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Abstract: Borehole breakouts appear in drilling and production operations when rock subjected to in
situ stress experiences shear failure. However, if a borehole breakout occurs, the boundary of the
borehole is no longer circular and the stress distribution around it is different. So, the interpretation
of the hydraulic fracturing test results based on the Kirsch solution may not be valid. Therefore,
it is important to investigate the factors that may affect the correct interpretation of the breakdown
pressure in a hydraulic fracturing test for a borehole that had breakouts. In this paper, two steps
are taken to implement this investigation. First, sets of finite element modeling provide sets of data
on borehole breakout measures. Second, for a given measure of borehole breakouts, according to
the linear relation between the mud pressure and the stress on the borehole wall, the breakdown
pressure considering the borehole breakouts is acquired by applying different mud pressure in the
model. Results show the difference between the breakdown pressure of a circular borehole and that
of borehole that had breakouts could be as large as 82% in some situations.
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1. Introduction

The in situ stress is of fundamental importance in petroleum engineering and geology, and it’s
desirable to determine the stress field from borehole data [1,2]. The stress inside a solid cannot be
measured directly, so the in situ stress has to be determined by indirect methods. The Kirsch equation
is the first solution in elastic theory for the stresses in an infinite plate containing a circular hole. So far,
the vertical stress is estimated by the overburden pressure, and the minimum horizontal principal
stress is determined by hydraulic fracturing, but the maximum horizontal principal stress is the most
difficult component of stress tensor to accurately estimate. Conventionally, the maximum horizontal
stress is estimated by the minimum horizontal principal stress and breakdown pressure based on
Kirsch equation [3–7], so the accuracy of breakdown pressure is a key point to determine the maximum
horizontal stress. However, because Kirsch solution is based on a circular borehole, if a borehole
breakout occurs, the boundary of the borehole is no longer circular and the stress distribution around
it is different froma circular borehole. Therefore, the interpretation of the hydraulic fracturing results
based on the breakdown pressure derived from the Kirsch equation may not be valid, which leads to
imprecision for determination of the maximum horizontal stress. Therefore, the investigation on how
borehole breakouts influence the breakdown pressure in a hydraulic fracturing test is important for
determining the maximum horizontal stress, and the influence of borehole breakouts on breakdown
pressure is studied in this paper.
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Borehole breakouts represent the rock failure that occurs around the borehole when the induced
stresses exceed the rock strength. Borehole breakouts were observed in a gold mine as early as fifty
years ago [8], and then were reported in oil wells [9]. Later on, Carr pointed out that borehole breakout
direction was consistent with the direction of the minimum in situ horizontal principal stress [10],
which is verified by Bell and Gough [11] and Zoback et al. [12]. Laboratory experiments supported
the phenomenon that the borehole breakouts are aligned with the direction of the minimum in situ
horizontal principal stress [13–15].

Numerous attempts have been made to explain the mechanism that brings about the phenomenon
of borehole breakouts. By incorporating Mohr-Coulomb criterion to the Kirsch equation, the initial
breakout zone can be defined analytically [12]. However, once the initial zone of rock on the borehole
wall is broken, the stress condition will change, and the newly exposed rock will be subjected to new
stress conditions and a new breakout zone will emerge. There is no analytical solution to describe the
new breakout zone. Later on, a numerical model was used to analyze the borehole breakout growth,
and it was found that the borehole cross section extends in the direction of the minimum principal stress
according to the redistribution of the stresses around the borehole, resulting in continuously increasing
stress concentrations around the borehole [13]. Some factors affecting the initiation, propagation,
and stability of borehole breakouts have been studied in linearly elastic, homogeneous, and isotropic
materials and it was found that the depth of breakouts increases till a stable state, but the width of
breakouts remains unchanged [16]. The micromechanisms about borehole breakouts have also been
investigated and it was found that the borehole breakouts occur by a series of successive spalls that
result from shear failure subparallel to the direction of the local minimum principal stress [14,15,17–19].
Some other numerical methods, such as discrete element and finite element methods, were also used
to analyze the breakout geometries mechanisms recently [20–24].

Nowadays, as the drilling depth increases, stresses close to the borehole wall become more
complex, and more and more borehole breakouts occur in the deep drilling. An appropriate breakout
does not cause an unbearable wellbore collapse in the drilling practices [12,25–33]. Usually, althoughthe
borehole breakout exists, it is minor and cannot cause collapse accidents. This phenomenon has been
verified by a large amount of imaging logging. Zoback et al. proposed the wellbore stability model,
called the breakout width model, on the basis of the permissible breakout width [12]. Then, for a
breakout borehole, conventional methods based on a circular borehole to determine the maximum
horizontal earth stress from breakdown pressure and the minimum in situ stress are improper.
The influence of a borehole breakout on breakdown pressure isconsidered in thisstudy.

Recently, some researchers studied the influence of noncircular wellbore. Exadaktylos et al.
presented a semianalytical solution of notched hole and thought that the geometry of notched
configurations can greatly influence the load-bearing capacity of the rock structure and consequently
its stability [34]. Zhang et al. studied the initiation and growth of a hydraulic fracture from a circular
and a non-circular wellbore, and it was found that hydraulic fracture initiation and growth from
a non-circular wellbore is different from initiation from a circular wellbore owing to the change
in stress near the well [35,36]. By analyzing wellbore stability and well path optimization based
on the breakout width, Ma et al. found that the safe mud weight and the most stable path are
different from the traditional method when breakout width is considered [37]. Krzysztof considered
the influence of additional dynamic loads from rock mass tremors in underground ore mining [38].
Based on the displacement discontinuity method and the fictitious stress method, Varahanaresh
developed a hydraulic fracture propagation model to study the effect of rock anisotropy on fracture
propagation near and away from the wellbore, and results indicate that fracture apertures near the
wellbore are significantly affected by rock anisotropy [39]. In addition, Al-Ajmi and Zimmerman [40],
Chen et al. [41], and Qi et al. [42] researched the optimization method of well path based on the in situ
stress, but the optimized well path may be contrary to conventional knowledge. Once the influence of
the permissible breakout width is considered, the optimized well path may be more consistent with the
actual situation. Thus, the optimization method of well path must be improved to match the drilling
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practices. All of these studies show that there is an influence on the stress near the borehole wall from
a borehole breakout, which means the determination of the maximum earth stress based on Kirsch
solution and breakdown pressure is improper. Thus, how the borehole breakout impacts breakdown
pressure becomes more important for in situ stress determination in deep drilling.

In this paper, the influence of borehole breakouts on breakdown pressure is studied, and the
investigation of breakdown pressure of a borehole that had breakouts is performed in two steps.
First, sets of finite element modeling provide sets of data on borehole breakout measures according
to different in situ stresses. Second, for a given measure of borehole breakouts, according to the
linear relation between the mud pressure and the stress on the borehole wall, the breakdown pressure
considering the borehole breakouts can be acquired by applying different mud pressure in the model.
By analyzing the error of breakdown pressure between circular and breakout borehole in different
conditions, the applicability of Kirsch solution to determine the maximum horizontal principal stress
is obtained in this study, which increases the accuracy of estimation of the maximum horizontal
principal stress.

