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ABSTRACT

We have developed an efficient methodology for Bayesian
prediction of lithology and pore fluid, and layer-bounding hori-
zons, in which we include and use spatial geologic prior knowl-
edge such as vertical ordering of stratigraphic layers, possible
lithologies and fluids within each stratigraphic layer, and layer
thicknesses. The solution includes probabilities for lithologies
and fluids and horizons and their associated uncertainties.
The computational cost related to the inversion of large-scale,
spatially coupled models is a severe challenge. Our approach is
to evaluate all possible lithology and fluid configurations within

a local neighborhood around each sample point and combine
these into a consistent result for the complete trace. We use a
one-step nonstationary Markov prior model for lithology and
fluid probabilities. This enables prediction of horizon times,
which we couple laterally to decrease the uncertainty. We have
tested the algorithm on a synthetic case, in which we compare
the inverted lithology and fluid probabilities to results from
other algorithms. We have also run the algorithm on a real case,
in which we find that we can make high-resolution predictions
of horizons, even for horizons within tuning distance from each
other. The methodology gives accurate predictions and has a
performance making it suitable for full-field inversions.

INTRODUCTION

In a lithostratigraphic framework, the underground is divided into
layers containing one or more lithofacies originating from the same
depositional process (Ringrose and Bentley, 2015). Changes in the
depositional process due to, e.g., changes in climate or sea level give
rise to new layers containing a different mix of lithofacies. The in-
terfaces between the layers define horizons. In geomodeling, the
stratigraphic model is routinely built based on the interpretation
of seismic reflectors, and by using well observations and expected
layer thicknesses. Often, multiple combinations of lithofacies are
possible across a horizon, either due to the complexity of the dep-
ositional environment or because the horizon defines an erosional
event. When this occurs, we observe changes in the seismic ampli-

tude and polarity along the horizon, which make interpretation of
the stratigraphic horizon difficult.
Quantitative lithology and fluid prediction from seismic is histor-

ically defined as a two-step approach. Seismic data are first inverted
to elastic properties, and then discrete lithology and fluid classes are
predicted from the elastic properties using rock physical relations
(Goodway et al., 1997; Avseth et al., 2001). The rock-physics mod-
els define absolute levels and possible ranges for the elastic proper-
ties for different lithology and fluid classes and provide links from
the estimated elastic parameters to possible lithology and fluid
classes (Avseth et al., 2005; Bosch et al., 2010). In practical use
of two-step inversions, the uncertainty of the elastic parameters
is often treated without rigor, giving results that tend to under-
estimate the uncertainty.
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In the following, we define facies as classes of specific lithology
and pore fluid within a specific stratigraphic layer, for example, over-
burden shale, and gas-, oil-, and brine-filled sandstone reservoir.
Bayesian methodology defines a general framework useful for a

wide range of different applications, in which a prior probability
model is updated to a posterior probability distribution based on
data (Tarantola and Valette, 1982; Gouveia and Scales, 1998; Buland
and Omre, 2003b; Tarantola, 2005; Grana and Rossa, 2010; Buland
et al., 2011; Buland and Kolbjørnsen, 2012). In seismic facies pre-
diction, prior geologic knowledge can be quantified by a joint spa-
tially coupled prior probability distribution. This prior distribution
can describe multiparameter relations between different rock proper-
ties and elastic parameters as well as the spatial structure of the prob-
lem. Buland et al. (2008) describe a fast Bayesian algorithm, but due
to the pointwise approach, the elastic parameters are mapped to facies
classes without considering the surrounding locations, and the algo-
rithm does not ensure correct vertical ordering of the stratigraphy or
pore fluids. Kjønsberg et al. (2010) present a brute force Markov
chain Monte Carlo (MCMC) simulation algorithm in which new
layers could appear, be removed, or be changed, but the algorithm
is very time consuming even for a single vertical profile.
A practical and useful way to model spatial geologic dependen-

cies is by the use of Markov chain models (Krumbein and Dacey,
1969). Markov chains are defined by simple dependencies between
neighbor locations and can be used to model spatial continuity and
transitions between the facies classes. Larsen et al. (2006) use
Markov chains to define the prior model for a vertical profile of
facies classes. Assuming a hidden Markov model and that seismic
data can be considered as independent observations at each data
point, an approximate posterior distribution can be obtained using
the efficient recursive forward-backward algorithm defined by Scott
(2002). Ulvmoen and Omre (2010) and Ulvmoen et al. (2010) ex-
tend the Markov chain prior model in Larsen et al. (2006) to three
dimensions by also including lateral dependencies, and Rimstad
and Omre (2010) and Rimstad et al. (2012) also include rock-phys-
ics depth trends. However, the assumption of a localized likelihood,
i.e., that seismic samples are independent observations, is not real-
istic, and the results from these methods indicate that the solutions
tend to be too conclusive. Rimstad and Omre (2013) evaluate vari-
ous possible improvements to this MCMC algorithm. Hammer et al.
(2012) correct for the independence assumption above and present
an MCMC algorithm for models with vertical dependencies of the
rock properties, but a proper handling of these models is computa-
tionally complex. Fjeldstad and Grana (2017) estimate the facies
probabilities using a 2D Markov random field with a stationary
Markov prior, using an MCMC approach. Connolly and Hughes

