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Abstract: This paper is aimed to determine the value of coefficient of friction (COF) at the rounded
edge of the die in the sheet metal forming operations using the bending under tension (BUT) test.
The experimental part of the investigations is devoted to the study of the frictional resistances of
low alloy steel sheet under different strains of the specimen, surface roughnesses of the tool and
for different lubrication conditions. Three oils are destined for different conditions of duties in the
stamping process. Numerical modeling of the material flow in the BUT test has been conducted in
the MSC.Marc program. One of the objectives of the numerical computations is to know the type of
the contact pressure acting on the cylindrical surface countersample in the BUT test by assuming the
anisotropic properties of the metallic sheet. It has been found that the COF in the rounded edge of
the die does not vary with increasing sheet elongation. Taking into account that normal pressure
increases with increasing specimen elongation and workpiece material is subjected to strain hardening
phenomenon, the COF value is very stable during the friction test. The effectiveness of the lubrication
depends on the balance between two mechanisms accompanied by friction process: roughening of
workpiece asperities and adhesion of the contacting surfaces. In the case of high surface roughness of
tool due to a dominant share of ploughing, all of the lubricants used were not able to decrease the
COF in a sufficient extent. The used lubricants were able to reduce the value of friction coefficient
approximately by 3–52% in relation to the surface roughness of rolls.

Keywords: bending under tension test; BUT; coefficient of friction; friction; material properties;
mechanical engineering; sheet metal forming

1. Introduction

The presence of friction in sheet metal forming (SMF) processes is generally an unfavorable
phenomenon and causes changes in the force and energy parameters: the total work and power
needed for the process increases, which also causes the forces and unit pressures on the tool surfaces
to increase. In a stamping tool, frictional resistance is an important process parameter that controls
the material flow in the tool and the surface finish of produced parts [1,2]. At high pressures, the
occurrence of material adhesion to the tool and the formation of accretions affect the quality of the
product surface [3,4]. Thermal dissipation of friction work at high values of unit pressure and relative
speeds leads to a significant increase in temperature in areas adjacent to the contact surface. Limiting of
the sliding speed and thus reducing the efficiency of the process may be necessary. The appearance of
tangential stresses on the contact surface causes changes in the stress–strain state in the entire volume
of the formed material. Friction is one of the reasons for the formation of heterogeneous deformation,
which leads to the formation of heterogeneous material properties and undesirable deformations of free
surfaces. So, friction has a number of negative effects in SMF processes [5–7]. Therefore, it is intended

Metals 2020, 10, 544; doi:10.3390/met10040544 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-4366-0135
https://orcid.org/0000-0001-9588-4707
http://www.mdpi.com/2075-4701/10/4/544?type=check_update&version=1
http://dx.doi.org/10.3390/met10040544
http://www.mdpi.com/journal/metals


Metals 2020, 10, 544 2 of 17

to reduce the value of friction forces. There are extensive studies on correlation of the microstructure
of the tool material with the coefficient of friction (COF). However, as found by Kirkhorn et al. [8],
increased or decreased carbide content could, however, not be directly correlated to an alteration of the
friction coefficient when comparing the broad range of different tool materials.

There are many tribological approaches to measure the frictional phenomena existing at the
die–workpiece interface. The methods used to represent the friction conditions in conventional SMF
have been summarized by Trzepiecinski and Lemu [9], where the main advantages and disadvantages
of the modeling methods of the friction phenomena in specific areas of the material are also presented.
Experimental prediction of the frictional resistances is a key issue in the suitable setting of the numerical
models of sheet metal forming process [10–12].

The basic way to reduce friction forces in plastic forming is proper lubrication. Grease lubrication
forms layers when separated on a surface of a deformed object or tool, separating both surfaces partially
or completely [13]. The basic properties of the lubricant include viscosity and surface activity, which
may be essential for maintaining the lubricant under high unit pressure. Due to the wide variety of
conditions for plastic forming processes, there are no universal lubricants. Each process requires a
separate approach to the lubrication problem and the use of appropriate lubricants [14,15]. The results
of the investigations of Hol et al. [16] show that the friction coefficient varies in space and time, and
depend on local process conditions such as the nominal contact pressure and lubrication in the sheet
material. There is extensive development of friction models destined for the description of the frictional
phenomena for different lubrication conditions [17].

