at the five elevations and 
the pressure contour along the wall at different time instants are shown 
in Fig. 16. Similar to the slightly-breaking case, the pressures at 
z ¼ � 0.50 m, � 0.10 m are non-impulsive. The initial impact point is 
between z ¼ � 0.10 m and 0.10 m. The largest pressure occurs at 
z ¼ 0.25 m with a value of 38:31ρgH (507.3 kPa), i.e., around 9:23ρgðd þ

Fig. 24. Comparison of simulated and experimental surface elevations at different wave gauges for Case 4: d ¼ 4.00 m; T ¼ 8 s; H ¼ 1.25 m.  

Fig. 25. Comparison of the simulated and experimental wave forces on the 
vertical wall for Case 4: d ¼ 4.00 m; T ¼ 8 s; H ¼ 1.25 m, Fp ¼ 46.91 (898.8 kN), 
tI ¼ 0.08 (29.5 ms). 

Fig. 26. Comparison of the simulated and experimental maximum pressures 
along the vertical wall for the breaking wave cases with a large air-pocket. 
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HÞ, which is close to 10ρgðdþHÞ as mentioned by Peregrine (2003). The 
rise time of the pressure at z ¼ 0.25 m is 0.3 ms, which is around 1= 6tr of 
the slightly-breaking case. The corresponding fall time is 1.0 ms which is 
around 1=3tf of the slightly-breaking case. The peak pressure at 
z ¼ 0.25 m is much larger than that at the surrounding elevations, which 
shows that the impact is localized in space and time as expected for a 
flip-through type impact. 

Fig. 17 shows the density, water velocity magnitude and pressure 
variations for the flip-through case at five time instants (from left to 
right): t1 ¼ 69.07, t2 ¼ 69.13, t3 ¼ 69.14, t4 ¼ 69.16 and t5 ¼ 69.18. Time 
instants t3 to t5 correspond to the peak pressures at z ¼ 0.10 m, 0.25 m 
and 0.45 m, respectively. The density field at t1 presents a nearly vertical 
front face which is paralleled to the wall. However, this wave front is not 
a fully vertical wave front. There is a small region of the wave front with 
an inclined surface. This impact has the typical flip-through character-
istics. However, the impact value is not as large as that we could expect 
for a perfect flip-through case (Obhrai et al., 2005). The initial impact on 
the wall is considered to occur at t2 with a large velocity occurring as the 
wave front hits the wall. The contact point rises up the wall with a 
maximum pressure on the wall increasing until t4 and then decreasing. 

Another typical feature of the flip-through case is the large water 
acceleration at the wall, which is over 1000g reported by Peregrine 
(2003) and up to 1500g measured by Lugni et al. (2006). The maximum 
acceleration magnitudes over one wave period at the wall along x and z 
axes are plotted against the vertical location in Fig. 18. In the present 
simulation, the largest vertical acceleration (jazj) is 1358g, which occurs 
at the location of z ¼ � 0.05 m and at time instant t2. The largest hori-
zontal acceleration (jaxj) is 1147g, which occurs at the location of 
z ¼ � 0.35 m and at time instant t4. This illustrates the process of the 
flip-through impact. Firstly, the largest jazj occurs together with the 
initial impact (t2). This large jazj accelerates the water along the wall and 
generates the vertical jet. Then the largest jaxj occurs together with the 
largest pressure (t4) on the wall. The largest pressure on the wall is 
generated by the change of the water’s momentum, i.e., the large hor-
izontal velocity at the wave front reduces to zero on the wall in a short 
time. 

3.2.3. Wave impact with air pocket  

(a) Wave impact with a small air pocket 

The vertical wave front can further develop to a slightly overturned 
wave front and trap a small air pocket at the wave crest. Fig. 19 shows 
the comparisons of the numerical and the experimental wave surface 
elevations at six wave gauges for Case 3. The numerical surface eleva-
tions agree well with the experiment al data at six wave gauges. How-
ever, the peak surface elevations are slightly over-estimated in the 
simulations. 