(2016) solve the same problem using a rejection sampling algo-
rithm. Nawaz and Curtis (2018) relax the localized likelihood
assumption to a quasilocalized likelihood and solve the problem
using a variational approximation in two dimensions; however, the
parameterization sets limit on the geophysical formulation. Kemper
and Gunning (2014) and Gunning and Sams (2018) adopt the spa-
tial approach by Rimstad et al. (2012), but did only search for the
maximum posterior solution using optimization algorithms such as
expectation-maximization and global annealing. The weakness of
this approach is that there is no guarantee that it converges to the
correct solution, and it does not address the question of inversion
nonuniqueness. The general problem with the sampling-based algo-
rithms described above is that the number of facies combinations is
very large. To ensure convergence of the algorithm, either the algo-
rithm needs to run for a long time, or approximations needs to be
done, like limiting the number of facies classes.
We have developed an efficient approach that addresses the issue

of nonuniqueness while preserving a vertical structure. Our
approach is to evaluate all possible solutions in a moving local
neighborhood rather than trying to solve the full joint posterior dis-
tribution. For many problems, it is possible to obtain adequate ap-
proximations of the posterior distribution by solving a small inverse
problem on a local neighborhood (Jullum and Kolbjørnsen, 2016;
Kolbjørnsen et al., 2016). The prior model is given as a nonstation-
ary Markov chain, encompassing a prior for the horizons and for the
facies configurations within the stratigraphic layers. The definition
of the stratigraphic model is flexible, and may include many fine-
layered subseismic horizons, or only a single layer defining the
complete inversion interval.
The use of this prior model makes joint inversion for facies and

horizons possible. The solution is represented by the posterior
model in which laterally consistent horizons with posterior uncer-
tainty are a key part of the solution. The information defined in the
prior model combined with the seismic amplitudes allow high-
resolution prediction of the horizons, even for layers with thickness
below seismic tuning. The prior model allows multiple facies within
a stratigraphic layer, which enables the prediction of layer bounda-
ries, even if the layer transition is not linked to a unique facies tran-
sition. The Markov prior also incorporates knowledge about the
order of facies within the layer. This might help with constraining
the possible facies transitions at layer tops and bottoms. The solu-
tion also includes a posterior probability model for the facies with
uncertainties. The methodology is presented below and illustrated
on a synthetic example and a real case.

THE BAYESIAN INVERSION FRAMEWORK

The seismic time-angle gather at a specific lateral location, de-
noted as d, is assumed to be the response of an elastic vertical pro-
file with elastic parameters m. The elastic parameters define the
seismic reflection coefficients and the amplitudes of the seismic
data depending on the reflection angle. For isotropic materials, the
elastic properties can be described by three parameters, for example,
the P- and S-wave velocity and density. Hence, the vector m has
dimension 3L with L being the number of discrete, regularly
sampled time samples in a vertical profile.
The vertical earth profile is also characterized by a vector of cat-

egorical facies classes f of length L. The objective of this work is to
make inferences about f based on the seismic data d (see Figure 1).

Figure 1. Relationships among the discrete facies classes f , the
elastic model m, and the seismic data d.
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In Bayesian inversion, all inferences are completely based on the
posterior distribution. The posterior distribution for the facies vector
f given the seismic data d can be written

pðfjdÞ ¼ pðdjfÞpðfÞ
pðdÞ ¼ pðdjfÞpðfÞP

f 0pðdjf 0Þpðf 0Þ
; (1)

defining a direct one-step inversion, where pðfÞ is the facies prior
model. Including the intermediate elastic model in Figure 1, we can
write the likelihood for the seismic data given a facies configuration
pðdjfÞ as

pðdjfÞ ¼
Z

· · ·
Z

pðdjmÞpðmjfÞdm; (2)

where pðdjmÞ is the seismic likelihood and pðmjfÞ is the rock-
physics likelihood.

Seismic likelihood model

The seismic likelihood model is based on the seismic forward
model defined in Buland and Omre (2003a). A seismic time-angle
gather can be written in linear form,

d ¼ Gmþ e; (3)

where the elastic properties m are represented
by the respective logarithms of the P-wave veloc-
ity, S-wave velocity, and the density along the
vertical profile, G is a modeling matrix, and e
is an additive colored Gaussian noise term with
covariance matrix Σe. The modeling matrix is de-
fined by

G ¼ WAD; (4)

whereW is a block-diagonal matrix representing
one wavelet for each reflection angle, A is the
matrix of angle-dependent weak contrast coeffi-
cients defined by Aki and Richards (1980) for
either PP or PS reflections or both if properly
aligned, and D is a differential matrix giving the
contrasts of the elastic properties. This defines
the colored Gaussian seismic likelihood function
pðdjmÞ.

Rock-physics prior model

The rock-physics prior model pðmjfÞ is built
up of the pointwise distribution of the elastic
parameters pðmijfÞ and a vertical dependency
structure within and between facies.
A local Gaussian rock physics prior can be

estimated from well-log samples, or alternatively
from samples simulated with a stochastic rock-
physics model, defining the link from rock prop-
erties to effective elastic parameters for each fa-
cies (Avseth et al., 2005). Typical rock properties
are mineral composition, fluid saturation, poros-
ity, and texture characteristics. The rock-physics

models are generally nonlinear and local in the sense that the rock
properties of a facies in one location i only affect the elastic param-
eters in that specific location, such that

pðmijfÞ ¼ pðmijfiÞ; (5)

where pðmijfiÞ is the rock physics prior at one specific location i.
In this paper, we will assume that the rock physics prior for each
facies can be estimated by a Gaussian distribution. The prior dis-
tributions for the elastic parameters, pðmÞ, will thus be mixed
Gaussian with peaks related to the different facies configurations,
and they are given by

pðmÞ ¼
X
f

pðmjfÞpðfÞ; (6)

where the sum runs over all possible modes.
Figure 2 shows the rock physics priors for four different facies

used in the examples in the remainder of this section. The facies are
two different shales (shale 1 and shale 2) and a sand that can be
either gas or brine filled (gas sand and brine sand).

Facies prior model

The aim of the prior model used in this paper is not only to cap-
ture the pointwise prior facies probability but also to incorporate

Figure 2. Rock physics priors for four different facies: (a) shale 1 (black), (b) brine sand
(yellow), (c) gas sand (red), and (d) shale 2 (brown) given by their multinormal distri-
butions, and (e) in an AI against VP∕VS crossplot. The same facies colors are used in the
subsequent figures illustrating the algorithm.
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information about stratigraphic layering and facies ordering within
the layers. To accomplish this, the prior model has two levels.
First, a stratigraphic prior model pðsÞ, where s is the vector of
stratigraphic layer identifiers with same length as f. Second, a prior
model for facies class distribution given a stratigraphic layer pðfjsÞ.
The final prior model pðfÞ is then approximated as a one-step
Markov model, meaning that the facies class probabilities pðfiþ1Þ
at sample location iþ 1 are given by the facies class probabilities
pðfiÞ in the sample location directly above, together with the facies
transition probabilities pðfiþ1jfiÞ (Krumbein and Dacey, 1969).
A conceptual model of a reservoir with gas- or brine-filled sand

with a shale layer above and another shale below is shown in
Figure 3. Here, the two horizons top 2 and top 3 split the reservoir
into three stratigraphic layers, 1–3. Four facies classes are defined,
a shale in the overburden layer 1, a gas-filled sand and a brine-filled
sand in the reservoir layer 2, and another shale in layer 3 below the
reservoir. The horizon uncertainties are illustrated by the dashed
green lines. In addition to the horizon times, the facies content of
the reservoir layer at a given sample point is uncertain.