Friction occurring on the rounded surface of the die has an adverse effect on the value of the possible
limit deformations of the sheet. One of the basic tests provided for the experimental determination
of the friction resistance values on the rounded edge of the die is the bending under tension (BUT)
test developed by Littlewood and Wallace [18]. In the BUT test, the tribological conditions in the
die entry zone can be simulated by drawing a sheet strip over a die shoulder with superimposed
back tension on the strip. Many efforts have been made in the literature to recognize the effect of
many process parameters on the contact pressure and friction resistance in the rounded region of the
die or the punch. Nanayakkara et al. [19] quantitatively determined the effect of roller radius and
the tooling pressure on the COF. It was found that the tool radii have a direct effect in the contact
pressure. The second cognitive conclusion is that there is a clear relationship between the contact
pressure and the COF. To understand the sheet–die interaction, the bending and unbending response
of the sheet as it contacts the cylindrical die, Coubrough et al. [20] conducted investigations on the
BUT test. The actual contact angle is found to be less than the geometric angle-of-wrap and increases
with increasing strip tension. Fratini et al. [1] used the BUT test to measure friction under lubricated
and dry friction conditions. The authors concluded that the effect of lubricant in the reduction of the
COF is rather small; this is due to the loose of lubricant, which occurred during the tests because of
the contact pressure at the sheet metal–tool interface. However, the lubricant reduced the stick–slip
phenomena, which are dangerous during SMF operations, since they can induce the cracks in the
surface layer of workpiece. Lemu and Trzepiecinski [21] studied the effect of the amount of plastic
deformation of the brass, aluminum alloy and steel specimens on the value of COF. It was found
that the use of tools with low surface roughness value to reduce the COF is unfounded because the
increased real contact area decreases the effectiveness of the lubricant and increases the interatomic
interaction of surfaces. Moreover, the results indicated that use of machine oil reduces the friction
coefficient value to a lower degree for lower roughness values. Hoffmann et al. [22] conducted a study
where they compared the wear occurred in the die radius for different combinations of die and sheet
material. The highest wear of die occurred in the regions where the contact pressure between die and
workpiece are the highest. Berglund et al. [23] evaluated the correlation between machining finish,
punch material and the COF result. The texture characterization parameters measured after the BUT
test exhibit strong correlations with the friction and all are related to the areas and inclinations of the
surface. Pereira et al. [24] demonstrated that, in the sheet–die interface in BUT test, there is a transient



Metals 2020, 10, 544 3 of 17

region in the contact pressure that corresponds to the beginning of sheet deformation, after which the
pressure stabilizes. It has been specified that the yield stress and relationship between sheet thickness
and radius of the die greatly influence the values of contact pressure. In a later study, Pereira et al. [25]
analyzed numerically through finite element simulation of the evolution of contact pressure in the
die radius during the stamping process. It has been found that the same pressure peaks occur during
bending of the sheet over the radius of the die, causing the central part of these peaks to lose contact
and greatly reducing the pressure in this region. Ceron and Bay [26] investigated how the BUT test
combined with a classical analytical modeling may lead to very large errors in estimation of the COFs.
The numerical simulations of the normal stress distributions demonstrated in comparative analysis of
an industrial, multistage deep drawing that finite element modeling provides appropriate estimates.

Most of the investigations on the numerical analysis of the tribological test have been conducted
assuming the isotropic properties of the material. Moreover, due to bending of the sheet over a rounded
die, the assumption that the specimen is subjected to plane strain state is also unjustified, which has
been confirmed by authors in the previous papers devoted to the draw bead friction test [27,28]. Thus,
one objective of this work reported in this paper is to better understand the contact pressure acting
on the rounded edge of the cylindrical countersample in the BUT test by assuming the anisotropic
properties of the metallic sheet. Another aim of the paper is to calculate the COF that acts during the
BUT test for different strains of the sheet metal. Frictional properties of low alloy steel sheet have been
experimentally evaluated for different lubricants.

2. Experimental

2.1. Material

In the investigations, cold-rolled low carbon DC04 grade steel sheets with a thickness of 1 mm
were used. These steel sheets are characterized by super deep-drawing properties manifested by high
plasticity and high susceptibility to strain hardening. According to the standard EN 10130:2009, DC04
steel sheet is suitable for cold forming of complicated outer and inner components of automobile
bodies and other pressworks, especially for high deformation speed. The chemical composition of the
DC04 steel sheet is shown in Table 1.

Table 1. Chemical composition of DC04 steel sheet (in wt. %).

C Mn P S Fe

≤0.08 ≤0.4 ≤0.03 ≤0.03 remainder

Mechanical properties of the sheets have been determined in a uniaxial tensile test according to
ISO 6892-1:2016 [29]. Flat specimens have been cut from the sheet metal in three directions: along
rolling direction (RD) and at angles of 45◦ and 90◦ to the RD. Z100 (Zwick Roell, Ulm, Germany)
uniaxial tensile test machine was used in the investigations of the mechanical properties of the sheets
(Table 2). The following parameters have been determined: ultimate tensile strength Rm, yield stress
Rp0.2 and anisotropy factor r (Lankford’s coefficient). Moreover, the strain hardening properties have
been determined by approximation of the true stress–true strain relation using the Hollomon equation:

σ = K × εn (1)

where σ is the true stress, ε is the true strain, K is the strength coefficient and n is the strain
hardening exponent.
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Table 2. Selected mechanical properties of the DC04 steel sheet.

Specimen Orientation Rp0.2 (MPa) Rm (MPa) K (MPa) n r

0◦ 172 306 513 0.17 1.49
45◦ 179 319 502 0.19 1.32
90◦ 184 210 524 0.20 1.58

Surface roughness parameters (Table 3) of the tested sheet were determined using a Talysurf CCI
Lite 3D optical profiler (Taylor Hobson, Leicester, UK). The following basic parameters have been
determined: root mean square roughness Sq, average roughness Sa, maximum pit depth Sv, 10-point
peak-valley surface roughness Sz, total height St and the highest peak of the surface Sp.

