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A B S T R A C T

In quantitative risk assessments, several explicit assumptions need to be made, to compute the risk metrics
addressed. Such assumptions may, for example, relate to the number of people exposed to specific hazards, to the
reliability of safety systems, or to the response of the system exposed to the hazards. In addition, come potential
tacit assumptions, for example, when making a probability judgement about an event to occur. The probability
judgement is based on some knowledge – which essentially captures data, information, and justified beliefs – and
here tacit assumptions may exist, even if explicit assumptions have not been formulated: for example, a belief
about how the system works. The probability and resulting risk metrics are conditional on this knowledge
including these assumptions, and the strength of this knowledge and the ‘risk’ related to potential deviations
from these assumptions needs attention. This paper discusses the concept of a risk assessment assumption, the
main aims being to clarify the issues raised and to provide guidance on how to formulate the background
knowledge to distinguish between explicit and non-explicit (tacit) assumptions. The paper thus provides a
sharper conceptual basis for addressing such assumptions, and also some recommendations for dealing with
these in practice.

1. Introduction

Assumptions are an essential and unavoidable part of quantitative
risk assessments (QRAs). The following is the list of subjects for which
assumptions were made in the QRA of a liquid natural gas (LNG)
bunkering operation at a passenger ferry terminal in Norway ([11, 12]):

• Description and background data: manning level, meteorological
data, meteorological parameters, ignition sources – equipment/
traffic/people/hot work, bunkering installation – base case design
and inventory, escape and evacuation of passengers and personnel.

• LNG accidents:
◦ Representative scenario assumptions: release location/height, re-
lease sizes.

◦ Frequency analysis assumptions: leak frequencies.
◦ Event tree modelling assumptions: detection and isolation times,
isolation failure, immediate ignition probability, event tree fra-
mework, event tree probabilities.

◦ Consequence modelling assumptions: dispersion parameters,
consequence modelling parameters.

• Storage and loading – specific: bunkering frequency

• Impact criteria: end point (impact) and vulnerability (fatality) cri-
teria.

As the following examples show, the assumptions in the QRA of the
LNG bunkering operation were made with respect to observable
quantities (1), events and conditions (2 and 3), models (4) and model
parameters (5), as well as probabilities (6):

1 Manning level: ‘A total number of 4 workers (1st party) will be
present at the bunkering terminal.’

2 Escape and evacuation of passengers and personnel: ‘It is assumed
that the escape and evacuation of passengers and personnel are
following the LNG plan evacuation ...’

3 Ignition sources – equipment/traffic/people/hot work: ‘The analysis
is based on no hot work taking place within the bunkering area.’

4 Immediate ignition probability: ‘The probability of immediate ig-
nition is derived as a function of the release rate and release phase
using the framework set out below. This immediate ignition prob-
ability model is the same as derived for [a corresponding QRA]’

5 Meteorological parameters: ‘… certain meteorological constants are
defined as inputs to the consequence modelling. These values are
summarised below: […] Surface roughness parameter | 0.3 for land
0.05 for water …’

6 Isolation failure: ‘For liquid and gas sections, a probability of failure
on demand of 2% is assumed.’
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The above examples illustrate how assumptions relate to a wide
variety of aspects in a QRA. As an example, many QRA assumptions
relate to human behaviour. The second example assumption in the
above list can be seen as a (very crude) human reliability assignment.
Normally, in human reliability assessment (HRA) so-called performance
shaping factors (PSFs) are introduced and, when analysed quantita-
tively, these factors can be used to adjust base-case human error
probabilities (HEPs) (e.g., [18, 22]). Assumptions could then, for ex-
ample, be underlying a PSF assignment, or the PSF assignment itself
could be made as an assumption, due to lack of information. In the QRA
that the above example assumption is taken from, the concept of PSFs is
not introduced; however, the assumption relates to human behaviour
and essentially says that the human error probability related to escape
and evacuation is zero. The assumptions that are made in relation to
human reliability, and thus in HRA, could involve conflicts between
beliefs – so-called dissonances –which need to be taken into account; cf.
Vanderhaegen [30].

The above and remaining assumptions are documented in an as-
sumption register included as an appendix [12] to the QRA report [11].
Other, more general categorisations than the ad hoc one shown above
are also sometimes seen; for example, a categorisation into technical/
design, operational, and analytical assumptions.

An assumption can be defined in various ways, for example:

• ‘A fact or statement (as a proposition, axiom, postulate, or notion)
taken for granted.’ (Merriam-Webster Online)

• ‘A [planning] assumption is a judgement or evaluation about some
characteristic of the future that underlies the plans of an organisa-
tion.’ ([10] p. 14)

• ‘Defaults are functional forms or numerical values that are assigned
to certain models or parameters in risk assessment, based on gui-
dance and standard practice, in the absence of good data. […]
Assumptions are equivalent to defaults but are derived for a specific
assessment rather than being taken from guidance. They may be
complex, implying functional forms or sets of parameters. […] Ad
hoc assumptions must be individually justified.’ ([29] pp. 134–135)

• ‘Nonetheless, an assumption is a very weak scientific statement
because it is based on inductive logic.’ ([27] p. 97)

• ‘By assumptions we understand conditions/inputs that are fixed in
the assessment but which are acknowledged or known to possibly
deviate to a greater or lesser extent in reality.’ ([8] p. 46)

The last three quotes are taken from what can be labelled as the risk
analysis literature. The penultimate statement is perhaps more of a
characterisation than a definition. We see that the definitions range
from the strong characterisation of an assumption as being a ‘fact’, via
the more neutral ‘statement’ and ‘fixed conditions/input’, to the weaker
‘judgement or evaluation’.

