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arguments, and recently developed on-shell recursion relations. We show that, in contrary to
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symmetries and dispersion relations of the scattered particles. This has direct consequences
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1 Introduction

Effective field theory (EFT) is a general framework that encodes the dynamics of the degrees
of freedom present in a physical system below a given energy scale. The fundamental principle
of EFT is to include in the action all possible terms allowed by symmetry principles up
to a certain order in one or more parameters such as momentum or mass. The relevance
of different terms is determined through a power-counting scheme. Irrelevant terms are
suppressed by powers of the ultraviolet cutoff and have dimensionless Wilson coefficients
that encode effects from the physics beyond this cutoff.

EFT is particularly powerful for physical systems with an ordered ground state, where
the low-energy dynamics is dominated by Nambu-Goldstone (NG) modes of the symmetry
spontaneously broken by the order parameter. If the system is invariant under spatial
rotations and spacetime translations, then the NG modes stemming from spontaneously
broken global symmetries can be classified into two different families. These families are
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referred to as type Am and type B2m [1], where m is a positive integer. A type Am NG mode
is described by a real scalar field with dispersion relation ω2 ∝ p2m. The well-known NG
bosons that arise in relativistic systems with spontaneously broken global symmetries belong
to the type A1 subfamily. On the other hand, type B2m NG modes are described by two real
scalar fields (or one complex scalar) forming a canonically conjugated pair with dispersion
relation ω ∝ p2m. The possible existence of type Am and type B2m NG bosons in a given
number of spatial dimensions d and at zero temperature is constrained by the nonrelativistic
version of the celebrated Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem [2–4]. In
short, a NG boson of type Am may only exist if m < d. This both constrains the dispersion
relation of type A NG bosons for fixed d, and places a lower bound on the dimension d

below which type Am NG modes with fixed m cannot exist. On the other hand, type B2m
NG modes are not constrained beyond the simple requirement that m be positive.

The construction and properties of EFTs for NG bosons are by now well understood
both in relativistic [5–7] and nonrelativistic [4, 8, 9] systems with spontaneously broken in-
ternal, i.e. coordinate-independent, symmetry. Spontaneously broken coordinate-dependent
symmetries are more subtle in that the number of NG modes they produce may be lower
than the naive count of spontaneously broken generators. This happens as a rule when
different global symmetries generate locally indistinguishable fluctuations of the order
parameter [10–13]. While such redundant symmetries impose nonlinear constraints on the
low-energy effective action similar to any other spontaneously broken symmetry, it is not
obvious what they imply for actual physical observables. This was clarified by Cheung et
al. [14], who showed that redundant symmetry manifests itself in the scattering amplitudes
of NG bosons through soft theorems for the S-matrix.

Soft theorems describe universal behavior of scattering amplitudes when the momentum
of one or more particles is taken to zero. In the present paper, we will address the single soft
limit of scattering amplitudes of NG bosons. In this case, the momentum of one selected
particle is rescaled with a soft factor, p→ εp. The momenta of all the other particles in the
scattering process have to be adjusted in order to maintain overall energy and momentum
conservation; it is assumed that none of these other momenta vanish in the limit ε → 0.
The asymptotic behavior of an n-particle scattering amplitude An in the limit ε→ 0 is then
characterized by a soft scaling parameter σ such that

An ∝ εσ, ε→ 0. (1.1)

As a rule, spontaneous breaking of a global symmetry implies that the scattering amplitudes
of the associated NG boson satisfy σ ≥ 1; this is known as the Adler zero property.
Exceptions to this rule where σ = 0 have been known for a long time, although their origin
has only been clarified recently [15, 16]. On the other hand, theories with σ > 1 are said to
possess enhanced soft limits.

All currently known examples of EFTs for NG bosons with σ > 1 feature redundant
symmetry, even though the existence of such a symmetry has not been proven to be a
necessary condition for enhanced soft limits. It is therefore sensible to search for new
possible theories with σ > 1 by focusing on the symmetry. Direct classification of possible
Lie algebra structures admitting redundant symmetries has been carried out to construct
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catalogs of Lorentz-invariant theories with enhanced soft limits [17–19]. An advantage of
this approach is that it offers a unified treatment of the landscape of EFTs regardless of the
number of NG degrees of freedom (flavors). An obvious disadvantage is that the presence
of a redundant symmetry is an unproven assumption.

In fact, the historically first exploration of possible relativistic EFTs with enhanced
soft limits was carried out using on-shell scattering amplitude methods [14, 20–22]. The
basic idea is roughly as follows. Within a generic EFT for a scalar field, imposing the
condition that the scattering amplitudes in the soft limit have the Adler zero property
(σ = 1) will constrain the Wilson coefficients of the many operators one can add to the
effective Lagrangian. The role of such constraints is to ensure cancellations between various
contributions to the S-matrix, which ultimately leads to the Adler zero in the soft limit.
Imposing subsequently enhanced scaling of scattering amplitudes, with given fixed σ > 1,
is expected to impose even stricter conditions on the Wilson coefficients at the leading
order of the low-energy expansion. In extreme cases, the constraints from soft theorems
are so stringent that the leading order of the EFT boils down to a one-parameter family of
Lagrangians. Examples of such exceptional theories are the nonlinear sigma model (NLSM),
the Dirac-Born-Infeld (DBI) theory, and the special Galileon [14].

It turns out that the theories singled out by requiring enhanced soft limits possess
S-matrices that are recursively constructable through novel on-shell recursion relations [20].
More generally, it was shown that soft theorems implied by redundant symmetries can be
used to recursively construct higher point on-shell amplitudes [23]. Apart from analyzing
the properties of already known theories, the novel on-shell recursion relations for EFTs
have been utilized to further explore the landscape of EFTs with enhanced symmetries
and soft limits [21, 22, 24, 25]. Very recently, the same philosophy was also applied to
EFTs with universal albeit not necessarily vanishing soft behavior of the S-matrix [26].
The combination of on-shell recursion relations and soft theorems has developed into a
full-fledged soft bootstrap program [22]. This is an algorithmic procedure for searching
for local EFTs with given infrared properties, based on on-shell soft data and consistency
conditions for the S-matrix. Common examples of soft data include the spectrum of massless
particles, unbroken symmetries, and soft theorems. Further details can be found e.g. in
refs. [22, 25] and references therein.

While considerable effort has been devoted to exploring the properties of relativistic
scalar EFTs using state-of-the-art techniques of quantum field theory [21, 22, 27–34], nonrel-
ativistic scalar EFTs have received considerably less attention. This has left nonrelativistic
EFTs with enhanced symmetries and soft limits a terra incognita. The present paper should
be understood as an attempt to shed light on this new territory. We will investigate the
landscape of EFTs satisfying soft theorems of the form σ > 1. The fact that EFTs with
enhanced soft limits have an on-shell reconstructable S-matrix will allow us to combine
conventional quantum field theory techniques with modern on-shell methods adapted for
nonrelativistic EFTs [35] in order to carve out the landscape.

This paper is rather lengthy and utilizes a range of different approaches to study
nonrelativistic EFTs. In order to help the reader orient in the text, we now give a brief
overview of the contents and main results of the individual sections.
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1.1 Outline and results

Section 2. We review the results of a previous classification of nonrelativistic EFTs with
enhanced symmetries [36], which provides a basis for the discussion of scattering amplitudes
in the rest of the paper. The section covers mainly type A1 and type B2 theories of a
single NG mode. A novel type B4 theory, whose quartic dispersion relation is protected by
symmetry, is also presented.

Section 3. We review how redundant symmetries constrain the soft behavior of scattering
amplitudes of NG bosons. It is pointed out that enhanced spatial symmetry alone is not
sufficient to ensure enhanced soft limits of scattering amplitudes. Instead, we find that the
infrared dynamics can depend on what types of NG bosons are present in the system. We
derive a new sufficient condition for enhanced soft limits, which requires information about
the dispersion relation of the NG bosons. This is one of the main results of the present
paper. Finally, we discuss concrete consequences for type A and type B NG bosons, using
the theories cataloged in section 2 for illustration.

Section 4. Here we present the on-shell technology used in our soft bootstrap and
infrared classification procedures. This includes soft momentum shifts and on-shell recursion
relations, adapted to nonrelativistic EFTs [35]. The bottom-up exploration of nonrelativistic
EFTs in the following two sections relies heavily on the content of this section.

