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Abstract. The application of data assimilation methods for field development optimization has 
been the subject of intense investigation during the past 10 years. Lately has seen remarkable 
progress in the ability of data assimilation approach in reservoir characterization and based on 
this, improvements of field development optimization. In this review paper, we have summarized 
key achievements in field development optimization of waterflooding process with data 
assimilation approach and review many of the achievements of the past time, including 
developments in the field of search for modifications of Ensemble Kalman Filter (EnKF) and 
Ensemble Smoothers (ES). An attempt has been made to discuss different data assimilation 
methods and to identify possible limitations of each. Current challenges and future research 
opportunities for improved data assimilation methods for field development optimization of 
waterflooding process are also discussed. 

1. Introduction 
Different studies have shown that model-based dynamic optimization of the waterflooding process 
improves the economic life-cycle performance of oil fields, see e.g., [1, 2]. One of the main challenges 
in this optimization is the high levels of uncertainty increasing from the modeling process of 
waterflooding. As a result, the potential advantages of dynamic optimization are not fully realized and 
the optimized objective value is not obtained. 

Different approaches of waterflooding optimization under uncertainty can be broadly divided into 
two types. In the first type, also known as open-loop schemes, a decision maker selects a strategy without 
knowing the exact values taken by the uncertain parameters, and the exact values are assumed to belong 
to an uncertainty space. In the second type, also known as closed-loop (Closed-Loop Reservoir 
Management (CLRM)), the strategy is allowed to update/adjust to information that is revealed over time. 
This article discusses only CLRM type of waterflooding optimization.  

Uncertainty quantification of the uncertainty space is one of the essential steps in CLRM. A general 
practice of quantifying uncertainty in waterflooding optimization in CLRM is implementation of data 
assimilation methods such as Ensemble Kalman Filtering (EnKF), Ensemble Kalman Smoothing 
(EnKS), Particle Filtering, variational approaches etc. The purpose of this work is to overview different 
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types of data assimilation methods in task of closed-loop reservoir management and identify limitations 
of them.  

The article is structured as follows. Section 2 discusses the basics of closed-loop reservoir 
management optimization. In Section 3, is discussed different data assimilation methods followed by 
conclusions in section 4 with discussion of current challenges and future research opportunities for 
improved data assimilation methods for field development optimization of waterflooding process. 

2. Closed-Loop Reservoir Management  
Closed-loop reservoir management (CLRM) is a cycle of production optimization and data assimilation 
(see Fig. 1). Aim of cycle of optimization at finding maximum of value. e.g. financial measure (Net 
Present Value (NPV)), over the producing period of the reservoir by optimizing the production 
parameters. For more information about CLRM see, e.g., [3], [4], and [5].  

 
Figure 1. Closed-loop reservoir management (Source: [3]) 

NPV can be represented as: 
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where or  , wr  and injr  are the oil price, the water production cost and the water injection cost, 

respectively. K represents the production period and kt∆  is the time interval of time step k . b  is the 
discount rate for a certain time tτ . ,o kq , ,w kq  and ,inj kq  is the cumulative production of oil, water and 

injected water at time step k . 
Uncertainty is one of the main aspects of the model-based optimization of the waterflooding process. 

To quantify the uncertainty space Θ  in waterflooding optimization, usually use an ensemble of 
uncertain model realizations. This set of ensemble-based uncertainty can be used with various schemes. 
One of the robust approaches is to maximize the average of the NPV objective over the model 
uncertainty ensemble [6].  
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Robust optimization can be formulated as: 
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N

O i
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N =

= ∑ iu,θ  (2) 

where iJ  is the NPV objective and u  is the input decision variable, iθ  is a vector of uncertain model 
parameters. 

Now we can formulate the optimization problem as finding a vector u  including the set of the control 
parameters over the producing period of the reservoir. It should be noted, that although the optimization 
is based on eN   models, only a single strategy u  is obtained. Typical elements of u  are settings of 
well head pressures, water injection rates, valve openings, etc. Sometimes the problem is very nonlinear 
and nonconvex, i.e. it has multiple local maxima.  

3. Data Assimilation 
As we mention before, uncertainty quantification is one of the essential steps in closed-loop reservoir 
management. One of the types of uncertainty is ambiguity of geological properties. A prior distribution 
of the geological properties can be generated using various geostatistical techniques. Also, various 
measurements ( y ) suitable to unknown model parameters (θ ) are available from surface and sensors. 
From a probabilistic point of view, Bayesian inference provides a good platform to compute  the  
posterior  probability  density  function  (PDF) [7]: 
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where ( )prp θ  is the prior distribution, ( )p y  is the density function of  the measurements and  

( | )p y θ  is the likelihood function for obtaining y   given the model parameters θ . In our CLMR case, 
prior and posterior model parameters θ  represented prior and posterior ensembles, respectively.  
The main assumption in data assimilation is reducing uncertainty of the model parameters leads to an 
improved forecast capacity of the models, which, in turn, leads to improved decisions. In our CLRM 
case, decisions take the form of control vectors u , aimed at finding maximum of the objective function 

OJ . 
 