All the example assumptions included at the beginning of the in-
troduction are what can be labelled as explicit assumptions. The
(simple) Merriam-Webster definition of ‘explicit’ includes ‘very clear
and complete’, ‘leaving no doubt about the meaning’ and ‘openly
shown’. An antonym for ‘explicit’ is ‘tacit’, defined by Merriam-Webster
as ‘expressed or understood without being directly stated’. And, in ad-
dition to explicit assumptions, there will be more or less tacit as-
sumptions in a QRA, for example, when making a probability judge-
ment about the occurrence of an event: the probability judgement is
based on some knowledge – which essentially captures data, informa-
tion and justified beliefs – and here tacit assumptions may exist, even if
explicit assumptions have not been formulated: for example, a belief
about how the system works. The risk metrics are conditional on this
background knowledge including these assumptions, and the strength
of this knowledge and the ‘risk’ related to potential deviations from
these assumptions needs attention; cf. Aven [2].

The purpose of the present paper is to discuss the concept of a risk
assessment assumption, the main aims being to clarify the issues raised

and to provide guidance on how to formulate the background knowl-
edge to distinguish between explicit and non-explicit (tacit) assump-
tions. Assumptions are made in all risk assessments, making these a
foundational issue of relevance across different application areas. Being
able to formally relate risk assessment assumptions to the background
knowledge of the risk description, and, in the next step, to distinguish
between assumptions that are acknowledged and stated openly and
assumptions that are ‘hidden in the background knowledge’ and thus
represent a potentially unacknowledged ‘risk’ related to deviations (cf.
the paragraph above), gives a sharper conceptual basis for the thinking
and discussion about risk assessment assumptions. It also provides a
framework within which to formulate recommendations and guidelines
for how to address such assumptions in practice, as will be shown in the
present paper.

In light of the different basic types of research described and con-
trasted by Kothari [19], the scientific contributions of the present paper
can be described as conceptual as opposed to empirical, fundamental as
opposed to applied, and analytical as opposed to descriptive. These
three features are the hallmarks of generic conceptual risk research, as
defined and discussed by Aven [6]. The research described in the pre-
sent paper is primarily conceptual, in that it relates to abstract concepts
and ideas – e.g., the risk description, knowledge, and assumptions –
rather than empirical evidence, though there are empirical elements,
such as the list of example assumptions above. Conceptual contribu-
tions are created in a process involving one or more among several
possible features, as described by MacInnis [21]; see also Aven [6]. The
features of the present paper are identification (of existing definitions of
[risk assessment] assumptions, and of different types of uncertain
quantities in QRA), differentiation (between explicit and tacit as-
sumptions), integration (of the formal set-ups for conceptualising as-
sumptions and the risk description), and advocating (that risk assess-
ment assumptions can be operationalised as fixed uncertain quantities).
The research in the present paper is fundamental, in the sense that the
results and recommendations made are general and thus applicable in
different context. Finally, the research in the present paper is analytical
as it uses information that is already available rather than collecting
new information. For example, it builds on existing strategies for
treating explicit assumptions and existing criteria for evaluating
strength of knowledge.

Risk assessment assumptions have been addressed by several au-
thors. Aven [4] discusses conservative assumptions specifically, using a
conceptualisation of assumptions that the present paper builds on.
Rosqvist and Tuominen [24] discuss modelling assumptions in relation
to bias, conservatism and precaution in risk assessment, relating as-
sumptions to ‘functional relationships of system inputs and outputs,
temporal interdependencies between events, etc.’ (p. 110). Tacit as-
sumptions are commonly referred to and acknowledged in the litera-
ture, as exemplified by the following quotes:

• ‘Indeed, most estimates of parameter uncertainty are contingent on
the tacit assumption that the model containing these parameters is
entirely appropriate and correctly specified.’ ([13] p. 11)

• ‘There is also a tacit assumption in many risk assessments that the
plant is built as designed and is adequately maintained. Violations of
safety technical specifications and sabotage are rarely included in
the studies.’ ([20] p. 241)

However, tacit assumptions, and specifically their distinction from
explicit assumptions, do not appear to have been conceptually dis-
cussed at much depth, at least in the risk analysis/assessment literature.
A paper discussing tacit and/or explicit assumptions conceptually, in
the context of risk assessment/analysis, like in the present paper, would
presumably mention these words in the title, abstract or keywords. The
results of a Scopus title, abstract and keyword search is shown in
Table 1. Only one of the seven publications resulting from the first
search string comes close to addressing tacit assumptions conceptually
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in some degree of detail, by linking assumptions to background
knowledge, in line with what is done in the present paper: ‘Moreover,
the reasoning on the assessment is based on background knowledge that
very often is tacitly described in documents or on area maps’ ([7]
p. 180). The remaining six publications only refer to specific tacit as-
sumptions having been made as part of the study reported on in the
publication. Eight of the nine publications resulting from the second
search string refer to explicit assumptions in general, but do not con-
ceptually analyse and discuss this term as is done in the present paper.
The remaining one publication refers to a specific explicit assumption
made in the study that the publication reports on. Neither of the two
publications quoted in the bullet points above appeared among first two
search results, presumably because the first quote is from a report in a
report series not indexed by Scopus and because the second quote
comes from an article that does not mention tacit or explicit assump-
tions in the abstract. Finally, a review of the 61 abstracts resulting from
the fourth search revealed that only one of these [23] addresses implicit
assumption in some degree of detail and specifically in relation to be-
liefs and knowledge, then in the context of expert knowledge elicitation
for risk analysis.

The remainder of this paper is organised as follows: in Section 2, we
introduce a formal set-up with an example, providing a basis for a
discussion and some recommendations in Section 3. Finally, Section 4
gives some conclusions and final remarks.

2. A formal set-up with an example

In this section, we present a formal set-up for addressing assump-
tions in QRA. The set-up includes a risk description/metric and a ty-
pology of uncertain quantities, as well as a way of conceptualising as-
sumptions in terms of fixed uncertain quantities.