Stratigraphic prior model

To develop a Markov model for the actual facies classes, we first
set up a Markov model for the stratigraphic layers containing the
facies. Corresponding to f, the vertical earth profile can also be
given as a vector s of stratigraphic layer identifiers k. The strati-
graphic prior model pðsÞ can then be determined from the strati-
graphic layer probability distribution at the top of the trace pðs0Þ
together with the layer transition probabilities pðsijsi−1Þ. The prob-
ability for a layer transition from layer k to kþ 1 between two sam-
ples is the same as the probability for the time of the corresponding
horizon hk being between the time of these two samples.
Layer transition probabilities for three sample locations in the

highlighted trace in Figure 3 are shown in Figure 4. The first sample
is above the uncertainty band of the top horizon, and the probability
for being in layer 1 is equal to 1 in the marked cell and the cell
above, which gives pðsi ¼ 1jsi−1 ¼ 1Þ ¼ 1, whereas all of the other
transition probabilities are equal to 0. The two remaining sample
locations are within the uncertainty band of the two horizons. Here,
the horizon can be above and below the sample, giving a nonzero
probability for a layer transition.

Facies prior model within stratigraphic layer

We assume that within each individual stratigraphic layer, a set of
possible facies classes is given and that the facies prior probabilities
given the stratigraphic layer are defined by a Markov chain model
with stationary conditional transition probabilities. The Markov
chain model is then defined by the facies probabilities at the top
of the stratigraphic layer pðfijsi ≠ si−1Þ and the conditional tran-
sition probabilities pðfijfi−1; si ¼ si−1Þ. The conditional transition
probabilities control the facies transitions within a single strati-
graphic layer, and they can control expected facies layer thicknesses
and prevent unphysical combinations like brine-filled sand directly
above gas-filled sand. Figure 5 shows the facies prior given the
stratigraphic layer for each of the layers in Figure 3.
The final facies transition probabilities pðfijfi−1Þ can then be

calculated from the conditional facies transition probabilities and
the layer transition probabilities as

pðfijfi−1Þ ¼ pðfi; sijfi−1; si−1Þ
¼ pðfijfi−1; si; si−1Þpðsijsi−1Þ: (7)

Here, we have made use of the fact that a given facies belongs to one
specific layer; thus, si is contained within the definition of fi. Fur-
thermore, note that because the layer transition probabilities
pðsijsi−1Þ are nonstationary, the facies prior model will also be non-
stationary. Figure 6 shows the final facies transition probabilities at
the trace highlighted in Figure 3.

Figure 3. Conceptual model with three layers, two horizons, and a
total of four facies classes, with the same facies colors as shown in
Figure 2. Horizon uncertainties are shown as the dashed green lines.
The trace used as example in the remainder of this section is shown
as shaded.

Figure 4. Layer probability distribution pðs0Þ at the top of the
example trace and layer transition probabilities at different sample
locations. Rows in the transition probability matrices correspond
to the layer above (si−1) and columns correspond to the layer
below (si).
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LOCAL NEIGHBORHOOD APPROXIMATION

The goal of the seismic inversion algorithm described here is to
gain information about the facies and stratigraphic layering. This is
done by finding the probability distribution for facies (with contain-
ing layer) in a given sample location pðfijdÞ. The corresponding
cumulative probability distribution for the location of the horizons
pðhk < tijdÞ is also found, where ti is the time of sample i and hk is
the time of horizon k. A brute-force approach to finding these is to
evaluate all possible facies configurations f using equation 1, but the
number of possible configurations is far too high for this to be real-
istic. Our approach is to limit the problem to evaluate all facies con-
figurations in a neighborhood around a location of interest. This

reduces the number of configurations to a manageable amount,
while still allowing inference on the local sequence of facies.
Around a sample location i, we define the local neighborhood as

a small vertical window denoted as wi (see Figure 7). Within this
window, we evaluate all permissible facies configurations. Because
the permissible facies configurations are common for all of the
locations in the inversion volume and all calculations within this
section are assumed to be done around this location, we suppress
the location identifier for the remainder of this section, and we just
denote the window w.
In general, the window w can be any preselected set of sample

locations close to the location i. Within this neighborhood, all facies
configurations fw are considered. All possible facies configurations
for the example shown in Figure 3 for a window length of three are
shown in Figure 8. With four facies and a window length of three,
there are a total of 43 ¼ 64 possible configurations. However, after
enforcing a strict ordering of the stratigraphic layers, disallowing
brine sand directly above gas sand and enforcing the presence of
the reservoir between the overburden and the underlying shale,
there are only 18 permissible configurations.
The posterior probability for a facies configuration in the window

is given as

pðfwjdÞ ¼
pðdjfwÞpðfwÞ

pðdÞ ¼ pðdjfwÞpðfwÞP
f 0w

pðdjf 0wÞpðf 0wÞ
: (8)

The prior probability function pðfwÞ represents the prior pro-
babilities of facies configurations in the window w, and they can be
calculated directly from the facies prior model given above. The
challenge is to approximate the likelihood pðdjfwÞ. The method for
doing this is described below as a modeling sequence.
The algorithm and hence computational complexity grows expo-

nentially with window length (see the “Discussion” section), and

Figure 5. Prior model for facies within the individual stratigraphic
layers, defined by the facies probability at the top of the layer
together with the facies transition probabilities.