Section 5. We use soft bootstrap to carve out the landscape of on-shell constructable type
A1 and type B2 theories with enhanced soft limits. The exceptional theories uncovered in
the type A1 sector are well-known relativistic theories. This observation leads to the notion
of emergent Lorentz invariance from the infrared. In the type B2 sector, we recover the
theories obtained using the Lie-algebraic classification in section 2 without any additional
surprises. Some details about the numerical setup for calculation of scattering amplitudes
can be found in appendix A.

Section 6. The observations made in the previous section raise the natural question
whether all exceptional type A1 theories are necessarily relativistic, and whether there are
any exceptional type B2 theories that still remain undiscovered. To prepare the ground
for attacking these questions, we first introduce a few parameters that furnish a simple
classification scheme for scalar EFTs with enhanced soft limits. We then derive general
bounds on the classification parameters, narrowing down the landscape of possible EFTs.
Using analytical bootstrap methods, we next prove that all exceptional type A1 theories in
fact are relativistic, which allows us to lift existing results for relativistic EFTs to the whole
type A1 subfamily. On the type B2 side, we give a proof that there are no exceptional type
B2 theories beyond those already discovered through Lie-algebraic methods. Some technical
details are relegated to appendix B.

Section 7. Here we summarize the main findings of the paper and discuss how the top-
down symmetry approach and the bottom-up bootstrap approach provide complementary
insights into the landscape of nonrelativistic EFTs.
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2 Nonrelativistic EFTs with enhanced symmetry

In all currently known examples of EFTs featuring scattering amplitudes with enhanced soft
limits, the latter are a consequence of an underlying redundant symmetry. The program to
map the landscape of candidate EFTs based on a Lie-algebraic classification was initiated
in refs. [17, 18] for Lorentz-invariant theories. In ref. [36], the analysis was extended to
rotationally invariant EFTs with other than Lorentz boosts or without any boost symmetry
whatsoever. In this section, we briefly review the main results of these works, and give
some concrete examples of candidate EFTs where scattering amplitudes may be expected
to possess an enhanced soft limit. This sets the basis for the follow-up discussion. In some
sense, the following sections revolve around two immediate questions: (i) whether all the
candidate theories identified here indeed possess enhanced amplitudes in the soft limit and
(ii) whether there are any other EFTs with enhanced scattering amplitudes than those
singled out here.

Throughout this paper, we will use the notation in which spatial indices are labeled with
lowercase Latin letters r, s, t, u, . . . .1 Wherever needed, we will use the standard Euclidean
metric, grs = δrs. The Lie algebra of infinitesimal symmetries of any translationally and
rotationally invariant EFT necessarily includes the generators Jrs of spatial rotations and
Pr of spatial translations. To these we add a set of scalar generators Qi, some of which may
be spontaneously broken, thus giving rise to the NG boson content of the EFT. Finally, we
allow for an a priori undetermined set of redundant vector generators, KrA, where the index
A distinguishes different redundant symmetries. In d > 2 spatial dimensions, rotational
invariance fixes some of the commutation relations among these generators,

[Jrs, Jtu] = i(gruJst + gstJru − grtJsu − gsuJrt), (2.1)
[Jrs, Pt] = i(gstPr − grtPs), (2.2)
[Pr, Ps] = 0, (2.3)

[Jrs,KtA] = i(gstKrA − grtKsA), (2.4)
[Jrs, Qi] = 0, (2.5)
[Qi, Qj ] = ifkijQk, (2.6)

where fkij are the structure constants of the Lie algebra of the scalar generators. In addition,
we assume that the scalars Qi are translationally invariant, [Pr, Qi] = 0. This seems to be
necessary in order have the usual Adler zero [37, 38], let alone further enhanced soft limits.

The main result of the Lie-algebraic classification of EFTs carried out in refs. [17, 18, 36]
can now be summarized as follows. First, there are two particular linear combinations
of the scalars Qi that play a distinguished role, QA and QAB. These are defined by the
right-hand side of the commutators

[Pr,KsA] = igrsQA, (2.7)
[KrA,KsB] = i(gABJrs + grsQAB). (2.8)

1Temporal components of spacetime vectors will always be indicated with a 0, not to be confused with t
which, according to our convention, is a spatial index.
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Here gAB is a symmetric matrix of coefficients which completely fixes the remaining
commutators among Pr, KrA, QA and QAB,

[KrA, QB] = −igABPr, (2.9)
[KrC , QAB] = i(gACKrB − gBCKrA), (2.10)

[QA, QB] = 0, (2.11)
[QAB, QC ] = i(gBCQA − gACQB), (2.12)

[QAB, QCD] = i(gADQBC + gBCQAD − gACQBD − gBDQAC). (2.13)

All that remains to have the complete Lie algebra is to find the commutators of the remaining
scalars Qi with KrA, QA and QAB . To that end, we first introduce another set of coefficients,
dAi, defined by the right-hand side of the commutator

[Qi,KrA] = (ti)BAKrB − idAiPr. (2.14)

Finally, we define two block (n + 1) × (n + 1) matrices, where n denotes the range over
which the index A on KrA runs,

(Ti)AB ≡

 (ti)AB 0

dBi 0

 , LAB ≡

 QAB iQA

−iQB 0

 . (2.15)

The matrices Ti are constrained by the requirement that they span an affine representation
of the Lie algebra of Qi, that is, [Ti, Tj ] = ifkijTk. By the same token, the n× n matrices ti
must span an ordinary (linear) representation of the Lie algebra of Qi. The set of coefficients
gAB is required to form a symmetric invariant tensor under the action of ti. Moreover, gAB
is related to the coefficients dAi through

gAB = −aiAdBi = −aiBdAi, (2.16)

where aiA is defined by QA ≡ aiAQi. The last remaining commutator can now be expressed
compactly as

[Qi, LAB] = (T Ti L+ LTi)AB. (2.17)

Altogether, the commutation relations among the generators Jrs, Pr, KrA and Qi are
completely fixed by the structure constants fkij of the subalgebra of scalars Qi, the affine
representation Ti of this subalgebra, and the symmetric invariant tensor gAB of this
subalgebra. In order to take account of time translation invariance, we also have to add a
Hamiltonian. This can be implemented as one of the Qi scalars.

The Lie-algebraic structure reviewed above has an intriguing geometric interpretation.
Namely, the subalgebra spanned on the generators Jrs, Pr, KrA, QA and QAB is identical
to the algebra of isometries of a (d+ n)-dimensional pseudo-Euclidean space, endowed with
the metric grs ⊕ gAB . Here QA play the role of translations in the n extra dimensions, KrA

generate rotations between the d physical dimensions and the extra dimensions, and QAB
generate rotations that operate exclusively in the extra dimensions. This makes it possible
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to interpret the resulting EFTs in terms of fluctuations of a d-dimensional brane embedded
in a higher-dimensional space.

Finding all EFTs with the above Lie-algebraic structure is an open problem. In ref. [36],
two infinite classes of EFTs with multiple flavors of NG bosons were presented, generalizing
the standard (relativistic) DBI and Galileon theories. In the present paper, we restrict
the discussion to theories of a single NG boson. In the nonrelativistic domain, this may
correspond either to a single real scalar field or to a single complex scalar field. In these
special cases, the classification of possible EFTs can be carried out completely, with some
further simplifying assumptions on the symmetry content of the EFT. This is the subject
of the following two subsections. The classification of theories of a single real scalar in
section 2.1 is taken over from ref. [36]. The classification of theories of a single complex
scalar in section 2.2 is however new. Finally, in section 2.3, we put together the discovered
EFTs into a simple catalog. This will serve as a reference for the following sections.

2.1 Theories of a single real scalar

In ref. [36] a classification of EFTs for a single real scalar was carried out, which we
reproduce here. The classification is based on a minimal extension of the algebra of
spacetime symmetries that describes a single species of NG boson and possesses redundant
symmetry. Specifically, the index A on KrA is restricted to a single value and thus dropped.
Likewise, we only include two scalar generators: the single spontaneously broken scalar
QA ≡ Q, responsible for the existence of the NG boson, and the Hamiltonian H. The
nontrivial part of the Lie algebra generated by Jrs, Pr, Kr, Q and H then takes the form

[Pr,Ks] = igrsQ, [Kr,Ks] = −ivJrs,
[Kr, Q] = ivPr, [Kr, H] = −iwKr + iuPr, [Q,H] = −iwQ,

(2.18)

where the parameters u, v, w are only constrained by the requirement that vw = 0, which
means that v and w are mutually exclusive. All other commutators among the generators
are either zero or fixed by rotational invariance. Whenever some of the parameters u, v, w
are nonzero, they can be removed by a redefinition of the generators. In the end, we only
find four distinct EFTs without any tunable parameters. We will review them one by one.