Broadly speaking, and in line with the Society for Risk Analysis
(SRA) glossary [28] and Aven [3], a risk description can be seen as
comprising specified consequences, C′, interpreted broadly to include
risk sources, events/scenarios, and end states; a measure of uncertainty,
Q, assigned to these; and the background knowledge, K, on which this
assignment is made. As described in the introduction, the background
knowledge essentially covers data, information and justified beliefs.
The latter include, for example, models and expert judgements [3]. The
most commonly used quantitative measure of uncertainty is prob-
ability, P, and, if probability is the only measure of uncertainty used, we
have Q = P. If the probability assignments are supplemented by qua-
litative strength-of-knowledge assessments (SoK), as will be described
in Section 3, the measure of uncertainty becomes Q x003D= (P,SoK).

In a QRA, the risk level is typically summarised by one or more risk
metrics (also sometimes referred to as risk measures or risk indices). A
broad class of risk metrics is obtained as the (possibly normalised) ex-
pected value of an uncertain quantity N, where N characterises the
severity of the consequences and is part of the specified consequences
C′. That is, the risk metric, here denoted R, is given by

=R c E N K[ | ],

where c is a normalising constant. In terms of the risk description
conceptualisation, (C′,Q,K), we see that R is an expression in the format
Q(C′|K), which includes all the main components of the risk description.
The class of risk metrics covered by R includes, for example, common

safety risk metrics such as PLL values (potential loss of life; defined as
the expected number of fatalities), FAR values (fatal accident rate;
defined as the expected number of fatalities per 100 million hours), FN
curves (frequency number of fatalities curves; defined as the expected
number of events with N or more fatalities for some range of values of
N), and frequencies of loss of some main safety functions (e.g., ‘loss of
structural integrity’ or ‘loss of escape ways’ in an offshore oil and gas
platform setting, and ‘large early release frequency (LERF)’ in a nuclear
power plant setting). To see this, note that in the case of PLL values,
which can be defined as E[N|K] when N is the number of fatalities in
the time period considered, we have c = 1. The same is the case for
frequencies of loss of main safety functions, which can be defined as E
[N|K] when N is an indicator quantity equal to 1 in case of loss of the
main safety function and 0 otherwise; and also in the case of FN curves,
which can be defined as E[N(n)|K] when N(n) is the number of events
with n or more fatalities in the time period considered. Furthermore, in
the case of FAR values, which can be defined as E[N|K] × 108 / s when
N is the number of fatalities in the time period considered and s is the
number of hours of exposure time for the persons exposed to risk, we
have c = 108 / s.

In the following, we first describe the set-up for conceptualising
explicit and tacit assumptions formally. Then follows an example to
illustrate the set-up. We focus on framing assumptions in relation to the
probability of an event, A, given some background knowledge, K, i.e., in
relation to P(A|K). Like P(A|K), the risk metric R = E[N|K] is also a
probabilistic statement, with K as conditional argument, and the set-up
thus also applies to R.

Consider the probability assignment for an event A, conditional on
particular background knowledge K, including assumptions. Let
H = (H1,H2,...,Hn) denote the vector of assumptions made, and suppose
that each assumption Hi is operationalised as a quantity (parameter),
Vi, possibly vector valued. We can then write Hi as a function of Vi, and
H as a function of V = (V1,V2,…,Vn). To simplify the notation and
presentation, in the remainder of this section we use H and V, instead of
Hi and Vi, to denote a single assumption and associated quantity, re-
spectively. In the set-up, we distinguish between different types of
quantities:

• Type X quantity: V = X, where X is fixed at some base case value, x0.
The link between X and H is acknowledged by the analyst, and H is
openly stated in the risk assessment. In this case, we refer to H as an
explicit assumption.

• Type Y quantity: V = Y, where Y is fixed at some base case value, y0.
The link between Y and H is not acknowledged by the analyst, and/
or H is not openly stated in the risk assessment. In this case, we refer
to H as a tacit assumption. If the link between H and Y is ac-
knowledged by the analyst but H is not openly stated, we refer to H
as an acknowledged but undocumented tacit assumption. If the link
is not acknowledged and H is not openly stated, we refer to H as an
unacknowledged an undocumented tacit assumption. We may refer
to these two sub-types of quantities as type Y′ (link between H and
the quantity acknowledged but not openly stated) and type Y″ (link
between H and the quantity not acknowledged and not openly
stated), respectively, to distinguish these formally whenever there is
a need to do so.

In addition to explicit and tacit assumptions, operationalised as
fixed quantities, the uncertainty related to some quantities, say Z, may
affect the uncertainty assessment of A, and the uncertainty related to Z
is represented quantitatively using a probability distribution FZ and
formally integrated into the overall probability of A using the law of
total probability (the law of total expectation, in the case of R). That is,
the probability P(A|K) can be formulated as:

∫=P A K P A Z K dF( | ) ( | , ) .Z

Table 1
Scopus search results.

Search string Number of results

‘tacit assumption’ AND ‘risk assessment’ OR ‘risk analysis’ 7
‘explicit assumption’ AND ‘risk assessment’ OR ‘risk analysis’ 9
‘tacit assumption’ AND ‘risk assessment’ OR ‘risk analysis’

AND ‘explicit assumption’
0

‘implicit assumption’ AND ‘risk assessment’ OR ‘risk analysis’ 61
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Finally, there may be quantities, say W, that also affect the un-
certainty assessment of the event A and which are neither fixed nor
formally integrated in the same way as Z using the law of total prob-
ability. Instead, they are informally incorporated into the assignment
process by the person assigning the probability, who intuitively weighs
the potential values of W and the associated probabilities into the
overall probability assignment.

