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We study the flavor aspects of proton lifetime estimates in simple grand-unified models, paying
particular attention to their inherent fragility due to the notorious lack of control of some of the key
parameters governing the relevant hard-process amplitudes. Among these, the theoretical uncertainties in
the flavor structure of the baryon-and lepton-number-violating charged currents due to the potential higher-
order effects afflicting the matching of the underlying Yukawa couplings to the low-energy data often play a
prominent role. Focusing on the minimal variants of the most popular unified models, we study the
potential instabilities of the corresponding proton lifetime estimates based on the renormalizable-level
Yukawa fits with respect to the Planck-scale-induced flavor effects. In particular, we perform a detailed
numerical analysis of all minimal SOð10Þ Yukawa sector fits available in the literature and show that the
proton lifetime estimates based on these inputs exhibit a high degree of robustness with respect to
moderate-size perturbations, well within the expected “improvement window” of the upcoming proton
decay searches.
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I. INTRODUCTION

The mortality of protons is one of the most prominent
smoking-gun signals of the idea that strong and electro-
weak interactions may be just different facets of a unified
gauge dynamics at a superlarge (YeV) scale. Since its
conception in mid-1970s [1], there have been a number of
attempts to estimate the proton lifetime at vastly different
levels of accuracy characterized, namely, by the steadily
improving quality of the input data, progress in the field
theory calculation techniques, better understanding of the
hadronic matrix elements, and so on.
With the upcoming generation of dedicated experimental

searches planned with the Hyper-K and/or DUNE facilities
[2,3], which should be able to push the current lower limits
(e.g., τp > 1.4 × 1034 yr in the “golden” p → π0eþ channel
[4]) by asmuch as one order ofmagnitude, the importance of
a good quality prediction becomes particularly pronounced.
From this perspective, the current status of the theory

affairs is far from satisfactory. Barring the nonperturbative
nature of the hadronic layer, even at the level of the

underlying “hard” processes, i.e., with amplitudes featuring
quarks rather than hadrons as initial and final states, good
quality calculations turn out to be an endeavor of enormous
complexity. Indeed, the simple structure of the basic
baryon-and lepton-number-violating (BLNV) vector cur-
rents1 even in the minimal Georgi-Glashow SUð5Þ model
[1], as simple as it reads,

LSUð5Þ ∝ ucγμX†
μQþ ecγμXμQþ � � � ; ð1Þ

encompasses a great deal of arbitrariness (in the mass of the
leptoquark Xμ, to be identified with the grand-unified theory
(GUT) scale MG and, in particular, in the flavor structure
emerging when these currents are recast in the quark and
lepton mass basis) that may be only partially reflected in the
currently accessible low-energy observables.
Concerning the relative impact of uncertainties in these

basic parameters on the proton lifetime estimates, the most
critical of these is the value of MG, which is determined
from the requirement of a proper coalescence of the three
Standard Model (SM) gauge couplings at (about) that scale.
To this end, note that the logarithmic nature of the gauge
running makes even a small error in the low-energy
boundary (or high-scale matching) conditions propagate
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1In this study, we will focus predominantly on the vector-
boson-mediated amplitudes, as those mediated by the colored
scalars are often subleading due to the usual suppression of their
couplings to the first-generation quarks and leptons.
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intoMG exponentially. This, in turn, calls for2 a higher-loop
account of the running effects including the appropriate-
level threshold corrections both atMZ as well as atMG (and
other intermediate scales, if present); needless to say, this is
a highly technically demanding task in practice.
Second in the row is the high degree of uncertainty in the

flavor structure of the BLNV charged currents which is,
namely, due to the generic lack of low-energy access to the
current-to-mass-basis rotations in the sector of right-handed
fermions [as the Cabibbo-Kobayashi-Maskawa (CKM) and
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrices are
combinations of the left-handed ones only]. If no extra
information (such as, e.g., symmetry features of some of
the fermionic mass matrices) is available, the total freedom
in these unitary transformations is usually enough to spread
the outcome of the proton lifetime calculation over many
orders of magnitude.
In this respect, it is remarkable that the classical

showstoppers of the past, namely, the uncertainties in
the hadronic matrix elements, have recently got tamed to
such a degree (with typical errors pulled down to few tens
of percent) that, nowadays, they can be safely placed as
only third in the row; see, e.g., [5] and references therein.
With this basic hierarchy at hand, one can perform a

simple classification of the robustness of the most com-
monly followed strategies in predicting the proton lifetime:
(i) The first attempt usually consists in the renormalization
group analysis of the gauge unification constraints which
provides information aboutMG but often ignores the flavor
structure of the BLNV vector currents, typically because
the scalar sector of the model is not fully fixed or analyzed.
Hence, the uncertainties of thus obtained proton lifetime
estimates are generally huge, stretching over many orders
of magnitude. This, however, to a large extent hinders the
prospects of discrimination among different scenarios.
(ii) Sometimes, a great deal of information may be derived
from the symmetry features of the effective fermion mass
matrices even without performing their detailed fit (usually
very demanding); see, e.g., [6–8]. In specific scenarios like,
e.g., in the minimal realistic SUð5Þ models, this may be
enough to draw rather accurate conclusions about at least
some of the partial decay widths (though often not for the
golden channel p → π0eþ); the potential to discriminate
among such models is obviously much higher then.
(iii) The ultimate achievement would be clearly a full-
fledged combined analysis of the running together with a
detailed Yukawa sector fit. This, however, is very difficult
in practice, and only very few such attempts have been
undertaken in the literature; see, e.g., [9].
Nevertheless, even in the most favorable situation of case

(iii) above, there is often an extra source of large and

essentially irreducible uncertainties plaguing any proton
lifetime estimate obtained in the realm of the simplest
renormalizable models, namely, the effects of the higher-
dimensional effective operators, especially those including
the scalar field(s) (to be denoted Sl) responsible for the
GUT-scale symmetry breaking, i.e., the ones with the
vacuum expectation values (VEVs) of the order of MG.
At first glance, there are a number of such structures to

be considered at the d ¼ 5 level (with the ordering
reflecting their expected “nuisance” power), e.g.,

O1 ≡ κl1X
μνXμνSl=MPl;

O2 ≡ κij;kl2 fifjHkSl=MPl;

O3 ≡ κij;l3 fiDfjSl=MPl;

O4 ≡ κΦ;l
4 DμΦDμΦSl=MPl: ð2Þ

In the formulas above,3 Xμν stands for the gauge field
tensor, fi denote matter fermions, Φ is a generic scalar
field, Hk are scalars over which the SM Higgs doublet is
spanned, and κn denote (generally unknown) Oð1Þ cou-
plings; for the sake of simplicity, the spinorial structure has
been suppressed. It is important to notice that not all of
these are, however, independent structures from the low-
energy effective theory point of view: O3 and O4 may be
removed from the effective operator basis by the use of
equations of motion and/or by integrations by parts; see,
e.g., [10]. Hence, in what follows, we shall focus entirely
on the O1 and O2 types of the d ¼ 5 structures.
Despite that, in the broken phase, they usually affect their

renormalizable-level counterparts (namely, the gauge-
kinetic forms and the Yukawa couplings) at only a
relatively small—of the order of 1%—level (given by
the typical ratio of hSi ∼MG ∼ 1016 GeV and the Planck
scale MPl ∼ 1018 GeV), they can have truly devastating
consequences for the robustness of the renormalizable-level
results4; see, e.g., [11]. To this end, the most dangerous is
O1, which has been studied thoroughly in many works; see,
e.g., [12,13]. Its main effect, i.e., an inhomogeneous shift in
the high-scale gauge matching conditions, can inflict a

2Let us note that the uncertainty in the low scale value of the
strong coupling induces a bigger error than omitting the three and
higher loop contributions to the gauge running; hence, at the
moment, two-loop precision is the maximum one can do.