2. Model Structure and Methodology

2.1. Rock Failure Criterion

2.1.1. Rock Compression Failure Criterion

The Mohr–Coulomb failure criterion is chosen to be applied in this paper to predict the borehole
breakout, which is given by:

τ = c + σ tan ϕ (1)

in which
τ =

1
2
(σ1 − σ3) cos ϕ

σ =
1
2
(σ1 + σ3)−

1
2
(σ1 − σ3) sin ϕ

where c is cohesive strength, ϕ is internal friction angle, σ is the normal stress on the failure plane,
τ is the shear stress on the failure plane, σ1 and σ3 are the maximum and minimum principal
stresses, respectively.

Based on Mohr–Coulomb failure criterion, if τ ≤ c + σ tan ϕ, no failure happened for the rock;
if τ > c + σ tan ϕ, rock failures [43]. So, Equation (1) can be shortened as:

F ≤ 1 no breakouts

F > 1 breakouts
(2)

where, F = τ
c+σ tan ϕ .

2.1.2. Rock Tension Failure Criterion

The tensile strength failure criterion is used in this paper to predict the borehole breakdown
pressure [43]. 

σ ≤ σt no crack

σ > σt crack
(3)

where, σt is tensile strength of rock.
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2.2. Analytical Solution for the Width of Breakouts

Because the initial breakout zones extend in the direction of the minimum principal stress, and the
width of breakouts remains stable [16], the initial breakout width can be considered as the final
breakout width, which is the analytical solution for the width of breakouts. The breakout width can be
obtained by incorporating the Kirsch equation into the failure criterion.

The Kirsch equation can be written as follows [3].

σr =
σH + σh

2
(1− R2

r2 ) +
σH − σh

2
(1− 4R2

r2 +
3R4

r4 ) cos 2θ + Pm
R2

r2 (4a)

σθ =
σH + σh

2
(1 +

R2

r2 )− σH − σh
2

(1 +
3R4

r4 ) cos 2θ − Pm
R2

r2 (4b)

σz = σV − ν
4R2

r2
σH − σh

2
cos 2θ (4c)

τrθ = −σH − σh
2

(1 +
2R2

r2 −
3R4

r4 ) sin 2θ (4d)

where σr is the radial stress, σθ is the circumferential stress, σz is the vertical stress, τrθ is the tangential
shear stress, σH is horizontal maximum in situ stress, σh is horizontal minimum in situ stress, σV is
vertical in situ stress, ν is Poisson’s ratio, R is the radius of a borehole, r is distance from the center of
the borehole, θ is the angle from the maximum principal stress, Pm is the fluid pressure in the borehole.

In the condition of σθ > σV > σr and R = r, incorporating Equations (4a)–(4d) into Equation (1),
Equation (5) can be obtained for the width φb of borehole breakouts, which is shown in Figure 1.
In Figure 1, rb is breakout depth.

φb = 90
◦ − θ (5)

in which

cos 2θ =

1
2 (
√

1 + tan2 ϕ− tan ϕ)(σH + σh)− c−
√

1 + tan2 ϕPm

(
√

1 + tan2 ϕ− tan ϕ)(σH − σh)
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Based on the Kirsch equation, the analytical solution of breakdown pressure for the circular
borehole can be obtained as follows.

Pf = 3σh − σH − Pm − σt (6)

2.3. Simulation of the Borehole Breakouts by the Finite Element Method

Borehole breakouts occur as a series of successive spalls in the direction of the local minimum
principal stress that result from shear failure and are sub parallel to the free surface of the borehole
wall [16,17,19].

Figure 2 shows the schematic of a typical borehole breakout process, where (1), (2), (n) represent
the failure regions of each cyclic process, respectively; 1, 2, n represent the surface of a breakout of
each cyclic process, respectively.
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Figure 2. Schematic of a borehole breakout process.

Numerical simulation of borehole breakouts can be implemented by the following steps:
Step 1: Build a finite element model; apply boundary condition; analyze and determine the

stress distribution.
Step 2: Determine the scope of failure (1) by Mohr–Coulomb failure criterion.
Step 3: Take the elements in the failure scope out by changing the position of nodes of borehole

wall from circular wall to curve 1, and generate a new noncircular borehole wall along curve 1.
Step 4: Recalculate the stresses distribution based on noncircular borehole wall generated by Step

3 and ascertain the scope of failure (2).
Step 5: Take the elements in the failure scope out by changing the position of nodes of borehole

wall from curve 1 to curve 2, and generate a new noncircular borehole wall along curve 2.
Step 6: Rerun Step 4 and Step 5 until no new failure scope occurs, and the stable shape of breakouts

is obtained, which is shown as curve n in Figure 2.
Step 7: Write down the shape of borehole breakout, which is shown as curve n in Figure 2,

and calculation is finished.
The flow chart is shown in Figure 3.
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2.4. Finite Element Implementation

Analytical solutions of stress distribution around a borehole can be acquired from theKirsch Equation,
which is just for a regular circular borehole. When borehole breakouts occur, there is no analytical solution
available to predict its growth. Therefore a numerical model is necessarily introduced.

2.4.1. Constitutive Model

A linear elastic model is chosen to be applied in this paper to predict a borehole breakout, which is
given by [43]:

σ = Dε (7)

in which σ is stress vector, ε is strain vector, D is the elastic stiffness matrix.

D =
E

(1 + ν)(1− 2ν)

 1− ν ν ν

ν 1− ν ν

ν ν 1− ν

 (8)

where E is Young’s modulus, ν is Poisson’s ratio.

2.4.2. Elements Choosing

Because a borehole breakout is a complex process, and vertical stress close to the borehole
wall is changing in the process of breakout, space elements is easier than plane strain elements.
Because a linear elastic model is adopted in this paper, the computation is not much, so 8-node space
isoparametric elements are used in this paper.
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2.4.3. Governing Equations

The governing equations of equilibrium for elasticity can be described as:

G∇2u + (G + λ)∇div(u) + f u = 0 (9)

where u is stress vector, f u is nodal loads vector, G and λ are Lame constants.
The Galerkin finite element method is used herein to approximate above governing equations [44].

The displacement vector u at any point within an element can be expressed by displacement u at nodes
and shape function. The expression for u is:

u = Nu (10)

The final form of the finite element equation is as follows:

Mu = f u (11)

where M is elastic stiffness, u is vector for unknown displacement, f u is the vector for the nodal loads.
The explicit expression for M is:

M =
∫

BT DBdΩ (12)

where B is the strain matrix, D is the elastic stiffness matrix.