Figure 6. The final facies transition probabilities for the whole
model shown in Figure 3, calculated from the stratigraphic transi-
tion probabilities shown in Figure 4, and the prior model for facies
given stratigraphic layer shown in Figure 5. Figure 7. The window w highlights the neighborhood of location i.
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we usually use a vertical window that is three or
five sample locations long. With a typical seismic
sampling rate of 4 ms, this corresponds to 12–
20 ms, which is generally too short to capture
the characteristics of the seismic signal. To
counteract this, the distributions of the elastic
parameters and the seismic amplitudes given the
facies configuration need to be calculated for a
larger interval. In the remainder of this section,
m and d have a length equal to this “data match-
ing window” length, stretching half a wavelet out
in each direction. This corresponds to the interval
where the seismic signal is directly affected by
the facies configuration at the window location.

Approximate likelihood model

To be able to calculate the likelihood pðdjfwÞ,
the rock-physics likelihood pðmjfwÞ is needed.
Finding the exact distribution is generally not
feasible, and the key idea to solve this is to
approximate pðmjfwÞ by a Gaussian distribution
p�ðmjfwÞ, completely defined by the expectation
vector μmjfw and the covariance matrix Σmjfw .

These quantities can be computed from pðm; fÞ, the known joint
distribution of elastic parameters and facies configurations. The
elastic parameters are assumed to be correlated vertically between
sample locations containing the same facies.
The approximate distributions of acoustic impedance (AI) for a

subset of the different facies configurations within the window from
Figure 8 are shown in Figure 9. The expected elastic values are
shown along the trace as a thick black line, and the associated
uncertainty is shown in gray. The values at the center of the plot
correspond to the expected value and uncertainty for the facies
in the facies configuration shown in the top right corner. The values
away from the center are calculated based on the possible transitions
upward and downward from the facies at, respectively, the top and
bottom of the window. Note that the uncertainty is low outside the
window in the cases in which there is only one possible facies above
or below the window, i.e., windows with either shale 1 in the top or
shale 2 in the bottom, whereas the uncertainty increases signifi-
cantly if multiple different facies are possible.
Under the Gaussian approximation p�ðmjfwÞ, we can apply the

seismic likelihood model defined above in equations 3 and 4
(Buland and Omre, 2003a) for each facies configuration fw. The
resulting approximate likelihood function for the seismic data in
the window, p�ðdjfwÞ is Gaussian with expectation vector and
covariance matrix given as

μdjfw ¼ Gμmjfw ; Σdjfw ¼ GTΣmjfwGþ Σe: (9)

Figure 10 shows the probability distributions for the seismic am-
plitudes corresponding to the elastic distributions shown in Figure 9.
The seismic signal is mainly covered by contrasts in the elastic pro-
perties for the facies within the window. Note that there is a signifi-
cant expected seismic signal for the window with only gas-filled
sand, due to the high probability for a facies transition with a high
elastic contrast not far above and below the window.
The approximate likelihood p�ðdjfwÞ can thus be found by

standard methodology,

Figure 8. Permissible and impermissible facies configurations for the example shown in
Figure 3 for a window length of three. Each column of three boxes represents a facies
configurations, with facies color codes as defined in Figure 2.

Figure 9. Example distributions for AI for some of the facies con-
figurations shown in Figure 8. The distance to the window center is
given on the vertical axis. The boxes in the upper right corner re-
present the facies configurations. The uncertainty represented by the
area between the 2.5th percentile and the 97.5th percentile is given
in gray.
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p�ðdjfwÞ ∝
1

jΣdjfw j
1
2

e−
1
2
ðd−μdjfw ÞTΣ−1

djfw ðd−μdjfw Þ: (10)

The covariance matrix Σdjfw is independent of data, and we can
thus precompute the inverse covariance for each window for fast
likelihood computations.

Approximate posterior model

The approximate posterior probability function p�ðfwjdÞ for the
facies configuration in the window can be computed by substituting
the likelihood pðdjfwÞ in equation 8 with the approximate likeli-
hood p�ðdjfwÞ. The approximate posterior distribution p�ðfwjdÞ
is then given as

p�ðfwjdÞ ¼
p�ðdjfwÞpðfwÞP
f 0w
p�ðdjf 0wÞpðf 0wÞ

: (11)

Note that replacing equation 1 with equation 11 simplifies the
computations significantly. This allows us to approximate the pos-
terior probability for the facies configuration in the window by con-
sidering only the facies configurations in the window rather than all
facies configurations in the trace. There is a trade-off between the
computational complexity and accuracy of the result by adjusting
the window size. A large window gives large accuracy but has a
large computational cost; a short window decreases the accuracy,
but it is also faster to compute. The algorithm has the following
key features:

1) It can be used to honor physical and geologic relations inside
each window. This is done by including only geologically
possible facies configurations inside the window as shown in
Figure 8.

2) Inside the window, there is no approximation of the distribution;
hence, a larger window gives a better approximation. With a
window size equal to the trace length, there is no longer any
approximation.

Note that facies transitions within the window fw force reflections
into the solution. That is, when computing the approximate likeli-
hood p�ðdjfwÞ, we are checking whether the reflections implied by
the facies configuration fits the data. This also means that we explic-
itly check on the existence of thin layers that are normally consid-
ered to be below tuning thickness.

Posterior facies probability

Equation 11 gives an approximate posterior probability for facies
configurations within a window, and it can be marginalized to find
the approximate posterior probability for facies in a cell, by sum-
ming over the relevant windows. However, if windows are not very
long, this probability does not fully take into account the joint prob-
ability for facies along the entire trace. For instance, a facies con-
figuration with only gas would be about as likely as a facies
configuration with only shale at a location with no significant seis-
mic reflections. But if there are no major reflections anywhere in the
trace above this window, the gas case should be unlikely because we
would expect a reflection at the transition from shale to gas. Thus, a
facies should only have probability locally if there are facies traces

that are consistent with geology and seismic data, which give this
facies at the location.
To incorporate full trace consistency, we use the probabilities for

facies configurations to compute a higher order Markov chain for
local transitions, starting from the top of the trace. This restricts the
solutions to those that are consistent in a full trace sequence starting
from the top. Similarly, Markov chains starting from the bottom are
created. Marginal posterior facies probability at any location
i, pðfijdÞ can then be found as an average of the downward and
upward marginals. Details are given in Appendix A.
Because this is done trace by trace, no lateral constraints on the

facies sequences are included in the inversion, just the vertical order-
ing. The inversion results will still have lateral continuity induced by
the lateral continuity of seismic data. In theory, accounting for lateral
continuity in geologic features can help improve the inversion results.
Facies structures within a layer are, however, generally complicated
with abrupt facies transitions, and they are better modeled with either
object models or pixel-based models conditioned to marginal facies
probabilities (Holden et al., 1998; Stien and Kolbjørnsen, 2011).