3In the broken phase, the impact of these operators may
be roughly characterized as a gauge-kinetic-form-altering
operator (O1), a Yukawa-altering structure (O2), a gauge-
vertex-like correction (O3), and a scalar-kinetic-form-altering
operator (O4Þ, respectively.4Remarkably, both O1 and O2 enter the proton lifetime
prediction business in more than one way; for instance, O1

affects not only the mass of the vector and scalar mediators
determined from the gauge unification constraints but also the
value of the unified gauge coupling; similarly,O2 inflicts not only
changes in the unitary matrices diagonalizing the masses and,
hence, in the BLNV vector currents coupled to the relevant vector
mediators, but at the same time, it directly affects also the color
scalar triplet couplings to matter and, hence, the scalar-driven
transitions.
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significant shift in the exponent of the functional depend-
ence of the MG=MZ ratio which, even for 1% shifts in the
matching, may change MG by as much as an order of
magnitude and, hence, alter τp by several orders.
Concerning O2, there are many studies in the literature

(like, e.g., [14–16]) in which nonrenormalizable contribu-
tions to the Yukawa couplings have been added to an
originally renormalizable Lagrangian on purpose, usually
with the aim to save a renormalizable model suffering from
a badly nonrealistic Yukawa sector [like in the minimal
SUð5Þ model [1] ]. Needless to say, this approach is
orthogonal to the line of thought we want to pursue here,
namely, focusing on the potential impact of a priori
unknown Planck-suppressed operators on the existing
renormalizable-level predictions, hence, testing their over-
all robustness.
In this study, we concentrate on the stability of the tree-

level gauge-boson-mediated contributions to the proton
decay in the simplest renormalizable unified models based
on the SUð5Þ [1], SOð10Þ [17], and also flipped5-SUð5Þ
[18–20] gauge groups with respect to several types of
uncertainties, either due to the lack of any (or part of the)
information about their flavor structure or due to the
presence of only mildly suppressed (up to the order of
1%) Planck-scale-induced operators of the O2 type above.
To this end, we first (in Sec. II) recapitulate the generic

analytic observations made by Dorsner and Fileviez-Perez
[6–8] in the realm of the simplest SUð5Þ, flipped-SUð5Þ,
and SOð10Þ scenarios and complement them with an
explicit numerical simulation of the relevant formulas
revealing, e.g., extra room for large cancellation effects
in SOð10Þ GUTs; we will show how these can in some
cases boost the uncertainties beyond naive expectation. In
Sec. III, we consider a few specific types of renormalizable-
level proton lifetime estimates and assess their generic
robustness with respect to the effects inflicted by the
possible presence of the MPl-induced Yukawa-altering
d ¼ 5 nonrenormalizable operators. To this end, we espe-
cially focus on a thorough numerical analysis of the
stability of the flavor structure of the BLNV currents
corresponding to a variety of existing renormalizable-level
Yukawa-sector fits [21–25] in the minimal SOð10Þ and its
variants.

II. FLAVOR STRUCTURE OF TREE-LEVEL
GAUGE-MEDIATED AMPLITUDES

A. Partial decay widths

Focusing on tree-level amplitudes mediated by heavy
vector bosons arising from terms like (1) in the Lagrangian,

the relevant partial proton decay widths can be written
as6 [26]

Γðp → π0eþβ Þ ¼ Cπfjcðeβ; dCÞj2 þ jcðeCβ ; dÞj2g; ð3Þ

Γðp → ηeþβ Þ ¼ Cηfjcðeβ; dCÞj2 þ jcðeCβ ; dÞj2g; ð4Þ

Γðp → K0eþβ Þ ¼ CKB2
1fjcðeβ; sCÞj2 þ jcðeCβ ; sÞj2g; ð5Þ

Γðp → πþν̄Þ ¼ 2Cπ

X3

l¼1

jcðνl; d; dCÞj2; ð6Þ

Γðp → Kþν̄Þ ¼ CK

X3

l¼1

jB2cðνl; d; sCÞ þ B3cðνl; s; dCÞj2;

ð7Þ

where incoherent summation over the neutrino flavors is
performed, since the neutrinos in the final state are not
detected; for similar reasons, it is also summed over the
chirality of the charged leptons in the final state. The
definition of the flavor-independent prefactors Cπ , Cη, CK ,
and B1;2;3 is postponed to Appendix A; let us focus here on
the flavor structure of the partial widths determined by the c
amplitudes

cðeα; dCβ Þ ¼ k21ðU†
CUÞ11ðD†

CEÞβα þ k22ðD†
CUÞβ1ðU†

CEÞ1α;
ð8Þ

cðeCα ; dβÞ ¼ k21½ðU†
CUÞ11ðE†

CDÞαβ þ ðU†
CDÞ1βðE†

CUÞα1�;
ð9Þ

cðνl;dα;dCβ Þ¼ k21ðU†
CDÞ1αðD†

CNÞβlþk22ðD†
CDÞβαðU†

CNÞ1l;
ð10Þ

where ki ¼ gG=ð
ffiffiffi
2

p
MiÞ with gG denoting the universal

gauge coupling at the GUT scale and M1;2 encoding the
masses of the heavy vectors with the SUð3Þc × SUð2ÞL ×
Uð1ÞY quantum numbers ð3; 2; 5=6Þ and ð3; 2;−1=6Þ,
respectively. In the flipped-SUð5Þ scenario, only the latter
is present and, hence, k1 ¼ 0; similarly, k2 ¼ 0 in the case
of the ordinary SUð5Þ. In the SOð10Þ GUTs, both k1;2
are nonzero. The unitary rotations entering the coefficients
(8)–(10) are defined as

Ydiag
d ¼ DT

CYdD; Ydiag
u ¼ UT

CYuU;

Ydiag
e ¼ ET

CYeE; Ydiag
ν ¼ NT

CYνN; ð11Þ
5The reason we consider the nonsimple flipped SUð5Þ gauge

theory along with the “truly” grand-unified SUð5Þ and SOð10Þ
scenarios is, namely, its interesting flavor structure and the fact
that it appears along with the latter two in the “classical” articles
[6–8] on which this study elaborates.

6We assume here that neutrinos are Majorana and some form
of a seesaw mechanism is in operation; hence, νR is too heavy to
be produced in proton decay. Should neutrinos be Dirac, the
sensitivity of the proton widths is less pronounced; see e.g., [6].
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or, generically, Ydiag
f ¼ FT

CYfF, where Yf are the relevant
effective SM Yukawa matrices [in the right-left (RL) basis]
which, in their diagonal form Ydiag

f (and after multiplication
by the electroweak VEV), yield the physical masses of the
fermions of type f at MG. Let us note that if some of the
mass matrices happen to be symmetric (as, e.g., in the case
of Majorana neutrinos), then the left-handed (LH) and
right-handed (RH) rotations are identical.
Up to a possible multiplication by phase factors, the LH

rotations in (8)–(10) are correlated to the physical CKM
and PMNS matrices, respectively, via

VCKM ¼ K1U†DK2 ≡ K1ṼCKMK2; ð12Þ

VPMNS ¼ K3E†NK4 ≡ K3ṼPMNSK4; ð13Þ

where the tilded quantities correspond to their “raw” form,
i.e., the form before the freedom in the phase redefinition of
the fermionic fields7 has been exploited. Note that, in
general, these are also the only experimental constraints on
the rotations in (11) one has; without extra information
about the flavor structure of a particular model, UC, DC,
and EC (assuming Majorana ν’s) are completely free.