Fig. 20 shows the comparison of the numerical and the experimental 
total forces on the vertical wall over one wave period for Case 3. The 
comparison in the zoom-in window at the top-right corner shows a good 
agreement between the numerical and experimental impact forces in 
terms of the peak values and rise times. However, the fall time of the 
impact is slightly underestimated in the numerical simulation. The 
maximum total force is around 6.06 times the maximum quasi- 
hydrostatic force. The negative sub-atmospheric pressure due to the 
decompression of the trapped air pocket is well captured, which shows a 
similar value with the experimental data shown in Fig. 20. The total 
force oscillates for several cycles after the sub-atmospheric pressure, and 
is damped to the quasi-hydrostatic force gradually. The numerical sim-
ulations predict a larger frequency and amplitude of the oscillations 
when compared to the experiment, which reveals that the behaviour of 
the air pocket is not identical in the simulation and the experiment. The 
numerical quasi-hydrostatic force is slightly larger than the experiment 
due to the higher peak surface elevations predicted in the simulation 
(see also Fig. 19). 

Fig. 21 shows the numerical and experimental maximum pressure 
distributions along the wall for Case 3. The peak of the numerical Pzmax 
occurs at z ¼ � 0.27 m and remains almost constant until z ¼ � 0.17 m. In 
the experiment, this constant Pzmax region is from z ¼ � 0.12 m to 
z ¼ 0.18 m, which has a higher location and wider range than the 
simulation. A secondary peak is observed at z ¼ 0.18 m in the simulation 
and is supposed to be related to the trapped air pocket. The Pzmax de-
clines sharply from both sides of the maximum pressure and is close to 
zero when z >¼ 0.70 m, which indicates a thin water jet here and is 
similar to the flip-through impact. 

Fig. 22 shows the pressure variations and air entrapment during the 
impact at five locations and the pressure contour along the wall at 
different time instants for Case 3. The pressure at z ¼ � 0.52 m is without 
impact effects. The largest pressure occurs at z ¼ 0.27 m with a value of 
27:34ρgH (295 kPa). Similar to flip-through impact, the pressure at 
z ¼ 0.27 m has very short rise and fall times, i.e., tr ¼ 0.4 ms and 
tf ¼ 0.5 ms. The behaviour of the pressure varies drastically from 
z ¼ 0.27 m to the secondary peak (see Fig. 21) at z ¼ 0.18 m. The peak 
pressure reduces to 11:89ρgH (128.3 kPa) which is less than half of the 
maximum pressure (at z ¼ 0.27 m). The rise and fall times tr and tf in-
crease to 3.3 ms and 3.5 ms, respectively, which are around 8 times 
larger than the tr and tf at z ¼ 0.27 m. The negative sub-atmospheric 
pressures are observed at z ¼ 0.06 m and 0.18 m with damped oscilla-
tions, which indicates these two locations are within the air pocket re-
gion. The pressure contour in Fig. 22 shows that the pressure is first 
localized in a small area, then starts to spread within a small range when 
the air pocket is trapped. The pressure oscillations are also clearly shown 
in the pressure contour in Fig. 22 after the entrapment of the air pocket. 

Fig. 23 shows the density, water velocity magnitude and pressure 
variations for Case 3 at five time instants (from left to right): t1 ¼ 64.35, 
t2 ¼ 64.54, t3 ¼ 64.56, t4 ¼ 64.58 and t5 ¼ 64.65. Time instants t2 to t4 
are the time instants of the peak pressures at z ¼ � 0.27 m, � 0.12 m and 
0.18 m, respectively, whereas t5 is the time instant of the second peak in 
the pressure at z ¼ 0.18 m. A vertical wave front is observed in front of 
the wall at t1. The maximum impact pressure occurs at t2 with a large 
velocity acting at z ¼ � 0.27 m on the wall. The pressure distributions 

Fig. 27. Pressure variation and distribution along the vertical wall during an 
impact for Case 4: d ¼ 4.00 m; T ¼ 8 s; H ¼ 1.25 m. 
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before the trapped air pocket are similar with the flip-through impact, i. 
e., largest pressure is focused around the impact point. A very small air 
pocket is trapped at t3 and travels up along the wall with the wave run- 
up, as shown in the density field of Fig. 23. The largest pressure occurs 
within the air pocket region at around the time t3. However, the 
compression and expansion of the air pocket are not observed clearly 
due to the small size of the air pocket.  

(b) Wave impact with a large air pocket 

A large air pocket is obtained with a larger incident wave height, while 
the water depth and wave period are similar to the small air pocket case 
(H increases from 1.10 m to 1.25 m). The wave front overturns appar-
ently before reaching the wall, and the breaker tongue hits the wall and 
traps an air pocket. Fig. 24 shows the comparison between the present 
simulated and the experimental surface elevations at six wave gauges for 
Case 4. The numerical surface elevations agree well with that of the 
experiments at all the wave gauges. The surface peak is slightly over-
estimated at WG6, which can result in a higher quasi-hydrostatic force in 
the simulation. 