3. Verification and Numerical Experiments

3.1. Finite Element Model for Borehole Breakouts

For a vertical borehole shown in Figure 4 that is subjected to horizontal in situ stresses σH and σh,
the shape of breakouts φb and rb can be acquired by finite element modeling, where rb is the depth of
breakouts, and φb is the width of breakouts (Figure 1). A linear elastic model is chosen to be applied to
predict a borehole breakout, and 8-node space isoparametric elements are used, and the total number
of elements is 450. The finite element mesh of the model is shown in Figure 4.
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The geometric and mechanical parameters and their values are listed in Tables 1 and 2.
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Table 1. Geometric and mechanical parameters.

Parameter Value

Young’s Modulus, E (GPa) 14.4
Poisson Ratio, ν 0.2

Cohesion, c (MPa) 20
Inner friction angle, ϕ (◦) 40
Radius of borehole, R (m) 0.15
Vertical stress, σV (MPa) 40
Mud pressure, Pm (MPa) 20
Tensile strength, σt (MPa) 5

Maximum principal stress, σH (MPa) 95–150
Maximum principal stress, σh (MPa) 50–85

Table 2. Maximum and minimum principal stresses (MPa).

Test# σH σh Test# σH σh Test# σH σh Test# σH σh

1 95 80 23 110 85 45 120 55 67 135 65
2 95 75 24 110 80 46 120 50 68 135 60
3 95 70 25 110 75 47 125 85 69 135 55
4 95 65 26 110 70 48 125 80 70 140 85
5 95 60 27 110 65 49 125 75 71 140 80
6 95 55 28 110 60 50 125 70 72 140 75
7 95 50 29 110 55 51 125 65 73 140 70
8 100 80 30 110 50 52 125 60 74 140 65
9 100 75 31 115 85 53 125 55 75 140 60

10 100 70 32 115 80 54 125 50 76 140 55
11 100 65 33 115 75 55 130 85 77 145 85
12 100 60 34 115 70 56 130 80 78 145 80
13 100 55 35 115 65 57 130 75 79 145 75
14 100 50 36 115 60 58 130 70 80 145 70
15 105 85 37 115 55 59 130 65 81 145 65
16 105 80 38 115 50 60 130 60 82 145 60
17 105 75 39 120 85 61 130 55 83 150 85
18 105 70 40 120 80 62 130 50 84 150 80
19 105 65 41 120 75 63 135 85 85 150 75
20 105 60 42 120 70 64 135 80 86 150 70
21 105 55 43 120 65 65 135 75 87 150 65
22 105 50 44 120 60 66 135 70 88 150 60

3.2. Verification of the Finite Element Model for Borehole Breakouts

By incorporating Mohr–Coulomb criterion into the Kirsch equation, the initial breakout zone
can be defined analytically [12]. Because the initial breakout zones extend in the direction of the
minimum principal stress, and the width of breakouts remains stable [16], the initial breakout width
can be considered as the final breakout width, which is theanalytical solution for the width of
breakouts. The breakout width can be obtained by incorporating theKirsch equation into failure
criterion. The breakout width for analytical and numerical solution is compared to verify the accuracy
of finite element mode in this section.

Table 3 shows different breakout depths corresponding to different in situ stresses and Table 4
shows different breakout width corresponding to different in situ stresses for analytical and numerical
solution. The comparison between the obtained breakout width by analytical solution and numerical
modeling is shown in the Table 4 and Figure 5 in terms of relative error.
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Table 3. Result of the depth of borehole breakouts rb (mm).

Test# rb Test# rb Test# rb Test# rb

1 2.5 23 24.5 45 49.7 67 67.8
2 6.9 24 27.8 46 50.4 68 68.3
3 9.9 25 30.4 47 52.2 69 68.7
4 12.7 26 32.5 48 52.9 70 77.5
5 15 27 33.7 49 53.8 71 76.5
6 17.2 28 35.6 50 54.1 72 75.9
7 19 29 36.9 51 54.8 73 75.1
8 10 30 38.6 52 55.1 74 74.8
9 14.4 31 34.1 53 55.9 75 74.4

10 17.5 32 36.4 54 56.6 76 74.6
11 19.7 33 38.2 55 60.6 77 85.4
12 22 34 39.3 56 61.3 78 83.8
13 23.8 35 41.1 57 60.9 79 83.1
14 25.5 36 42.2 58 61.2 80 81.8
15 14 37 43.2 59 61.5 81 81.6
16 18.9 38 44.2 60 61.9 82 81.2
17 22.2 39 43.8 61 61.8 83 93.1
18 25.1 40 44.7 62 62.5 84 91
19 27.1 41 45.8 63 69.3 85 90.2
20 28.8 42 47.1 64 68.8 86 88.9
21 30.4 43 47.7 65 68.3 87 87.9
22 31.8 44 48.9 66 68.3 88 87.3

Table 4. Result of the width of borehole breakouts φb (◦).

Test# Analytic Numeric Err % Test# Analytic Numeric Err % Test# Analytic Numeric Err % Test# Analytic Numeric Err %

1 20.3 19.6 −3.4 23 43.4 43.4 −0.1 45 40 41.4 3.6 67 45.5 46.7 2.8
2 23 23.5 2.1 24 41.3 41.7 1.1 46 39.3 40.8 3.9 68 44.5 45.9 3.1
3 24.5 25.3 3.1 25 39.7 40.5 1.8 47 49.4 50.2 1.6 69 43.6 45.1 3.5
4 25.5 26.4 3.7 26 38.6 39.5 2.5 48 47.3 48.2 2 70 52.2 53.2 2.1
5 26.2 27.3 4.2 27 37.7 38.8 3.1 49 45.6 46.6 2.2 71 50.3 51.5 2.3
6 26.7 27.9 4.6 28 36.9 38.2 3.4 50 44.3 45.4 2.6 72 48.8 50 2.4
7 27.1 28.3 4.7 29 36.3 37.7 3.8 51 43.1 44.4 2.9 73 47.5 48.8 2.6
8 31.8 31.3 −1.8 30 35.8 37.3 4.2 52 42.2 43.5 3.1 74 46.4 47.8 3
9 31.5 31.9 1.5 31 46.1 46.5 0.9 53 41.4 42.8 3.5 75 45.4 46.8 3.1