3.1 Ensemble Kalman Filter  
Recently, the Ensemble Kalman Filter has gained popularity as a data assimilation method. EnKF is 
based on the Kalman filter [8], but simple Kalman filter can’t be implemented for data assimilation of 
large models, especially with non-linear components.  

Below shown the algorithm of EnKF implementation: 
1. Generate eN  samples ,a j

iθ and ,a j
iJ , 1.. ej N=  from the prior distribution of ( )prp θ  and  

          the initial distribution of J . 
2. For 1.. ei N= , 
2.1 Generate eN  independent samples of iJ by integrating each sample from 1it − to it using the 
forward model. In iJ , the most updated value for ( )prp θ , is applied. That is, for 1.. ej N= : 
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where iF  denotes the forward integration of equations of dynamic model from step of time 1i −  to 

i  and ig  denotes set of measurements. ,f j
iθ represents a sample from prior distribution). Superscript 

a denotes posterior solution from previous step. 
2.2 Use Monte-Carlo approach for estimation of the first- and second-order moments from prior, 
using ensemble mean of matrix iY with each ensemble members 

1{ .. }eN
i i iJ J=Y   (5) 

       and using covariance matrix: 

1i

T
i i

J
eN

∆ ∆
=

−
Y YC   (6) 

2.3 Generate eN independent samples from the measurements distribution: 
,

, , 1..j d j
i obs i i ey y j Nε= + =   (7) 

 2.4 Update each ensemble member using the traditional Kalman filter update: 

,i( )a f f
i i i obs iJ J y J= + −K H   (8) 
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where iε  denotes measurements error, K  denotes Kalman gain matrix, H  denotes 
relationship between measurements and states. 

Examples of implementation of EnKF: Consider a several examples of implementation EnKF: 
assimilating data of production history, assimilating seismic data and implementation of EnKF in 
CLRM. 

Haugen et al. [9] implemented EnKF to improve history matching from production data from North 
Sea field. They used large nonlinear reservoir model. This work has been showed that we can improve 
model parameters (permeability and porosity) by assimilating production data such as bottom hole 
pressure and production rates of oil, gas, and water. It has been demonstrated that by using the EnKF, a 
better history-matched model could be obtained. In work [10] used  to assimilation porosity  fields  used  
to  model  an  oil  reservoir  with  almost  three  years  of  production. Work was confirmed the possibility 
to use EnKF for history matching of real reservoir models.  

Second group of works with implementation of EnKF considers works related with implementation 
of EnKF for data assimilation of seismic data. Skjervheim et al. [11] studied EnKF inversion scheme to 
assimilate interpreted seismic data into reservoir simulation models for both a 2D model and a real field 
and got ambiguous results.  

Third and most interesting for us case is implementation of EnKF in CLMR. Chen et al. [12] 
implemented EnKF in closed-loop reservoir management for improvement waterflooding process. 
EnKF was in couple with optimization algorithm – EnOpt. The aim of this work was to maximize NPV 
through management of control devices.   

The applicability of the EnOpt algorithm and the ensemble-based CLRM is assessed through the use 
of two examples. In the first example, the control devices are optimized by the EnOpt based on a known 
reservoir model. The results showed the ability of the EnOpt to improve reservoir management in the 
presence of complex features. The ensemble-based CLRM is demonstrated in the second example and 
the results are compared with other alternative control strategies. A good estimate of the permeability 
field (Fig. 2), which captured the features of the reference field. The net present value of the field is 
significantly increased by the CLRM. 
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3.2 Ensemble Smoothers 
The Kalman filter is a recursive filter with the Markov property – it's estimate at step k is based only 
on the estimate from step 1k − and the measurement at step k . But this means that the estimate from 
step 1k −  is based on step 2k − , and so on back to the first epoch. Hence, the estimate at 
step k  depends on all of the previous measurements, though to varying degrees. 1k −  has the most 
influence, 2k −  has the next most, and so on. 

Smoothing filters incorporate future measurements into the estimate for step k  The measurement 
from 1k +  will have the most effect, 2k +  will have less effect, 3k +  less yet, and so on. 
There are different types of ensemble smoothers: Fixed-Interval Smoothing, Fixed-Lag Smoothing, 
Fixed-Point Smoothing and more algorithms of smoothing and this is a topic for discussion of future 
research of ensemble smoothers.  
 