We thus obtain a typology of uncertain quantities, covering
(X,Y,Z,W). Next, we introduce a simple example to illustrate the above
set-up and this typology. The example will also be used to support the
discussion in Section 3. Consider the event tree shown in Fig. 1, mod-
elling the sequence of events from a gas leak (event A) at an offshore oil
and gas platform, via the performance of barriers in place to avoid ig-
nition (event B1) and escalation (event B2), to the number of fatalities,
which could be 0, 1 or 2, depending on which of the events B1 and B2

occur and not.
Let L denote the number of gas leaks (events A) in a specified time

period and N the number of fatalities in the same period. Then, some
natural risk metrics to consider are (suppressing the conditioning on K
from the notation)

= × + ×E N E L P B A P B B A P B B A[ ] [ ] ( | )[2 ( | , ) 1 (not | , )],1 2 1 2 1

and

= ≈P N E L P B A P B B A( 2) [ ] ( | ) ( | , ),1 2 1

where the approximation holds for sufficiently small gas leak fre-
quencies E[L]. The different types of quantities related to assumptions
and influencing factors described above can be identified in relation to
this example:

Type X quantity: the number of hours of hot work. Suppose that the
probability of ignition given a gas leak, P(B1|A), is judged to depend on
the amount of hot work taking place on the platform. Let T denote the
number of hours of hot work on the platform during one year. Then we
can indicate this dependence by writing P(B1|A,T). Finally, suppose that
an assumption is made that T = t0 for some number t0, based on, say,
the operations and maintenance policy and plans developed for the
platform. The probability used in the risk assessment would thus be P
(B1|A,T = t0). Note that defining the quantity T and making the as-
sumption T = t0 changes neither the event A nor the event B1.

Type Y quantity: a finite number of discrete consequences. A tacit
assumption is that the number of consequences (end states) can be
classified into a finite number of discrete outcomes, three in the case of

the event tree in Fig. 1. The type Y quantity could then be the indicator
function of the condition that the actual consequences, C, is an element
in the set of modelled consequences, Ω. The assumption is then that this
indicator function, I(C ∈ Ω), is equal to 1, which is just a way of saying
that the condition is true. Given that the risk analyst acknowledges that
this is a simplification of reality, which most risk analysts would likely
do, in terms of sub-type this would be a type Y′ quantity.

Type Z quantity: the wind speed during a gas leak. Suppose that it is
judged that the probability of ignition given a gas leak also depends on
the wind speed, S, during the gas leak. We may indicate this depen-
dence by writing P(B1|A,T,S). Also, suppose that, based on weather
statistics, a probability distribution, FS, is assigned for S. Then the
probability of ignition given a gas leak can be assessed as

∫= =P B A t P B A T t S dF( | , ) ( | , , ) .S1 0 1 0

Type W quantity: the number of personnel in the process area.
Suppose that the probability of ignition given a gas leak is judged to
also depend on the number of personnel in the process area, J, during
the gas leak. We may indicate this dependence by writing P(B1|A,T,S,J).
Assessing the probability of ignition also involves assessing the prob-
ability of manual detection of the leak, which clearly depends partly on
the number of people present. Suppose that, as a simplification, a direct
subjective probability assignment of P(manual detection|A) is made,
without establishing a probability distribution of J and using it to in-
tegrate over P(B1|A,T,S, J) with respect to J. The risk analyst simply
makes a judgement using all sources of information, weighing different
possible scenarios regarding J and other relevant conditions, and as-
signs the probability directly.

Table 2 summarises the links between the type X and Y quantities
and the associated assumptions, H, as well as the operationalisation of
these assumptions by fixing their associated quantities, V, at values, v0.

3. Explicit and tacit assumptions – discussion

In this section, we discuss some key premises, related to the formal
set-up and example in Section 2, and provide some recommendations.
First, we discuss the premise that knowledge covers data, information
and justified beliefs, and that assumptions can be considered justified
beliefs. Second, we discuss the premise of defining explicit and tacit
assumptions in terms of fixed uncertain quantities. Third, we give some
recommendations, by outlining some potential practical uses of the set-
up and typology described in the previous section.

3.1. Assumptions as justified beliefs: relation to the background knowledge

The formal set-up described in Section 2 is based on the premise that
risk assessment assumptions are part of the background knowledge of
the risk assessment, where (propositional) knowledge is understood as
justified beliefs; cf., e.g., SRA [28] and Aven [3]. These beliefs are based
on data and information, modelling and analysis; and it is often useful
to talk about knowledge in a wide sense as covering data, information
and knowledge (in a narrow sense, as justified beliefs) [3]. Within this
framework, an assumption can be considered a justified belief, noting
that the belief may be a chosen belief from a set of possible beliefs, each
supported by different (levels of) justifications. The risk analyst thus
does not have to believe that the assumption is correct. Often different
assumptions can be made, each with some justification but not enough
for the analyst to necessarily believe that the assumption is correct. In

Fig. 1.. Event tree example.

Table 2
Type X and Y quantities in the example and their relation to assumptions and the operationalisation of these.

Uncertain quantity Type of quantity Assumption (H) Operationalised assumption (V = v0)

T Type X The number of hours of hot work will be t0 T = t0
I(C ∈ Ω) Type Y The number of consequences (end states) can be classified into three discrete outcomes I(C ∈ Ω) = 1
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the limit, an assumption for which no justification can be provided
would be a degenerate justified belief. Consider, for instance and with
reference to the example in Section 2, the following alternative as-
sumptions:

H: There will be 100 h of hot work during production per year.
H′: There will be no hot work during production.

Suppose that the operations and maintenance policy and plans for
the platform state that there will be no hot work (e.g., welding) during
production. The plan is to perform whatever hot work is necessary
during planned production shutdowns. This policy and plan justify the
assumption H′. However, based on experience that a need to perform
hot work that cannot wait sometimes does arise, and to avoid having to
perform a new (revised) risk assessment if and when such need arises,
the risk assessment is performed based on the assumption H. Experience
and the argument related to avoiding having to perform an adjusted
risk assessment justify H. As another example, consider the use of
models. A model can be seen as expressing justified beliefs related to a
phenomenon. Returning again to the example introduced in Section 2,
let G denote a model of gas dispersion, for example a crude model that
predicts the gas dispersion pattern as a simple function of distance from
the release point. An alternative, computational fluid dynamics model,
G′, may exist, where the analyst has far greater confidence in the pre-
dictive ability of G′ compared to G. However, the model G may still be
the one used in the risk assessment, due to time and/or resource con-
straints.