Table 3. Surface roughness parameters of the DC04 steel sheet.

Sa (µm) Sq (µm) Sv (µm) Sz (µm) St (µm) Sp (µm)

1.46 1.72 5.89 12.42 11.39 8.87

2.2. Friction Simulator

Experimental BUT tests have been carried out using a special friction simulator (Figure 1), which
is mounted on a universal tensile test machine. The friction simulator consists of a frame in which
the horizontal tension member with load cell is mounted. One end of the specimen was mounted at
the end of the horizontal tension member, while the second end was mounted in the vertical tension
member with load cell. The specimens for friction test were cut along the rolling direction of the sheet
metal. They were stretched with speed of 0.25 mm·s−1. The strip specimen with width of w = 10 mm
and length of L = 135 mm was wrapped around a cylindrical fixed roll with radius of R = 20 mm.

Metals 2020, x, x FOR PEER REVIEW 4 of 17 

 

Table 2. Selected mechanical properties of the DC04 steel sheet. 

Specimen 
orientation 

Rp0.2 (MPa) Rm (MPa) K (MPa) n r 

0° 172 306 513 0.17 1.49 
45° 179 319 502 0.19 1.32 
90° 184 210 524 0.20 1.58 

Table 3. Surface roughness parameters of the DC04 steel sheet. 

Sa (μm) Sq (μm) Sv (μm) Sz (μm) St (μm) Sp (μm) 
1.46 1.72 5.89 12.42 11.39 8.87 

2.2. Friction Simulator 

Experimental BUT tests have been carried out using a special friction simulator (Figure 1), which 
is mounted on a universal tensile test machine. The friction simulator consists of a frame in which 
the horizontal tension member with load cell is mounted. One end of the specimen was mounted at 
the end of the horizontal tension member, while the second end was mounted in the vertical tension 
member with load cell. The specimens for friction test were cut along the rolling direction of the sheet 
metal. They were stretched with speed of 0.25 mm·s−1. The strip specimen with width of w = 10 mm 
and length of L = 135 mm was wrapped around a cylindrical fixed roll with radius of R = 20 mm.  

 

Figure 1. Schematic view of the testing device. 

The device was equipped with three rolls differing in their surface roughness. To characterize 
the surface roughness of cylindrical countersamples, the roughness average Ra measured parallel 
with the roll axis was assumed. The rolls made of cold-worked tool steel had the roughness qualities 
Ra = 0.32, 0.63 and 1.25 μm. Before testing, all the specimens were degreased with acetone. For 
lubricated conditions three oils, namely machine oil (MO), deep-drawing oil (DDO) and heavy-
drawing oil (HDO) with the following specifications were used: 
• Machine oil LAN-46 (Orlen Oil): kinematic viscosity 43.9 mm2·s−1 (at 40 °C), viscosity index 94, 

flow temperature −10 °C and ignition temperature 232 °C,  
• Deep-drawing oil L (Orlen Oil): kinematic viscosity 330 mm2·s−1 (at 40 °C), freezing point −29 

°C, flash point 238 °C and weld point 500 daN, 
• Heavy-Draw 1150 oil (Lamson Oil): density 975 kg·m−3 (at 20 °C); viscosity 1157 mm2·s−1 (at 40 

°C) and flash point 277 °C. 
In SMF technology, when stamping components with complex shapes, where extremely 

different friction conditions, contact pressures and slip speeds occur, different types of lubricants 
should be used. The lubricants were selected in such a way that the first one is used for typical deep-

Figure 1. Schematic view of the testing device.

The device was equipped with three rolls differing in their surface roughness. To characterize the
surface roughness of cylindrical countersamples, the roughness average Ra measured parallel with the
roll axis was assumed. The rolls made of cold-worked tool steel had the roughness qualities Ra = 0.32,
0.63 and 1.25 µm. Before testing, all the specimens were degreased with acetone. For lubricated
conditions three oils, namely machine oil (MO), deep-drawing oil (DDO) and heavy-drawing oil (HDO)
with the following specifications were used:

• Machine oil LAN-46 (Orlen Oil): kinematic viscosity 43.9 mm2
·s−1 (at 40 ◦C), viscosity index 94,

flow temperature −10 ◦C and ignition temperature 232 ◦C,
• Deep-drawing oil L (Orlen Oil): kinematic viscosity 330 mm2

·s−1 (at 40 ◦C), freezing point −29 ◦C,
flash point 238 ◦C and weld point 500 daN,
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• Heavy-Draw 1150 oil (Lamson Oil): density 975 kg·m−3 (at 20 ◦C); viscosity 1157 mm2
·s−1 (at 40 ◦C)

and flash point 277 ◦C.

In SMF technology, when stamping components with complex shapes, where extremely different
friction conditions, contact pressures and slip speeds occur, different types of lubricants should be
used. The lubricants were selected in such a way that the first one is used for typical deep-drawing
applications, while the second one is used for super deep-drawing applications and Heavy-Draw 1150
oil is heavy duty stamping oil is used in specially difficult forming applications. All lubricants were
distributed uniformly on the surface of the samples using a shaft.