B. Model-independent constraints

With this information at hand, a number of semianalytic
observations about the relative sizes of the uncertainties
plaguing the partial widths (3)–(7) due to the lack of grip on
most of the flavor structures therein have been made [6,7]
even without any extra model-dependent assumptions on
the shape of the mixing matrices in (11). In particular, the
question of whether the total proton decay width8 can be
zeroed out, i.e., whether the proton decay can be “rotated
away,” was addressed.
Remarkably enough, in the case of the flipped SUð5Þ

unifications where k1 ¼ 0 and k2 ≠ 0, all the amplitudes
(8)–(10) can be indeed pushed to zero [7] if one arranges
for ðU†

CEÞ1α ¼ 0 for α ¼ 1, 2 and ðD†
CDÞβα ¼ 0 for the

combinations fβ;αg ¼ f1; 1g; f1; 2g; f2; 1g. This can be
done easily if there is no correlation among the LH and RH
rotations which, however, may not be the case in the most
minimal models; see below.
On the contrary, in the standard SUð5ÞGUTs where k1 ≠

0 and k2 ¼ 0, the nonzero value of the jðVCKMÞ13j element
forbids one to rotate the proton decay away [7]; however,
the small size of this parameter admits up to aboutOð10−3Þ

suppression of the amplitudes (8)–(10) and, hence, up to
some Oð10−6Þ suppression of the total decay width (see
Fig. 1). Consequently, the proton decay can be “hidden”
from the current experiments even if the unification scale
would be as low as 1014 GeV [6].
In the case of SOð10Þ unifications with k1 ≠ 0 and

k2 ≠ 0, one would naively expect similar lower bounds on
the amplitudes (8)–(10) which, in turn, might suggest the
same Oð10−6Þ maximum suppression of the total proton
decay width. However, with both k1 and k2 at play,
destructive interference effects may sometimes occur in all
the coefficients (8)–(10) which would make the total proton
decaywidth even smaller than that; see Fig. 1 for a numerical
simulation (with M1 ¼ M2 assumed for simplicity9).

C. Minimal renormalizable settings

In scenarios in which the scalar sector is specified, extra
correlations among the flavor rotations (11) are often in
operation. If, for instance, some of the Yukawa matrices
happen to be symmetric, the RH and LH rotations are
strongly correlated and significant simplifications may
occur in formulas (8)–(10).
Namely, in the original Georgi-Glashow SUð5Þ model

[1], the symmetry of the fermionic 10 ⊗ 10 bilinear in the
flavor space implies that the up-quark Yukawa matrix is
symmetric and, hence, U ¼ UC. In this case, the partial
widths with (unidentified) neutrinos in the final state

44

42

40

38

36

34

FIG. 1. The total proton lifetime for different choices of the
flavor-dependent coefficients (8)–(10) is displayed for different
gauge groups (with M1;2 ∼ 0.3 × 1016 GeV generally assumed
in order for the current Super-Kamiokande (SK) bound on the
partialwidth in thep → π0eþ channel to be saturated in theSOð10Þ
case; see also Fig. 2). The red bars correspond to “minimal”
renormalizable scenarios which, in all cases of our interest, feature
extra correlations among the relevantmixingsdue to, e.g., symmetry
of the underlying Yukawa matrices in certain sectors; see Sec. II C.
In the case of the blue bars, no such correlations are assumed.

7HereK1 andK3 contain three phases,K2 contains two phases,
and K4 is a unit matrix in the case of Majorana neutrinos or
contains up to two phases if they are Dirac.

8Here it is implicitly assumed that the rates into final states
with higher spin mesons will be suppressed; moreover, their
flavor structure is essentially the same as for the spin zero modes
(3)–(7), and, hence, qualitative changes of the results are not
expected.

9This is justified by the fact that forM1 ≪ M2 orM1 ≫ M2 one
of the two previously discussed cases is effectively recovered.
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become entirely driven by the CKM matrix elements [27],
and the uncertainty in the total proton lifetime shrinks
considerably as depicted in Fig. 1. On the other hand, the
basic SUð5Þ flavor structure considered above should be
extended in order to deal with the down-type-quark–
charged-lepton degeneracy issues [and other notorious
problems of the simplest SUð5Þ unifications concerning,
e.g., the unification of gauge couplings or nonzero neutrino
masses]. New fields (such as 45-dimensional scalar repre-
sentation [28,29]) and/or higher-dimensional operators
[14,16,30] are usually employed for that sake. In either
case, the exact symmetry of Yu is lifted. For this reason, the
red bar for SUð5Þ unifications in Fig. 1 is to be taken as
purely illustrative.
In the flipped SUð5Þ scenario, the RH quark field dC is

swapped with uC, and, hence, it is the down-type Yukawa
that gets symmetric in the minimal settings which implies
D ¼ DC. This leads [27] to very simple relations

Γðp → πþν̄Þ ¼ 2Cπk42;

Γðp → Kþν̄Þ ¼ 0 ð14Þ
and, consequently, to a significant reduction of the uncer-
tainty in the proton lifetime estimates; see Fig. 1. Let us
emphasize that in the case of flipped SUð5Þ the constraint
D ¼ DC is satisfied also by fully realistic models including
all necessary ingredients like, e.g., nonzero neutrino
masses [31,32].
In the case of the renormalizable SOð10Þ unifications,

the minimal potentially realistic choice of the scalar fields
shaping the Yukawa sector corresponds to a 10-dimen-
sional vector and a 126-dimensional 5-index antisymmetric
self-dual tensor. Both these yield symmetric Yukawa
couplings,10 and, thus, all RH rotations in (11) are strongly
correlated with the LH ones. This leads to [8]

Γðp → πþν̄Þ ¼ 2Cπfk41jðVCKMÞ11j2 þ k42

þ 2k21k
2
2jðVCKMÞ11j2g;

Γðp → Kþν̄Þ ¼ CKk41ðB2
2jðVCKMÞ11j2 þ B2

3jðVCKMÞ12j2Þ:

Again, the uncertainty in the total proton lifetime shrinks
enormously; see Fig. 1.

D. Two-body p-decay amplitudes with
a charged lepton in the final state

Unlike for the (anti)neutrino channels above, the ampli-
tudes of the two-body partial proton decay widths with

a charged lepton in the final state are generally driven
by nontrivial combinations of the mass-diagonalization
matrices (11) with only an indirect11 connection to the
low-energy flavor observables.
Hence, in order to get any theoretical grip on these

channels, one must resort to a specific model and construct
a detailed map of all possible phenomenology-compatible
flavor patterns, i.e., a complete set fF;FCgwith F ¼ U,D,
E, N defined in (11). Technically, this information can be
obtained from a thorough analysis of the fits of the Yukawa
structure underlying the quark and lepton mass matrices
Mf. For each such setting, the relevant amplitudes can then
be fully reconstructed and, if desired, extremized over the
entire set of such configurations.
This, however, is a highly nonlinear game, and, thus, in

most cases [21–25], the authors resort to the renormalizable-
level approximation in which one typically deals with a
limited number n of independent Yukawa matrices Yk of the
d ¼ 4Yukawa Lagrangian entering the renormalizable-level
matching conditions for the effective low-energy couplings
Ỹf in the form (no summation over f ¼ u; d;l; ν, generation
indices suppressed)

Ỹf ¼
1

v

X

k∈D4

ckfv
k
fY

k ≡ Yf: ð15Þ

Here v denotes the electroweak VEV serving merely as a
normalization factor, vkf stand for the projections of the SM
Higgs VEV onto the underlying-theory doublets Hk that
couple to the fermionic bilinears at the d ¼ 4 level, and ckf
cover all remaining constant Oð1Þ numerical factors
(Clebsches, symmetry coefficients, and so on). It is clear
that if D4, the set of indices corresponding to the doublets
relevant at the d ¼ 4 level is small (i.e., if the number of such
doublets is less than 4), the fits of Yf ’s in terms12 of Yi ’s may
be quite nontrivial, fF;FCg strongly constrained, and, thus,
the theory predictive.

III. D= 5 PLANCK-SCALE FLAVOR EFFECTS

In reality, however, the renormalizable-level fits may be
incomplete, because the effective Yukawa matrices may be
affected by physics at the Planck-scale MPl which, in the
effective theory picture, may enter the game by means
of nonrenormalizable d > 4 operators. For instance, the

10Note that this holds irrespective of whether the scalar 10 is
real or complex. On the practical side, however, the former option
was shown to be unrealistic from the flavor structure point of
view [33] (unless an extra 120 is added on top of the 10 ⊕ 126
structure; see [34]); thus, in what follows, we shall entertain the
case with a complex 10 only.