Fig. 25 shows the comparison of the numerical and the experimental 
total forces on the vertical wall over one wave period for Case 4. The 

zoom-in window shows that the simulation results have a good agree-
ment with the experimental data in terms of the peak value, rise and fall 
times of the impact. The maximum total force is around 9.93 times the 
maximum quasi-hydrostatic force. The amplitude, frequency and dura-
tion of the oscillations after the main impact are over-predicted in the 
simulation. The numerical maximum oscillation amplitude is 27:23ρgH3 

(521.8 kN), which is around two times larger than that in the experiment 
and also two times larger than that of the small air pocket case. There-
fore, the behaviour of the oscillations can be related to the size of the air 
pocket in the simulation. 

Fig. 26 compares the distributions of the numerical and experimental 
Pzmax along the wall, and a good agreement is achieved between the two 
sets of results. A sharp peak occurs with a maximum value of Pzmax at 
z ¼ 0.20 m in the simulation. A nearly uniform Pzmax distribution just 
below this peak point is observed between z ¼ � 0.50 m and z ¼ 0.15 m, 
with a value of around 80% of Pmax. 

Fig. 27 presents the pressure variations while entrapping the air 
pocket at five locations and the pressure contour along the wall at 
different time instants for Case 4. The pronounced differences of the 
pressure variations are observed for the case with a large air pocket as 
compared to the other impact types. The pressures from 
z ¼ � 0.50 m–0.00 m are characterized by almost identical variations in 

Fig. 28. Density, water velocity magnitude and pressure variations at different time instants during one impact for Case 4: d ¼ 4.00 m; T ¼ 8 s; H ¼ 1.25 m.  
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damped sinusoidal signals. The peaks and phases within this region are 
similar to each other. They are inside the region of nearly uniform Pzmax 
shown in Fig. 26, which correspond to the trapped air pocket area. The 
rise time and fall time are tr ¼ 49.0 ms and tf ¼ 41.8 ms, respectively, 
which are approximately 100 times longer than that in the flip-through 
case. The peak pressure is around 12.22 ρgH, i.e., 150 kPa, which is less 
than 1/3Pmax of the flip-through case. The pressure at z ¼ 0.20 m 
(maximum pressure) is a combination of an impact with a short rise time 
and a damped sinusoidal variation induced by the trapped air pocket, 
which indicates that the breaker tongue hits this point first, forms a 

sharp impact and then oscillates due to the cushioning effects of the 
entrapped air pocket. The cushioning effects are also indicated by the 
banded pressure contour in Fig. 27. The maximum pressure is imposed 
uniformly over the air pocket region, and decreases at the other 
locations. 

Fig. 28 shows the density, water velocity magnitude and pressure 
variations for Case 4 at five time instants (from left to right): t1 ¼ 31.45, 
t2 ¼ 31.61, t3 ¼ 31.72, t4 ¼ 31.86 and t5 ¼ 31.95. Time instants t2 and t4 
correspond to the first and second peaks of the oscillating pressures, t3 is 
the time instant of the first trough of the pressures. The overturned wave 
front is observed at t1 when the formed breaker tongue is approaching 
the wall. The impact peak occurs at around t2 when the wave front with 
the largest water velocity hits the wall at z ¼ 0.20 m, as shown in the 
velocity field in Fig. 28, which results in the sharp peak pressures in 

Fig. 29. Comparison of simulated and experimental surface elevations at different wave gauges for Case 5: d ¼ 3.70 m; T ¼ 8 s; H ¼ 1.00 m.  

Fig. 30. Comparison of the simulated and experimental wave forces on the 
vertical wall for Case 5: d ¼ 3.70 m; T ¼ 8 s; H ¼ 1.00 m, Fp ¼ 14.82 (145.4 kN), 
tI ¼ 0.03 (9.1 ms). 

Fig. 31. Comparison of the simulated and experimental maximum pressures 
along the vertical wall for the broken wave case. 
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Figs. 26 and 27. The air pocket is enclosed and initially compressed after 
t2. The compression and expansion of the air pocket is clearly shown in 
the density field. The size of the air pocket, especially the vertical size, 
increases from t2 to t3, decreases from t3 to t4, and increases again from 
t4 to t5. The corresponding pressures show that the expansion of the air 
pocket at t3 generates the pressure trough, which is the sub-atmospheric 
pressure in Fig. 25. The pressure reaches a second peak with a lower 
value when the air pocket is compressed again at t4, and reduces again 
with the air pocket expansion. The alternating compression and 
expansion of the air pocket produce the damped oscillations of the 
pressure, which is consistent with the observations reported by Bullock 
et al. (2007). 