10 31.2 32.1 2.8 32 43.9 44.5 1.5 54 40.6 42.2 3.9 76 44.5 46 3.4
11 31 32.1 3.5 33 42.2 43 2 55 50.5 51.4 1.8 77 52.8 54 2.2
12 30.9 32.2 4 34 40.9 42 2.6 56 48.5 49.5 2 78 51 52.2 2.3
13 30.8 32.1 4.3 35 39.9 41 2.9 57 46.9 48 2.4 79 49.6 50.8 2.6
14 30.7 32.1 4.6 36 39 40.3 3.2 58 45.5 46.7 2.5 80 48.3 49.6 2.7
15 39.4 38.9 −1.3 37 38.3 39.7 3.7 59 44.4 45.7 2.9 81 47.2 48.6 2.9
16 37.6 37.7 0.2 38 37.7 39.3 4.1 60 43.4 44.8 3.2 82 46.2 47.7 3.2
17 36.4 37 1.6 39 48 48.6 1.4 61 42.6 44 3.4 83 53.3 54.5 2.2
18 35.5 36.4 2.5 40 45.8 46.6 1.7 62 41.8 43.4 3.7 84 51.7 52.9 2.3
19 34.8 36 3.3 41 44.1 45.1 2.2 63 51.4 52.4 1.9 85 50.2 51.5 2.6
20 34.3 35.6 3.8 42 42.8 43.8 2.5 64 49.5 50.6 2.2 86 49 50.3 2.7
21 33.9 35.3 4.1 43 41.7 42.9 2.8 65 47.9 49.1 2.3 87 47.9 49.3 2.9
22 33.6 35 4.4 44 40.7 42.1 3.3 66 46.6 47.9 2.7 88 46.9 48.4 3.2Energies 2019, 12, x FOR PEER REVIEW 11 of 26 
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Figure 5. Error of breakout width between analytical and numerical solutions.
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From Table 3, Table 4, and Figure 5, it can be seen that the numerical solution agrees well with the
analytical solution, with a maximum error that is less than 5%, which verifies the accuracy of finite
element modeling.

3.3. Relationship between In Situ Stress and a Borehole Breakout

Tables 3 and 4 show different breakout depthsand widths corresponding to different in situ
stresses by finite element modeling.

According to Figure 6, all curves intersect at one point. That is because, based on Equation (5),
when φb = 30◦, σH = 98.88 MPa, no matter what value σh equals to.
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Figure 6. Breakout width for different in situ stresses (x-coordinate is σH).

From Tables 3 and 4, the relationship between breakout shape and in situ stresses are demonstrated
in Figures 6–10, from which some conclusions can be made as follows:
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Figure 7. Breakout width for different in situ stresses (x-coordinate is σh).

1. The relationship between breakout shape and in situ stresses is nonlinear.
2. If the σh is constant, as σH increases, the breakout width and depth become greater.
3. In this paper, if σH = 98.88 MPa, the breakout width equals to 30◦, no matter what value σh

equals to;if the σH > 98.88 MPa, as σh increases, the breakout width increases; if the σH < 98.88 MPa,
as σh increases, the breakout width decreases instead.

4. If the difference between σh and σH is relatively large, as σh increases, the breakout depth
increases too. However, if the difference between σh and σH is relatively small, as σh increases,
the breakout depth decreases instead.
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5. Figure 10 shows that one to one correspondence doesnot exist between a breakout width and a
breakout depth.Energies 2019, 12, x FOR PEER REVIEW 12 of 26 
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Figure 8. Breakout depth for different in situ stresses (x-coordinate is σH).
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Figure 9. Breakout depth for different in situ stresses (x-coordinate is σh).
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Figure 10. Relationship between the width and depth of borehole breakout.
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3.4. Analysis of Mesh Dependency (Influence of Finite Element Mesh Size)

Finite element models are built according to different element mesh sizes, and results are shown
in Tables 5–8, in which the total numbers of elements for Size1, Size2, and Size3 are 300, 450, and 600,
correspondingly, and the error of breakout depth is relative to breakout depth for Size 3.

Table 5. Result of borehole breakouts depth rb (mm) according to different element size.

Test# E300 E450 E600 Test# E300 E450 E600 Test# E300 E450 E600 Test# E300 E450 E600

1 1.2 2.5 2.6 23 19.9 24.5 25 45 45.8 49.7 51 67 63.3 67.8 70.9
2 4.1 6.9 6.6 24 24.3 27.8 28.2 46 46.6 50.4 52.1 68 63 68.3 70
3 8.2 9.9 9.5 25 26.9 30.4 30.8 47 47.2 52.2 54.4 69 63.2 68.7 70
4 10.9 12.7 12.3 26 28.9 32.5 33.2 48 47.5 52.9 54.3 70 70.1 77.5 79.7
5 13.5 15 14.6 27 30.9 33.7 34.8 49 48.7 53.8 54.9 71 69.6 76.5 78.6
6 15.5 17.2 17 28 32.6 35.6 36.4 50 49.6 54.1 55.3 72 69.4 75.9 77.9
7 17.7 19 19 29 33.8 36.9 37.8 51 50.1 54.8 56 73 68.8 75.1 77.4
8 7.4 10 10.4 30 35.2 38.6 39.3 52 50.8 55.1 56.8 74 68.6 74.8 78
9 12 14.4 14.5 31 29.8 34.1 35 53 51.6 55.9 57.6 75 68.9 74.4 77.9

10 15.3 17.5 17.4 32 31.9 36.4 37.3 54 52.2 56.6 58.1 76 68.8 74.6 78.1
11 18 19.7 20.3 33 34.4 38.2 39.1 55 54.7 60.6 63.2 77 77.5 85.4 87.9
12 19.8 22 22 34 36 39.3 40.5 56 55.4 61.3 63.1 78 76.7 83.8 86.5
13 22 23.8 23.8 35 37.5 41.1 42 57 55.5 60.9 63.2 79 75.9 83.1 85.1
14 23.6 25.5 25.8 36 38.6 42.2 43.3 58 56 61.2 62.9 80 75.4 81.8 84.6
15 10 14 14.7 37 39.8 43.2 44.5 59 56.6 61.5 63 81 74.8 81.6 84.1
16 16.5 18.9 19.8 38 40.8 44.2 45.6 60 57.1 61.9 63.2 82 74.8 81.2 83.6
17 20 22.2 23.1 39 38.4 43.8 44.7 61 57.4 61.8 63.9 83 85.1 93.1 95.8
18 22.6 25.1 25.6 40 40.3 44.7 46.4 62 58 62.5 64.5 84 83.3 91 93.7
19 24.5 27.1 27.4 41 41.7 45.8 46.9 63 62.6 69.3 71 85 82.4 90.2 93
20 26.5 28.8 29.4 42 42.9 47.1 48.3 64 62.5 68.8 70.9 86 81.6 88.9 91.8
21 28.1 30.4 31.1 43 43.9 47.7 49.1 65 62.3 68.3 71.2 87 80.7 87.9 90.4
22 29.7 31.8 32.6 44 44.8 48.9 50.1 66 62.6 68.3 70.9 88 82.8 87.3 90.2

Table 6. Difference of borehole breakouts depth rb (mm) according to different element size.