11Sometimes such a connection may not even be made at
all—a classical example would be the lack of constraints for the
flavor structure of the RH leptoquark currents in models with
Yukawa couplings featuring no extra symmetries.

12The fundamental doublet projections vif are, in principle,
calculable functions of the scalar potential parameters and,
usually, turn out to be correlated among themselves. An extreme
example of this is the situation in the minimal supersymmetric
SOð10Þ model [35] which was eventually discarded [36,37] just
due to such correlations.
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presence of the d ¼ 5 operators of the Yukawa type [class
O2 in the list (2)] inflicts additional shifts in the relevant
matching conditions between the effective (running)
low-energy Yukawa couplings Yf and the underlying
GUT-theory couplings in the form

Ỹf ¼Yf ðat d¼ 4Þ→ Ỹf ¼YfþΔYf ðat d> 4Þ; ð16Þ

where ΔYf may be schematically written as (again, no
summation over f and no generation indices)

ΔYfv≡
X

k∈D5

X

l∈S5

κklcklf v
k
f
hSli
MPl

: ð17Þ

Here themeaning ofvkf is the same like above,D5 is the set of
relevant doublet indices that is summed over [note, however,
that D5 is not13 necessarily the same as D4 in (15)], S5
indexes the SM singlets with GUT symmetry breaking
VEVs, κkl are the coefficients of the relevant d ¼ 5 operators
as in (2), and, as before, cklf cover all the remaining numerical
factors.
Comparing (15) with (17) and assuming that the coef-

ficients cklf and κkl are at most Oð1Þ, one may expect that
the Planck-induced contributions ΔYf to the full effective
Yukawa coupling Ỹf in (16) should typically come with an
additional MG=MPl ∼Oð10−2Þ factor.
Although such correctionsmaynaively appear to be small,

they maymake the matrices diagonalizing the complete Ỹf’s
(which we shall from now on denote by fF̃; F̃Cg) signifi-
cantly different from those obtained at the d ¼ 4 level
(denoted by fF;FCg). The point is that the entries of the
Yf matrices (and, most importantly, their eigenvalues) are
often smaller than OðMG=MPlÞ ∼Oð10−2Þ; hence, even an
Oð10−2Þ correction can be enough to change the shape of the
“small” part of the Yukawa matrix completely (we further
elaborate on the formal aspects of this in Appendix B).
On the other hand, even though the two sets of rotation

matrices fF;FCg and fF̃; F̃Cg may look dramatically
different, the resulting partial proton decay widths may
still be rather similar, since the relevant formulas (3)–(7)
depend only on their specific products, and, as we shall see,
in some cases there may be reasons to expect significant
cancellations of such d > 4 effects.

A. Robustness of the renormalizable-level p-decay
estimates with respect to d > 4 effects

At first glance, it may seem rather hopeless to attempt to
say anything general enough to be interesting about the

possible differences of the two sets of matrices fF;FCg and
fF̃; F̃Cg—either (i) one fits the effective Yukawa matrices
in a renormalizable model and then has little or no grip onto
a typically yet larger set of the higher-order operators, or
(ii) one includes nonrenormalizable operators into the game
right away (because it may be necessary to do so—
otherwise, no consistent parameter-space points may be
found at all; see, e.g., [30,38–40]) and then, naturally, never
asks about the renormalizable case because it makes
little sense.
The main scope of this work is to argue that the situation

corresponding to the case14 (i) above may be slightly more
subtle, and, in fact, under some circumstances, one may say
something sensible about the robustness of the p-decay
estimates based on the renormalizable-level Yukawa sector
fits even without a detailed knowledge of the structure of
the higher-dimensional contributions therein.

1. First look: The problem in full generality

Let us start with assuming for the moment an ideal world
in which we have enough computing power to generate all
(with perhaps some given granularity in practice) fits of the
effective Yukawa matrices Ỹf in terms of the underlying
renormalizable-level Yukawa couplings subject to sum
rules dictated by the unified model under scrutiny and
perhaps even more power to repeat the same exercise for
the more complicated d > 4 case.
The former, in other words, amounts to getting first all

possible structures of Yk ’s in (15) associated to all
attainable configurations of vl ’s which, in the d ¼ 4 case,
yield the Ỹf’s that (after the necessary renormalization
group evolution to our energies) encode the desired spectra
of the SM fermions together with their mixing in the
charged-current interactions (also known as the CKM and
PMNS matrices). With these at hand, one would then easily
derive the complete set of the possible fF;FCg matrices
which shall be eventually used to estimate the proton
lifetime and, in particular, the associated theoretical
uncertainty corresponding to the fact that the low-energy
data cannot pinpoint the “true” solution among all these
possibilities. In the second step, one repeats the same
exercise with just a little bit more of freedom due to the
presence of the extra couplings corresponding to the d > 4

operators and derives all possible fF̃; F̃Cg associated to
these “extended” fits together with the relevant proton
lifetime estimates.
Given this, it is immediately clear that
(i) the set F of all thus obtained “realistic” fF;FCg is a

subset of the set F̃ of all “realistic” fF̃; F̃Cg;
(ii) without any specific constraint on the size of the

higher-order operators, the set of the realistic
13At d ¼ 5 there may be contributions in (17) from scalar

multiplets containing SM doublets that would not be present in
(15) and vice versa. As an example, consider the 126 and 210
scalars in SOð10Þ—the latter irrep can, indeed, couple to the
fermionic bilinears only at the d ¼ 5 level.

14For obvious reasons, we do not intend to elaborate on case
(ii) here.
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fF̃; F̃Cg may be so large that one effectively loses
any grip on the vector leptoquark interactions and,
subsequently, the theoretical uncertainties of the
proton lifetime estimates within such scenarios
rocket (and, hence, exhibit the behavior depicted
by the blue bars in Fig. 1).

The point we will try to make is that, in some cases, even a
simple extra assumption such as an additional Oð10−2Þ
suppression associated to each subsequent step on the
effective operator ladder, in conjunction with specific
features of the renormalizable-level fits such as their
symmetry in the generation space, may be enough to
correlate F̃ to F to such a degree that the proton lifetime
estimates obtained within the humble d ¼ 4 approach may
actually represent a very good approximation to the “true”
(i.e., full theory) predictions.

2. The trick: Small perturbations and continuity

Needless to say, the program sketched in the previous
part (i.e., obtaining the sets F and F̃—both complete—and
comparing the spans of the associated proton lifetime
estimates in order to assess the robustness of those based
only on F ) is intractable.15 However, for small jΔYfj ≲
10−2 (for all f’s), the task to learn something about F̃ can
be accomplished even without embarking on its full
determination by assuming continuity in the change of
the fitted renormalizable-level Yukawa couplings as func-
tions of the size of the nonrenormalizable contributions.
Technically, what we have in mind is that the full F̃ set

obtained upon fitting the complete nonrenormalizable
structure Yf þ ΔYf with no assumptions made on Yf

and ΔYf [besides the smallness of the latter; see (16)]
will be essentially16 the same as the set F̃ 0 obtained by
fitting a slight variation of the original formula, namely,
Yf þ ΔYf → Y 0

f þ ΔY 0
f ≡ Ỹ 0

f, where Y
0
f is assumed to run

over the set of all good fits of the renormalizable-level
case only.
The point is that due to the continuity assumption the

choice of specific Y 0
f’s instead of a fully general Yf inflicts

only a small change in the structure from which F̃ would
have been derived. Indeed, this change can be modeled by a
mere reshuffling of the set of the Planck-scale-induced
corrections that would have to be summed over anyway to
get the complete F̃ (indeed, ΔY 0

f ¼ ΔYf þ Yf − Y 0
f); in

this respect, the Yf → Y 0
f and ΔYf → ΔY 0

f replacements

qualitatively correspond to a mere choice of a specific
reference element in the set of all possible d > 4 contribu-
tions.17 Needless to say, this leads to an enormous simpli-
fication of the general problem described in Sec. III A 1, and,
as such, it represents the central point of this study (and, in
fact, the very key to its practical feasibility). Hence, we may
simplify our life in mapping the F̃ set by reformulating the
general exercise described in Sec. III A 1 into a much more
tractable one of employing only the specific shapes of the
renormalizable-levelYukawa couplings corresponding to the
renormalizable-level fits while keeping fully general (i.e.,
unspecified but small) only the d > 4 contributions. Thus
obtained F̃ 0 should be essentially the same as F̃ .
In conclusion, what one should do in practice is to take

all possible renormalizable-level fits Y 0
f of the effective

Yukawa structure of the given model; then, for each such
Y 0
f, construct the sums