During the test, front tension force Ft and back tension force Fb were simultaneously measured.
Assuming that the wrap angle α (Figure 2) is constant during the test, the equilibrium equation of the
elementary sector of the strip dα can be shown as:

F + qµwRdγ− (F + dF) = 0 (2)

qwRdγ− F sin
dγ
2
− (F + dF) sin

dγ
2

= 0 (3)

where µ is the COF, w is the width of the strip and q is unit contact pressure determined according to
the equation:

q =
Fb + Ft

2wR
(4)
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For a very small dα it can be assumed that sin dγ
2 ≈

dγ
2 , furthermore dF is much smaller that F.

Thus, combining Equations (2) and (3) gives

µdα =
dF
F

(5)

Taking into account in the Equation (4) that α = π
2 the COF is determined to be

µ =
2
π

ln(
Ft
Fb

) (6)

The occurrence of friction between the roll and specimen causes that Ft > Fb. The friction test is
realized until the elongation of the specimen becomes equal to 20%. It should be noted that the tensile
force Ft includes the deformation resistance related with the bending of the specimen around the roll.
In this way, Equation (6) does not include explicitly the bending force [21].
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3. Numerical Modeling

3.1. Description of the FE-Based Model

Finite element (FE) based numerical modeling of the BUT test was carried out using the MSC.Marc
program (MSC.Software, Newport Beach, CA, USA). The geometrical model of the countersample and
specimen correspond to the experimental conditions. Due to the fact that strength of the roll material
is considerably higher than the strength of specimen material, it was assumed that no deformation
exists in the roll. So, the roller surface was modeled as perfectly rigid. The end of the specimen at the
back tension side was fixed (Figure 3). The numerical modeling of the BUT test consisted of two steps:
(1) bending the sheet around the roll surface (Figure 3a), and (2) applying the tensile force to the upper
end of the specimen (Figure 3b). The drawing speed corresponds to the experimental conditions.
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3.2. FE Mesh

The geometric model of the specimen has been discretized by using 8-node isoparametric hex-8
brick elements [30] with the assumed strain formulation, which improve the bending characteristic
of the finite elements. According to the program documentation [31], this can significantly improve
the solution accuracy though the computational costs of assembling the stiffness matrix may increase.
The hex-8 element has been successfully used by Trzepiecinski and Fejkiel [27] to study the material
flow of a sheet specimen through a drawbead.

3.3. Material Model

An elastic–plastic material model approach was considered to build the material model. The plastic
behavior of the sheet metal was established using Hill (1948) [32] yield criterion, which can be applied
for a material description of steel sheet metals [33–35]. Work hardening with power-type law hardening
law has also been incorporated in the finite element method (FEM) based on the average values of
material parameters K and n determined for three directions, according to the Table 2. The Hill (1948)
formulation can be expressed in terms of rectangular Cartesian stress components as:

σ =

√
(F(σ22 − σ33)

2 + G(σ33 − σ11)
2 + H(σ11 − σ22)

2 + 2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 (7)

where σ is the equivalent stress, and indices 1, 2 and 3 represent the rolling, transverse and normal
directions to the sheet surface, respectively.

Parameters (constants) F, G, H, L, M and N define anisotropy state of material and are equal to:
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F = 1
2

(
1

R2
22
+ 1

R2
33
−

1
R2

11

)
, G = 1

2

(
1

R2
11
+ 1

R2
33
−

1
R2

22

)
, H = 1

2

(
1

R2
11
+ 1

R2
22
−

1
R2

33

)
,

L = 3
2R2

23
, M = 3

2R2
13

, N = 3
2R2

12
,

(8)

Parameters R11, R22, R33, R12, R13 and R23 are defined in form of user input consisting of ratios of
yield stress in different directions with respect to a reference stress according to Equation (8).

R11 =
σ11

σ0
, R22 =

σ22

σ0
, R33 =

σ33

σ0
, R12 =

σ12

τ0
, R13 =

σ13

τ0
, R23 =

σ23

τ0
, (9)

The automatic algorithm for the evaluation of parameters R11–R23 has been built in
MSC.Marc program.

The elastic material behavior of sheet is specified using the following properties: Young’s modulus
E = 2.1 GPa and Poisson’s ratio ν = 0.3.

3.4. Contact Conditions

To describe contact conditions the classical Coulomb friction law was assumed in Equation (10):

ft = fn·µ·T·
2
π

arctan
‖vr‖

δ
(10)

where ft-tangential (friction) force, fn-normal force, ‖vr‖—relative sliding velocity, δ-value of the relative
velocity below which sticking occurs and T-tangential vector in the direction of the relative velocity.

The value of δ determines how closely the mathematical friction model represents the step function
given as:

ft = fn·µ·sign ‖vr‖ (11)

A small value of relative velocity δ results in a reduced value of the effective friction. A very small
value may result in poor convergence of contact algorithm. It is recommended [27] that the value of
relative velocity should be 1–10% of a typical relative sliding velocity ‖vr‖. In this paper, the value of
δ = 5% was used.