2.1.1 Spatial Galileon theory

This corresponds to the special case u = v = w = 0. The symmetry generated by the
broken scalar Q acts on the corresponding NG field θ as a mere shift, θ → θ + ε. (The
same is true for the single-flavor theories reviewed in the following two subsections.) The
redundant symmetry generated by Kr acts on θ as θ → θ + βrx

r, where βr is a vector
of symmetry parameters. Invariant Lagrangians are constructed out of ∂0θ and ∂r∂sθ

(and their derivatives) in a way that respects rotational invariance, that is by contracting
all spatial indices. In addition, there is a finite set of quasi-invariant Lagrangians, also
known as Wess-Zumino (WZ) terms. These take a form that closely parallels the standard
(Lorentz-invariant) Galileon operators,

Lk = 1
(d− k)!ε

r1···rktk+1···tdεs1···sk
tk+1···tdθ(∂r1∂s1θ) · · · (∂rk∂skθ), (2.19)
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where 0 ≤ k ≤ d. The first of these (k = 0) is a tadpole that has to be discarded for the
EFT to be perturbatively well-defined. The second (k = 1) is equivalent up to integration
by parts to the spatial part of the usual kinetic term. We are then left with d− 1 possible
WZ interaction terms in d spatial dimensions. Upon adding the temporal part of the kinetic
term, the full Lagrangian of the spatial Galileon theory becomes

L = 1
2(∂0θ)2 − 1

2(∇θ)2 +
d∑

k=2
ckLk + · · · , (2.20)

where ck are a priori undetermined effective couplings, and the ellipsis stands for invariant
operators built out of ∂0θ and ∂r∂sθ.

2.1.2 Spatial DBI theory

There are two mutations of this theory, corresponding to u = w = 0 and v ≡ s = ±1.
Unlike in the Galileon case, the “metric” gAB is nonzero here. Hence we can invoke the
geometric interpretation of the theory in terms of fluctuations of a d-dimensional brane in a
(d+ 1)-dimensional pseudo-Euclidean space. In this interpretation, the scalar Q corresponds
to spontaneously broken translations in the extra dimension. For s = 1, the Lie algebra
of spatial symmetries of this theory is isomorphic to SO(d + 1) n Rd+1 ' ISO(d + 1).
For s = −1, it is isomorphic to SO(d, 1) n Rd+1. The time translations generated by the
Hamiltonian add an additional factor of R to this algebra.

Invariance under the shift symmetry generated by Q requires that every field θ in the
Lagrangian carries at least one derivative. Unlike in the case of the Galileon, it is now
possible to construct nontrivial interactions that contain only one derivative per field, yet are
invariant under the redundant higher-dimensional symmetry. These interactions dominate
the low-energy expansion of the EFT. The most general effective action containing exactly
one derivative per field takes the form

S =
∫

dt ddx
√

1 + s(∇θ)2
∞∑
k=0

ck(∇0θ)k, (2.21)

where ∇0θ is the temporal covariant derivative of the NG field θ,

∇0θ ≡
∂0θ√

1 + s(∇θ)2 . (2.22)

The k = 1 term of the sum in eq. (2.21) is a total time derivative and can be dropped.
Setting c0 = −s/2 and c2 = 1/2 ensures correct normalization of the kinetic term. The
construction of subleading interaction terms, containing more than one derivative per field,
is somewhat involved; see ref. [36] for details.

2.1.3 Galilei-invariant superfluid

This corresponds to the special case v = w = 0 and u = 1. The resulting Lie algebra is the
Bargmann algebra, wherein Kr is the generator of Galilei boosts and Q the central charge.
Accordingly, the symmetry transformation generated by Kr acts on the spatial coordinate
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and NG boson field respectively as xr → xr − βrt and θ → θ + βrx
r − 1

2β
2t. Spontaneous

breakdown of Q (and the associated spontaneous breaking of boost invariance) describes
nonrelativistic superfluids.

Just like in the case of the spatial DBI theory, it is possible to construct actions invariant
under the Bargmann algebra, containing just one derivative per field. These will dominate
the low-energy expansion of the EFT. The most general effective Lagrangian containing
exactly one derivative per field reads

L =
∞∑
k=1

ck(∇0θ)k, ∇0θ ≡ ∂0θ −
1
2(∇θ)2. (2.23)

In order to ensure a properly normalized kinetic term, we have to set c1 = 1 and c2 = 1/2.
Subleading contributions to the effective Lagrangian are constructed out of ∇0θ and ∂r∂sθ
and their covariant derivatives. The latter are defined as ∇0 ≡ ∂0 − (∂rθ)∂r and ∇r ≡ ∂r.
Remaining free spatial indices on such Galilei-invariant operators are to be contracted in a
way that preserves rotational invariance.

Interestingly, the symmetry under the Bargmann algebra admits a set of WZ terms,
identical to those of the spatial Galileon theory, eq. (2.19). This is easy to understand as a
consequence of the fact that the latter only contain spatial derivatives. An infinitesimal
Galilei boost only differs from the infinitesimal spatial Galileon transformation by a time-
dependent shift of the coordinate, xr → xr − βrt. This does not affect operators that do
not contain time derivatives and do not explicitly depend on the coordinates.

2.1.4 Deformed Galileon theory

This corresponds to the special case u = v = 0 and w = 1. The name of this theory
stems from the fact that the corresponding Lie algebra is just the spatial Galileon algebra
augmented with nontrivial temporal scaling of Kr and Q, that is, with [H,Kr] = iKr and
[H,Q] = iQ. Accordingly, the transformation rules for θ under the symmetries generated
by Q and Kr are twisted, θ → θ + et(ε + βrx

r). The invariant building blocks for the
construction of effective Lagrangians are ∇0θ ≡ ∂0θ − θ and ∂r∂sθ, and their derivatives.

It is not clear how to even set up a perturbatively well-defined EFT based on the
deformed Galileon algebra. Namely, it does not seem possible to construct a kinetic term
out of the above basic building blocks. We therefore disregard this theory from further
consideration.

2.2 Theories of a single complex scalar

Let us now switch gears and see how we can construct shift-invariant EFTs for a single
complex scalar. This means that we restrict the general Lie algebra reviewed at the beginning
of this section to two possible values of the capital Latin indices, A = 1, 2. This will give us
two spontaneously broken scalars QA and two real NG fields θA. In order that the latter
can be meaningfully merged into a single complex (Schrödinger) field ψ, we require the
existence of an additional scalar generator, Q. This will generate a U(1) internal symmetry
under which ψ is charged, which is not to be spontaneously broken. In other words, the
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three generators QA and Q together should span the Lie algebra ISO(2),

[Q,QA] = −iε B
A QB, [QA, QB] = 0. (2.24)

For simplicity, we assume that the Hamiltonian H commutes with all these other scalars.
This is the minimal scalar sector needed for an EFT of a Schrödinger scalar. Even in such
a restricted setup, the generator QAB may be present. Namely, it can be incorporated by
making QAB a linear combination of εABQ and εABH . Upon carefully imposing the Jacobi
identity on the double commutators of all possible combinations of generators, we end up
with a two-parameter family of Lie algebras. Those commutators among Jrs, Pr, KrA, Q, QA
and H that are neither zero nor completely fixed by rotational invariance, assume the form

[Pr,KsA] = igrsQA, [KrA,KsB] = i[αδABJrs + εABgrs(αQ+ βH)],
[KrA, QB] = −iαδABPr, [Q,KrA] = −iε B

A KrB, [Q,QA] = −iε B
A QB,

(2.25)

where α, β are a priori undetermined parameters. As in the case of EFTs of a single real
scalar, this is not really a continuous family of Lie algebras, since those of the parameters
which are nonzero can be removed by a redefinition of the generators. At the end of the
day, we only find three distinct types of Lie algebras, which we discuss one by one.