Ỹ 0
f ¼ Y 0

f þ ΔY 0
f ð18Þ

with all ΔY 0
f’s obeying jΔY 0

fj≲OðMG=MPlÞ ∼Oð10−2Þ,
take all cases in which Ỹ 0

f’s happen to give the right SM
fermion masses and mixings (as Y 0

f do by construction),
and, eventually, derive and save the corresponding
fF̃0; F̃0

Cg’s. These will be, subsequently, used as inputs
of a refined p-decay analysis in the models of interest.

3. Further comments

There are perhaps a few more comments worth making
here: First, it may well be the case that the complete set of
all possible renormalizable-level fits that the trick above
relies on may not be fully available, as its determination
represents a formidable task on its own. To this end, in what
follows, we shall do what we can; i.e., we shall take a look
onto just a specific (and small) set of popular and simple
enough scenarios and, within these, confine ourselves to all
available sets of Y 0

f ’s that may be found in the correspond-
ing literature. In this sense, the results presented in the next
section may not be completely general; nevertheless, they
are not useless, as they admit to estimate the robustness of
at least the existing proton lifetime calculations based on
the renormalizable-level flavor fits.
Second, the entries of the individual ΔYf’s of Eq. (17)

may be, in general, further restricted due to the extra
symmetries of the underlying effective operators in the
generation space. Out of the restrictions of this kind, the
case with both Yf and ΔYf symmetric for certain f’s is of

15Besides intractability, it does not even make sense to do that,
because with the complete F̃ at hand nobody would care about F
anymore.

16One may argue that in this way we are mapping the F̃ set
corresponding to 2ε rather than the original ε size of the d > 4
perturbations. This is true, but, at the same time, we do not really
care because in the semiqualitative discussion to follow this
makes no significant difference.

17One may wonder if the set F̃ 0 is not subject to an extra
restriction compared to F̃ due to the fact that Y 0

f and Ỹ 0
f ¼

Y 0
f þ ΔY 0

f must have the same generalized eigenvalues in order to
yield correct fermion masses. However, Lemma 3 in Appendix B
suggests that arranging for the correct generalized eigenvalues [up
to the order of Oðε2Þ] does not restrict the set fF̃0; F̃0

Cg at all.
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most interest, since, in such a case, also the effective
Yukawa couplings of Eq. (16) inherit this symmetry.
Consequently, the set fF̃0; F̃0

Cg has the simplified structure
described in Sec. II C, and the total proton lifetime
uncertainties are contained within the red bars in Fig. 1.
Remarkably, this is the case for the SOð10Þ GUT featuring
the 10- and 126-dimensional Yukawa active scalars with
the first-stage gauge symmetry breaking driven by the 54-
dimensional scalar18 (see, e.g., [9] for a recent study
including the Yukawa sector fits). Such a situation is,
however, rather exceptional. For instance, if the SOð10Þ
gauge group was broken by 45 instead, ΔYf’s would
contain also an antisymmetric part due to the presence
of the 120-dimensional representation in the product
45 ⊗ 10. As already mentioned in Sec. II C, the situation
is similar in the case of the simplest SUð5Þ unifications,
where the d ¼ 5 nonrenormalizable operators destroy
the symmetry of the up-type quark Yukawa matrix
(see, e.g., [30]). Thus, in what follows, we decide not to
impose any extra generation-space symmetries onto the
ΔYf’s of Eq. (17).
Third, the ΔYf’s of Eq. (17) may be, in principle, further

correlated across different flavors (i.e., f’s) due to their
common origin from a potentially limited set of available
d > 4 effective operators. Such correlations are, however,
strongly model dependent; therefore, we choose to ignore
such nuances in the current analysis. This means that our
results may be viewed as corresponding to the most
pessimistic situation, and, in reality, the uncertainties of
the proton decay estimates within specific scenarios may be
smaller. If, on the other hand, the partial proton decay
widths turn out to exhibit a certain degree of robustness
with respect to the uncorrelatedOðMG=MPlÞ perturbations,
the same behavior should be reflected also in the real, i.e.,
more constrained case.
In this respect, the approach of imposing no extra

constraints onto the shapes of ΔY 0
f ’s (besides their small-

ness) is perhaps the only strategy which can, on one hand,
reflect the specifics of the underlying renormalizable-level
fits and, at the same time, save thus obtained results from
any further model-dependent assumptions.

4. The numerical approach

Let us now describe the technical aspects of the
numerical analysis of Eqs. (18).
Since both Y 0

f and Ỹ 0
f are assumed to yield the same

physical masses (see Sec. III A 2), one finds

Ydiag
f ¼ F0T

C Y
0
fF

0 ¼ F̃0T
C Ỹ

0
fF̃

0:

The perturbation ΔY 0
f can be, hence, expressed in terms of

the varied rotation matrices F̃0 and F̃0
C. Note that it is more

convenient to search through the space of the unitary
matrices F̃0 and F̃0

C instead of the perturbations ΔY 0
f, since

then the constraints regarding the CKM and PMNS
matrices (12) and (13) can be easily implemented.
Consequently, our strategy is to exploit the set of all
possible shapes of F̃0 and F̃0

C satisfying (12) and (13)
and to check only subsequently whether the resulting
perturbation of the Yukawa matrix is as small as required,
i.e., whether

jΔY 0
fj ¼ jF̃0�

CY
diag
f F̃0† − Y 0

fj≲ 10−2 ð19Þ

is satisfied for f ¼ u, d, e.19

Finally, let us comment on the choice of the renormaliz-
able fits that serve as Y 0

f’s in (18). In the case of the SOð10Þ
unifications, exact shapes of the fitted Yukawa matrices are
available in the literature [21–25]; these served as inputs for
Y 0
f’s in our numerical analysis.
On the other hand, to our best knowledge, for neither the

SUð5Þ nor the flipped SUð5Þ models is any reasonably
exhaustive classification of working fits of Yukawa sectors
of the minimal potentially realistic and renormalizable
scenarios available in the literature. Nevertheless, it may
still be interesting to check how much the set fF̃0; F̃0

Cg
varies from fF0; F0

Cg corresponding to a set of essentially
random choices of Y 0

f ’s which, however, are still assumed
to respect at least the basic symmetry properties inherent to
the minimal models20; see Sec. II C. In the case of the
flipped SUð5Þ, symmetric Y 0

d was always assumed for the
starting point, while in the case of the ordinary SUð5Þ both
symmetric and nonsymmetric versions of Y 0

u were checked,
since, in realistic models, the latter options is usually
realized as explained in Sec. II C.

18Indeed, in SOð10Þ one has 10 ⊗ 54 ¼ 10 ⊕ 210 ⊕ 320 and
126 ⊗ 54 ¼ 126 ⊕ 1728 ⊕ 4950, and the only representations
which can be contracted to form a singlet at d ¼ 5 with two 16-
dimensional fermion representations in these sums are 10 and
¯126; this then yields symmetric Yukawa couplings. The Planck-

suppressed operators of the type O2 in (2) with H ¼ 10=126 and
S ¼ 54 would then imply that all ΔYf’s are also symmetric.