As a summary, the most distinctive features for the impact with an air 
pocket are the negative sub-atmospheric pressure and the damped os-
cillations. These features can be recognized in the force or pressure 
variations easily. As compared to the slightly-breaking and the flip- 
through impact types, the duration of the maximum pressure within 
the air pocket is much longer, which is up to 100 times longer. However, 
the peak pressure is reduced by the air pocket. The pressure distribution 
in the air pocket region is almost uniform. On the contrary, the flip- 
through impact has the largest pressure focused on a small area, and 
this area can be infinitely small in theory. Therefore, in the context of 
practical engineering, the flip-through impact tends to generate local 
damage of the structure with the very large pressures that are localized 
in space and time. On the other hand, the impact with a large air pocket 
can inflict global damage of the structure due to the long impulse 
duration and large action area. In addition, the pressure oscillations 
could possibly excite the higher-order vibrations for some structures, 
resulting in more damage. Therefore, both types are considered impor-
tant extreme conditions for the design of coastal structures. 

3.2.4. Broken wave impact 
According to Svendsen et al. (1978), the surf zone after the breaking 

point can be divided into three regions based on the development of the 
broken wave, i.e., 1) the outer region with a rapid change in wave shape; 
2) the inner region with a slow change in wave shape; 3) the run-up 
region without a surface roller. Therefore, the broken wave-wall inter-
action can have various scenarios depending on which region the wall is 

located in. In the broken wave impact example given here, the breaker 
hits the wall in the outer region at the time instant when the wave front 
curls over, plunges into the lower wave surface and forms an air pocket. 
The comparisons of the numerical and experimental surface elevations 
at six wave gauges for Case 5 are shown in Fig. 29. The numerical results 
agree well with the experimental data, especially for the wave gauges on 
the slopes and close to the vertical wall. 

Fig. 30 shows the comparison of the numerical and the experimental 
total forces on the vertical wall over one wave period for Case 5. The 
peak total force is 145.4 kN, i.e., around 3 times the maximum quasi- 
hydrostatic force, which is much lower compared to the other cases. 
The peak value of the total force is well captured in the simulation as 
compared to the experiment. However, some discrepancies can be seen 
in the simulation, i.e., the impact duration is underestimated dramati-
cally, the oscillations and the quasi-hydrostatic force are overestimated. 
This is mainly due to the insufficient experimental data obtained from 
the pressure transducers in this case. The water depth of Case 5 is smaller 
than the other cases, and there is only one of ten pressure transducers 
under the still water level. The maximum pressure usually occurs around 
the still water level according to the study by Bullock et al. (2007). 
Therefore, the integral of the pressure is highly sensitive to the only 
pressure transducer under the still water level, and a small difference in 
the pressure distribution can cause a large difference in the total force. 
The numerical and experimental pressure distributions along the wall 
are shown in Fig. 31. The general trends of the pressure variations along 
the wall are similar in the simulations and the experiments, i.e., the 
maximum Pzmax occurs under the still water level, decreases rapidly up 
along the wall, and stabilizes at a small value at the higher locations of 
the wall. The numerical Pmax is at z ¼ � 0.35 m, which is slightly lower 
than z ¼ � 0.22 m in the experiment. 

Fig. 32 shows the pressure variations during the impact at five lo-
cations and the pressure contour along the wall at different time instants 
for Case 5. The pressure at z ¼ � 0.50 m is a typical impact pressure with 
a rise time of 0.2 ms, a fall time of 0.6 ms and a peak value of 56:4ρgH 
(around 563.8 kPa). This peak value is even larger than the peak flip- 
through pressure, although the total force is around 8 times smaller 
than the flip-through case. The peak pressures at the other locations are 
much smaller than that at z ¼ � 0.35 m. The pressure contour shows that 
the initial impact occurs at around tðg=HÞ1=2 ¼ 82:18 (t ¼ 26:24 s), and 
another peak in pressure occurs at around tðg=HÞ1=2 ¼ 82:22 (t ¼
26:25 s). 