2.2.1 Schrödinger-Galileon theory

This corresponds to the special case α = β = 0. This belongs to the class of multiflavor
Galileon-like theories, analyzed in section 3 of ref. [36]. We can therefore take over all the
results thereof. First, the spontaneously broken generators QA act upon the two real NG
fields θA via constant shifts, θA → θA + εA. Likewise, the redundant vector generators KrA

transform the NG fields as θA → θA + βAr x
r. Finally, the unbroken scalar generator Q acts

on θA linearly through the vector representation of SO(2).
Invariant actions can be built out of ∂0θA and ∂r∂sθA and their derivatives in a way

that preserves spatial rotational and internal SO(2) invariance by properly contracting all
spatial and internal indices. In addition, there are several WZ terms. Two of them are
straightforward multiflavor generalizations of eq. (2.19),

L1 → δABθ
A∂r∂

rθB, (2.26)

L3 →
1

(d− 3)!(δABδCD + δACδBD + δADδBC)εr1r2r3t4···tdεs1s2s3
t4···td

× θA(∂r1∂s1θ
B)(∂r2∂s2θ

C)(∂r3∂s3θ
D). (2.27)

Finally, there is now a new, genuinely nonrelativistic and multiflavor WZ term with a
single derivative, proportional to εABθA∂0θB. This makes the two fields θA canonically
conjugate to each other and turns them into a single Schrödinger-like degree of freedom
with energy proportional to squared momentum. The modified dispersion relation affects
power counting in the EFT. It is now necessary to count each temporal derivative as two
spatial derivatives. The low-energy expansion of the EFT is then dominated by operators
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with less than two (equivalent spatial) derivatives per field, which are supplied precisely by
the three WZ terms. In terms of the complex field

ψ ≡ 1√
2

(θ1 + iθ2), (2.28)

the leading part of the effective Lagrangian can be written as

L = ψ†(i∂0 + ∇2)ψ + Lint, (2.29)

where the sole interaction term coming from L3 equals, up to a tunable effective coupling
(∇2 is the usual shorthand notation for ∂r∂r),

Lint ∝ ∂tψ†∂tψ(∇2ψ†∇2ψ − ∂r∂sψ†∂r∂sψ) + ∂rψ
†∂r∂sψ†∂s∂tψ∂

tψ

+ ∂rψ
†∂r∂sψ∂s∂tψ

†∂tψ −∇2ψ†∂rψ
†∂r∂sψ∂sψ −∇2ψ∂rψ∂

r∂sψ†∂sψ
†.

(2.30)

2.2.2 Schrödinger-DBI theory

This corresponds to the special case α ≡ s = ±1 and β = 0. This is a DBI-like theory
describing the fluctuations of a d-dimensional brane embedded in a (d + 2)-dimensional
pseudo-Euclidean space. For s = 1, the Lie algebra of spatial symmetries of this theory is
isomorphic to SO(d+2)nRd+2 ' ISO(d+2). For s = −1, it is isomorphic to SO(d, 2)nRd+2.
The s = 1 mutation of the theory was dubbed “ISO(2) theory” and detailed in section 4.3
of ref. [36]. We therefore merely summarize the results with the modifications necessary to
account for the two possible values of s.

Just like for the spatial DBI theory of a single real scalar, discussed in section 2.1.2, it is
possible to construct an action that contains exactly one derivative per field; this dominates
the low-energy expansion of the Schrödinger-DBI theory. Unlike in the action (2.21) of the
spatial DBI theory, however, terms containing temporal derivatives will be suppressed as a
consequence of the modified power counting in type B2 theories. The dominant interactions
should therefore be constructed out of operators containing one spatial derivative per field.
Such interactions are entirely controlled by the induced metric on the brane,

Grs ≡ grs − sδAB∂rθA∂sθB, (2.31)

or the associated “metric” in the NG field space, G̃AB ≡ δAB − s∂rθA∂rθB. Including
the WZ term with a single time derivative, which is consistent with the symmetry of the
Schrödinger-DBI theory, the leading-order action for the theory reads

S =
∫

dt ddx
(
ψ†i∂0ψ + c

√
|G|
)
, (2.32)

where c is an effective coupling and

|G| = |G̃| = 1− 2s∇ψ† ·∇ψ + (∇ψ† ·∇ψ)2 − |∇ψ ·∇ψ|2. (2.33)

If desired, subleading terms containing one spatial or temporal derivative per field may
be added at will. Unlike in eq. (2.21), temporal covariant derivatives of ψ may no longer
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appear in the Lagrangian on their own. Invariance under the internal SO(2) symmetry
generated by Q demands that they appear in pairs through the combination

δAB∇0θ
A∇0θ

B = 1
|G|

{
2∂0ψ

†∂0ψ(1− s∇ψ† ·∇ψ)

+ s
[
(∂0ψ

†)2∇ψ ·∇ψ + (∂0ψ)2∇ψ† ·∇ψ†
]}
.

(2.34)

2.2.3 Quarton theory

This special case with α = 0 and β = 1 is a novel theory whose existence has, to the
best of our knowledge, not been noticed before. We dub it “quarton” for reasons that
will soon become clear. In order to outline even briefly its features, some technical details
are necessary. We relegate those to appendix C. Here we at least mention two distinctive
features of the theory.

First, it turns out that the symmetry of the quarton theory does not allow the usual
spatial kinetic term in the effective Lagrangian. The gradient expansion of the bilinear part
of the Lagrangian starts at order four in spatial derivatives. However, the Schrödinger-type
term with a single time derivative can still be consistently included. Hence this is an
example of a type B4 theory where the dispersion relation ω ∝ p4 is natural, i.e. protected
by symmetry. This feature definitely makes the quarton theory worth further study.

Second, it turns out that the low-energy expansion of the effective action of the quarton
theory is dominated by interaction terms with exactly two spatial derivatives per field. No
interactions with less than two derivatives per field are allowed by symmetry. This means
that the scattering amplitudes of NG bosons in this theory will naturally scale with second
power of momentum in the single soft limit. From the point of view of classification of
EFTs with enhanced soft limits, the quarton theory is therefore to be seen as trivial.

2.3 Catalog of candidate EFTs for a single NG boson

The classification of EFTs for a single NG mode, carried out in this section so far, was
based entirely on the presence of redundant symmetry. Ultimately, we would however like
to check whether or not these EFTs actually feature enhanced soft limits. We will leave
out the pathological deformed Galileon theory. Likewise, we will drop the quarton theory,
which is of type B4 and where, as explained above, the enhanced soft limit with σ = 2 is
expected to be realized trivially. All the other discussed EFTs belong to types A1 and B2,
which we focus on in this paper. For the reader’s convenience, we list them in table 1, along
with their relativistic counterparts. All these theories have been constructed with a single
layer of redundant generators, and we therefore expect a priori the soft scaling parameter
σ = 2 for all of them.

In case of the relativistic Galileon, it was found in ref. [14] that a special choice of
couplings, later dubbed special Galileon, makes the amplitudes further enhanced with
σ = 3. Soon afterwards, it was clarified that this is a consequence of an additional, hidden
symmetry generated by a set of operators that transform as a traceless symmetric Lorentz
tensor [39]. The conclusion that σ may be larger than naively expected in case additional
“hidden” symmetry is present should be uncontroversial.
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Theory σ (expected) σ (actual)
Galileon 2 2 or 3
DBI 2 2

spatial Galileon 2 0 or 1 or 2
spatial DBI 2 0 or 1 or 2

Galilei-invariant superfluid 2 0 or 1 or 2
Schrödinger-Galileon 2 2
Schrödinger-DBI 2 2

Table 1. Overview of type A1 and type B2 EFTs of a single NG boson along with the soft scaling
parameter σ of their scattering amplitudes. The first two lines correspond to the usual Lorentz-
invariant EFTs of a single real massless scalar. The rest of the table lists the EFTs reviewed in
this section. The second and third column displays respectively the prediction for σ based on the
presence of redundant symmetry, and the actual value of σ extracted from numerical study of
tree-level scattering amplitudes. Appendix A details the setup of the numerical analysis. See the
text for an explanation of the alternatives in the third column.

What is more problematic are the alternative values of σ we find for the spatial Galileon
and spatial DBI theories and the Galilei-invariant superfluid, as shown in the third column
of table 1. All of these are based on numerical inspection of tree-level amplitudes with
different choices of effective couplings of the operators allowed by symmetry. We find that,
as a rule of thumb, σ = 0 in case the interaction Lagrangian contains cubic vertices. If
it does not, then σ = 1 for a generic choice of couplings. Achieving σ = 2 requires a
fine-tuning of the couplings. In case of the spatial Galileon theory, we find σ = 2 in case
all interaction terms contain, just like those in eq. (2.20), only spatial derivatives. For the
spatial DBI theory, imposing σ = 2 on the class of Lagrangians (2.21) gives two solutions.
One of them is just the relativistic DBI theory. The other turns out to be equivalent to the
relativistic DBI theory upon a field redefinition; see section 5.1.3 for more details. Finally,
in the Galilei-invariant superfluid the presence of cubic interaction vertices is inevitable.
It is however still possible to achieve σ = 2 with a very special choice of couplings, which
turns out to give a theory equivalent to the relativistic DBI; see also section 5.1.3.