19We constrain the matrix N in (11) only by the PMNS matrix
relation (13), since Yν is usually computed from different Yukawa
couplings according to some type of seesaw mechanism, and the
corresponding constraints on ΔYν would be more complicated
and model dependent. This follows our strategy to consider the
“worst case” scenario; in reality, the true uncertainties in the
corresponding proton lifetime may be more constrained. More-
over, since the channels with neutrinos in the final state are
always incoherently summed over in (3)–(7), we do not expect
that further constraining N would have any significant effect.

20In practice, the relations (11) were used; i.e., the diagonal
part Ydiag

f was inferred from the Yukawa coupling running in the
given model, and random F̃0 and F̃0

C satisfying the constraints on
CKM and PMNS matrices (12) and (13) were chosen.
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B. Results

1. Simplest SO(10) GUTs

Given their relatively rigid Yukawa structure, the SOð10Þ
GUTs provide an ideal setting for us here, since a decent
number of renormalizable-level Yukawa fits available in
the literature can serve as a starting point for our
numerical analysis. In total, eight different Yukawa sector
fits for nonsupersymmetric SOð10Þ models available in
Refs. [21–25] were studied. In all these fits, 10H was taken
as complex, typically due to an extra Peccei-Quinn [41] type
of a symmetry imposed. We considered both the cases when
only the 10H ⊕ 126H “Yukawa-active” Higgs fields have
been taken into account (and, hence, the renormalizable-level
mass matrices were symmetric) and also when the antisym-
metric contributions due to the presence of 120H were added;
however, no significant qualitative differences among the
two types of scenarios were observed. As an example, the
scan over the space of possible Yukawa matrix perturbations
based on the fit obtained in Ref. [22] considering the 10H ⊕
126H Higgs sector and the normal neutrinomass hierarchy is
presented in plots in Figs. 2–4.
When computing the partial proton decay widths, M1 ¼

M2 ∼ 0.3 × 1016 GeV was fixed for which the current SK
bound on the proton lifetime in the golden channel p →
π0eþ is just saturated. The uncertainty in the (inverse)
partial proton decay widths or their sums was then plotted
against the maximum size of the perturbations (19):

jΔYj≡ max
f¼u;d;e

jΔY 0
fj: ð20Þ

The spread in the individual (inverse) partial proton
decay widths was observed to be large for a wide range of
jΔYj≲ 10−2; see Fig. 2 for the example of the golden
channel p → π0eþ. This, unfortunately, means that, even
with a fit to the Yukawa sector at hand, robust predictions
for the individual decay channels are, in general, impos-
sible. The same behavior with large uncertainties was
observed also if it was summed over all the partial widths
with the charged leptons in the final state. On the other
hand, the situation became much more favorable when the
neutrino channels were summed over as shown in Fig. 3.
Let us note that this behavior can be understood by
recalling that it is summed over the neutrino species in
the final state for the neutrino channels, whereas the
production of the τ lepton is kinematically forbidden
and, hence, there is more room for “rotating away” the
proton decay to the unobservable sector in the charged
lepton case.
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FIG. 2. The p → π0eþ partial proton lifetime in the case of the
SOð10Þ unifications as a function of the size of the Planck-
induced perturbations jΔYj (20). The renormalizable-level setting
of the Yukawa matrices Y 0

f corresponds to the fit explicitly given
in Ref. [22], where the 10H ⊕ 126H Higgs content and the
normal neutrino mass hierarchy are assumed. Similar behavior
with a large spread of the partial proton lifetime values was
obtained also for other individual decay channels and also when
other fits in Ref. [22] served as the initial point.
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FIG. 3. The inverse of the sum of the partial p → Xþν̄ decay
widths for X ¼ π, K in the case of the SO(10) unifications (the
same renormalizable-level point as in Fig. 2 was used, and again
similar behavior was observed also for other initial settings based
on fits from Ref. [22]). Note, however, that the behavior of the
individual neutrino-final-state channels is similar to the situation
for the golden channel (see Fig. 2).
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FIG. 4. The total proton lifetime in the case of the minimal
SOð10Þ unification.
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The particular robustness of the decay modes with
neutrinos in the final states is subsequently reflected in
the robustness of the total proton lifetime in SOð10Þ
unifications; see Fig. 4. This is due to the fact that, in
this scenario, these partial widths are never significantly
suppressed with respect to those into charged leptons.

2. Flipped SU(5) unifications

As explained above, the lack of dedicated fits of the
Yukawa structure for this class of unification models lead
us to choosing a random starting point when the stability of
this scenario with respect to the Planck-scale corrections
was examined. Remarkably, the qualitative behavior was
independent of the starting point choice; hence, we believe
that also the results regarding the flipped SUð5Þ unifica-
tions are worth presenting here.
As shown in Fig. 5, for jΔYj only slightly below 10−2, a

significant instability of proton lifetime estimates based on
the purely renormalizable structure was revealed. This
supports the observation of Ref. [7] that the proton decay
can be indeed rotated away in the flipped SUð5Þ scenarios,
although at the renormalizable level the predictions seem to
be rather robust [see Eqs. (14)].
On the other hand, since in the simplest flipped SUð5Þ

models21 the unified gauge group is broken by a scalar
representation charged with respect to the Uð1ÞX gauge
group, one easily finds that the d ¼ 5 Yukawa-affecting

operators like O2 in (2) are absent. Consequently, the first
Planck-induced structures that may generate uncontrolled
shifts in the underlying Yukawa couplings emerge only at
the d ¼ 6 level; hence, their size is expected to be of the
order of 10−4. As can be seen in Fig. 5, for such jΔYj the
uncertainty in the total proton decay width becomes
reasonably constrained, which means that, in the end,
the proton lifetime estimates in the minimal flipped
SUð5Þ scenarios are particularly robust.

3. SU(5) GUTs

Similarly as in the case of flipped SUð5Þ unifications,
also for ordinary SUð5Þ we had to rely on a random
renormalizable ansatz for the Yukawa matrices Y 0

f in our
numerical analysis. Contrary to the flipped SUð5Þ case,
however, the realistic renormalizable models do not feature
any symmetric Yukawa matrices (see Sec. II C); hence,
starting points with U ≠ UC were assumed, in general. For
different initial settings of this type, no common feature
was observed—even the total proton decay width could be
spread over several orders of magnitude for certain choices
of the starting point, although, on the other hand, for the
settings with U being close to UC, the uncertainty coming
from the unknown Planck-scale contributions was much
smaller.22

C. Remarks

First, let us provide a hint on how the results presented in
the plots above could be understood analytically. As stated
in Lemma 2 in Appendix B, if the first n generalized
eigenvalues of a matrix Y 0

f are of the order ofOðεÞ, then an
OðεÞ correction to Y 0

f changes the n × n upper left blocks
of the diagonalization matrices completely. This means that
the uncertainty in the rotation matrices (11) and, hence, in
the proton lifetime estimates qualitatively changes when-
ever the size of the perturbations crosses a generalized
eigenvalue of Y 0

f (which is proportional to one of the
fermion masses). Since the largest entries of the down-
quark and charged-lepton Yukawa matrices corresponding
to the b and τ masses are around 5 × 10−3, for such values
of jΔYj there appears the first “step” in Figs. 3 and 4 (when
perturbations with the size above this threshold are added to
Y 0
f’s, the matrices D, DC, E,and EC can be changed

completely; for jΔYj below this threshold, only the upper
left 2 × 2 corner of these matrices may be significantly
varied). The other step in plots in Figs. 3 and 4 corresponds
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FIG. 5. Total proton lifetime in the case of flipped SU(5)
unifications where D ¼ DC is assumed for the renormalizable-
level ansatz for the Yukawa sector. The large spread of points with
jΔYj only slightly below 10−2 would suggest that the proton
decay can be indeed rotated away for this class of scenarios;
however, if the minimal schemes are considered, the leading
Planck-scale corrections are expected at d ¼ 6 level only, and for
the corresponding jΔYj ∼ 10−4 the total proton lifetime is con-
strained.