Test# E300/E600 E450/E600 Test# E300/E600 E450/E600 Test# E300/E600 E450/E600 Test# E300/E600 E450/E600

1 0.462 0.955 23 0.793 0.98 45 0.898 0.973 67 0.892 0.956
2 0.622 1.041 24 0.861 0.986 46 0.895 0.968 68 0.9 0.977
3 0.865 1.035 25 0.871 0.985 47 0.867 0.959 69 0.903 0.981
4 0.891 1.033 26 0.871 0.978 48 0.875 0.975 70 0.879 0.972
5 0.929 1.03 27 0.888 0.968 49 0.888 0.981 71 0.886 0.974
6 0.914 1.016 28 0.896 0.978 50 0.897 0.979 72 0.891 0.975
7 0.931 1.001 29 0.893 0.976 51 0.895 0.978 73 0.889 0.971
8 0.714 0.961 30 0.896 0.982 52 0.894 0.97 74 0.88 0.959
9 0.826 0.995 31 0.849 0.974 53 0.896 0.972 75 0.884 0.955

10 0.878 1.004 32 0.855 0.977 54 0.898 0.974 76 0.882 0.956
11 0.887 0.974 33 0.882 0.978 55 0.866 0.959 77 0.882 0.972
12 0.903 1.003 34 0.888 0.97 56 0.877 0.971 78 0.887 0.968
13 0.923 0.998 35 0.891 0.978 57 0.879 0.964 79 0.892 0.976
14 0.914 0.989 36 0.891 0.976 58 0.89 0.974 80 0.892 0.967
15 0.68 0.952 37 0.896 0.972 59 0.898 0.976 81 0.89 0.971
16 0.835 0.955 38 0.894 0.97 60 0.904 0.979 82 0.895 0.971
17 0.867 0.962 39 0.858 0.979 61 0.899 0.967 83 0.888 0.972
18 0.884 0.98 40 0.868 0.964 62 0.9 0.969 84 0.888 0.97
19 0.895 0.99 41 0.889 0.978 63 0.882 0.976 85 0.886 0.97
20 0.901 0.978 42 0.887 0.974 64 0.88 0.97 86 0.889 0.968
21 0.902 0.975 43 0.894 0.972 65 0.875 0.96 87 0.892 0.973
22 0.91 0.975 44 0.896 0.976 66 0.882 0.963 88 0.917 0.967
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Table 7. Result of borehole breakouts width φb (◦) according to different element size.

Test# Analytic E300 E450 E600 Test# Analytic E300 E450 E600 Test# Analytic E300 E450 E600

1 20.3 15.5 19.6 19.7 31 46.1 45.7 46.5 46.1 61 42.6 44.4 44 43.6
2 23 21 23.5 22.9 32 43.9 44.1 44.5 44.1 62 41.8 43.7 43.4 43
3 24.5 24.4 25.3 24.8 33 42.2 42.8 43 42.6 63 51.4 52.5 52.4 52
4 25.5 26.5 26.4 26 34 40.9 41.8 42 41.5 64 49.5 50.7 50.6 50.2
5 26.2 27.5 27.3 26.9 35 39.9 41.1 41 40.6 65 47.9 49.4 49.1 48.7
6 26.7 28.2 27.9 27.5 36 39 40.5 40.3 39.9 66 46.6 48 47.9 47.4
7 27.1 28.8 28.3 28 37 38.3 39.9 39.7 39.3 67 45.5 47 46.7 46.4
8 31.8 28.2 31.3 31.1 38 37.7 39.4 39.3 38.8 68 44.5 46.2 45.9 45.5
9 31.5 30.9 31.9 31.4 39 48 48.2 48.6 48.1 69 43.6 45.5 45.1 44.8

10 31.2 31.7 32.1 31.5 40 45.8 46.4 46.6 46.1 70 52.2 53.4 53.2 52.8
11 31 32 32.1 31.6 41 44.1 45.1 45.1 44.6 71 50.3 51.6 51.5 51
12 30.9 32.2 32.2 31.6 42 42.8 43.9 43.8 43.4 72 48.8 50.3 50 49.6
13 30.8 32.4 32.1 31.7 43 41.7 42.9 42.9 42.5 73 47.5 49.1 48.8 48.4
14 30.7 32.5 32.1 31.8 44 40.7 42.2 42.1 41.6 74 46.4 48 47.8 47.4
15 39.4 35.7 38.9 38.8 45 40 41.6 41.4 41 75 45.4 47.1 46.8 46.4
16 37.6 36.8 37.7 37.6 46 39.3 41.1 40.8 40.5 76 44.5 46.4 46 45.7
17 36.4 36.6 37 36.6 47 49.4 50.1 50.2 49.8 77 52.8 54.2 54 53.5
18 35.5 36.3 36.4 36 48 47.3 48.2 48.2 47.8 78 51 52.5 52.2 51.8
19 34.8 36 36 35.6 49 45.6 46.7 46.6 46.2 79 49.6 51.1 50.8 50.4
20 34.3 35.8 35.6 35.2 50 44.3 45.6 45.4 45 80 48.3 50 49.6 49.2
21 33.9 35.6 35.3 34.9 51 43.1 44.6 44.4 44 81 47.2 49 48.6 48.2
22 33.6 35.4 35 34.7 52 42.2 43.7 43.5 43.1 82 46.2 48 47.7 47.3
23 43.4 41.8 43.4 43.2 53 41.4 43 42.8 42.4 83 53.3 54.8 54.5 54.1
24 41.3 40.9 41.7 41.4 54 40.6 42.4 42.2 41.8 84 51.7 53.2 52.9 52.5
25 39.7 40.1 40.5 40.1 55 50.5 51.4 51.4 51 85 50.2 51.8 51.5 51.1
26 38.6 39.3 39.5 39.1 56 48.5 49.6 49.5 49.1 86 49 50.7 50.3 49.9
27 37.7 38.7 38.8 38.4 57 46.9 48.1 48 47.6 87 47.9 49.8 49.3 48.9
28 36.9 38.2 38.2 37.8 58 45.5 46.9 46.7 46.3 88 46.9 49.2 48.4 48
29 36.3 37.8 37.7 37.3 59 44.4 45.9 45.7 45.3 - - - - -
30 35.8 37.5 37.3 37 60 43.4 45.2 44.8 44.4 - - - - -

Table 8. Error borehole breakouts width φb (◦) according to different element size.

Test# E300 E450 E600 Test# E300 E450 E600 Test# E300 E450 E600 Test# E300 E450 E600

1 −24 −3.4 −2.9 23 −3.6 −0.1 −0.6 45 4.1 3.6 2.6 67 3.4 2.8 2
2 −8.9 2.1 −0.4 24 −0.8 1.1 0.2 46 4.7 3.9 3 68 3.8 3.1 2.3
3 −0.5 3.1 1.1 25 0.8 1.8 0.8 47 1.3 1.6 0.8 69 4.3 3.5 2.7
4 3.9 3.7 2 26 1.8 2.5 1.3 48 1.8 2 1 70 2.4 2.1 1.2
5 5 4.2 2.7 27 2.6 3.1 1.9 49 2.3 2.2 1.3 71 2.6 2.3 1.4
6 5.8 4.6 3.2 28 3.3 3.4 2.3 50 2.9 2.6 1.7 72 3 2.4 1.6
7 6.5 4.7 3.5 29 4 3.8 2.7 51 3.4 2.9 1.9 73 3.4 2.6 1.8
8 −11.4 −1.8 −2.2 30 4.6 4.2 3.1 52 3.7 3.1 2.3 74 3.5 3 2.1
9 −1.9 1.5 −0.2 31 −0.8 0.9 0 53 4 3.5 2.6 75 3.8 3.1 2.3