Note that the above problem does not appear for the Schrödinger-type theories, where
we find σ = 2 without further constraints on the effective couplings. We therefore conclude
that specifically for type A1 nonrelativistic EFTs, σ = 2 is not guaranteed by spatial
redundant symmetry alone. This makes it clear that in case we want to make general
statements about the scaling of scattering amplitudes in the soft limit, we need additional
physical input. One of the primary goals of the following sections is to understand how to
refine the criterion for the enhancement of scattering amplitudes in a way that covers all
the cases listed in table 1.

3 Enhanced scattering amplitudes from symmetry

In this section we set out to understand how the presence of redundant symmetry affects
the scaling of scattering amplitudes in the soft limit, and what additional input might
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be required to ensure that σ > 1. We do so by carefully adapting the nonperturbative
argument given in ref. [21] to nonrelativistic EFTs.

Our strategy is as follows. In section 3.1, we review the argument for the existence
of Adler zero in a form suitable for nonrelativistic EFTs. To understand how redundant
symmetry might imply σ > 1 requires one new technical ingredient. This is the fact that
locally indistinguishable (that is redundant) symmetries imply conservation laws that are
related by certain linear identities [12, 13]. In order to make the paper self-contained, we
present a detailed derivation of these identities in appendix D. Section 3.2 employs them
to study the soft limit of scattering amplitudes in nonrelativistic EFTs with redundant
symmetry. Finally, in section 3.3 we revisit the sample EFTs listed in table 1 to check our
understanding of the values of σ reported therein.

3.1 Adler zero

In order to keep the discussion as simple as possible, we will focus on a single NG field
θ and the corresponding Noether current Jµ;2 the generalization to several flavors of NG
bosons is straightforward. The coupling of a NG state with given momentum p, |θ(p)〉, to
the broken current is generally described by the matrix element 〈0| Jµ(x) |θ(p)〉. Since we
assume spacetime translation invariance but only spatial rotation invariance, the matrix
element is constrained to the following form,

〈0| Jµ(x) |θ(p)〉 = e−ip·x
[
ipµF1(|p|) + iδµ0F2(|p|)

]
. (3.1)

Current conservation then fixes the dispersion relation of the NG boson, that is its frequency
ω as a function of the momentum p, through

ω2(|p|)F1(|p|) + ω(|p|)F2(|p|)− p2F1(|p|) = 0. (3.2)

Let us now consider the matrix element 〈β| Jµ(0) |α〉 of the current between some
in-state |α〉 and out-state |β〉. These states may include an arbitrary number of NG bosons
or other types of particles. By considering the limit where the momentum carried away by
the current goes on-shell, we can access the scattering amplitude 〈β + θ(p)|α〉 for a process
with an additional NG boson inserted in the out-state. Namely, the matrix element of the
current features a NG pole around which it factorizes as

〈β| Jµ(0) |α〉 = i
p0 − ω(|p|) 〈0| J

µ(0) |θ(p)〉 〈β + θ(p)|α〉+Rµ(p), (3.3)

where p ≡ pα − pβ and the off-shell energy variable p0 should be distinguished from the
on-shell energy of the NG boson, ω(|p|). Moreover, Rµ(p) is a remainder function which is
by construction non-singular on-shell, that is in the limit p0 → ω(p). Combining eq. (3.3)
with current conservation yields,

p0ω(|p|)F1(|p|) + p0F2(|p|)− p2F1(|p|)
p0 − ω(|p|) 〈β + θ(p)|α〉 = p0R0(p) + prRr(p). (3.4)

2We use the standard relativistic notation whereby the Greek indices µ, ν, λ, . . . indicate Lorentz vectors.
Minkowski inner product of spacetime vectors is denoted with a dot.
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The pole on the left-hand side is exactly cancelled by using eq. (3.2), upon which we find

〈β + θ(p)|α〉 = p0R0(p) + prRr(p)
ω(|p|)F1(|p|) + F2(|p|)

∣∣∣∣
p0=ω(|p|)

. (3.5)

Note that the denominator on the right-hand side is nonzero as a direct consequence of
Goldstone’s theorem, which requires 〈0| J0(0) |θ〉 = i(ωF1 + F2) 6= 0. With the additional
assumption that Rµ(p) is non-singular when pµ is on-shell and the limit p → 0 is taken,
which does not automatically follow from standard polology rules, we obtain the Adler zero,

lim
p→0
〈β + θ(p)|α〉 = 0. (3.6)

The Adler zero may be avoided only if the regularity assumption on Rµ(p) is violated,
for instance if the current matrix element (3.3) has additional singularities for pµ → 0
besides the NG pole. This may happen if the Noether current can be inserted into the
external legs of the amplitude 〈β|α〉. This is in turn possible if the expansion of the current
in powers of elementary fields contains bilinear terms. Such terms can arise from cubic
vertices in the interaction Lagrangian, or from terms in the transformation of θ under the
broken symmetry linear in fields. In section 3.3, we provide an explicit illustration of how
bilinear terms in the Noether current may spoil the Adler zero property.

3.2 Enhanced soft behavior

Understanding the soft properties of scattering amplitudes of NG bosons beyond Adler
zero requires more detailed knowledge about the remainder function Rµ(p). This may
be extracted from the identities among the various Noether currents in case redundant
symmetry is present. The authors of ref. [21] have considered a broad class of generalized
shift symmetries of the form

θ(x)→ θ(x) + εj
[
αj(x) + αjB(x)OB(x)

]
, (3.7)

where εj denotes infinitesimal parameters, αj(x) and αjB(x) are fixed polynomials, and
OB(x) are local composite operators constructed from θ and its derivatives. Under some
mild regularity assumptions, theories invariant under the shift symmetry (3.7) feature
remainder functions Rµ(p) satisfying the relation

α̃j(p)pµRµ(p) = 0, (3.8)

valid in the sense of distributions, where the tilde denotes Fourier transform. While a proof
of this constraint was already given in ref. [21], we reproduce it in appendix D for the sake
of completeness. In Lorentz-invariant theories, eq. (3.8) implies without further assumptions
soft theorems controlling the soft scaling parameter σ. As we will demonstrate below, this
is generally no longer true for nonrelativistic theories.

To see how the relation (3.8) affects the low-energy dynamics in EFTs with redundant
symmetry, let us consider a generalized shift symmetry of the type (3.7) with the leading,
θ-independent polynomial given by

α(x) = εν1···νnx
ν1 · · ·xνn , (3.9)
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where εν1···νn is a symmetric-tensor infinitesimal parameter and all νi are spacetime indices.
By means of eq. (3.8), this imposes the following constraint on the remainder function
Rµ(p) regardless of the specific form of the polynomials αjB or operators OB in eq. (3.7),

lim
p→0

∂ν1 · · · ∂νk [pµRµ(p)] = 0, (3.10)

for any k = 0, . . . , n, where we used the shorthand notation ∂ν ≡ ∂/∂pν . In Lorentz-
invariant theories, the set of constraints (3.10) implies that all Taylor coefficients of Rµ(p)
up to order n − 1 in momenta vanish. Equation (3.5) then guarantees that scattering
amplitudes of NG bosons have σ ≥ n + 1 in the soft limit. For instance, the relativistic
Galileon and DBI theories both possess a redundant symmetry, belonging to the class
of generalized shift symmetries with α(x) = ενx

ν . This corresponds to n = 1 and hence
σ ≥ 2. This is a nontrivial realization of the enhanced soft limit, since the Lagrangian
representations of the Galileon and DBI theories contain less than two derivatives per field.

In nonrelativistic theories, rotational invariance requires that the constraints (3.10)
come in multiplets which are symmetric tensors of SO(d). It is however not given a priori
that all combinations of spatial and temporal indices νi appear among the full set of
constraints. This depends on the spatial or temporal nature of the polynomial (3.9). For
instance, when all the νi are temporal, then eq. (3.10) gives no constraints for the spatial
part of the remainder function, Rr(p). The temporal part R0(p), on the other hand, is
constrained to have a Taylor series in pµ whose coefficients of (p0)k vanish for all k ≤ n− 1.

In this paper, we are mainly interested in spatial redundant symmetries, for which α(x)
is a polynomial in spatial coordinates. In this case, eq. (3.10) imposes no constraints on
R0(p). On the other hand, Rr(p) is required to have a Taylor series in pµ whose purely
spatial part starts at order n. Given the relation (3.5) between the remainder function and
the scattering amplitude, we see that invariance under generalized spatial shift symmetries
is not sufficient to constrain the soft scaling parameter σ beyond ordinary Adler zero.