3.5. Mesh Sensitivity Analysis

Mesh sensitivity analysis (MSA) is a crucial part of each FE-based analysis. The finite element
size should be balanced between assurance accurate results and the computational cost. MSA was
carried out for three different element sizes: 1 mm × 1 mm × 1 mm, 0.5 mm × 0.5 mm × 0.5 mm and
0.25 mm × 0.25 mm × 0.25 mm. A more dense mesh was created by dividing elements into two equal
parts in all directions (Figure 4). The value of the front tensile force at a sheet elongation of 5%, 10%
and 15% was adopted as the parameter constituting the basis for the selection of mesh size. Only for
the MSA, constant value of COF (µ = 0.3) was assumed. The parameters of the numerical models and
the results of MSA are shown in Table 4.

Table 4. Parameters of the mesh and mesh sensitivity analysis (MSA) results.

Model No.
Element
Size, mm

Number of
Elements

Number
of Nodes

Tensile Front Force, N
at Specimen Elongation Computation

Time, s
5% 10% 15%

N1 1 × 1 × 1 1380 3058 2709 2979 3096 220

N2 0.5 × 0.5 ×
0.5 11,040 17,451 2697 2976 3089 2008

N3 0.25 × 0.25
× 0.25 88,320 113,365 2695 2976 3086 24,547

The reduction of the element edge size from 1 to 0.5 mm resulted in a change in the front tensile
force value of 0.1–0.44%. At the same time, the computation time increased almost ten times. Further
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reduction of the element size from 0.5 to 0.25 mm caused the value of the front tensile force to change
by less than 0.1%. Due to considerably extended computation time and at the same time a slight
change in the value of the front tensile force model N3 might be rejected. Therefore, the N2 model with
mesh 0.5 mm × 0.5 mm × 0.5 mm is a reasonable solution.Metals 2020, x, x FOR PEER REVIEW 8 of 17 
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4. Results and Discussion

4.1. Experimental

4.1.1. Effect of Surface Roughness of Tools

As a result of experimental investigations, the relations between tensile forces and percentage
elongation of specimen were obtained. Figure 5 presents an example of such relation registered for
the specimen tested using a roll with roughness of Ra = 0.32 µm at HDO lubrication. Increasing the
tensile forces can be simply attributed to the strain hardening phenomenon. Although the value of
both tensile forces increased, the value of the friction coefficient was very stable during the test.
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The initial unstable range of changes in the coefficient of friction is related to the tension of the
sample around roll surface with minimization of possible clearances. The increase of the friction
coefficient at the beginning of the tribology test is usually attributed to the accommodation of
contacting surfaces before reaching a stable stage meaning of linear friction conditions. In this respect,
the coefficient of friction determined for the initial stage of the test by Equation (6) as the ratio of two
process forces may not make any physical sense. The results were in agreement with the commonly
known Amontons–Coulomb law that the COF does not depend on the value of the normal pressure
and contact area. The unstable region of the changes of both front Ft and back Fb tension forces was
not considered in the determination of COF. The average values of COFs presented in this section
(Section 4.1) and Section 4.1.2 were determined in the stable range of COFs changes. Although both the
front and back tensile forces increased during the test, which results in increasing of normal pressure on
the surface of contact of workpiece with rounded countersample, the COF variation kept at a constant
trend (Figure 5). This conclusion may be attributed to all conducted tests.

Another phenomenon that should be mentioned is the continuous change in surface topography of
the sheet metal due to specimen elongation. This causes the real contact area to increase simultaneously
with the normal pressure. The real contact area depends on, for instance, susceptibility to strain
hardening of roughness asperities, roughness parameters of the tools and the sheet metal and the
geometry of the contact surface [21].

Plots of variations of the COF as a function of friction conditions are shown in Figure 6. In the
case of tests carried out with the use of rollers with a roughness Ra = 1.25 µm, the relatively highest
values of the COF were observed for all lubrication conditions. At the same time, the lubricating oils
used minimized the value of the COF.
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For dry friction conditions, the largest value of the COFs were recorded for rolls with a roughness
Ra = 0.63 µm (Figure 6b). An increase or decrease in the value of roll roughness resulted in a decreased
value of the COF. This is due to the balance of two mechanisms depending on the roughness of the
tool: (1) adhesion of the workpiece surface to tool material, in the conditions of small roughness
and (2) asperities flattening of the workpiece surface by high roughness of the tool. In the case of
high surface roughness, the load pressure acts on the asperities, which results in a higher degree of
surface flattening and increased frictional resistance [1]. The share between these phenomena in the
total frictional resistance is particularly important in the conditions of sheet lubrication in SMF [2].
The lowest values of the coefficient of friction were recorded during tests using a roll with a roughness
Ra = 0.32 µm (Figure 6a). Under these conditions, frictional resistances resulting from interactions
between the peaks of cooperating asperities were the smallest. At the same time, the volume of
“oil pockets” [2] between contacting surface asperities was large enough to provide an adequate
reservoir of lubricant at the contact area.

