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It is a common lore that the amplitude for a scattering process involving one soft Nambu-Goldstone
boson should scale like an integer power of the soft momentum. We revisit this expectation by considering
the 2 → 2 scattering of phonons in solids. We show that, depending on the helicities of the phonons
involved in the scattering process, the scattering amplitude may in fact vanish like a fractional power of the
soft momentum. This is a peculiarity of the 4-point amplitude, which can be traced back to (1) the
(spontaneous or explicit) breaking of Lorentz invariance, and (2) the approximately collinear kinematics
arising when one of the phonons becomes soft. Our results extend to the general class of nonrelativistic
shift-invariant theories of a vector field.
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Introduction.—The modern scattering amplitude pro-
gram has a twofold purpose [1]. On the one hand, it aims
to provide alternative computation techniques for particle
phenomenology, more efficient than the textbook Feynman
diagram perturbation theory. On the other hand, more
ambitiously, it strives to establish new foundations of
quantum field theory, relying solely on physical observ-
ables rather than a Lagrangian with all its ambiguities.
Much of the effort toward understanding scattering

amplitudes has been devoted to massless particles. These
include, notably, gluons and gravitons [2], related to two of
the fundamental interactions of nature. However, there is
another broad class of massless particles: the Nambu-
Goldstone (NG) bosons of spontaneously broken sym-
metries. While these are rather rare in the physics of
fundamental interactions, they are ubiquitous in ordered
phases of matter across disciplines, including nuclear phys-
ics, condensed matter physics, astrophysics, and cosmology.
In spite of the broad relevance of NG bosons, their

scattering has so far been mostly studied within the
framework of Lorentz-invariant field theory. Explorations
of the larger landscape of field theories allowing violation
of Lorentz invariance have only started to appear in the
recent years. These include studies of scattering in mag-
netic systems [3], relativistic theories with a chemical
potential [4], rotationally invariant theories of cosmological
fields [5], cosmological solids [6], and incompressible

fluids [7]. First attempts to map the entire landscape of
Lorentz-breaking effective theories followed soon [8–10].
As a rule of thumb, NG bosons interact weakly at large

wavelengths. More precisely, in the “single soft limit,” in
which the momentum of one NG boson participating in a
scattering process goes to zero, the scattering amplitude
should vanish. This property is known as “Adler’s zero.”
The rule has exceptions that have been known for a long
time [11], although their proper understanding has only
started to emerge recently [12].
The behavior of scattering amplitudes in the soft limit

can be characterized by an exponent, σ, given by the
leading power-law dependence of the amplitude on the soft
momentum. It is a common lore that this exponent is
always a non-negative integer. The generic Adler’s zero
corresponds to σ ¼ 1, whereas its occasional violation to
σ ¼ 0. There are also physical systems, both relativistic
[13–15] and nonrelativistic [10], where the scattering
amplitudes are enhanced in the soft limit, that is, σ > 1.
In this Letter, we show that the scaling exponent controlling
the soft limit of 2 → 2 interactions between NG bosons
may be fractional.
Our study was motivated by the physics of solid

insulators, whose low-energy or low-temperature proper-
ties are dominated by the vibrations of the crystal lattice:
the phonons. These are NG bosons associated with the
spontaneous breaking of translation invariance, and their
interactions are thus dictated by symmetry [16]. In the last
few years, it has become clear that a proper account of
phonon-phonon interactions, and especially of their 2 → 2
scattering, is essential for understanding properties of
solids such as thermal transport [17].
We analyze in detail the 4-particle scattering amplitude

of phonons in solids. We find, in accord with the common
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lore, that the presence of 3-phonon interaction vertices may
spoil the soft limit of the amplitude altogether, leading to
σ ¼ 0. However, the Adler’s zero is restored if all the three
nonsoft (hard) phonons in the process have the same phase
velocity, that is, all three are either longitudinal or trans-
verse. In this case, the resulting 3-particle kinematics is
collinear, which further restricts the 4-particle scattering
amplitude. When all three hard phonons are longitudinal,
the ordinary Adler’s zero with σ ¼ 1 is thus restored. When
all three are transverse, the leading scaling exponent of the
amplitude is either σ ¼ 1=2 or σ ¼ 1, depending on the
precise combination of phonon helicities.
As we explain in the discussion at the end of the Letter,

this peculiar behavior is not limited to phonons in solids. In
fact, fractional scaling of the 4-particle amplitude is also
found in a generic effective theory of a derivatively coupled
3-vector field.
Our results highlight new soft behavior of scattering

amplitudes of NG bosons, specifically those with a small
number of legs, which control the majority of low-energy
phenomena.
4-particle kinematics in the soft limit.—Consider a