A tacit assumption (or, even an explicit assumption), may have no
other justification than “we have always made this assumption”, i.e., no
other justification than convention/custom. That an assumption is
customarily made can be seen as a (first level) justification, which of
course needs to be further investigated and challenged. If it turns out
that there is virtually no justification behind this convention, we may
be approaching a degenerate justified belief.

Suppose that we can formulate the background knowledge as a
vector of knowledge components, i.e., that we can write K = (K1,K2,
…,Km). Then, by considering assumptions and models as knowledge
components, we have Kj = Hj for a set of j's, and Kj = Gj for a different
set of j's.

The point above concerning the model G versus the model G′ il-
lustrates a key point, namely that the background knowledge, K, is the
specific knowledge used to assign a probability, or, more generally, to
establish the risk description. It is not, for example, the grand total of
knowledge that exists in relation to the activity or phenomenon being
analysed or even the total knowledge of the risk assessment group.
Consider two sets of knowledge in relation to the example introduced in
Section 2. One is denoted K and the other K′, where K is the specific
knowledge on which the risk description is based and K′ is the total
knowledge of the risk assessment group. Suppose that one difference
between K and K′ is that the former includes the model G and the latter
also includes the model G′. We may refer to both K and K′ as (alter-
native) sets of knowledge; however, the background knowledge of the
risk description includes only the knowledge components that are ac-
tually used to establish it, in this case G rather than G′ (in general, of
course, more than one model of the same phenomenon could form part
of the background knowledge if several models are combined, for ex-
ample using model averaging). The grand total of knowledge, say K″,
would include both G and G′, as well as other models of gas dispersion
in air.

Risk assessments are in most cases performed by groups of risk
analysts, so that an acknowledgement of the link between a tacit as-
sumption and a type Y quantity may only be partial if just one or some
of the risk analysts is aware of this link. Since the background knowl-
edge, K, is the specific knowledge used to establish the risk description,
if a tacit assumption affects the value of a (type Y) quantity in the risk
assessment, then by definition that assumption is part of K, even if the

link between the tacit assumption and the type Y quantity is not ac-
knowledged by all of the risk analysts. The value of making tacit as-
sumptions of this type explicit is highlighted in one of the papers
identified in the literature search and review presented in Section 1
[16]:

‘By making interdisciplinary hazards teams’ implicit assumptions
explicit, the sharing meanings approach offers an operational pro-
cess to seize on moments of difference as productive tension and to
see such challenges as opportunities—rather than obstacles—for
innovating toward hybrid methodological research designs in ha-
zards research.’

Risk assessments deal with situations of uncertainty, and risk as-
sessment assumptions are commonly made in the face of epistemic
uncertainty, i.e., when there is lack of knowledge. Assumption may also
be made in the face of aleatory uncertainty, i.e., when there is variation
in the phenomena involved; for example, assumptions about the para-
meters in the model used to characterise the variation. The explicit
assumptions made are often conservative, meaning that they lead to a
higher level of described risk, compared to ‘best estimate’ or ‘best
judgement’ assumptions [4]. Here, we can probably understand ‘best
judgement’ assumptions as reflecting the strongest beliefs of the risk
analyst. A conservative assumption can, however, also be given a jus-
tification (albeit possibly weaker than the best judgement one) and can
thus be considered a justified belief, in line with how assumptions are
conceptualised in the present paper. Tacit assumptions, on the other
hand, understood as assumptions that are not acknowledged, or at least
not openly stated (documented), can clearly be seen as justified beliefs.
Consider a probability judgement based on some knowledge. If the
probability judgement is based on a belief about how a system works,
and this belief is not stated, then this belief can be considered a tacit
assumption. The belief may be very strong, at least if held sub-
consciously or if it was considered unnecessary to document that the
probability judgement was made under that condition.

One consequence of seeing knowledge as justified beliefs is that the
knowledge may be wrong [3]. It also opens the door for assessing the
strength of knowledge (e.g., [2, 3]), which is then understood as an
assessment of how well justified the beliefs making up the knowledge
are. We would, for example, judge the strength of knowledge related to
K and K′ in the paragraph before the previous one differently. The
strength of knowledge related to K′ would be judged as stronger than
that related to K, in part due to the greater confidence in the predictive
ability of G′ compared to G. Various schemes have been proposed for
performing what may be labelled strength-of-knowledge assessments.
One example is the so-called NUSAP notational scheme for uncertainty
and quality in science for policy [15], which involves a qualitative
evaluation of the ‘pedigree’ of a scientific study. Another example is the
qualitative scheme proposed by Flage and Aven [14], whereby the
strength of knowledge related to the background knowledge of a risk
metric is classified as ‘weak’ if one or more of the following conditions
are fulfilled [14]:

• ‘The phenomena involved are poorly understood; models are non-
existent or known/believed to give poor predictions.

• Data/information are/is non-existent or highly unreliable/irrele-
vant.

• There is strong disagreement among experts.

• The assumptions made represent strong simplifications.’

If the opposite holds for all the above conditions (whenever they are
relevant), the strength of knowledge is classified as ‘strong’. In cases
with conditions in-between weak and strong, the classification is
‘moderate’. This classification scheme has been extended and adapted
to the security risk setting by Askeland et al. [1]. Using such a classi-
fication scheme would, for example, imply a less strong focus on single-
valued risk acceptance criteria than what is the case today. The scheme
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can be used to judge risk acceptance as follows ([2] p. 141):

1 ‘If risk is found acceptable according to probability with large
margins, the risk is judged as acceptable unless the strength of
knowledge is weak (in this case the probability based approach
should not be given much weight).

2 If risk is found acceptable according to probability, and the strength
of knowledge is strong, the risk is judged as acceptable.