4.1.2. Effectiveness of Lubrication

The lubricant used in the SMF should effectively separate friction surfaces, protect the tool against
excessive wear, have high resistance to normal loads and exhibit easy flow in a tangential direction.
The chemical composition of lubricants and viscosity are determined by manufacturers in such a way
that they have the ability to transfer pressure and at the same time that the lubricant film is not easily
broken. The lubricant viscosity plays a key role in mixed lubrication regime when applied load is
partly carried out by fluid film and interacting asperities [36,37]. The mixed lubrication regime is the
intermediate zone between the boundary lubrication regime and the elasto-hydrodynamic lubrication
regime, where the applied load is partly carried by the interacting asperities and the remaining part by
the fluid film. In these conditions, the suitable lubricant viscosity plays a key role [36].

One way to check how effectively the lubricant reduces the friction in specific load conditions is to
determine the value of the factor of effectiveness of lubrication δ as a ratio of the coefficient of friction
determined in dry conditions µd to the coefficient of friction determined in lubricated conditions µl,
according to the following equation:

δ =
µd − µl

µl
× 100% (12)

The highest lubrication efficiency was recorded for HDO (Figure 7). The used lubricants were
able to reduce the value of the friction coefficient approximately by 3–52% in relation to the surface
roughness of rolls. In the case of the HDO lubricant, the greater the roughness of the roll, the lower the
degree of reduction of the friction resistance by the lubricant. The reduction in lubrication efficiency as
the roughness increases is most evident in HDO. MO and DDO lubricants showed a local increase in
efficiency in reducing frictional resistance for intermediate roll roughness Ra = 0.63 µm. Under these
conditions, the amount of space between the asperities was sufficient to accumulate the appropriate
volume of lubricant. For the largest tool roughness analyzed Ra = 1.25 µm, the share of the mechanism
of ploughing of the workpiece surface by countersample surface was large enough that the grease
did not have the proper conditions to reduce COF. An increase of the prestrain value causes an
increase of the sheet surface roughness, and as a consequence, the frictional resistance increases due
to intensification of the roughness flattening mechanism. In the case of high surface roughness of
tool (Ra = 1.25 µm), the load pressure acts dominantly on the asperities, which results in a higher
degree of surface flattening of sheet metal and increased frictional resistance. The hardness of the tool
material made of cold-work tool steel was considerably higher than the hardness of sheet material.
For proper operation, the lubricant requires sufficient pressure to work in conditions of the specific
cushion separating the surface being in contact. When the surface roughness of the tool is high, the
pressure is carried out by roughness asperities of the tool surface. In these conditions, even if the
voids between surface asperities are high, the interaction of high asperities do guarantee the sufficient
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squeezing of the lubricant in the sheet–tool interface. High tool roughness facilitates the escape of
the entrapped lubricant in the pockets. In this way, the lubricant may leak from the contact area.
To identify the optimal surface roughness for the best lubrication effectiveness, three aspects need to be
considered: surface roughness of tool (the surface of the sheet metal is determined in manufacturing
process), lubricant type and contact pressure. The total frictional resistance should take into account
appropriate balance between ploughing mechanism (when the surface roughness is too high) and a
lack of sufficient lubricant pressure when the lubricant pockets are too small, and mechanical contact of
asperities dominate. Due to many parameters and phenomena that influence the frictional resistance
there is no universal efficient method to determine a priori appropriate conditions of the forming
process. Still, the experimental testing, although time- and cost-consuming, is the best way to select
optimal friction conditions that guarantee the best performance of lubricant.

The effectiveness of lubrication may be aided by the mechanism of strain hardening. The DC04
steel sheets are characterized by high susceptibility to work hardening. In the case of cold forming,
this phenomenon consists of two main mechanisms, i.e., dislocation glide and twinning. These
mechanisms strongly depend on the density of dislocations in the material. During elongation,
the surface topography of the sheet metal leads to strong evolution (Figure 8). Scanning electron
microscopy (SEM) micrographs revealed directional frontal deformation. These fronts may be in
macroscale assignment to the motion of the dislocations.

Metals 2020, x, x FOR PEER REVIEW 11 of 17 

 

may leak from the contact area. To identify the optimal surface roughness for the best lubrication 
effectiveness, three aspects need to be considered: surface roughness of tool (the surface of the sheet 
metal is determined in manufacturing process), lubricant type and contact pressure. The total 
frictional resistance should take into account appropriate balance between ploughing mechanism 
(when the surface roughness is too high) and a lack of sufficient lubricant pressure when the lubricant 
pockets are too small, and mechanical contact of asperities dominate. Due to many parameters and 
phenomena that influence the frictional resistance there is no universal efficient method to determine 
a priori appropriate conditions of the forming process. Still, the experimental testing, although time- 
and cost-consuming, is the best way to select optimal friction conditions that guarantee the best 
performance of lubricant. 

The effectiveness of lubrication may be aided by the mechanism of strain hardening. The DC04 
steel sheets are characterized by high susceptibility to work hardening. In the case of cold forming, 
this phenomenon consists of two main mechanisms, i.e., dislocation glide and twinning. These 
mechanisms strongly depend on the density of dislocations in the material. During elongation, the 
surface topography of the sheet metal leads to strong evolution (Figure 8). Scanning electron 
microscopy (SEM) micrographs revealed directional frontal deformation. These fronts may be in 
macroscale assignment to the motion of the dislocations.  