For an illustration, let us consider the class of theories invariant under generalized
spatial shift symmetries of degree n = 1. This includes the spatial Galileon and spatial
DBI theories reviewed in table 1. In this case, eq. (3.10) constrains the Taylor expansion of
Rr(p) to the form

Rr(p) = crp0 + crsp
s +O(p2), (3.11)

where cr and crs are the respective Taylor coefficients. The temporal part R0(p) remains
unconstrained and will in general have a nonzero limit for p→ 0. It follows from eq. (3.5)
that if the NG boson has a linear dispersion relation, then its scattering amplitudes will
vanish in the soft limit with σ = 1. Enhanced scaling with σ > 1 can only be guaranteed
by additional constraints on R0(p), or alternatively if the energy of the NG boson is
proportional to a higher power of momentum.

Type A versus type B NG bosons. The last observation opens the possibility to
achieve enhanced soft limits of scattering amplitudes by combining spatial redundant
symmetry with a higher-order dispersion relation of the NG boson. Let us therefore consider
generally EFTs of NG bosons in d spatial dimensions, enjoying a generalized spatial shift
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symmetry of degree n. At this point, we must distinguish NG bosons of type A and type B,
since type Am modes are forbidden by the generalized CHMW theorem if m ≥ d. Combining
eqs. (3.5) and (3.10), we then get the following bounds for the respective types of NG bosons,3

σ ≥ min(m,n+ 1) where d ≥ m+ 1 for type Am, (3.12)
σ ≥ min(2m,n+ 1) for type B2m. (3.13)

This is one of our main results. Note how the scaling of the scattering amplitudes in the
soft limit crucially depends on the type of NG boson that is being emitted. This underlines
the fact that the soft properties of scattering amplitudes depend not only on the symmetry
present in the system, but also on the details of the NG boson spectrum.

In the physically interesting case of d = 3, the generalized CHMW theorem forbids
existence of type Am NG modes with m > 2. As a consequence, the most stringent bound
that can be imposed on the soft scaling parameter σ in type A theories where only n and
m are known is σ ≥ 2. There is no corresponding obstruction in type B2m theories though.
Based on the bound (3.13) alone, it appears that one can in principle achieve arbitrarily
high σ by choosing large enough values for n and 2m.

Another possibility how to guarantee enhanced soft limits is to constrain the temporal
part of the remainder function, R0(p). This can be done on general grounds if the system
in question possesses a time-dependent redundant symmetry. Sometimes it may however
also be possible to restrict the form of R0(p) based on the explicit knowledge of the
interaction Lagrangian. In extreme cases, the function R0(p) may be vanishing altogether.
A sufficient condition for this to happen, at least at tree level, is the existence of a Lagrangian
representation of the theory where the interaction vertices do not contain any temporal
derivatives. An example of such a theory is the spatial Galileon (2.20), restricted to the
spatial WZ terms (2.19).

Suppose now that R0(p) indeed vanishes identically. Then the soft behavior of the
scattering amplitudes is completely fixed by the spatial part of the remainder function,
Rr(p). If the theory possesses a generalized spatial shift symmetry of degree n, then the
constraint (3.10) restricts the form of Rr(p) to

Rr(p) = p0R̄r(p) + crs1···snp
s1 · · · psn + · · · , (3.14)

where R̄r(p) is an arbitrary non-singular function of p0 and p, and the ellipsis stands for
terms of order n+1 or higher in spatial momentum. This generalizes the n = 1 case displayed
in eq. (3.11). From eq. (3.5) we now infer that in type Am theories, σ ≥ min(m+ 1, n+ 1),
with the same constraint d ≥ m+ 1 as in eq. (3.12). For type B2m theories, on the other
hand, σ ≥ min(2m+ 1, n+ 1) without any constraints on m.

3.3 Revisiting nonrelativistic EFTs with enhanced symmetry

With an improved understanding of the relationship between enhanced symmetry and
enhanced soft limits, we now revisit the catalog of theories presented in section 2.3. In

3The reader is reminded that these bounds rely on certain mild technical assumptions behind the
derivation of eq. (3.8); see appendix D for details.
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table 1 we summarized possible values of σ for tree-level scattering amplitudes in various
theories with enhanced symmetries. We are now ready to explain the origin of the discrepancy
between the “expected” and the “actual” values of σ displayed in the table.

Relativistic Galileon and DBI theories. The two Lorentz-invariant theories listed at
the top of table 1 were included just for reference. Their properties are by now well-studied,
and we refer the reader for instance to appendix C of ref. [21] for more details.4 Here we
will just briefly repeat that both of these theories belong to the class of theories where
the shift polynomial (3.9) is linear in all coordinates of the Minkowski spacetime, that is
α(x) = ενx

ν . This automatically implies σ ≥ 2. Within the parameter space of the Galileon
theory, it is however possible to choose couplings in such a way that the action possesses an
additional hidden symmetry [39],

θ → θ + εµν(c2xµxν − ∂µθ∂νθ), (3.15)

where εµν is a constant traceless symmetric tensor and c is a constant. This generalized
shift symmetry of degree n = 2 is sufficient to ensure σ = 3; the resulting theory is known
as the special Galileon.

Schrödinger-Galileon and Schrödinger-DBI theories. In section 2.2, we identified
two theories of a single complex (Schrödinger) scalar of type B2. Both of these possess one
layer of redundant generators, generating a linear spatial generalized shift symmetry with
α(x) = εrx

r. According to eq. (3.13) these theories must satisfy,

σ ≥ min(2m,n+ 1) = 2. (3.16)

This agrees with the values for σ reported in table 1.

Spatial DBI theory and the Galilei-invariant superfluid. In section 2.1, we identi-
fied three theories of a single real scalar of type A1: the spatial DBI and spatial Galileon
theory, and the Galilei-invariant superfluid. All of these theories possess a linear spatial
generalized shift symmetry with α(x) = εrx

r. Based on eq. (3.12), we would therefore
expect that in all of these theories, σ ≥ min(1, 2) = 1. This is certainly an improvement
over the naive hope raised in ref. [36] that these theories should feature enhanced soft limits.
We still have a job to do though, namely to account for the empirically found values of σ,
displayed in the last column of table 1. We will treat jointly the spatial DBI theory and
the Galilei-invariant superfluid here, and return to the spatial Galileon theory below.

Let us start with the possibility that σ = 0. This violates the bound (3.12), and in
fact the very Adler zero property. As mentioned briefly at the end of section 3.1, such an
exception may occur when the Noether current contains bilinear contributions. Let us check
this explicitly. We shall for the moment put aside the redundant symmetry, linear in spatial
coordinates, which is specific to a given theory. Instead, we will focus on a generic EFT,
invariant under the constant shift θ → θ + ε. The leading contributions to the effective

4Curved space generalizations of these theories have also been considered in the literature, see e.g. ref. [40]
for a recent study on aspects of DBI and special Galileon in de Sitter space.
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Lagrangian of such a theory carry one derivative per each factor of θ. The most general
rotationally invariant cubic interaction Lagrangian with one derivative per field can be
parameterized as

L3 = c1(∂0θ)3 + c2∂0θ(∂rθ)2. (3.17)

The corresponding bilinear contributions to the Noether current of the constant shift
symmetry are obtained by taking a derivative with respect to ∂µθ,

J0
2 = 3c1(∂0θ)2 + c2(∂rθ)2, Jr2 = −2c2∂0θ∂

rθ. (3.18)

Then the remainder function Rµ(p) defined by eq. (3.3) receives a contribution, coming
from insertion of the bilinear current in all possible external legs of the scattering process,

Rµ2 (p) =
∑
i

i
(p+ qi)2 〈qi,−(p+ qi)| Jµ2 (0) |0〉 〈β|α〉 . (3.19)

Here qi denotes the external momenta of the process |α〉 → |β〉, for simplicity oriented all
outwards so that energy-momentum conservation reads

∑
i qi = 0. Multiplying both sides

of eq. (3.19) with pµ and using eq. (3.18) we find

pµR
µ
2 (p) = i 〈β|α〉

∑
i

(p0 + q0
i )

(3c1 + c2)p0q0
i + 2c2p · qi

p · qi
. (3.20)

This does not respect Adler zero unless some cancellations occur. One possibility is that
all the fractions on the right-hand side of eq. (3.20) vanish individually. This however
requires c1 = c2 = 0, that is absence of cubic vertices in the Lagrangian. Another, more
interesting possibility is that all the fractions are constant, in which case the part of the
right-hand side of eq. (3.20) proportional to q0

i vanishes upon summation over i thanks to
energy conservation. The part proportional to p0 will remain nonzero, but will respect the
Adler zero property. This possibility can be realized if c1 = −c2 ≡ c, leading to

pµR
µ
2 (p) = 2icp0 〈α|β〉 × (number of particles in |α〉 and |β〉). (3.21)