21Besides the original works [18–20] where the scalar sector is
often not considered in detail, we have in mind, e.g., the fully
realistic models including also nonzero neutrino masses like
Refs. [31,32].

22Let us mention as a curiosity that in the case of the starting
point featuring a symmetric up-type Yukawa matrix, i.e., with
U ¼ UC, the situation turns out to be even better than in the
SOð10Þ case, since the Planck-scale-induced uncertainty in the
p → Kþν̄ partial width itself turns out to be constrained within
less than one order of magnitude.
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to crossing the values of the Yukawa matrix entries
corresponding to the c and μ masses.
Finally, a comment is worth concerning the SOð10Þ

with the 10 ⊕ 126 ⊕ 54 scalar sector. As mentioned in
Sec. III A 3, this scenario is exceptional since both the
renormalizable Yf’s and the d ¼ 5 Planck-induced correc-
tions ΔYf’s are symmetric; hence, the flavor structure of
the partial proton widths with neutrinos in the final state
remains fully determined even if the nonrenormalizable
terms are included. However, even with this extra infor-
mation at hand, the decay channels with the charged
leptons in the final state still exhibit a numerical behavior
similar to the case with general ΔY 0

f’s (see Fig. 2); i.e., the
spread in these partial widths remains rather large.

IV. CONCLUSIONS AND OUTLOOK

In the current study, we have elaborated on the robust-
ness of the gauge-boson-mediated contributions to the
proton decay width in the simplest renormalizable unified
models based on the SOð10Þ and SUð5Þ gauge groups with
respect to several types of uncertainties, in particular, those
due to the presence of the Planck-scale-induced operators
altering the renormalizable-level Yukawa structure of
specific models [such as O2 in the list (2)]. These
perturbations, as small as they may seem in comparison
to the typically huge effects inflicted by the notorious
gauge-kinetic-form-changing d ¼ 5 operators [i.e., O1 in
(2)], are still significant enough to trigger large changes in
the mixing matrices governing the relevant baryon-and
lepton-number-violating currents and, hence, cripple, in
principle, the credibility of any of the existing renormaliz-
able-level proton lifetime estimates.
Remarkably enough, a thorough numerical analysis

reveals vastly different levels of robustness of the relevant
proton decay widths across different variants of the
simplest SOð10Þ and SUð5Þ scenarios. Let us recapitulate
the main observations that we managed to make here.
Unfortunately, for all scrutinized models, the individual

decay channels with charged leptons in the final state were
found to be prone to significant destabilization even for
rather small Planck-induced perturbations. Typically, the
inflicted theoretical uncertainties prevent, e.g., the golden
channel p → π0eþ from discriminating efficiently among
different scenarios (even with a fit to the renormalizable
Yukawa structure at hand) unless the overall suppression
associated to the relevant d ¼ 5 operators happens to be
well under the 10−2 level expected from the simple
MG=MPl ratio (see Fig. 2).
Concerning the SOð10Þ scenarios, our numerical analy-

sis reveals that, for all available renormalizable Yukawa fits
within the minimal renormalizable models, the sum of the
partial decay widths with neutrinos in the final state and,
consequently, also the total proton lifetime turn out to be
quite trustable from the flavor structure point of view even

if the overall suppression factor associated to the Planck-
scale effects is as large as 10−2 (see Figs. 3 and 4). This
applies, namely, to the minimal potentially realistic sce-
nario with the GUT-scale symmetry breaking triggered by
the 45 scalar [42,43] which, besides this feature, exhibits a
spectacular level of robustness with respect to the gauge-
kinetic effects associated to the O1 operator in the list (2).
Hence, the leading Planck-scale-induced theoretical
uncertainties plaguing the renormalizable-level proton
lifetime estimates in this scenario can be well within the
“improvement windows” of the upcoming megaton-scale
facilities such as Hyper-K or DUNE. It is also worth
mentioning that the alternative scenario in which SOð10Þ is
broken by 54 instead of 45 is yet more robust as far as the
flavor structure is concerned. On the other hand, it suffers
from significant theoretical uncertainties in the overall
BLNV scale determination which make it somewhat less
attractive from the phenomenology point of view.
Concerning the SUð5Þ-based scenarios, the flipped

SUð5Þ would be our primary choice as (in the minimal
variants such as, e.g., [32]) it typically exhibits a higher
degree of robustness of the flavor structure governing the
proton lifetime calculations due to the generic absence of
the potentially dangerous Planck-induced corrections at the
d ¼ 5 level (and it admits no O1-type operator either); see
Fig. 5. On the other hand, we have nothing specific (and
model independent) to say about the robustness of the
proton lifetime estimates made within the standard Georgi-
Glashow scenario and/or its simple variants.
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APPENDIX A: PREFACTORS ENTERING
THE PARTIAL PROTON DECAY WIDTHS

Let us complete the formulas for the partial proton decay
widths (3)–(7) by the definition of the flavor-independent
prefactors. For the sake of continuity with the previous
works, we use the parametrization used in Ref. [26] based
on the chiral Lagrangian:
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Cπ ¼
mp

16πf2π
A2
Ljαj2ð1þDþ FÞ2;

Cη ¼
ðm2

p −m2
ηÞ2

48πm3
pf2π

A2
Ljαj2ð1þD − 3FÞ2;

CK ¼ ðm2
p −m2

KÞ2
8πm3

pf2π
A2
Ljαj2; B1 ¼ 1þ mp

mB
ðD − FÞ;

B2 ¼
2mp

3mB
D; B3 ¼ 1þ mp

3mB
ðDþ 3FÞ;

wheremp,mη, andmK denote the proton, η, and kaon mass,
respectively, mB is an average baryon mass (mB ≈mΣ≈
mΛ), fπ is the pion decay constant, jαj, D, and F are the
parameters of the chiral Lagrangian, and AL takes into
account the renormalization from MZ to 1 GeV.
On the other hand, the recent lattice computations [5]

predict directly the individual matrix elements without the
use of the chiral Lagrangian. These results can be, however,
translated to the chiral Lagrangian parametrization (see,
e.g., Appendix A of Ref. [5]), and the value of the
parameter α is then inferred.23 Let us stress that the possible
change in the value of this multiplicative factor given by the
improvement of the lattice computations does not affect our
results qualitatively; the points in all the plots would be
merely shifted in a uniform way.

APPENDIX B: MATRIX DIAGONALIZATION

Let a complex matrix Y be diagonalized by a biunitary
transformation

UT
CYU ¼ Yd; ðB1Þ

where Yd is a real non-negative diagonal matrix consisting
of the so-called generalized eigenvalues of Y. Since the
main issue of this paper is the sensitivity of the unitary
matrices U and UC to the small perturbations in the matrix
Y, let us mention here a few mathematical results on this
problem.
As a first step, however, let us remind the reader about

the way in which the matrices U and UC in (B1) are
constructed. Since Y†Y is a Hermitian matrix, it can be
diagonalized as

U†Y†YU ¼ D; ðB2Þ

where D is a real non-negative diagonal matrix. The
diagonal matrix in (B1) is then defined as Yd ¼

ffiffiffiffi
D

p
,

and if its entries are nonzero, then the unitary matrix UC
can be defined as

U�
C ¼ YUY−1

d : ðB3Þ

Let us note, however, that the matrices U and UC are not
defined uniquely and the level of this ambiguity depends on
the shape of Yd:

(i) For nondegenerate and nonzero diagonal entries of
Yd, the ambiguity in U in (B2) amounts to U → UP
with P being a diagonal unitary matrix. The matrix
UC in (B3) is then accordingly transformed as
UC → UCP�.