 
Figure 7. The effect of the oil type on the effectiveness of lubrication δ. 

The rough topography assists the better adhesion of the lubricant to the workpiece surface. This 
influence is as expected, since the low viscous MO does not assure high effectiveness of lubrication, 
whereas the higher viscous DDO and the high viscous HDO may support microhydrodynamic 
lubrication in sheet metal processes as found by Sulaiman et al. [38]. They also concluded that low-
viscous mineral oil does not promote micro-plasto-hydrodynamic lubrication in sheet metal forming. 
This can be revealed from Figure 7, where the performance of this oil in a reduction of COF did not 
exceed 12%. The highest effectiveness of lubrication was found for HDO at Ra = 0.32 μm. High 
viscosity lubricant reduces the occurring friction significantly. Oil with high viscosity is characterized 
by high sticking with contacting surfaces, so the oil film is difficult to break. It is noticed here that 
the tool roughness of Ra = 1.25 μm has reduced the effectiveness of lubrication as compared to the 
smoother tool surface (Ra = 0.32 μm and 0.63 μm), when testing with all viscosity oils. This leads to 
effective separation between a tool and a workpiece on the plateaus of the tool asperities. If a pocket 
of fluid layers is sheared, the individual fluid layers are displaced in the direction of the shearing 
force. Molecular forces create resistance to shearing and this resistance is given by the viscosity and 
the difference in velocity between two given fluid layers, related to the shear rate. The mixed 
lubrication regime, commonly existing in sheet metal forming to a large extent, based on the 
kinematic viscosity of lubricant to form a chemical or physical bond with the tool surfaces and steel 
sheet. When viscosity of lubricant is not able to fulfill the requirements for hydrodynamic lubrication, 

Figure 7. The effect of the oil type on the effectiveness of lubrication δ.

The rough topography assists the better adhesion of the lubricant to the workpiece surface.
This influence is as expected, since the low viscous MO does not assure high effectiveness of lubrication,
whereas the higher viscous DDO and the high viscous HDO may support microhydrodynamic
lubrication in sheet metal processes as found by Sulaiman et al. [38]. They also concluded that
low-viscous mineral oil does not promote micro-plasto-hydrodynamic lubrication in sheet metal
forming. This can be revealed from Figure 7, where the performance of this oil in a reduction of COF
did not exceed 12%. The highest effectiveness of lubrication was found for HDO at Ra = 0.32 µm.
High viscosity lubricant reduces the occurring friction significantly. Oil with high viscosity is
characterized by high sticking with contacting surfaces, so the oil film is difficult to break. It is noticed
here that the tool roughness of Ra = 1.25 µm has reduced the effectiveness of lubrication as compared
to the smoother tool surface (Ra = 0.32 µm and 0.63 µm), when testing with all viscosity oils. This leads
to effective separation between a tool and a workpiece on the plateaus of the tool asperities. If a pocket
of fluid layers is sheared, the individual fluid layers are displaced in the direction of the shearing force.
Molecular forces create resistance to shearing and this resistance is given by the viscosity and the
difference in velocity between two given fluid layers, related to the shear rate. The mixed lubrication
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regime, commonly existing in sheet metal forming to a large extent, based on the kinematic viscosity of
lubricant to form a chemical or physical bond with the tool surfaces and steel sheet. When viscosity
of lubricant is not able to fulfill the requirements for hydrodynamic lubrication, it will immediately
lead to asperity peaks breaking through the lubricant film, provoking metallic contact [39]. A very
fine polished tool surface lowers the COF as the lubricant is better retained. Higher viscosity of the
lubricant reduces the COF, presumably due to the fact that lubricant escape is diminished.
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4.2. Results of Numerical Modeling

4.2.1. Distribution of Specimen Elongation

Numerical simulations of the BUT test allow one to better understand the way the sheet deforms
and the phenomena that occur on the interface between the strip specimen and the counter-sample.
Obtaining such results on an experimental basis would be very difficult. Numerical analyses were
carried out on the numerical model corresponding to the friction of samples against the surface of rolls
with a roughness Ra = 0.32 µm (Figure 6a); for these conditions the largest difference in COF values
for dry friction and most effective HDO lubrication were observed. In the numerical simulations,
the values of the COF determined in experimental studies were taken into account according to the
schematic relationship in Figure 5. As this figure shows, the value of COF initial continued to increase
with the elongation of the sample and it reached its stable range at a deformation of 3.5%. In the
elongation range between 3.5% and 15%, a constant value of COF was obtained and this result was
assumed in Figure 6a for the case of HDO.