Posterior horizon distribution

The layer probability pðsjdÞ is found by marginalizing on the
layer instead of facies. The probability for a sample i being below

Figure 10. Probability distributions for seismic signals for three
different angles corresponding to the elastic properties shown in
Figure 9. The distance to the window center is given on the vertical
axis. The boxes in the upper right corner represent the facies con-
figurations. The uncertainty represented by the area between the
2.5th percentile and the 97.5th percentile is given in gray.
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horizon hk is then the same as the probability for the sample belong-
ing to a layer below hk. This probability is then given by the cu-
mulative distribution

pðhk < tijdÞ ¼
X
j>k

pðsi ¼ jjdÞ; (12)

where ti is the time of sample i.
The horizons are generally smooth, but with potential local dis-

continuities due to faulting. This can be modeled by introducing
lateral correlation directly into the posterior distribution. The inver-
sion results h�kðxlÞ for a trace with lateral position xl can be seen as
estimates of the true horizon time hkðxlÞ that we want to predict

h�kðxlÞ ¼ hkðxlÞ þ εðxlÞ; (13)

where εðxlÞ is the estimation error. The distribution of h�kðxlÞ does
not have a parametric form, but it can be approximated by a Gaus-
sian distribution with mean and variance estimated from equa-
tion 12. Incorporating data of the form of equation 13 is a common
spatial problem and can be solved using local kriging. Because there
is a lateral dependency in the seismic amplitude errors, there is also
lateral dependency in the corresponding observation errors εðxlÞ.
The estimation of this lateral dependency is given in Appendix B.

SYNTHETIC CASE

We define a synthetic case to compare the posterior facies prob-
abilities from the inversion algorithm with two other Bayesian al-
gorithms. We use a reference facies model similar to the concept

model in Figure 3 and corresponding synthetic seismic data are
shown in Figure 11.
The procedure for generating the synthetic seismic data is as fol-

lows. Each facies in the reference model is populated with elastic
properties by sampling a Gaussian field with mean, variance, and
covariance according to the rock-physics distributions in Figure 2.
The variogram has a range of 100 traces laterally and 10 ms ver-
tically, and the field is sampled in a stratigraphic grid so the cor-
relation structure follows the stratigraphy. The stratigraphic grid
is then resampled to a regular grid using a nearest-node approach.
Finally, the synthetic seismic is obtained by applying the seismic
forward model in equation 3 to each trace in the grid.
The posterior facies probabilities from the inversion algorithm

are compared with a pointwise inversion and an inversion using an
importance sampling algorithm. The pointwise algorithm estimates
the facies probabilities at each sample point from the inverted local
elastic properties according to Buland et al. (2008). The importance
sampler estimates the facies probabilities based on calculated like-
lihoods for facies traces sampled from the prior model. Because of
ambiguity in the seismic forward model, we do not compare the
inversions with the reference facies model. Instead, we consider the
importance sampler (Ripley, 1987) as the baseline because it rep-
resents the target distribution that we aim to approximate in our
computations.
The importance sampler is very computationally intensive and

therefore generally not practical, but due to the simplicity of this
particular case it can be run to convergence. The window length of
our inversion algorithm is set to five samples.
The aim of the inversion is to detect gas sand and predict the gas-

brine interface as illustrated in Figure 3. Therefore, a small prior
probability (<0.2) for gas sand is assigned to the sand layer between
the top 2 and top 3 horizons. The total probability of having sand is
approaching 1 in the middle of the layer and zero outside the layer.
The initial uncertainty of the time of top 2 and top 3 is set to 20 ms.
The resulting prior probability model for shale 1, sand, and gas sand
is shown in Figure 12a–12c.
Figure 12d–12f, 12g–12i, and 12j–12l shows the corresponding

posterior probabilities of the importance sampler, our algorithm,
and the pointwise inversion, respectively. All three algorithms per-
form equally well with respect to the detection of shale 1 and sand.
However, note that the estimated uncertainty of the horizon between
shale 1 and sand is slightly higher with the pointwise inversion than
with the other two.
The importance sampler gives a sharp interface between gas sand

and the surrounding sediments (Figure 12f). Our algorithm returns a
similar pattern (Figure 12i); however, there is some variability in the
estimated probabilities seen as vertical stripes in the gas-sand prob-
ability. For the pointwise inversion, only about half of the thickness
of the gas sand is identified (Figure 12l), corresponding to the major
reflection at the top reservoir. Away from the reservoir top, the al-
gorithm tends to return the initial prior model because the seismic
data there do not contain any clear signal that could push the pos-
terior away from the prior.
Increasing the number of samples in the window of our algorithm

improves the approximation. The average Kullback-Leibler (K-L)
divergence between the results of our algorithm and the importance
sampler is shown in Figure 13 for window lengths of one to five
samples. We observe a systematic reduction in the divergence as
the number of samples in the window is increasing. For reference,
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graphic to a regular grid.
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Figure 13 also shows the K-L divergence of the prior model and the
importance sampler. The latter represents a minimum divergence
due to Monte Carlo effects and is obtained by comparing the pos-
teriors of importance samplers with different random seeds.
We conclude that the posterior facies probabilities from our

algorithm are preserving most of the features of the importance
sampler while keeping the computational complexity manageable
by only evaluating permissible facies configurations within a small
window. The gas reservoir and the gas-brine interface are better
illuminated than in the pointwise inversion, which suffers from the
local nature of the algorithm.