3 If risk is found acceptable according to probability with moderate or
small margins, and the strength of knowledge is not strong, the risk
is judged as unacceptable and measures are required to reduce risk.

4 If risk is found unacceptable according to probability, the risk is
judged as unacceptable and measures are required to reduce risk.’

Ever more dynamic aspects are introduced in QRA; see, e.g., the
review by Villa et al. [31]. The formal set-up adopted in this paper
could be extended to a time-indexed version to account for this aspect.
The risk description adopted, (C′,Q,K), could be conceptualised instead
as (C′,Q,K)t = (C′(t),Q(t),K(t)), where C′(t) denotes the consequences
specified at time t, Q(t) the uncertainty assessments at time t, and K(t)
the knowledge underlying the consequence specifications and the un-
certainty assessments at time t. By time-indexing the knowledge ele-
ment, also the set of assumption and the vector of quantities oper-
ationalising these assumptions become time-dependent. The result is a
vector H(t) and a vector V(t), reflecting the set of assumptions made
and the value of the quantities operationalising these at time t, re-
spectively. In the era of big data, with real-time information increas-
ingly becoming available, for example due to development of sensor
technology, the data part of the knowledge element will become in-
creasingly important. Let D(t) denote the data available at time t,
where, like H(t), also D(t) is an element in K(t). With the advent of
statistical and machine learning, where algorithms build data-driven
models in a more or less black-box fashion, we can expect a number of
tacit assumptions to be made. Exploring the consequences of this de-
velopment is, however, a substantial task that is beyond the scope of the
present paper, which instead aims to define and conceptualise explicit
and tacit assumptions in the context of risk assessment and the risk
description.

Having addressed the premise of assumptions as justified beliefs and
part of the background knowledge of the risk description, we next
discuss the premise of defining explicit and tacit assumptions in terms
of fixed uncertain quantities.

3.2. Defining explicit and tacit assumptions in terms of fixed uncertain
quantities

Another key premise of the formal set-up in Section 2 is that risk
assessment assumptions are conceptualised in terms of fixing the values
of the uncertain quantities involved in the risk assessment (modelling).
There are numerous qualitative assumptions in a risk assessment; for
example, related to system boundaries, to what consequence dimen-
sions (values) to consider in the analysis, to how a particular con-
sequence should be measured/operationalised, and whether future
trend should be included or not. In the formal set-up presented in
Section 2, these qualitative assumptions are captured by the (non-
quantitative) vector of assumptions H = (H1,H2,...,Hn), where each
assumption Hi is operationalised in the form of a quantity (parameter),
Vi. A risk assessment assumption then needs to be operationalised in
such a way that it influences the risk description/metric, and linking
assumptions to uncertain quantities (i.e., going from Hi to Vi) and the
changing and fixing of these quantities ensures this.

Considering the examples mentioned above, an assumption related
to system boundaries could be operationalised by a risk metric

= ∑R x x R( ) i i i0 ,0 , where Ri denotes the risk metric contribution from
risk source i, and x0 = (x1,0,x2,0,...,xn,0) is a vector of 0–1-valued
quantities where xi,0 = 1 if risk source i is within the assumed system

boundary and 0 otherwise. Furthermore, if Ri = ci E[Ni|K] denotes the
risk metric related to a consequence dimension/value measured by the
quantity Ni, then the overall risk metric is given by the vector R
(x0) = (R1*,R2*,...,Rn*), where the element Ri* = xi,0 Ri equals 0 if the
consequence dimension/value related to Ni is not considered in the
assessment. If Ni is allowed to be a function and not just a quantity,
different ways of measuring a consequence dimension/value can also be
accounted for. Finally, a future trend could be operationalised by in-
troducing a multiplication constant x0 in a risk metric expression,
yielding a linear model but of course more complex trends could also be
reflected in an analogous way.

These formal definitions in the above paragraph may not be parti-
cularly useful in a given, practical risk assessment, where, for example,
only the risk metric chosen would be included, and not a vector of those
that were not. There is, however, of course a value in showing that it is
possible to express the assumption in terms of quantities.

Defining explicit and tacit assumptions in terms of different types of
uncertain quantities allows for building a typology of uncertain quan-
tities in QRA, as described in Section 2. Such a typology is useful for
addressing uncertainty treatment in QRA, as will be shown in the next
subsection. Strictly speaking, it is not the quantities that are of different
types but rather the way these quantities are treated in the risk as-
sessment (modelling). However, for simplicity, we refer to different
types of quantities. An uncertain quantity can essentially be dealt with
in two ways in a QRA:

• Fix the quantity at a specific value.

• Account for the uncertainty related to the quantity.

The first strategy amounts to making an assumption. According to
the definitions in Section 2, the assumption is explicit (type X quantity),
if fixing the quantity is linked to a stated assumption, and tacit (type Y
quantity) if not. The second strategy involves either establishing a
probability distribution on the uncertain quantity (type Z quantity) and
formally incorporating the uncertainty assessment reflected by this
distribution, using the law of total probability/expectation, or in-
formally incorporating uncertainty assessments related to the quantity
(type W quantity), when performing a direct probability assignment for
an event that is influenced by the outcome of the quantity.

In such a set-up, the type X and Z quantities are ‘closed’, in the sense
that the risk description/metric is conditional on these quantities taking
the fixed values x0 and y0, respectively. Assumptions can thus be seen as
constraints that need to be satisfied for the conclusions of the risk as-
sessment to remain valid. The type Z and W quantities, on the other
hand, are kept ‘open’, in the sense that the risk metric/description is not
conditional on these quantities taking any particular value. These
quantities are allowed to vary, and the validity of the conclusions of the
risk assessment do not depend on these quantities taking particular
values.

Finally, note that the uncertain quantities in a risk assessment, and
the values these are fixed at, if any, are part of the set of specified
consequences, C′, in the risk description (C′,Q,K). The fixed quantities,
X = x0 and Y = y0, associated with the assumptions, H, are thus part of
C′, while H is part of the background knowledge, K, as described in
Section 3.1.