4-particle scattering process involving gapless particles
with linear dispersion relations, Ei ¼ cipi, where pi is
the magnitude of momentum pi. We will use a sign
convention for the momenta and energies corresponding
to the scattering 1þ 2 → 3þ 4. Conservation of spatial
momentum can always be used to eliminate p4 from the
amplitude in favor of p1, p2, and p3. Furthermore, con-
servation of energy implies a relation among the relative
angles of the remaining momenta,

p2 · p3 ¼ p1 · p2 − p1 · p3 −
c1c2
c24

p1p2 þ
c1c3
c24

p1p3

þ c2c3
c24

p2p3 þ
1

2

X3

i¼1

�
1 −

c2i
c24

�
p2
i : ð1Þ

This relation can be used to remove the relative angle
between p2 and p3 from the amplitude.
Consider now the soft limit where, say, p1 becomes

much smaller than the magnitudes of the other momenta.
It is natural to implement such a limit by rescaling the
magnitude of p1 while keeping its direction fixed. Then, for
a process where the speeds of propagation c2, c3, and c4 of
the hard particles are all the same, the kinematics becomes
degenerate. As we will see, it is this degeneracy that gives
rise to the fractional soft limit in some nonrelativistic
theories, i.e., theories in which Lorentz invariance is broken
either spontaneously or explicitly.
While sending p1 → 0, it is important that on-shell

energy and momentum conservation remains satisfied. In
particular, when all the hard particles have the same speed,
Eq. (1) reduces to p2 · p3 ≡ p2p3 cos θ23 ¼ p2p3 þOðp1Þ:
the incoming particle “2” becomes approximately collinear
to the outgoing particle “3” (as well as the outgoing particle

“4,” by conservation of momentum). This means that
θ23 ¼ Oð ffiffiffiffiffi

p1

p Þ or, equivalently, that deviations from the
exact collinear limit can be parametrized as p̂3 ¼ p̂2 þ δp̂3,
with jδp̂3j ¼ Oð ffiffiffiffiffi

p1

p Þ.
We should emphasize that all these considerations apply

also to the 4-particle kinematics of a relativistic theory of
massless particles. In this case, all phase velocities are equal
to the speed of light, and Eq. (1) reduces to the familiar
relation among Mandelstam variables, sþ tþ u ¼ 0,
which can be used to eliminate, say, u from the amplitude.
The remaining variables read,

s ¼ 2p1p2ð1 − p̂1 · p̂2Þ; ð2aÞ

t ¼ −2p1p3ð1 − p̂1 · p̂2 − p̂1 · δp̂3Þ: ð2bÞ

Relativistic 4-point amplitudes will then also feature
fractional scaling with momentum, but only at subleading
orders in p1. This can easily be seen, for example, in the
case of four massless scalars, where Lorentz invariance
forces the amplitude to be a function of s, t, and u only.
When Lorentz invariance is broken, and particles with

spin possibly different from zero are involved, the 4-point
amplitude can have a more general dependence on the
rotationally invariant quantities built out of the particles’
momenta and polarizations. As a result, the fractional
powers of p1 can appear in the leading contribution to
the 4-point amplitude in the soft limit, as we show below.
Phonons in solids.—In order to provide a concrete,

phenomenologically relevant example of 4-point ampli-
tudes that display a fractional soft limit, we are going to
consider the effective theory of phonons in a homogeneous
and isotropic solid. Phonon excitations are described by a
3-vector field, πðt; rÞ, that parametrizes the displacement
of each volume element from its equilibrium position.
Homogeneity implies that a uniform translation of all
volume elements should leave the system invariant. As a
result, the theory must be shift-invariant, and only deriv-
atives of the phonon field can enter the effective
Lagrangian. At the lowest order in the derivative expansion
and up to cubic order in the fields, the Lagrangian reads
L ¼ L2 þ L3 þ � � �, with