EXAMPLE FROM THE EDVARD GRIEG FIELD

The Edvard Grieg oil field is located on the southwest flank of
the Utsira High in the North Sea approximately 180 km west of
Stavanger, Norway, with a water depth of approximately 110 m.
The reservoir at approximately 1900 m depth was deposited in a
continental half-graben setting of Triassic age. It constitutes of
sandstones, conglomerates, mudstones, fractured, and weathered
basement with a complex and interfingering structure. Hence, tun-
ing effects and significant variability in geologic facies and elastic
properties are observed over relatively short distances within the
reservoir.
The seismic inversion is based on angle-limited stacks from a

2016 Ocean bottom seismic survey. An amplitude-variation-with-
offset (AVO) friendly processing sequence including mild spectral
whitening is performed on the data, and three stacks corresponding
to 5°, 15°, and 25° have been extracted.

The reservoir consists of three main units. We will here focus on
unit III that consists of homogeneous sandstones with excellent res-
ervoir qualities. A full-field inversion study using the methodology
presented in this paper can be found in Ndingwan et al. (2018). The
underlying unit II consists of fluvial sandstones, alluvial facies,
floodplain, and lacustrine mudstones. In parts of the field, the inter-
face between unit III and unit II does not represent a distinct seismic
reflector. The top of unit III is obscured by an overlying chalk layer
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Figure 12. Facies probabilities for shale 1, sand, and gas sand. (a-c) Prior probabilities, (d-f) posterior probabilities of the importance sampler,
(g-i) posterior probabilities of our algorithm, and (j-l) posterior probabilities of the pointwise inversion.
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in which the top is a significant seismic reflector, and these reflec-
tors are generally within tuning of each other. A facies prior model
is defined consisting of six layers (overburden; chalk; units III, II, I;
and basement) and 11 facies classes each with elastic parameters
following Gaussian distributions. The prior model is set up based
on facies interpretations from 11 wells together with regional geo-

logic knowledge, and it is shown for one trace in Figure 14 coinciding
with a well. The well’s facies log and petrophysical interpretation
given as bulk volume of clay (VCL), brine (BVW), and hydrocarbon
(BVH) are also shown. The inversion is performed with window
length of five samples resulting in approximately 3.7 × 104 permis-
sible facies configurations.

The inversion focusing on estimating the top
and base of unit III in the southwestern part of
the field is presented below. The six (of the
11) facies classes that are most relevant are dis-
played at the bottom of Figure 14, and the dis-
tribution of the elastic properties for sand,
shale, and conglomerates is shown as a scatter-
plot in Figure 15. The southwestern part corre-
sponds to a region where unit II is mostly
dominated by floodplain and lacustrine mud-
stones with similar elastic properties as the main
sandstones of unit III. Note that due to the ver-
tical coupling, the content of unit II will influ-
ence the results in unit III; thus, separate
facies classes for the floodplain-dominated sec-
tion are required (Ndingwan et al., 2018).
The conditional facies transition probabilities

within unit III are defined in Figure 16. The tran-
sition probabilities between unit III and sur-
rounding strata are estimated from the top and
base of unit III and their uncertainties. The final
facies transition probabilities are then calculated
according to equation 7. Figure 17 illustrates per-
missible facies transitions into, out of, and within
unit III for the six most relevant facies classes.
Using the methodology in this paper, we have

found the posterior facies probabilities for unit
III. Figure 14 shows the prior and posterior prob-
abilities of these along one trace at a specific well
location. Note that all facies have nonzero prior
probabilities in units II and III and above unit III
due to the initial large uncertainty of the top and
base of unit III. The posterior result is clearly
identifying the top of unit III and indicating a
thinner unit than the prior as seen by the abrupt
reduction in sand probability and the correspond-
ing reduction in location uncertainty. At approx-

imately 1940–1950 and 1975–1990 ms, the seismic data have
increased the probability of shale by a factor larger than five. This
indicates that in these two locations, the seismic data contain strong
evidence of shale, which is confirmed by the well data.

Figure 14. (c) Prior and (d) posterior facies probabilities for one trace coinciding with a
well in the inversion area. The probabilities are overlaid by horizontal lines correspond-
ing to the top and base of unit III with uncertainties shown as shaded areas. Also shown
are the seismic angle stacks along the (e) trace and (b) volume fractions of clay, brine,
and hydrocarbon and (a) facies log of the well.

Figure 15. Scatterplot of VP∕VS ratio versus the AI of sand, shale,
and conglomerates obtained from their respective Gaussian distri-
bution of elastic properties.

Figure 16. Transition probabilities between facies within unit III.
The facies above the transition is displayed in the first column,
and the facies below is displayed along the first row.
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Figure 18 shows the prior and posterior result in a crossline in
which only the most probable facies is shown. The prior surfaces
of unit III are obtained from seismic, and the expected uncertainty is
indicated by the shaded areas. From the posterior probabilities, we
have used the previously described laterally coupled surface predic-
tion approach to generate surfaces (referred to as
correlated surfaces). For lateral continuity, we
have used an exponential variogram with a range
of 2.5 km. The resulting correlated top and base
surfaces with uncertainty are overlaying the pos-
terior result in Figure 18. The prior and posterior
surfaces with uncertainties are also overlaying
the seismic AVO data in Figure 19 for the same
crossline as shown in Figure 18.
Figure 20 shows the estimated thickness of

unit III as well as the thickness from predicted
surfaces without lateral continuity, in which
we only predict surface locations in each trace
independently of each other (referred to as uncor-
related surfaces). We see that the lateral depend-
ency generates a smoother surface, consistent
with the prior assumption of the spatial depend-
ence. As we would expect from Figure 19, we
also see a major change from prior to posterior,
with a decrease in thickness, and a clearly de-
fined pinchout of the layer.
Our surface prediction approach also provides

uncertainties for the surfaces. These are shown in
Figure 21 for the top and base surface along the
cross section of Figure 19. Figure 21 plots the
standard deviations (i.e., the uncertainties) of the
prior and the correlated and uncorrelated pos-
terior surfaces. We see that the central part of the top correlated
surface is well-defined with a standard deviation of 2.0 ms, corre-
sponding to a position accuracy down to seismic sample resolution.
The uncertainty reduction for the base correlated surface is also sig-
nificant. Introducing the lateral dependency pulls the uncertainty at
a location toward the minimum uncertainty in the region around the
location, giving a further reduction in uncertainty over what is
achieved for independent traces.
The results of the above example are in accordance with our