10 1.5 2.8 0.9 32 0.5 1.5 0.5 54 4.4 3.9 2.8 76 4.1 3.4 2.5
11 3.1 3.5 1.7 33 1.4 2 1 55 1.7 1.8 0.9 77 2.7 2.2 1.4
12 4.3 4 2.3 34 2.2 2.6 1.4 56 2.3 2 1.2 78 2.8 2.3 1.5
13 5.1 4.3 2.8 35 3 2.9 1.9 57 2.6 2.4 1.4 79 3 2.6 1.7
14 5.8 4.6 3.3 36 3.8 3.2 2.3 58 2.9 2.5 1.7 80 3.5 2.7 1.9
15 −9.4 −1.3 −1.6 37 4.2 3.7 2.6 59 3.4 2.9 2 81 3.8 2.9 2.1
16 −2.3 0.2 −0.1 38 4.6 4.1 3 60 4 3.2 2.2 82 3.9 3.2 2.4
17 0.5 1.6 0.6 39 0.5 1.4 0.3 61 4.3 3.4 2.5 83 2.7 2.2 1.5
18 2.2 2.5 1.4 40 1.3 1.7 0.7 62 4.5 3.7 2.9 84 3 2.3 1.6
19 3.4 3.3 2.1 41 2.2 2.2 1.2 63 2 1.9 1.1 85 3.1 2.6 1.7
20 4.3 3.8 2.5 42 2.6 2.5 1.5 64 2.4 2.2 1.3 86 3.4 2.7 1.9
21 4.9 4.1 2.9 43 3 2.8 1.9 65 3 2.3 1.5 87 3.9 2.9 2.1
22 5.5 4.4 3.3 44 3.5 3.3 2.2 66 3.1 2.7 1.8 88 4.7 3.2 2.3

As shown in Tables 5–8 and Figures 11–13, the errors of breakout width and depth for Size1 are
significant, which means the size of elements is too large. The errors of breakout width for Size2 and
Size3 are less than 5% and the difference of breakout depth between Size2 and Size3 is less than 5%,
which means the influence of element size is small when the element number reaches a sufficient level.
Thus, in this paper, building thefinite element model by Size2 is satisfactory, where the total number of
elements is 450.
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Figure 11. Error of breakout width between analytical and numerical solutions based on different
element size.
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Figure 12. Breakout depth based on different element size.
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Figure 13. Ratio of breakout depth based on different element size.

3.5. Verification of the Process of Borehole Breakouts

For a vertical borehole shown in Figure 4 in which horizontal in situ stresses σH = 100 MPa,
σh = 60 MPa and other values of geometric and mechanical parameters are in Table 1, the process of
borehole breakout is shown in Table 9, Table 10, and Figures 14–17.



Energies 2019, 12, 888 15 of 23

Table 9. Data of principal stresses (MPa) and breakout region in the process of breakouts.

Element
Iteration1 Iteration2 Iteration3

σ1 σ2 σ3 F σ1 σ2 σ3 F σ1 σ2 σ3 F

1 197.2 53.5 30.6 1.045 216.8 58.4 35.2 1.047 241.2 64.8 42.7 1.04
2 196.5 53.4 30.5 1.044 214.9 57.9 34.9 1.046 236.1 63.6 41.7 1.024
3 195.3 53.1 30.3 1.043 211.5 57.2 34.4 1.043 227.1 61.4 40 1.018
4 193.4 52.7 30.1 1.041 206.7 56.1 33.6 1.039 214.3 58.4 37.5 1.009
5 191 52.1 29.8 1.038 200.2 54.6 32.6 1.032 198.1 54.5 34.4 1.001
6 187.9 51.5 29.4 1.034 192.1 52.7 31.4 1.024 179.1 49.9 30.3 0.997
7 184.3 50.6 28.9 1.029 182.3 50.4 29.8 1.015 162.3 45.7 26.4 0.992
8 180.1 49.7 28.4 1.023 170.8 47.7 27.7 1.004 150.2 42.8 23.7 0.981
9 175.4 48.6 27.8 1.016 159.2 44.9 25.5 0.994 141.9 40.9 22.4 0.967

10 170.2 47.5 27.3 1.008 149.5 42.6 23.6 0.985 136 39.6 21.8 0.954

Element
Iteration4 Iteration5 Iteration6

σ1 σ2 σ3 F σ1 σ2 σ3 F σ1 σ2 σ3 F

1 256.8 69.1 48.8 1.018 266.9 72.1 53.4 1.003 269.3 72.8 54.7 0.998
2 247.4 66.8 46.7 1.015 251.7 68.3 49.7 1 251.4 68.3 50 0.997
3 230.8 62.8 43 1.009 227.9 62.3 43.7 0.997 226.6 62 43.4 0.997
4 209.7 57.6 38.3 1.002 203.1 56 37 0.997 202.1 55.8 36.7 0.998
5 186.4 51.8 32.6 0.997 180.5 50.3 31 0.997 179.9 50.1 30.8 0.997
6 167.1 46.9 27.6 0.995 162.9 45.9 26.4 0.995 162.4 45.7 26.3 0.995
7 153.4 43.6 24.3 0.99 150.2 42.8 23.7 0.987 149.8 42.7 23.6 0.986
8 143.4 41.2 22.6 0.977 140.8 40.6 22.2 0.973 140.5 40.5 22.2 0.972
9 136.5 39.7 21.8 0.963 134.5 39.2 21.6 0.957 134.2 39.2 21.6 0.957

10 131.6 38.6 21.4 0.949 129.9 38.3 21.3 0.943 129.7 38.2 21.3 0.943

Table 10. The breakout shape with number of iterations.

Iteration φb (◦) rb (mm)

1 32.2 0
2 32.2 8.2
3 32.2 15.9
4 32.2 19.7
5 32.2 21.7
6 32.2 22
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It can be seen from Table 9, Figure 14, and Figure 15 that the principal stresses of elements close to
the tip of borehole breakouts are increasing in the process of breakouts, but the F value (Equation (2))
changes from F > 0 to F < 0.
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From Table 10, Figure 16, and Figure 17, thebreakout region decreases and the depth of breakout
increases as breakouts are developing, which means the depth of breakouts increases till a stable state,
but the width of breakouts remains unchanged.

3.6. Numerical Experiments on Breakdown Pressure of the Borehole That Had Breakouts

In this section, a numerical experiment is conducted to investigate the breakdown pressure of the
borehole that had breakouts under different in situ stresses. The experiment is for a vertical borehole
as shown in Figure 4 in which the values of geometric and mechanical parameters are in Table 11.

Table 11. Geometric and mechanical parameters.