Hence the only cubic interaction Lagrangian with one derivative per field that yields Adler
zero is

L3 = c∂0θ(∂µθ)2. (3.22)

It is obvious from eqs. (2.21) and (2.22) that the spatial DBI theory admits cubic
couplings that are not of the form (3.22). For such choice of couplings, the Adler zero is
violated and we find σ = 0. Setting c3 = 0 in eq. (2.21) however eliminates the unwanted
cubic vertex. In such a restricted parameter space, the spatial DBI theory has generically
σ = 1 in accord with eq. (3.12). Furthermore, the relativistic DBI theory is a special case
of the spatial DBI theory (2.21) in which the couplings ck are tuned in such a way so as to
recover Lorentz invariance. Upon such fine tuning, we find σ = 2. This explains all the
possible values of σ in the spatial DBI theory, shown in table 1.
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A very similar argument applies to the Galilei-invariant superfluid, cf. eq. (2.23). Here
c1 = 1 and c2 = 1/2 are fixed by the normalization of the kinetic term. For a generic value
of c3, we find a cubic term that is not of the form (3.22) and hence σ = 0. However, the
Adler zero can be saved by setting c3 = 1/2, for which we then generally find σ = 1 in
accord with eq. (3.12). Remarkably, even with the inevitable cubic interaction vertex, there
is still a very particular tuning of the couplings of the Galilei-invariant superfluid which
yields σ = 2. We will explain the origin of this special case in section 5.1.3.

Spatial Galileon theory. Let us finally have a look at the spatial Galileon theory. Here
the spatial linear shift symmetry, θ → θ + εrx

r, admits an interaction term proportional to
(∂0θ)3. In accord with the above discussion, this will necessarily violate the Adler zero and
thus give σ = 0. There is however another cubic interaction vertex, corresponding to the
k = 2 WZ term in eq. (2.19). Let us look at the properties of this interaction more closely.

As the first step, it is convenient to rewrite the k = 2 WZ term in a way that makes
invariance under the constant shift symmetry, θ → θ + ε, manifest. Using integration by
parts, we can bring the cubic interaction Lagrangian to the form5

L3 = c∂rθ∂sθ∂
r∂sθ, (3.23)

where c is a generic coupling constant. Owing to the fact that this operator carries no time
derivatives, it only gives a bilinear contribution to the spatial part of the Noether current,

Jr2 = c(∂sθ∂r∂sθ − ∂rθ∂s∂sθ). (3.24)

Inserting the current in all external legs of the scattering process |α〉 → |β〉 again gives a
contribution to the remainder function Rµ(p), given by eq. (3.19). Working out the details,
we get the spatial Galileon equivalent of eq. (3.20),

pµR
µ
2 (p) = ic 〈β|α〉

∑
i

(p · qi)2 − p2q2
i

p · qi
. (3.25)

In the soft limit, this gives a contribution to the scattering amplitudes of the NG boson
that scales with σ = 1.

Finally, there is a special tuning of the couplings of the spatial Galileon theory which
leads to σ = 2. This can be achieved by dropping the cubic WZ term and only including
the k ≥ 3 WZ terms in the Lagrangian (2.20). In this special case, the temporal part of the
remainder function, R0(p), vanishes simply because J0 = ∂0θ is a noninteracting current
that only gives the pole contribution in eq. (3.3). Then, in accord with the discussion at
the end of section 3.2, we find enhanced scaling with σ = 2 in spite of the fact that the
spatial Galileon is a type A1 theory. We should however note that such a fine tuning of the
couplings is not protected by symmetry. We therefore expect the enhanced soft behavior to
be destroyed by radiative corrections. More generally, the argument presented at the end of
section 3.2, based on the assumption R0(p) = 0, is expected to only hold at tree level.

5Here the subscript 3 on L indicates a cubic interaction vertex, not the k = 3 WZ term (2.19).
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4 Soft recursion

Employing different classification and organizing principles for EFTs can sometimes help
illuminate nontrivial relations among different theories. Having considered scalar non-
relativistic EFTs with enhanced soft limits from a top-down symmetry perspective, we
now shift gears and initiate their bottom-up amplitude study. Bottom-up approaches to
scattering amplitudes in relativistic EFTs have provided novel perspectives on important
theories appearing in different areas of the modern S-matrix program. For instance, the
special Galileon theory [14, 39, 41] was first discovered in the context of soft limits of
scattering amplitudes. Moreover, the exceptional scalar EFTs obtained from soft boot-
strap studies [21] coincide with the EFTs constructed from the Cachazo-He-Yuan (CHY)
representation [42, 43] and are precisely the scalar EFTs that are known to satisfy Bern-
Carrasco-Johansson (BCJ) duality [44, 45]. These results suggest a rich interplay between
CHY representation, BCJ duality, and soft limits [31, 46–49]. In addition, new insights into
the soft structure of the S-matrix have been obtained in the recently established program
of asymptotic symmetries [50–55] and from studying the geometry of field space [16, 56].

Establishing a bottom-up approach to nonrelativistic scalar EFTs with enhanced soft
limits pursues multiple goals. First of all, it will be interesting to see how the bottom-up
picture complements the top-down approach developed in sections 2 and 3, and allows us
to tie up the loose ends the latter has left. Second, the bottom-up approach will also shed
some light on the role that Lorentz invariance plays in EFTs with exceptional soft behavior.
More ambitiously, in light of the rich results from relativistic bootstrapping one may hope
that nonrelativistic bootstrap will provide a foundation for extending the S-matrix program
to theories without Lorentz invariance.

In the following two sections, we will explore the landscape of nonrelativistic EFTs
through various bootstrapping techniques. These rely heavily on the on-shell recursion
technology, recently extended to nonrelativistic EFTs by the present authors [35]. In this
prequel to the present paper, we showed in particular that it is possible to recursively
reconstruct the tree-level S-matrix of nonrelativistic EFTs with enhanced soft limits. In the
rest of this section, we will briefly review and slightly extend the nonrelativistic on-shell
recursion machinery established in ref. [35]. This will prepare the ground for the bootstrap
analysis in the following two sections. For the sake of simplicity, the discussion is restricted
to EFTs for NG bosons with linear or quadratic dispersion relation, although the general
formalism is applicable to all type A and type B theories.

4.1 Soft shifts: linear dispersion relation

Soft momentum shifts are complex-valued deformations of external momenta in a scattering
process which maintain on-shell conditions and conservation of total energy and momentum
while probing the soft limit for the external momenta. Apart from playing an integral role
in recursion relations, the soft momentum shifts also provide an invaluable tool for studying
the landscape of EFTs on its own.

We start the discussion with theories of type A1 NG bosons. Apart from trivial rescaling
of coordinates, these have kinematics that is identical to Lorentz-invariant theories; possible
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breaking of Lorentz invariance only shows in the particle interactions.6 What follows below
is therefore essentially just a brief review of soft momentum shifts as developed in ref. [21].

In the rest of this section, we will use a convention distinguishing particles entering
and leaving the scattering process by a sign. We will choose ei = −1 for particles in the
initial state and ei = +1 for particles in the final state. The laws of conservation of energy
and momentum for type A1 NG bosons are thus subsumed into the four-vector condition

n∑
i=1

eipi = 0, (4.1)

where n is the number of particles participating in the scattering process and pi are their
momenta. Finally, we will use the symbol D ≡ d+ 1 to denote the dimension of spacetime.

All-line shift. The all-line soft shift of external momenta is defined by

p̂i ≡ pi(1− zai), 1 ≤ i ≤ n, (4.2)

where z ∈ C is a parameter. Imposing energy and momentum conservation on the shifted
variables p̂i implies the following constraints on the coefficients ai,

n∑
i=1

eiaipi = 0. (4.3)

Simple linear algebra guarantees that the set of equations (4.3) for the variables ai (with pi
being fixed) has a solution space of dimension n−D. However, a one-dimensional subspace
of solutions corresponds to all the ais being equal; this is guaranteed by the energy and
momentum conservation (4.1). Since we would eventually like to use the soft momentum
shift to probe the single soft limit for the individual particles, we need all the ais to be
different. We are thus forced to mod out the subspace of trivial solutions. The existence
of nontrivial all-line shifts for a generic kinematical configuration therefore requires that
n ≥ D + 2.