Bayesian model. The top surface is at a very clear reflector in
the central part, and it does not change much because the prior
is already at this reflector, so the main effect here is a reduction
of uncertainty, confirming that this reflector matches the prior
rock-physics model for transition into unit III. The base surface
is much more uncertain, and the posterior here differs from the prior.
This update reflects where the seismic signal gives the best match
the prior model for facies and rock physics at the base of unit III.
The posterior distribution for this surface is also much more uncer-
tain than the top because the reflector used here is not as obvious as
the top reflector. Just as in the synthetic case, the pinchout is also
well-defined in this real case because our algorithm is robust for
tuning effects within the window length.
We have also compared the inversion result with wells around the

field and generally found a good match. Figure 22 shows the well
indicated in the cross sections and in the thickness maps. The com-
parison is done in the VP, VS, and density domain in which the in-
verted properties are a probability weighted estimate from the facies

posterior probabilities and the rock-physics likelihoods. The most
visual discrepancy is perhaps VS above the reservoir in the over-
burden for two-way traveltimes (TWTs) less than approximately
1860 ms. A closer analysis shows that the well has an anoma-
lous high VP∕VS relationship compared to other overburden wells

Figure 17. The transition matrix into, out of, and within unit III. Matrix elements that
are filled with the pink and light-pink colors indicate permissible transitions, respec-
tively, within unit III and going into or out of unit III. The gray-filled elements corre-
spond to permissible transitions within the chalk and unit II as well as permissible
transitions directly from the chalk to unit II if unit III is missing. The white elements
represent impermissible transitions.

Figure 18. Cross section of the (a) prior and (b) posterior of most
probable facies with the corresponding top and base surfaces of unit
III with uncertainties shown as shaded areas. The vertical line in-
dicates the location of the well that is used in Figures 14 and 22.
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explaining most of the discrepancy. There also appears to be a time
alignment issue, which might come from the time depth curve or a
lateral shift from the migration. There is a clear decrease in elastic
properties at the top of unit III (approximately 1880 ms), which
corresponds to the location of the softer sand compared to the
surrounding harder conglomerate B as shown in the scatterplot of
Figure 15. The mapping of the main sand boundaries, which was the
primary concern in the inversion, also aligns well with observed 4D
seismic effects from a more recent 2018 survey.

DISCUSSION

Inversion for rock properties

Posterior estimates for elastic properties are found by performing
an elastic inversion given the facies configuration for each facies
configuration within the window, weighting the inverted elastic pro-
perties by the posterior probability for the facies configuration, and
integrating upward and downward. The algorithm presented here
can also be extended with estimation of rock properties such as sat-
urations and clay content using a local linear relationship between
rock properties and elastic properties to estimate the rock properties
given a facies, similar to Grana et al. (2017). The benefit of the
proposed approach is that the reservoir parameters are interpreted

in the context of a layer and a facies. Taking the Edvard Grieg case
as an example, there is a large difference between the seismic re-
sponse of a sandstone and conglomerate B (sandy conglomerate)
even if the porosities are identical. For cases in which a linear re-
lationship between elastic properties and reservoir parameters is a
poor approximation, one might consider extensions along the lines
of Jullum and Kolbjørnsen (2016).

Computational complexity

The main factors affecting the computation time are the number
of layers, the number of facies within each layer, and the length of
the window. Similar to Rimstad and Omre (2013), there is a clear
trade-off between the precision in the inversion results and the
computing demands with respect to window length. The computing
demands are generally proportional with the number of permissible
facies configurations within the window, which goes as Oðnwl

f Þ,
where nf is the number of facies and wl is the window length.
However, adding layering and a fixed facies ordering can lead to
a great reduction in the computational demands. The computations
performed for each location further scale with wavelet length giving
a computational complexity of OððN � n2l þ n3l Þ � nmÞ, where N is

Figure 19. Cross section of seismic data with expected prior and
correlated posterior surfaces imposed on the stacks for the (a) 5°,
(b) 15°, and (c) 25° angle stacks. The surface uncertainties (standard
deviation) are shown as shaded areas. The vertical line indicates the
location of the well that is used in Figures 14 and 22.

Figure 20. Thickness of unit III. (a) Time thickness as it is defined
in the prior model. (b) Estimated thickness from the uncorrelated
surfaces. (c) Estimated thickness from the correlated surfaces.
The vertical line corresponds to the position of the cross sections
in Figures 18 and 19 with the location of the well as a filled dot.
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the number of locations the result is computed, nl is the wavelet
length, and nm is the number of permissible facies configurations.

Prior model assessment

There are two sources of error in our approach. We have already
discussed the error due to the approximation of the algorithm. The
other is the error introduced by assuming that the proposed prior
model covers the true earth profile. This latter problem is not uni-
que to our methodology, but it is common for all model-based
(Bayesian) approaches. Methodologically, we can resolve this issue
by adding an additional class for an undefined response, which will
be preferred if the likelihoods of all facies configurations are small,
as is done in Buland et al. (2008). However, there are methodologi-
cal challenges for integrating this approach in the setting of vertical
coupling. Thus, it remains a relevant research topic for the future.
In practical applications, we find that prior models that do not

cover the true profile sufficiently well tend to give lateral instabil-
ities in the inversion. The upside of solving the equations trace by
trace is that we automatically test the robustness of the result toward
small data perturbations because neighboring traces tend to be sim-
ilar. If the results fluctuate laterally, it is likely due to either model
errors or overconfidence in the data. We also find it useful to test the
sensitivity of the results by running more than one prior model.
Plotting a map of the trace-wise root mean square of the residuals
is an additional quality control. If there are regions with large re-
siduals, this can be a sign of the model being inadequate. Ndingwan
et al. (2018) combine the two latter types of quality control by com-
paring the root mean square of the residuals for several prior models
to select the model that is optimal for a given region.