Parameter Value

Young’s Modulus, E (GPa) 14.4
Poisson Ratio, ν 0.2
Cohesion, c (MPa) 20
Inner friction angle, ϕ (◦) 40
Radius of borehole, R (m) 0.15
Vertical stress, σV (MPa) 40
Mud pressure, Pm (MPa) 20
Tensile strength, σt (MPa) 5
Maximum principal stress, σH (MPa) 85–135
Maximum principal stress, σh (MPa) 37–82

The investigation is implemented in two steps. First, sets of finite element modeling provide
sets of data on borehole breakout measures. Second, for a given measure of borehole breakouts,
the breakdown pressure considering the borehole breakouts is acquired by applying different mud
pressure in the model, and results are shown in Tables 12 and 13.

Table 12. Results of the shape of borehole breakouts.

Test# σH
(MPa)

σh
(MPa) ϕb (◦) rb

(mm) Test# σH
(MPa)

σh
(MPa) ϕb (◦) rb

(mm) Test# σH
(MPa)

σh
(MPa) ϕb (◦) rb

(mm)

1 134.7 81.6 50.5 65.7 25 116.6 62.2 40.7 42.3 49 98.9 43 31.3 25.1
2 138.7 79.6 50.7 71.6 26 118 59.3 40.8 44.8 50 98.9 41.3 31.3 25.7
3 142.8 77.6 50.8 77.4 27 119.4 56.5 41 46.8 51 95.1 68.4 24.2 9
4 146.9 75.6 50.9 82.9 28 120.8 53.6 41.1 49.2 52 94.6 64.9 24.8 10.3
5 151 73.7 51 88.2 29 122.2 50.7 41.2 51.4 53 94.2 61.4 25.1 11.7
6 155 71.7 51.1 93.4 30 122.9 49.3 41.2 52.5 54 93.8 57.9 25.2 12.9
7 159.1 69.7 51.2 98 31 104 71.3 34.6 20.9 55 93.3 54.4 25.4 13.5
8 163.2 67.7 51.2 102.7 32 104.6 68.2 35 23.1 56 92.9 51 25.6 14.6
9 167.3 65.8 51.3 107.3 33 105.2 65.1 35.3 25.6 57 92.5 47.5 25.7 15.6
10 169.3 64.8 51.3 109.5 34 105.8 61.9 35.5 27.8 58 92 44 25.8 16.4
11 120.8 76.9 45.2 44.9 35 106.4 58.8 35.7 29.4 59 91.6 40.5 26 17.1
12 123.3 74.4 45.4 48.5 36 107 55.7 35.9 31.1 60 91.4 38.8 26.1 17.5
13 125.8 71.9 45.6 52.7 37 107.6 52.5 36 32.9 61 92.3 67.4 19.1 5.2
14 128.3 69.4 45.7 56.4 38 108.2 49.4 36.1 34.5 62 91.5 63.8 19.6 6.2
15 130.8 66.9 45.8 60.2 39 108.8 46.3 36.2 35.8 63 90.8 60.3 20 7.2
16 133.3 64.4 45.9 63.7 40 109 44.7 36.3 36.7 64 90 56.7 20.3 8
17 135.8 61.9 46 67.1 41 98.9 69.6 29.4 13.9 65 89.3 53.1 20.5 8.9
18 138.3 59.4 46.1 70.3 42 98.9 66.3 29.9 15.7 66 88.5 49.5 20.7 9.2
19 140.8 56.9 46.2 73.7 43 98.9 63 30.2 17.5 67 87.7 45.9 20.8 9.8
20 142.1 55.7 46.2 75.2 44 98.9 59.6 30.5 19.1 68 87 42.3 20.9 10.5
21 111.1 73.7 39.9 30.6 45 98.9 56.3 30.7 20.3 69 86.2 38.7 20.9 11.1
22 112.5 70.8 40.2 33.5 46 98.9 53 30.9 21.7 70 85.9 37 21 11.4
23 113.9 68 40.4 36.7 47 98.9 49.6 31 23
24 115.3 65.1 40.6 39.6 48 98.9 46.3 31.1 23.8
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Table 13. Results of breakdown pressure (MPa) for circular and breakout boreholes.

Test# Circular Breakout Test# Circular Breakout Test# Circular Breakout

1 115 119 25 75 78.4 49 35 38.6
2 105 107.4 26 65 67.8 50 30 33.6
3 95 95.3 27 55 57.2 51 115 119
4 85 82.8 28 45 46.5 52 105 109
5 75 69.7 29 35 35.7 53 95 99
6 65 56.2 30 30 30.2 54 85 89
7 55 42.4 31 115 119.4 55 75 78.9
8 45 28 32 105 109.4 56 65 68.9
9 35 13.1 33 95 99.3 57 55 58.9

10 30 5.5 34 85 89.2 58 45 48.8
11 115 119.8 35 75 79 59 35 38.8
12 105 109.2 36 65 68.8 60 30 33.8
13 95 98.5 37 55 58.5 61 115 118.9
14 85 87.5 38 45 48.3 62 105 108.9
15 75 76.3 39 35 37.9 63 95 98.8
16 65 65 40 30 32.7 64 85 88.8
17 55 53.4 41 115 119.2 65 75 78.8
18 45 41.6 42 105 109.2 66 65 68.8
19 35 29.6 43 95 99.1 67 55 58.8
20 30 23.6 44 85 89.1 68 45 48.8
21 115 119.7 45 75 79 69 35 38.7
22 105 109.5 46 65 69 70 30 33.7
23 95 99.2 47 55 58.9
24 85 88.8 48 45 48.8

Results of the investigation in Table 13 indicate the difference between the breakdown pressure
for a circular borehole and the breakdown pressure for a borehole with breakouts. This means that if a
breakdown pressure for a borehole with breakouts is interpreted as the analytical breakdown pressure
of a circular borehole, there is an error in some situations. It is further found that the breakdown
pressure is related to the width or depth of breakouts and the difference betweenbreakdown pressure
of circular borehole and mud pressure. The error of breakdown pressure with the circular hole
assumption increases with the increase of the breakout’s width or depth and the decrease of the
difference betweenbreakdown pressure of circular borehole and mud pressure, which are shown in
Table 14, Table 15, and Figures 18–20.

Table 14. Error of breakdown pressure based on φb (◦) and Pf (circ)/Pm (%).

Pf(circ)/Pm φb=50 φb=45 φb=40 φb=35 φb=30 φb=25 φb=20

5.75 −3.37 −3.99 −3.90 −3.71 −3.51 −3.37 −3.24
5.25 −2.23 −3.87 −4.10 −4.00 −3.81 −3.67 −3.54
4.75 −0.30 −3.51 −4.25 −4.30 −4.18 −4.02 −3.88
4.25 2.70 −2.86 −4.33 −4.66 −4.61 −4.46 −4.32
3.75 7.56 −1.75 −4.32 −5.04 −5.10 −4.99 −4.86
3.25 15.56 0.04 −4.18 −5.49 −5.75 −5.67 −5.53
2.75 29.83 2.98 −3.87 −6.06 −6.59 −6.60 −6.45
2.25 60.81 8.05 −3.18 −6.76 −7.72 −7.87 −7.69
1.75 167.42 18.16 −1.85 −7.74 −9.41 −9.78 −9.67
1.50 441.69 27.33 −0.75 −8.35 −10.58 −11.15 −11.07
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Table 15. Error of breakdown pressure based on (rw + rb)/rw and Pf (circ)/Pm (%).