Figure 9 shows the distribution of mean normal stresses on the contact surface for all the analyzed
friction conditions and the various deformations of the specimen. In the case of the smallest analyzed
sample deformation of 5%, the distribution and value of normal stress was generally similar for all
friction conditions. For the HDO lubrication conditions, which was the most effective lubricant, the
higher the deformation value, the more uniform the stress distribution in the contact zone (Figure 9d).
Observation of the distribution of mean normal stresses for the largest sample deformation (Figure 9c,d)
allowed us to draw a conclusion that the lubricant reduced the stress value on the sample surface in
the contact area. Lower friction resistance makes the sample more easily move over the surface of the
tool. The most loaded section was the vicinity of the place where the specimen was loaded by the front
tensile force leaves contact with the roll. This is due to the accumulation of stresses in the material as a
result of the braking frictional effect of the roll surface on the inner side (see Figure 3b) of the sample.
The non-homogeneous distribution of stress across the sample width is associated with (i) anisotropy
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of the mechanical properties of the sheet and (ii) the occurring friction limiting the flow of the sample
material over the width of the countersample.Metals 2020, x, x FOR PEER REVIEW 13 of 17 
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4.2.2. Flexuring of the Specimen

Existence of friction on one inner side of the sheet causes local flexure of the specimen.
This phenomenon was observed at the front and back side of the specimen (Figure 10). Of course,
the flexuring on the exit side was greater and resulted from different lengths of the free part of the
samples (Figure 3b). The flexuring of the strip specimen affected the length of the contact area along
the sheet-roll contact surface. The bending deformation of the sample was greater for greater values
of the coefficient of friction. It also indicated that the non-uniform distribution of contact normal
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force along the specimen width and along the contact area (Figure 10) was a result of flexuring of the
specimen in a plane perpendicular to the strip direction.Metals 2020, x, x FOR PEER REVIEW 14 of 17 
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Figure 10. Distribution of contact normal force (in N) at the contact area of sheet metal and countersample
surface; testing conditions: dry friction, roughness of countersample Ra = 0.32 µm.

4.2.3. Normal and Friction Forces

The distribution of the contact normal force and contact friction force is non-uniform along the
contact area, as it is shown in Figure 11a,b, respectively. Local peaks of forces were observed at the
start and the end of contact. This can be associated with the local flexuring of the strip sheet over
the countersample surface (Figure 10). In this case, the flexure of the strip sheet locally unloads the
material in contact (regions A in Figures 10 and 11). The distribution of normal and friction forces
in dry as well as DDO and HDO lubricated conditions was approximately uniform in the range of
3–10 mm of contact length.
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Triangular oscillations of the contact normal force value on the side, when the sample leaves
contact with a countersample, might be the result of loss of sheet stability due to flexure of the sheet
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metal shown in Figure 10 (Left). In addition, the strip sheet in the vicinity of the contact with the
countersample tended to bend across the width, which is shown in Figure 10 (Right), where the contact
normal forces were not uniformly distributed across the specimen width. Due to the direction of
specimen movement, the zone located at the bottom of the sample, immediately after coming into
contact with the countersample, was most heavily loaded along the entire width of the sample. In this
area, the distribution of values of contact normal forces between neighboring nodes was very stable,
without oscillations.

The distribution of the mentioned parameters in this range shows that the values of contact
and friction forces for MO lubrication were about 2 times lower than for DDO and HDO lubrication
conditions. The lowest values of friction force along the path lying in the middle of contact area for
MO lubricant did not indicate that this lubricant effectively reduced frictional resistances. Figure 11
allowed us to compare the forces generated by the different friction conditions at a specific cross-section.
However, the decisive factor in the flowing resistance of the specimen along the roll surface is the
distribution of the friction force values along the specimen width.

5. Conclusions

This study was devoted to the experimental investigation of the frictional phenomena at rounded
edges of the die and punch in sheet metal forming operations. Numerical modeling allowed us to
study the material flow over the rounded countersample. The change in different process parameters
was considered in the investigations. The following conclusions were drawn from the research:

• The normal pressure in the BUT test continuously increased with increasing specimen elongation,
and this was due to the strain hardening phenomenon. However, the COF was very stable during
the tests realized in all friction conditions. This conclusion is in contrast to the recent investigations
of authors [2,3] on the friction determination in a strip drawing test when the nonlinear relation
between friction and normal force was found.

• The effectiveness of the lubrication depended on the balance between two mechanisms
accompanied with friction: (1) adhesion of the surfaces in contact and (2) roughening of workpiece
asperities by the tool surface. High surface roughness of tool released the dominant share of
ploughing in total frictional resistance. In these conditions, all of the lubricants used were not able
to decrease the COF in to sufficient extent.

• Lubricants destined for application in SMF operations were able to reduce a value of friction
coefficient approximately by 3–52% in relation to the surface roughness of rolls.

• Friction in the sheet–tool interface caused flexuring of the strip during flowing the sheet through
the BUT test. This effect results in the non-uniformity of the contact normal force and depended
on the value of COF.

• The lubricated conditions, by making the sample to move over the tool surface more easily,
reduced the mean normal stress value on the sample surface in the contact area. Moreover, in the
case of the most effective lubricant, i.e., HDO, the higher the deformation value, the more uniform
the stress distribution in the contact zone was observed.

• The distribution of contact friction force and contact normal forces was non-uniform along the
width and length of the strip material being in contact with the roll surface. This could be
associated with the local flexuring of the strip sheet over the countersample surface.
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