L2 ¼ w̄

�
1

2
_π2 −

1

2
ðc2L − c2TÞ½Π�2 −

1

2
c2T ½ΠTΠ�

�
; ð3aÞ

L3 ¼ a1½Π�3 þ a2½Π�½Π2� þ a3½Π�½ΠTΠ�
þ a4½ΠTΠ2� þ a5½Π� _π2 þ a6 _π · Π · _π; ð3bÞ

where we have defined the matrix Πij ≡ ∂iπj, ΠT is the
transpose of Π, and [X] stands for the trace of the matrix X.
The parameters cL and cT denote the phase velocities of
longitudinal and transverse phonons, while w̄ is a scale
controlling the dimension of the displacement field, which
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depends on the equilibrium properties of the system. Note
that Eq. (3b) does not contain any ½Π3� operator, since this
can be eliminated in favor of ½Π�3 and ½Π�½Π2� using the fact
that det Π is a total derivative (see Appendix A of [18]).
Quartic interactions are not displayed in Eq. (3) since they
start contributing to the 4-point amplitude only at order
Oðp1Þ in the soft limit. While the quartic Lagrangian does
not play a role in the following discussion, we report it for
the sake of completeness in the attached Supplemental
Material [19].
The Lagrangian, Eq. (3), represents the most general

(leading) kinetic term and cubic interaction that respects
invariance under internal shifts, spacetime translations, and
spatial rotations. However, actual solids feature additional
symmetries that are realized nonlinearly due to being
spontaneously broken, in particular Lorentz (or Galilei)
boosts. Such symmetries are not manifest in the Lagrangian
[16], but lead to relations among the coefficients of
different operators. For instance, in a relativistic solid, a
comparison between the quadratic Lagrangian and the
stress-energy tensor of the theory shows that w̄ is the
relativistic enthalpy density, that is, energy density plus
pressure [20]. Moreover, one has a relation among the cubic
couplings, as well as two relations between the cubic
couplings and the quadratic ones. Specifically,

a2 − a3 −
1

2
a4 − a5 −

1

2
a6 ¼ 0; ð4aÞ

a5 ¼
1

2
w̄ð1þ c2L − 2c2TÞ; ð4bÞ

a6 ¼ w̄ðc2T − 1Þ; ð4cÞ
with the convention that the speed of light is set to 1. Such
constraints are automatically implemented when the effec-
tive Lagrangian is built in a manifestly invariant way as, for
example, using the coset construction [21].
Soft limit of the 4-phonon amplitude.—Given the

Lagrangian in Eq. (3), the amplitude for the on-shell
scattering of two particles is obtained from the Feynman
diagrams in Fig. 1. The structure of the nonlinear inter-
actions makes the full amplitude too cumbersome to be
displayed here. Nonetheless, it can be treated analytically,
and all our results have also been checked numerically [22].
We also note that the quadratic Lagrangian, Eq. (3a), is not
canonically normalized and, therefore, each external pho-
non leg comes with an associated factor of 1=

ffiffiffiffi
w̄

p
.

The soft limit of the 4-point amplitude is dominated by
contributions in which the intermediate propagators of the
last three diagrams in Fig. 1 go on shell. Such contributions
are related to the on-shell 3-point amplitude by a factori-
zation formula, as dictated by standard polology arguments
[23]. For the s, t, and u channels, we thus find, respectively,