Pf/Pm 1 2 3 4 5 6 7

5.75
(rw+rb)/rw 1.44 1.30 1.20 1.14 1.09 1.06 1.03
Err (%) −3.37 −3.99 −3.90 −3.71 −3.51 −3.37 −3.24

5.25
(rw+rb)/rw 1.48 1.32 1.22 1.15 1.10 1.07 1.04
Err (%) −2.23 −3.87 −4.10 −4.00 −3.81 −3.67 −3.54

4.75
(rw+rb)/rw 1.52 1.35 1.24 1.17 1.12 1.08 1.05
Err (%) −0.30 −3.51 −4.25 −4.30 −4.18 −4.02 −3.88

4.25
(rw+rb)/rw 1.55 1.38 1.26 1.19 1.13 1.09 1.05
Err (%) 2.70 −2.86 −4.33 −4.66 −4.61 −4.46 −4.32

3.75
(rw+rb)/rw 1.59 1.40 1.28 1.20 1.14 1.09 1.06
Err (%) 7.56 −1.75 −4.32 −5.04 −5.10 −4.99 −4.86

3.25
(rw+rb)/rw 1.62 1.42 1.30 1.21 1.14 1.10 1.06
Err (%) 15.56 0.04 −4.18 −5.49 −5.75 −5.67 −5.53

2.75
(rw+rb)/rw 1.65 1.45 1.31 1.22 1.15 1.10 1.07
Err (%) 29.83 2.98 −3.87 −6.06 −6.59 −6.60 −6.45

2.25
(rw+rb)/rw 1.68 1.47 1.33 1.23 1.16 1.11 1.07
Err (%) 60.81 8.05 −3.18 −6.76 −7.72 −7.87 −7.69

1.75
(rw+rb)/rw 1.72 1.49 1.34 1.24 1.17 1.11 1.07
Err (%) 167.42 18.16 −1.85 −7.74 −9.41 −9.78 −9.67

1.50
(rw+rb)/rw 1.73 1.50 1.35 1.24 1.17 1.12 1.08
Err (%) 441.69 27.33 −0.75 −8.35 −10.58 −11.15 −11.07
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In this paper, based on Table 14, Figure 18, and Figure 19, when Pf (circ)/Pm > 3.5, the error
of breakdown pressure with circular hole assumption is less than 10%; when Pf (circ)/Pm > 2
and φb < 40

◦
, the error of breakdown pressure with circular hole assumption is less than 10%;

when Pf (circ)/Pm < 2 and φb > 40
◦
, the error of breakdown pressure with circular hole assumption

is more than 10%; when Pf (circ)/Pm < 1.5, the error of breakdown pressure with circular hole
assumption is more than 10% most of the time.

In this paper, based on Table 15 and Figure 20, when Pf (circ)/Pm > 3.5, the error of breakdown
pressure with circular hole assumption is less than 10%; when Pf (circ)/Pm > 2 and (rw + rb)/rw < 1.5,
the error of breakdown pressure with circular hole assumption is less than 10%; when Pf (circ)/Pm < 2
and (rw + rb)/rw > 1.5, the error of breakdownpressure with circular hole assumption is more than
10%; when Pf (circ)/Pm < 1.5, the error of breakdown pressure with circular hole assumption is more
than 10% most of the time.

4. Conclusions

In this paper, the influence of breakouts in a borehole on the breakdown pressure in a hydraulic
fracturing test is investigated. The finite element method is employed to simulate the borehole
breakouts based on elasticity and Mohr-Coulomb failure criterion, and the obtained breakout
measurementsare subsequently conducted to determine breakdown pressures of a borehole under
different in situ stresses.

The finite element modeling of borehole breakouts is verified against the analytical solution,
with the assumption of successive spalling of thin layers of rock caused by stress redistribution around
the borehole and breakouts, which is consistent with previous studies.

From the results of numerical experiments, the influence of borehole breakouts on breakdown
pressure is obtained, and the question of when to consider a borehole breakout for determining the
maximum horizontal principal stress is resolved.

1. For a breakout borehole, the breakdown pressure is related to breakout width, breakout depth,
and initial mud pressure causing a borehole breakout.

2. For a breakout borehole, the closer the breakdown pressure based on the Kirsch solution and
initial mud pressure causing the borehole breakout, the greater the error of breakdown pressure based
on the Kirsch solution.

3. The larger the borehole breakout, the greater the error of breakdown pressure based onthe
Kirsch solution.

4. When a borehole breakout is large or the breakdown pressure based on the Kirsch solution is
close to the initial mud pressure causing the borehole breakout, the difference of breakdown pressure
between a circular borehole and a breakout borehole is large, and the determination of the maximum
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horizontal principal stress based on the Kirsch solution is improper, so the influence of borehole
breakout should be considered for determining the maximum horizontal principal stress.

5. Modest changes in borehole cross section as a result of breakout do not significantly alter the
breakdown pressure from that given by the Kirsch solution for a circular hole subjected to the same in
situ stresses, so in this case, the maximum horizontal principal stress can be determined based on the
Kirsch solution.

As hydraulic fracturing has been thegold standard in measuring in situ stress in the oil and gas
industry, an alert is raised in this paper regardingthe possible consequence of the negligence of the
influence of borehole breakout on breakdown pressure interpretation, the most important parameter
in hydraulic fracturing tests.

Author Contributions: H.Z. wrote the draft and performed the numerical experiments under the supervision of
S.Y. and B.A.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

c Cohesive strength
ϕ Internal friction angle
σ Normal stress on the failure plane
τ Shear stress on the failure plane
σ1 The maximum principal stress
σ3 The minimum principal stress
F Breakout coefficient
σt Tensile strength of rock
σr Radial stress
σθ Circumferential stress
σz Vertical stress
τrθ Tangential shear stress
σH The maximum horizontal in situ stress
σh The minimum horizontal in situ stress
σV Vertical in situ stress
R Radius of a borehole
r Distance from the center of the borehole
θ Angle from the maximum principal stress
Pm Fluid pressure in the borehole
φb Breakout width
rb Breakout depth
Pf Breakdown pressure of borehole
σ Stress vector
ε Strain vector
D Elastic stiffness matrix
E Young’s modulus
ν Poisson’s ratio
G, λ Lamé constants
f u Vector for the nodal loads
u Vector for unknown displacement
u Node displacement
N Shape function
M Elastic stiffness
B Matrix relating strain and displacement
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