Fig. 33 shows the density, water velocity magnitude and pressure 
variations for the Case 5 at five time instants (from left to right): 
t1 ¼ 82.00, t2 ¼ 82.15, t3 ¼ 82.18, t4 ¼ 82.22 and t5 ¼ 82.25. Time in-
stants t3 and t4 correspond to the pressure peaks at z ¼ � 0.35 m and 
� 0.05 m. The density and velocity fields at t1 and t2 show the formation 
of the water jet with the development of the overturning wave crest after 
the breaking point. The water jet moves forward to approach the wall 
and also downwards to form an air pocket. Right before the closure of 
the air pocket, the water jet with high velocity hits the wall at t3. 
Therefore, the large impact pressure is observed at z ¼ � 0.35 m at the 
same time, which is also shown in the pressure field. Then the water 
moves from the high-pressure to the low-pressure regions at both sides 
and encloses the air pocket rapidly at t4. The large pressure region 
spreads with a diameter of 0.3 m around the still water level, and last for 
around 2.4 ms as shown in Fig. 32. The compression and expansion of 
the air pocket results in the extra oscillations after the main peak in 
Fig. 30. 

3.3. Discussion 

In general, the numerical results are in good agreement with the 
experimental data for four different types of wave impacts in terms of 
the total forces and pressure distributions on the wall. However, some 
discrepancies are observed between the simulations and the experiments 

Fig. 32. Pressure variation and distribution along the vertical wall during an 
impact for Case 5: d ¼ 3.70 m; T ¼ 8 s; H ¼ 1.00 m. 
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and are discussed in this section.  

(i) The first wave gauge WG1 is located 81.15 m away from the 
velocity inlet. The numerical surface elevations at WG1 always 
show a shallower and flatter wave trough than in the experi-
ments. The agreement between the simulations and the experi-
ments is improved as the waves propagate up the slope and 
towards the vertical wall. The most likely reason is that the input 
waves from the inlet are not identical in the simulations and the 
experiments. The nonlinear stream function wave theory is used 
in the simulation according to Le M�ehaut�e (2013) who classified 
the wave shapes based on the water depth, the wave height and 
the wave period. The experimental wave input appears to be a 
deep water wave that develops into a shallow water wave as it 
propagates over the ramp. However, the experimental wave input 
signal is not documented or presented in any published papers. 
Therefore, the stream-function wave is used in the present 
simulations. 

(ii) The wave absorption capacities at the inlet of the present simu-
lations are different from that of the experiments. In the numer-
ical simulations, the relaxation method is used in the inlet 
relaxation zone to generate the regular waves and absorb the 
reflected waves from the vertical wall. In theory, the reflected 
waves can be absorbed completely and a clean wave input can be 
given at the end of the wave generation zone. In the GWK 

experiments, the wavemaker is also equipped with an active 
wave absorption system to avoid unwanted reflections of waves. 
However, the experimental absorption rate is not 100% effective 
and is around 95% in practice. This could result in the differences 
in wave shapes between the experiments and the simulations.  

(iii) The number of pressure transducers in the experiment are 
limited. The total force is calculated based on the integral of the 
pressures from the 10 transducers along the wall. The integral can 
represent the total force reasonably, provided that the pressure 
transducers have covered the whole impact region. However, for 
the broken wave case, only one pressure transducer is located in 
the large pressure region, which is not sufficient to calculate the 
total impact force on the wall.  

(iv) There are three impact cases involving the compressible air 
pocket in the present study, i.e., the small air pocket case, the 
large air pocket case and the broken wave case. The compress-
ibility of the trapped air pocket is captured in the numerical 
simulation, shown as the pressure oscillations after the main 
peak. However, the common problem of the numerical results for 
these cases is overestimating the magnitude and the frequency of 
the pressure oscillations as compared to the experiment. The 
main reason for this is that the air escape in the experiment is not 
properly simulated in the present numerical model. As summa-
rized by Peregrine (2003), the air pocket can break up into small 
bubbles rapidly under a violent wave impact. Fig. 34 shows a 

Fig. 33. Density, water velocity magnitude and pressure variations at different time instants during one impact for Case 5: d ¼ 3.70 m; T ¼ 8 s; H ¼ 1.00 m, from left 
to right: t1 ¼ 82.00, t2 ¼ 82.15, t3 ¼ 82.18, t4 ¼ 82.22 and t5 ¼ 82.25. 
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picture of one impact with a trapped air pocket in the experiment, 
which indicates clearly that the air pocket breaks up into small air 
bubbles and the air explodes out of the back of the wave due to 
the high pressure. However, dispersed air bubbles are not 
considered in the present numerical simulation. 