Að4Þ
s ⟶

p1→0
−

P
hηδjhηj;jh2jA

ð3Þ
12→ηA

ð3Þ
η→34

ðE1 þ E2Þ2 − c22ðp1 þ p2Þ2
; ð5aÞ

Að4Þ
t ⟶

p1→0
−

P
hηδjhηj;jh3jA

ð3Þ
1→3ηA

ð3Þ
2η→4

ðE1 − E3Þ2 − c23ðp1 − p3Þ2
; ð5bÞ

Að4Þ
u ⟶

p1→0
−

P
hηδjhηj;jh4jA

ð3Þ
1→4ηA

ð3Þ
2η→3

ðE1 − E4Þ2 − c24ðp1 − p4Þ2
; ð5cÞ

where hi ¼ 0;�1 is the helicity of the ith phonon, and
the η phonon carries the energy and momentum that flow
through the propagator. The Kronecker δ functions in the
numerators on the right-hand side of Eq. (5) ensure that
only the leading part of the entire 4-point amplitude, for
which the propagators go on shell in the soft limit, is
retained.
The common lore is that the presence of cubic inter-

actions violates the Adler’s zero, leading to a scaling with
σ ¼ 0 in the soft limit. Indeed, in Eq. (5), the 3-point
amplitudes involving phonon “1” in the initial state vanish
linearly with p1, hence compensating for the pole of the
propagator. The remaining 3-point amplitudes will, in
general, be finite and nonzero in the soft limit, leading
to a finite nonzero limit of the full 4-point amplitude.
Nonetheless, there are configurations of the external

phonon polarizations for which this is not true: the Adler’s
zero is restored. Specifically, when the speeds of the hard
particles are all the same, the 4-point amplitude does vanish
in the soft limit. The operational way in which the Adler’s
zero is restored as well as the scaling exponent with which
the amplitude vanishes depends on the polarizations of the
hard phonons, but is independent of the polarization of
the soft one [24]. While the leading, Oðp0

1Þ contribution
to the 4-point amplitude vanishes, the next term of the
asymptotic expansion of the amplitude scales as Oð ffiffiffiffiffi

p1

p Þ.
For relativistic solids where the constraints [Eq. (4)] are
satisfied, its general form is

FIG. 1. Feynman diagrams contributing to the on-shell tree-level 4-phonon amplitude. Each line, either an external leg or an internal
propagator, can stand for a longitudinal or a transverse phonon.
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Að4Þ
12→34 ¼ −

ða4 þ c2Ta6Þ2
2w̄3cTðcT p̂1 · p̂2 − c1Þ

ðϵ̂�h · ϵ̂1Þðϵ̂�h · p̂1Þðϵ̂h · δp̂3Þp2p3

× h2h3½δh2;h4p2 þ δ−h3;h4p3�½ð1þ δ−h2;h4Þp2 − ð1þ δh3;h4Þp3� þOðp1Þ: ð6Þ

Recall that pi are the magnitudes of the spatial momenta.
Furthermore, ϵ̂1 is the polarization vector of the soft
phonon, and ϵ̂h is the polarization vector relative to p̂2
(which in the collinear soft limit equals p̂3) and with
helicity h≡ h2h3h4, i.e., the product of the helicities of
the three hard phonons. As anticipated, the source of the
leading fractional soft limit is the small deviation from the
collinear limit, δp̂3, which, as mentioned above, is such that
jδp̂3j ¼ Oð ffiffiffiffiffi

p1

p Þ [26].
We note, however, that there are helicity configurations for

which the leading term, Eq. (6), vanishes, thus restoring the
standard linear scaling, σ ¼ 1. This happens either when the
hard phonons are longitudinal, h2 ¼ h3 ¼ h4 ¼ 0, or when
they are transverse with helicities such that h2 ≠ h3 ¼ h4.
For a correct account of the Oðp1Þ contribution to the
amplitude, the Feynman diagrams with cubic interaction
vertices are no longer sufficient, since they are not the only
contribution at that order. One would then also need to
include the contact 4-phonon diagram in Fig. 1, arising from
the quartic interaction of phonons given in the Supplemental
Material [19]. Indeed, the contribution from this diagram
starts precisely at Oðp1Þ.
Discussion.—In this Letter we have shown, for the first

time, that scattering amplitudes of NG bosons may scale
with a fractional power of momentum in the soft limit. We
demonstrated this explicitly using a low-energy effective
theory of solids. The same conclusion, however, applies to
any nonrelativistic shift-invariant theory of a vector NG
field, whose cubic interactions are given by Eq. (3) without
further constraints on the couplings ai.
The fractional scaling appears in 4-particle amplitudes