Having addressed the premise of defining explicit and tacit as-
sumptions in terms of fixed uncertain quantities, we next provide some
recommendations related to the suggested set-up and typology.

3.3. Recommendations

The next two subsections outline some potential practical uses of the
set-up and typology described in Section 2.
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3.3.1. Procedure for linking assumptions with uncertain quantities and for
identifying tacit assumptions

The formal set-up described in Section 2 allows for formulating
different strategies to deal with tacit assumptions:

• Accept the potential presence of tacit assumptions (i.e., do not at-
tempt to identify these).

• Identify tacit assumptions and address these:
◦ Transform the tacit assumption into an explicit one (i.e., move
from a type Y to a type X quantity).

◦ Account for the uncertainty related to the quantity associated with
the tacit assumption instead of fixing the quantity (i.e., move from
a type Y to a type Z or W quantity).

A procedure for linking assumptions with uncertain quantities and
for identifying tacit assumptions and transforming these into explicit
ones follows. As in Section 2, to simplify the notation and presentation,
we here use H and V, instead of Hi and Vi, respectively, to denote a
single assumption and associated quantity:

I For a given assumption H: identify the relevant quantity V affected
by the assumption, incorporate this quantity into the risk assessment
modelling, and fix the quantity at a specific value v0, as appropriate
in line with H.

II For a given uncertain quantity V, fixed at a specific value v0: identify
the rationale for fixing the value at v0 and, if relevant (i.e., if the
fixed value reflects an as-yet unstated assumption), specify an as-
sumption H, in line with the fixed value.

The first strategy (I) represents a top-down approach and the second
one (II) a bottom-up approach. When identified and linked to an as-
sumption H, the uncertain quantity V is a type X quantity. If the second
step results in the specification of a new assumption, a tacit assumption
has been identified and the uncertain quantity has been transformed
from a type Y to a type X quantity.

Returning to the example introduced in Section 2, an example of
strategy I is to consider the potential need to perform hot work during
production and, based on this consideration, to formulate the assump-
tion that the number of hours of hot work during production will be
100 h per year. Next, this assumption is operationalised by introducing
the quantity T and defining it to denote the number of hours of hot
work per year during production, and then fixing T at 100, i.e., defining
T = t0 = 100. Finally, this quantity and value is incorporated into the
risk assessment modelling by, say, multiplying it with a per hour hot
work ignition probability, r, assumed to be equal to a fixed value p, to
obtain a hot work ignition probability. An example of strategy II is to
consider a review of the risk assessment model for hot work, in which it
is discovered that the per hour ignition probability value used, p, ap-
plies to hot work in a pressurised habitat, whereas the associated as-
sumption, H′, specified hot work in open air. If this was a correct tacit
assumption, the assumption H′ is revised into an assumption H, stating
that the number of hours of hot work in a pressurised habitat during
production will be 100 h per year. If the tacit assumption was incorrect,
the per hour hot work ignition probability is replaced by a per hour
open air hot work ignition probability, p′.

Once a type Y quantity is transformed into a type X quantity, what
was a tacit assumption can be treated as an explicit assumption. In the
following, we briefly review some available strategies for treating ex-
plicit assumptions.

3.4. Sensitivity analysis

A well-known treatment strategy for explicit assumptions is to
perform sensitivity analysis of changes in the assumptions by specifying
one or more alternative values, x1 ≠ x0, at which X is fixed, and then
assessing the effect this has on the relevant risk metric(s). Numerous

techniques for sensitivity analysis exist, as described in, for example,
the textbooks by Saltelli et al. and Saltelli et al. [25, 26].

3.5. Assumption deviation risk assessment

An alternative to sensitivity analysis is to perform an assumption
deviation risk assessment. This term was coined by Aven [2] and
comprises an assessment of i) a deviation (or a set of deviations) from
the assumptions made and the associated changes to the specified
consequences, ii) an uncertainty measure of the deviation(s) and of the
changed consequence specifications, and iii) the background knowl-
edge that the deviation and consequence specifications are based on
[2]. Using the general risk description notation (C′,Q,K) introduced in
Section 2, and letting D denote an assumption deviation, the assump-
tion deviation risk is assessed as (ΔC′,Q,KD), where ΔC′ denotes the
changes in the specified consequences (including D), and KD refers to
the knowledge that ΔC′ and Q are based on [2]. Note that an assump-
tion deviation risk assessment is not the same as traditional sensitivity
and uncertainty analyses, as it extends beyond just asking ‘what if’
questions which is characteristic of traditional sensitivity analysis; see
the discussion in Khorsandi & Aven [17].

3.6. Assumption classification system

Building on the concept of assumption deviation risk, Berner and
Flage [8] suggest a scheme for classifying (explicit) QRA assumptions.
The classification scheme is intended to serve as a basis for determining
strategies for treating the assumptions in the risk assessment itself [8],
as well as in the subsequent risk management [9]. The belief in de-
viation from an assumption (i.e., from X = x0, which is how the as-
sumption is operationalised) is classified as either low or moderate/
high, the same for sensitivity of the risk metric with respect to changes
in the assumption (i.e., deviations from X = x0), and, finally, the
strength of knowledge is also classified as either strong or moderate/
weak, evaluated according to the criteria by Flage & Aven [14] de-
scribed in in Section 3.1 of the present paper. This results in six dif-
ferent assumption settings, as illustrated in Table 3, for which different
treatment strategies are suggested.

For example, for assumptions in Setting I, the recommendation is
that the risk metric is reported conditional on the assumption and that
the assumption is listed as non-critical [8]. In the set-up and typology of
the present paper, this strategy corresponds to a case of proceeding with
and accepting an assumption H operationalised as X = x0. On the other
hand, in Setting V, the recommendation is to formally integrate a
probabilistic uncertainty assessment of alternative assumptions into the
risk metric, using the law of total expectation/probability. In the set-up
and typology of the present paper, this strategy corresponds to a case of
moving from a type X to a type Z quantity. Reference is made to Berner
and Flage [8] for further details and for recommended strategies for the
remaining settings.