In addition, the physical model wall is not completely solid, as shown 
in Fig. 35. The experimental wall model has 18 small holes where air and 
water can go through during the impact. Therefore, the air can escape 
through the holes in the air pocket case. The numerical simulations do 
not include the holes due to the present two-dimensional simulations. In 
summary, the numerical model overestimates the pressure oscillations 
after the main peak due to the inaccurate capture of the air escape 
during impacts with an air pocket. 

4. Conclusions 

A two-dimensional two-phase CFD model with incompressible water 
and compressible air has been used to simulate breaking wave impacts 
on a vertical wall. The Ghost Fluid Method is used to consider the sharp 
change in fluid properties and the jump in compressibility across the free 
surface. Four different types of breaking wave impacts on the vertical 
wall have been simulated. The numerical results are compared with the 
experimental data in terms of the surface elevations, the pressure dis-
tributions, and the total force on the wall. Generally, good agreements 
are obtained between the simulations and the experiments for all the 
impact types. The characteristics of different breaking wave impacts 
captured in the simulation are summarized as follows:  

(i) For the slightly-breaking impact, the maximum total force is 4.96 
times the maximum quasi-hydrostatic force. The maximum 
pressure on the wall occurs at z ¼ 0.10 m with a value of 
15:47ρgH, which is characterized by a very short rise time 1.9 ms 
and a slightly longer fall time 2.7 ms. The pressure is largest at the 
impact point and decreases down along the wall within a diam-
eter of approximately 0.27 dw to a nearly uniform distribution.  

(ii) For the flip-through impact, the ratio of the maximum total force 
and the maximum quasi-hydrostatic force is around 11, which is 
more than two times higher comparing to the slightly-breaking 
case. The largest pressure occurs at z ¼ 0.25 m with a value of 
38:31ρgH, i.e., 9:23ρgðd þ HÞ, which is close to 10ρgðdþHÞ as 
predicted by Peregrine (2003). The rise time of the maximum 
pressure is 0.3 ms, i.e., around 1/6 tr of the slightly-breaking case. 
The corresponding fall time is 1.0 ms, i.e., around 1/3 tf of the 
slightly-breaking case. The large pressure is more localized in 
both time and space for the flip-through case compared to the 
slightly-breaking case. The largest vertical acceleration of the 
present flip-through case is 1358g, which occurs during the initial 
impact.  

(iii) For the impact with a small trapped air pocket, the maximum 
total force is around 6.06 times the maximum quasi-hydrostatic 
force. The negative sub-atmospheric pressure due to the decom-
pression of the trapped air pocket is well captured. The total force 
oscillates for several cycles after the sub-atmospheric pressure, 
and it is gradually damped to the quasi-hydrostatic force. The 
largest pressure occurs at z ¼ 0.27 m with a value of around 
11:89ρgH. The pressure within the air pocket region is much 
smaller than the largest pressure. The behaviour of the largest 
pressure is similar to the flip-through impact with very short rise 
and fall times, i.e., tr ¼ 0.4 ms and tf ¼ 0.5 ms.  

(iv) For the impact with a large trapped air pocket, the maximum 
total force is around 9.93 times the maximum quasi-hydrostatic 
force. The compression and expansion of the air pocket results 
in pressure oscillations, whose amplitude is larger than in the 
small air pocket case. The maximum pressure is imposed uni-
formly within the trapped air pocket region, which is around 
12.22 ρgH, i.e., less than 1/3 Pmax of the flip-through case. The 
rise time is 49 ms and the fall time is 41.8 ms, which are 
approximately 100 times longer than the flip-through case. The 
impact with a large air pocket may represent the worst case with 
regards to the structure due to the long impulse duration and the 

Fig. 34. Air escape from the trapped air pocket in the experiment.  

Fig. 35. The model walls with holes in the experiment.  
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large action area. In addition, the pressure oscillations can excite 
higher-order vibrations for some structures.  

(v) For the broken wave impact, the maximum total force is around 3 
times the maximum quasi-hydrostatic force. However, the 
maximum impact pressure around 56:4ρgH, which is even larger 
than the peak flip-through pressure, although the total force is 
around 8 times smaller than the flip-through case. Therefore, the 
broken case is able to generate high local pressure on the wall but 
not such a large total force. Both the broken and flip-through can 
result in very high local pressure on the wall and cannot be 
neglected. 

As a summary, different types of wave impacts on a vertical wall is 
highly sensitive to the wave profiles, breaking point and breaking wave 
height. Therefore, an accurate prediction of the wave shape should be 
the first priority for the simulations of breaking wave impacts on sea-
walls. The free surface capture approach and turbulence model in the 
present study can provide a reference for the same or similar research 
field. 
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