 
Figure 2. Mean of the initial ln k  ensemble and mean of ln k  ensemble updated at three different 

data times (Source: [12]) 

In our work we discuss results of implementation of the regularized Levenberg-Marquardt algorithm 
derived from minimum average cost (RLM-MAC [13]). 

In study [13], the iterative Ensemble Smoother was applied to condition permeability field to well 
test data. 1D and 2D synthetic reservoir models were used to investigate the method performance with 
respect to measurement error and localization which we consider important from practical point of view.   
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At first, authors analyzed the influence of measurement error.  Despite of high accuracy of the 
modern pressure gauges, the pressure data are often quite noisy.  In practice, various filtering, denoising 
and smoothing techniques are employed in order to clarify the reservoir response and reduce data 
uncertainty. They evaluated several cases with different variance of measurement error. The comparison 
revealed that the pressure data noise has strong impact on the parameter estimation and the method 
convergence. In many cases, the noise caused the ensemble drifting away from the true solution.  

Another important practical aspect is localization of model updates. During well test, pressure 
transients reflect pressure propagation away from the well. The propagation dynamic is governed by the 
formation properties within the disturbed reservoir domain. Therefore, the pressure measurements at a 
given time may be used for updating formation properties in the model only within the disturbed domain 
around the well. This would lead to the conclusion that a localization technique may be employed to 
relate model updates to relevant observations representing response from different reservoir areas.  A 
time/distance dependent localization technique was tested to address this problem. The testing results 
showed that the proposed localization technique allowed for better estimation of permeability 
distribution (in terms of discrepancy with the true case) (Figures 3-4). Results tell about potentially good 
implementation of this approach in CLRM. 

 
Figure 3. Initial ensemble (from left to right): a) true permeability distribution; b) ensemble mean; c) 

ensemble diversity (Source: [13]) 

 
Figure 4. Conditioning with temporary localization (from left to right): a) realization closest to the 

true case; b) ensemble mean; c) ensemble diversity. (Source: [13]) 

3.3. Particle Filters 
In the problem with nonlinear system, another method – particle filters offers the solution [14] for 
assimilate data. The main idea of this method is to approximate the prior and posterior probabilities 
using mixture of delta functions. The posterior is approximated by: 

1
( | ) ( ),

n
a

i i
i

p y wθ δ θ θ
=

≈ −∑  (11) 

where a
iθ  are the particles at the update step that are needed to represent the whole state space, iw  are 

the corresponding weights, and n  is the particle size. The particle filter method consists of the following 
steps: 
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Prediction step: The particles a
iθ are evolved forward in time using the dynamical model to obtain 

the forecast estimates θ  at the next time step. The corresponding weights iw  remain the same. 
Filtering step: The particles remain the same. The weights are updated when receiving a new 

observation using Bayes rule. 
Re-sampling step: In practice, the particle filter may have problems related to the weights known as 

weight collapse [14], especially for high-dimensional problems. You may have seen results of 
implementation of particle filtering in work [15] (Fig. 5-6). 
 

 
Figure 5. An initial ensemble of the absolute permeability field (Source: [15]) 

 
Figure 6. Estimates of absolute permeability fields at final time step using PF (Source: [15]) 

As can be seen, the permeability estimate is quite good, but it is necessary to conduct more numerical 
experiments to analyze the effectiveness of particle filters, but however this approach is applicable for 
CLRM. 

4. Conclusions  
Different methods, algorithms and approaches can be applied to assimilate different types of data 
(production data, well test data, seismic data).  

• The most studied approach – Ensemble Kalman Filtering (EnKF) has very good results in data 
assimilation, but there is no sufficient research for evaluation of different schemes of EnKF such 
as: stochastic EnKF, singular evolutive interpolated KF, etc. 
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• Regarding the ensemble smoothing method the following should be noted: more research needed 
for evaluating the spatial/ temporal localization of the gain matrix for preventing ensemble 
collapse and retained ensemble diversity; studies about temporal localization based on the 
maximal extent of the disturbed domain over the entire ensemble; update of the localization 
matrix after each iteration. 

• Particle filters contain the promise of fully nonlinear data assimilation. Method have been applied 
in numerous science areas, including geoscience, however, application of PF to high-dimensional 
geoscience systems has been limited due to its efficiency in high-dimensional systems in standard 
settings. However, huge progress has been made, and this limitation is disappearing fast due to 
recent developments in proposal densities, the use of ideas from (optimal) transportation, the use 
of localization and intelligent adaptive resampling strategies. However, more studies with 
implementation of PF to CLRM are required in the future. 
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