CONCLUSION

We have presented a probabilistic algorithm that predicts facies
and horizons using AVO data and geologic information. The Mar-
kov prior model allows us to impose restrictions on facies ordering
and to incorporate facies layer thickness information. The introduc-
tion of layer information in the nonstationary transition probabilities
enables update of the position of the layer-defining horizons based
on the seismic amplitudes. These positions can be further refined by
imposing lateral continuity. We use a local neighborhood approxi-
mation in which we find the local probability for all facies configu-
rations within a small window. Using Markov chains, we combine
these local probabilities into a consistent set of lithology and fluid
probabilities for the entire trace. The results show that the algorithm
is capable of detecting facies transitions, even below tuning thick-
ness. Others have used similar prior models for lithology and fluid
predictions, using different approximations to compute the predic-
tions. They also get good results, indicating that this is a good prior
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model for this problem. Our local neighborhood approximation al-
lows us to apply this even to complex cases, in which MCMC-based
approaches have convergence problems. We are also able to incor-
porate temporal continuity in elastic parameters, which if ignored
tend to push probabilities toward the extremes. The algorithm per-
forms better than a pointwise facies prediction, and the efficiency of
the algorithm is such that it is feasible to invert full-field data sets
with complex prior models containing a rich set of facies classes.
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APPENDIX A

USE OF HIGHER DIMENSIONAL MARKOV CHAIN

The appendix describes the algorithm used to ensure full-trace
consistency when calculating the local marginal posterior facies
probabilities pðfjdÞ. The final result is found by building upward
from the bottom of the trace and building downward from the top
of the trace. When building upward, the marginal facies probabil-
ities at the bottom of the trace are initialized with a standard mar-
ginalization of pðfwjdÞ. The probability of the facies in a sample
location can be computed from fj>i, all the cells below, by a stan-
dard relation:

pðfj≥ijdÞ ¼ pðfijfj>i; dÞpðfj>ijdÞ: (A-1)

The approximation through a k order Markov property is now in-
troduced by inserting the approximation

pðfijfj>i; dÞ ≈ pðfijfiþk≥j>i; dÞ; (A-2)

into equation A-1. The right side can be derived directly from the
probabilities for facies configurations pðfwjdÞ in the window cen-
tered at sample i.
Similarly, it is possible to compute marginal facies probabilities

downward from the top of the trace by reversing the ordering of the
computations. Either of these approximations is equally good, but
will in general differ. The probability of a facies in a location is then
finally approximated by combining these probability calculations.
We find the final likelihood as the geometric average of the two
likelihoods. Let the upward posterior probability approximation
be puðfijdÞ, and the downward being pdðfijdÞ. The corresponding

likelihoods can be found by dividing the posterior with the prior,
giving

p�ðfijdÞ ∝ pðfiÞ
�
puðfijdÞ
pðfiÞ

�1
2

�
pdðfijdÞ
pðfiÞ

�1
2

¼ puðfijdÞ1∕2pdðfijdÞ1∕2: (A-3)

Thus, the approximated probability is proportional to the geometric
mean of up and down probabilities.
The algorithm for computing the approximation posterior facies

probabilities pðfi ¼ kjdiÞ then becomes

1) For each sample location i in each trace:

• extract seismic data di
• for all facies configurations fw centered on i, compute

p�ðfwjdiÞ from equation 11.

2) Compute the approximations puðfijdiÞ and pdðfijdiÞ from run-
ning Markov chains upward and downward as described above.

3) Compute the final approximation from equation A-3.

APPENDIX B

DETAILS RELATED TO LATERAL COUPLING
FOR HORIZONS

This appendix describes the details related to the estimation of
the local uncertainties defined in equation 13, which are needed
in the spatial approach used to introduce lateral coupling for horizon
observations in the different traces. These local uncertainties are
interpreted in terms of Gaussian error models. We assume that the
error locally at trace i can be mapped into two components

εðxiÞ ¼ σRðxiÞεRðxiÞ þ σcðxiÞε; (B-1)

where ε is the common component, whereas εRðxiÞ is a correlated
component. These two components are independent and have unit
variance. The uncertainty in the inverted horizon time for a trace is
then a sum of the scale of the common and correlated components

σ2obsðxiÞ ¼ σ2RðxiÞ þ σ2cðxiÞ: (B-2)

According to equations 13 and B-2, there are three terms that
contribute to the variability in h�ðxiÞ. The common component
σcðxiÞ and the horizon time itself vary slowly, so we assume that
these quantities are constant in a small region around the location.
The variance component σRðxiÞ can then be estimated by using a
standard variance estimate. Because the variance σ2obsðxiÞ depends
on location xi, it is natural to use the local variance as a weight in
this estimation. Let NðxiÞ be a neighborhood of xi. The weighted
average d̄ in the neighborhood can be found as

d̄ðxiÞ ¼
P

xj∈NðxiÞ
h�ðxjÞ
σ2
obs

ðxjÞP
xj∈NðxiÞ

1
σ2
obs

ðxjÞ
: (B-2B)

The correlated component is now the weighted standard deviation
from this average for the observations in the neighborhood, given by

R220 Kolbjørnsen et al.

Downloaded from https://pubs.geoscienceworld.org/geophysics/article-pdf/85/3/R207/5018231/geo-2019-0170.1.pdf
by Stavanger University user
on 29 June 2020



σ2RðxiÞ ¼
σ2obsðxiÞ

jNðxiÞj − 1

X
xj∈NðxiÞ

ðh�ðxjÞ − d̄ðxiÞÞ2
σ2obsðxjÞ

: (B-3)

From this, we can find the common component

σ2cðxiÞ ¼ σ2obsðxiÞ − σ2RðxiÞ: (B-4)

The correlation structure of the colored component can also be
estimated from the residuals within the neighborhood. Because
this model is valid for the local region, only data from this neigh-
borhood are used in the kriging when computing the smoothed
result. The size of the neighborhood is limited by the local constant
assumption.
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