3.6.1. Using the typology of uncertain quantities descriptively or as a
screening tool

The typology of uncertain quantities can be used both descriptively
and ing tool. Used descriptively, as illustrated in the bullet point list
below, using and extending the example introduced in Section 2, the

Table 3
Assumptions settings based on Berner & Flage [8].

Belief in deviation
from X = x0

Sensitivity of risk index
with respect to deviations
from X = x0

Strength of knowledge
Strong Moderate /

Weak
Low Low Setting I Setting II

Moderate / High Setting III Setting IV
Moderate / High Low

Moderate / High Setting V Setting VI
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risk analyst simply categorises and lists all the uncertain quantities of
the different types, specifying their fixed values and possibly their as-
sociated assumptions or the means by which the associated uncertainty
is accounted for.

• Type X quantities not transformed from type Y quantities (initial
explicit assumptions):
◦ Number of hours of hot work during production (T = t0)
◦ (Frequentist) probability of failure on demand of the gas detection
system

◦ Number of crane lifts above the process area

• Type X quantities transformed from type Y quantities (identified
tacit assumptions):
◦ The per hour pressurised habitat hot work ignition probability
(r = p)

• Type Z quantities (risk influencing factors formally accounted for in
the risk assessment by means of probability distributions):
◦ Wind speed during gas leak (S)
◦ Wind direction during gas leak
◦ Release location of gas leak

• Type W quantities (risk influencing factors acknowledged and in-
formally reflected in probability assignments but not formally ac-
counted for by means of probability distributions):
◦ Number of people in the process area during gas leak (J)
◦ The time of day of a gas leak
◦ The number of inspections per year of the gas detectors

As discussed by Aven [5], the risk analyst produces a risk descrip-
tion in the format (C′,Q|K), i.e., in a conditional format where the
consequence specifications and uncertainty assessments are conditional
on the background knowledge. The decision-maker, however, needs to
reflect on the unconditional risk description, i.e., on (C′,Q,K), viewing K
as a potential source of, for example, assumptions that turn out to be
wrong. By presenting to the decision-maker what is the acknowledged
and stated basis for the risk description (i.e., the type X quantities), the
extent to which tacit assumptions have been identified during the risk
assessment (i.e., the type Y transformed into type X quantities), as well
as the extent to which the uncertainty associated with non-fixed
quantities is accounted for formally versus informally (i.e., the type Z
versus type W quantities), the decision-maker is provided with one type
of structured basis for evaluating the background knowledge of the
analyst. Relevant questions to ask during such an evaluation are: Are
any of the explicit assumptions seen as unreasonable? Does the number
and nature of the type X quantities transformed from type Y quantities
indicate that sufficient effort has been made to identify tacit assump-
tions? Are sufficient of the quantities, for which the associated un-
certainty has been accounted for, accounted for in a formal manner?

As a screening tool, the categorisation and listing of uncertain
quantities described above and illustrated in the bullet point list above
can be extended to include explicit judgements by the risk analyst of
his/her background knowledge, according to the assumption classifi-
cation system described in Section 3.3.1 and as illustrated in Table 4.
Table 4 provides the risk analyst with a format for reviewing and jus-
tifying the uncertainty treatment strategies chosen for the different
uncertain quantities involved. For example, for the wind speed during
gas leak quantity, S, the moderate/high sensitivity of the risk metric
and the strong knowledge involved justifies treating S as a type Z
quantity; cf. the assumption classification system described in
Section 3.3.1. Such a presentation provides the decision-maker with a
structured judgement of the background knowledge of the risk analyst.
For the type Z and W quantities, the belief in deviation and the as-
sumption deviation risk columns are not relevant, as these quantities
are not fixed. Also, for type Z quantities, the sensitivity of the risk
metric R can be directly assessed through the risk assessment model
used, whereas this cannot be done for type W quantities, as these
quantities do not explicitly enter the model. However, for both type Z Ta
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and W quantities, the strength-of-knowledge assessment indicates
whether it is reasonable or not to formally account for the associated
uncertainty by means of probability distributions, considering the basis
and justification for the distribution.

4. Summary and conclusions

Assumptions are made in all risk assessments. This makes risk as-
sessment assumptions a foundational issue of relevance across different
application areas. In the present paper, we describe a formal set-up for
conceptualising assumptions in the context of quantitative risk assess-
ment. We also illustrate the set-up using an example, discuss the key
premises and outline some potential practical uses of the set-up and
typology.

The set-up includes a general risk description/metric and links as-
sumptions to the background knowledge of this description/metric. The
set-up is based on a conceptualisation of assumptions as knowledge
components and on a distinction between assumptions and associated
uncertain quantities, where the assumptions are operationalised by
fixing the associated quantities at specific values. The conceptualisation
of assumptions as knowledge components allows for delineating as-
sumptions from other parts of the background knowledge of the risk
description/metric. Moreover, the distinction between assumptions and
associated (fixed) quantities, as well as a broader typology of uncertain
quantities introduced for the quantitative risk assessment context, al-
lows for delineating explicit assumptions from tacit assumptions and
delineating what is ‘closed’ versus what is kept ‘open’ in the risk as-
sessment. Explicit and tacit assumptions are defined and delineated in
terms of whether the assumption is openly stated and whether the link
between the assumption and the fixed quantity is acknowledged by the
risk analyst.

The premise of linking assumptions to the background knowledge of
the risk description, and thus of seeing assumptions as knowledge, is
discussed in the paper. The conclusion of this discussion and a main
conclusion of the paper is that assumptions represent knowledge, un-
derstood as justified beliefs, noting that the belief may be a chosen
belief from a set of possible beliefs, each supported by different (levels
of) justifications, such as in the case of simplifying or conservative as-
sumptions.
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