where the three hard phonons are all transverse, as a
consequence of the collinear kinematics of the hard
phonons in the soft limit. Apart from the constraint on
the phonon helicities, no particular choice of the effective
couplings or phonon phase velocities is required. It is,
however, clear from Eq. (6) that the leading Oð ffiffiffiffiffi

p1

p Þ
contribution to such a 4-point amplitude may be canceled
by a suitable choice of the ai coefficients. It might be
interesting to investigate whether imposing scaling with
some higher power of momentum than 1=2 might single
out a particular theory of a vector field with additional
symmetry, in the spirit of [13,27,28].
Let us stress that the necessity of this peculiar fractional

power scaling is limited to the 4-point amplitude. The
reason is again kinematical: for higher-point amplitudes,
taking the soft limit for one of the particles does not impose
any particularly stringent constraint on the kinematics of
the hard particles. Thus, the fractional scaling does not

constitute a soft theorem that would be valid for all n-point
amplitudes. We have checked numerically that, due to the
presence of the cubic interaction vertices in Eq. (3), a
generic higher-point amplitude converges to a nonzero
constant in the soft limit, i.e., scales with σ ¼ 0.
One might also wonder what is the role played by the

higher derivative corrections to the effective field theory.
Because of these corrections, the phonon’s dispersion
relation is not exactly linear, but it is schematically given
by EðpÞ ¼ cspð1þ γp2 þ � � �Þ, where cs is the sound
speed (longitudinal or transverse) and γ is a short distance
coefficient of the order of the lattice spacing squared.
Within the regime of applicability of the effective theory
these corrections are generally small, γp2 ≪ 1. By looking
at the analog of Eq. (1) in the case of nonlinear dispersion
relations when the hard phonons have the same sound
speed, it is easy to convince oneself that our considerations
apply unchanged in the regime γp2 ≪ p1=p ≪ 1, where p
stands for any of the three hard momenta in the 2 → 2

process. However, for p1=p≲ γp2 the fractional scaling
behavior breaks down and two things can happen: (1) for
γ < 0 the strict p1 ¼ 0 limit is kinematically forbidden, or
(2) for γ > 0 the hard phonons are not collinear, but rather
separated by a small angle of order

ffiffiffiffiffiffiffiffi
γp2

p
. In this second

instance the amplitude tends to a nonzero value at p1 ¼ 0.
The interesting aspect is that, in both cases, the lower

cutoff γp3 on p1, below which the qualitative behavior
of the amplitude changes, is determined by an ultraviolet
quantity. We thus stress how, for real solids, this is an
intriguing way of estimating a short distance parameter
(the lattice spacing) from a measurement in the far infrared.
This is contrary to what usually happens in effective field
theories, where short distance parameters are probed by
shorter and shorter wavelengths.
The present work should be understood as a proof of

concept. In the future, it would be interesting to pin down
the precise necessary and sufficient conditions for the
scattering amplitudes to display a fractional soft limit.
For example, the latter could be observed also in generic
n-point amplitudes evaluated at special kinematical points.
In particular, we expect it when multiple legs are taken to
be collinear, specifically n − 4 of them, which effectively
reduces the kinematics to that of a 2 → 2 scattering in the
soft limit. What is peculiar to the 4-point amplitude is that
the collinearity of the hard phonons is not a matter of
choice, but rather is enforced by energy and momentum
conservation in the soft limit.
In the same spirit, one might ask what the fate of the

fractional scaling is when the momenta are promoted to
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complex vectors, a technique that has proven useful in
different contexts (see [29] for a recent review). It is clear
that, for a generic set of complex momenta, one needs to
give up the concept of collinearity altogether. Nonetheless,
it is not immediately obvious that this will spoil the
fractional scaling, at least for specific complexifications,
as the ones used to probe the soft limit of NG bosons in
effective field theories [10,14].
It would also be desirable to get deeper insight into the

difference in behavior of amplitudes with longitudinal
and transverse phonons. Working out in detail the Ward
identities for the spontaneously broken symmetries of
phonons would be a good starting point. Last but not
least, it would be interesting to study the soft limit of
scattering amplitudes in compressible fluids, which feature
an infinite number of nonlinearly realized symmetries. We
leave all these directions for future work.
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