(ii) If without the loss of generality Y11
d ¼ Y22

d ¼
… ¼ Ynn

d ≠ 0, then U → UUn;UC → UCU�
n is al-

lowed where the upper left corner ofUn is formed by
an n × n unitary block, Ujj

n ¼ eiϕj for j > n, and
Un

ij ¼ 0 otherwise.
(iii) If, finally, without the loss of generality Y11

d ¼
Y22
d ¼ … ¼ Ynn

d ¼ 0, then the definition (B3) of
UC cannot be applied, and the relation

UT
CYY

†U�
C ¼ D ðB4Þ

has to be used instead. The ambiguity in the
definition of the rotation matrices then reads

U → UUn; UC → UCU�
Cn ðB5Þ

with the same structure of Un, UCn as in point (ii).
Here, however, the upper left n × n blocks ofUn and
UCn are uncorrelated, and the phases of the diagonal
entries Ujj

n ; U
jj
Cn for j > n have to be adjusted in

such a way that Yd in (B1) is real and non-negative.
When Y is perturbed by an OðεÞ amount with ε being a

small parameter, one would naively expect also OðεÞ
changes in the unitary matrices U and UC in (B1). The
following statement confirms this expectation under certain
assumptions.
Lemma 1.—Let Y be a complex matrix diagonalized by

the biunitary transformation (B1) with Yii
d ∼Oð1Þ∀ i and

Yii
d ≠ Yjj

d ∀ i ≠ j. Furthermore, let X be an arbitrary com-
plex matrix, and let us define X̃ ¼ UT

CXU. Then

ŨT
CðY þ εXÞŨ ¼ Yd þ εRd þOðε2Þ; ðB6Þ

where Rd is a real diagonal matrix with Rii
d ¼ ReX̃ii and

Ũ¼Uð1þ εZÞþOðε2Þ; ŨC¼UCð1þ εZCÞþOðε2Þ
ðB7Þ

for some anti-Hermitian matrices Z and ZC.
Proof.—Let us assume that the generalized eigenvalues

of Y þ εX and also the corresponding rotation matrices U
and UC are changed by the OðεÞ values; i.e., the diago-
nalization of Y þ εX follows (B6) with Ũ; ŨC of the form
(B7). For Ũ; ŨC to be unitary [up to Oðε2Þ terms],

23Let us note that only the matrix elements of the RL type
like hπ0jðudÞRuLjpi are relevant for the vector-boson-mediated
proton decay, and, hence, only the parameter α enters the
formulas (3)–(7).
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Z† ¼ −Z, Z†
C ¼ −ZC has to be satisfied; hence, Z and ZC

are indeed anti-Hermitian. In order to prove the lemma, the
matrices Rd and Z; ZC will be explicitly constructed.
According to (B2), the matrix Ũ is defined by

ðY þ εXÞ†ðY þ εXÞ ¼ ŨðYd þ εRd þOðε2ÞÞ2Ũ†:

If the shape of Ũ (B7) is plugged in, then the equality of the
OðεÞ terms yields

Y†X þ X†Y ¼ UðZY2
d − Y2

dZ þ 2YdRdÞU†:

Multiplying this relation by U† from the left and by U from
the right, one obtains

YdX̃ þ X̃†Yd ¼ ZY2
d − Y2

dZ þ 2YdRd; ðB8Þ

where X̃ ¼ UT
CXU was defined. Taking the diagonal

elements of this matrix relation, one obtains (after dividing
by Yjj

d ) X̃
jj þ X̃jj� ¼ 2Rjj

d , which shows that indeed Rjj
d ¼

ReX̃jj as stated in the lemma. On the other hand, the off-
diagonal elements of the matrix relation (B8) allow one to
compute the matrix Z:

Zij ¼ ½Yii
d X̃

ijþ X̃ji�Yjj
d �=½ðYjj

d Þ2− ðYii
d Þ2�; i≠ j: ðB9Þ

Finally, any purely imaginary number can be chosen as the
diagonal entries of Z, which corresponds to the ambiguity
in the definition of the rotation matrices mentioned in point
(i) above.
The matrix ZC can be constructed analogously when

(B4) is taken into account and

Zij
C ¼ ½Yii

d X̃
ji þ X̃ij�Yjj

d �=½ðYjj
d Þ2 − ðYii

d Þ2�; i ≠ j; ðB10Þ

is obtained for nondiagonal elements.
Finally, one can plug in the shape of Ũ and ŨC into

Eq. (B6), and the OðεÞ part of this relation then yields

ZT
CYd þ YdZ þ X̃ ¼ Rd: ðB11Þ

If the formulas for Z and ZC are plugged in, one can easily
check that indeed the off-diagonal elements of the left-hand
side are equal to zero. Moreover, if the imaginary part of the
diagonal elements is evaluated, one obtains

ðZjj þ Zjj
C ÞYjj

d þ iImX̃jj ¼ 0;

which fixes the (purely imaginary) diagonal entries of ZC.▪
It is now easy to understand why the above described

construction breaks down when Y11
d ¼Y22

d ¼…¼Ynn
d ¼ 0.

No information about Zij for i; j ≤ n can be obtained from
(B8) (and analogously, no information about Zij

C for i; j ≤ n
is available). Moreover, (B11) simplifies to X̃ij ¼ Rij

d for
i; j ≤ n; hence, the upper left n × n block of X̃ has to be

diagonal. This can be ensured thanks to the ambiguity (B5) in
the definition of theU andUC matrices in (B1), withUn and
UCn being chosen in such a way that

ðUT
CnX̃UnÞij ¼ ðUT

CnU
T
CXUUnÞij ¼ 0; i≠ j; i; j≤ n:

ðB12Þ

The shape of the perturbed rotation matrices (B7) given in
Lemma 1 can be, hence, still used; however, the ambiguity
(B5) is lifted.
Furthermore, let us consider the setting with OðεÞ

generalized eigenvalues; more precisely, let

UT
CYU ¼ Yd þ εΛn; ðB13Þ

where Yd and Λn are diagonal matrices with Yjj
d ¼ 0 for

j ≤ n and Λjj
n ¼ 0 for j > n. In order to illustrate the effect

of an OðεÞ perturbation in this case, let us define

Y0 ¼ Y − εU�
CΛnU†;

which obviously has first n generalized eigenvalues equal
to zero and the considerations of the previous paragraph
can be applied. Y can be then viewed as a perturbation of Y0

by an OðεÞ term which lifts the ambiguity in the definition
of U and UC as described in (B12). Similarly, Y þ εX can
be understood as a different perturbation of Y0, and clearly,
in general, U and UC are fixed in a different way. It is then
easy to check the following statement.
Lemma 2.—Let Y be a complex matrix diagonalized by a

biunitary transformation as in (B13), and let X be an
arbitrary complex matrix and ε a small parameter. Then

ŨT
CðY þ εXÞŨ ¼ Yd þ εR̃d þOðε2Þ; ðB14Þ

where R̃d is a diagonal matrix and the rotation matrices may
be written in the form

Ũ ¼ UUnð1þ εZÞ þOðε2Þ;
ŨC ¼ UCUCnð1þ εZCÞ þOðε2Þ ðB15Þ

for some anti-Hermitian matrices Z and ZC and unitary
matricesUn andUCn, whereU

ij
n ¼Uij

Cn¼0 for i;j>n, i ≠ j.
In our work, we are interested in perturbations preserv-

ing the generalized eigenvalues of the original matrix. The
above results on the shape of the diagonalization matrices
can be used also in this case due to the following simple
observation.
Lemma 3.—For any complex matrix X there exists a

complex matrix X0 such that the generalized eigenvalues of
Y þ εX0 differ from the generalized eigenvalues of Y by at
mostOðε2Þ terms and, at the same time, YþεX and YþεX0
are diagonalized by the same biunitary transformation.
Proof.—Looking at the relation (B14), it is enough to

define X0 ¼ X − Ũ�
CR̃dŨ†. ▪
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