All-but-one-line shift. As the name suggests, the all-but-one-line soft shift treats one
of the n momenta differently from the others. This shift allows one to probe the single soft
limit of n− 1 particles in the scattering process. It is defined by

p̂i ≡ pi(1− zai), 1 ≤ i ≤ n− 1, (4.4)
p̂n ≡ pn + zqn, (4.5)

where momentum conservation and on-shell conditions imply the following constraints,

enqn =
n−1∑
i=1

eiaipi, q2
n = pn · qn = 0. (4.6)

6This is true for theories of a single flavor of NG boson, or for multi-flavor theories where all NG boson
species have the same speed of propagation.
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We can view the first relation in eq. (4.6) as a definition of qn. The second relation therein
then constitutes two homogeneous constraints (one linear and one quadratic) on the n− 1
unknown variables ai. Possible solutions for ai therefore carve out an (n− 3)-dimensional
surface in Rn−1. This necessarily includes a one-dimensional subspace where all the ais are
equal. The existence of other solutions, where the ais are different, can therefore only be
guaranteed if n− 3 > 1. We conclude that the all-but-one-line shift is only useful if n ≥ 5,
regardless of the spacetime dimension D.

All-but-two-line shift. Finally, the all-but-two-line soft shift allows one to access the
single soft limit of n− 2 particles in the scattering process. It is defined by

p̂i ≡ pi(1− zai), 1 ≤ i ≤ n− 2, (4.7)
p̂n−1 ≡ pn−1 + zqn−1, (4.8)
p̂n ≡ pn + zqn, (4.9)

where momentum conservation and on-shell conditions imply the constraints

en−1qn−1 + enqn =
n−2∑
i=1

eiaipi, q2
n−1 = q2

n = pn−1 · qn−1 = pn · qn = 0. (4.10)

Here we can choose the ais arbitrarily and thus ensure that they are all different as desired.
Equation (4.10) then constitutes D + 4 constraints on the 2D unknown components of
qn−1 and qn. Hence for D ≥ 4 we can always find an all-but-two-line shift that allows us
to probe the single soft limit of the first n − 2 particles. For D = 3 we have to be a bit
more careful, since we can no longer pick all the ais arbitrarily. We can however still fix ai
with 1 ≤ i ≤ n− 3. Then an−2 together with qn−1 and qn constitute 2D + 1 = 7 variables,
constrained by the D + 4 = 7 relations in eq. (4.10). However, for n = 4 (where we only
choose a1 beforehand) we cannot exclude the possibility that the solution we find for a2
coincides with a1. In D = 3, the existence of an all-but-two-line shift with different ais is
therefore only guaranteed for n ≥ 5.

4.2 Soft shifts: quadratic dispersion relation

Let us now see how to define soft momentum shifts for NG bosons with a quadratic
dispersion relation, that is either type A2 or type B2. The line of reasoning follows closely
the steps we took for NG bosons with a linear dispersion relation. We can therefore afford
to be more concise.

All-line shift. The all-line soft shift for theories with a quadratic dispersion reads

p̂i ≡ pi(1− aiz), (4.11)
p̂0
i ≡ p̂2

i = p2
i (1− aiz)2. (4.12)
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Momentum and energy conservation impose the following constraints,
n∑
i=1

eiaipi = 0, (4.13)

n∑
i=1

ei(1− zai)2p2
i = 0. (4.14)

Similar to the all-line soft shift in type A1 theories, the existence of nontrivial solutions to
eq. (4.13) requires n ≥ d+ 2 = D+ 1. The two additional constraints imposed by eq. (4.14)
imply that nontrivial all-line soft shifts for NG bosons with quadratic dispersion relation
require n ≥ d+ 4 = D + 3.

All-but-one-line shift. The all-but-one-line soft shift takes the following form,

p̂i ≡ pi(1− aiz), 1 ≤ i ≤ n− 1, (4.15)
p̂0
i ≡ p̂2

i = p2
i (1− aiz)2, 1 ≤ i ≤ n− 1, (4.16)

p̂n ≡ pn + zqn, (4.17)
p̂0
n ≡ p̂2

n = p0
n + 2zpn · qn + z2q2

n. (4.18)

Momentum and energy conservation require the following conditions to be satisfied,

n−1∑
i=1

eiaipi = enqn, (4.19)

n−1∑
i=1

eiaip
2
i = enpn · qn, (4.20)

n−1∑
i=1

eia
2
ip

2
i + enq

2
n = 0. (4.21)

The existence of a nontrivial all-but-one-line soft shift can be asserted using the same
argument as for type A1 theories. We treat eq. (4.19) as a definition of qn. The remaining
equations (4.20) and (4.21) then constitute two homogeneous constraints on the n − 1
variables ai. Given that setting all the ais equal to each other still generates a one-
dimensional subspace of solutions, we end up with the lower bound n ≥ 5 required for a
nontrivial solution with different ais to exist.

All-but-two-line shift. Finally, the all-but-two-line soft shift is defined by

p̂i ≡ pi(1− aiz), 1 ≤ i ≤ n− 2, (4.22)
p̂0
i ≡ p̂2

i = p2
i (1− aiz)2, 1 ≤ i ≤ n− 2, (4.23)

p̂n−1 ≡ pn−1 + zqn−1, (4.24)
p̂0
n−1 ≡ p̂2

n−1 = p0
n−1 + 2zpn−1 · qn−1 + z2q2

n−1, (4.25)
p̂n ≡ pn + zqn, (4.26)
p̂0
n ≡ p̂2

n = p0
n + 2zpn · qn + z2q2

n. (4.27)
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Momentum and energy conservation impose the following constraints,

n−2∑
i=1

eiaipi = en−1qn−1 + enqn, (4.28)

n−2∑
i=1

eiaip
2
i = en−1pn−1 · qn−1 + enpn · qn, (4.29)

n−2∑
i=1

eia
2
ip

2
i + en−1q

2
n−1 + enq

2
n = 0. (4.30)

Here we can assign the ais arbitrary (different) values. The vectors qn−1 and qn then
constitute 2d unknown variables, constrained by d + 2 relations implied by energy and
momentum conservation. This ensures the existence of a solution for any d ≥ 2. In order
that the solution does not degenerate to the all-line shift with equal ais, we require that we
can choose at least two different ais a priori, that is n ≥ 4.

4.3 Recursion relations

We now have all the tools we need to derive recursion relations for type A1 and type B2
EFTs with enhanced soft limit, following closely ref. [35]. As the first step towards deriving
a soft recursion relation for an n-particle tree-level scattering amplitude An, we promote it
to a complex function Ân(z) of the shifted momenta p̂i. The original amplitude An = Ân(0)
can be recovered by means of a contour integral,

An = 1
2πi

∮
dz Ân(z)
zFns(z) , (4.31)

where the contour is an infinitesimal circle enclosing the origin of the complex plane. The
denominator factor Fns(z) is defined as

Fns(z) =
ns∏
i=1

(1− aiz)σ, (4.32)

where ns denotes the number of external legs whose single soft limit is accessible by the
momentum shift employed.7 The integrand Ân(z)/Fns(z) is designed so that the poles from
Fns(z) are cancelled by the soft behavior of Ân(z), since the latter by assumption scales
like (1− aiz)σ in the soft limit of the i-th particle, z → 1/ai. Thus, the sole singularities in
Ân(z)/Fns(z) are those stemming from the unitarity poles corresponding to the factorization
channels of Ân(z), plus possibly the pole at infinity. If the contribution of the latter vanishes,
then An is simply equal to the sum of residues at the factorization channel poles,

An = −
∑
I

2∑
i=1

Res
z=ziI

Ân(z)
zFns(z) . (4.33)

7This means explicitly that ns = n for the all-line shift, ns = n − 1 for the all-but-one-line shift, and
ns = n− 2 for the all-but-two-line shift.
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Here I labels different factorization channels and ziI , i = 1, 2 are the solutions to the on-shell
condition, which is a quadratic polynomial in z,8(

P̂ 0
I

)2 − P̂ 2
I = 0 for type A1, (4.34)

P̂ 0
I − P̂ 2

I = 0 for type B2, (4.35)

where the intermediate momentum PI is defined by

PI ≡
∑
i∈I

eipi. (4.36)

Factorization dictates that on the pole at z = ziI , the amplitude Ân(z) in eq. (4.33) can be
expressed in terms of on-shell lower-point amplitudes A(I)

L and A(I)
R as Â(I)

L (z)Â(I)
R (z)/D(I)(z),

where D(I) denotes the inverse propagator associated with the factorization channel I,

D(I)(z) ≡
(
P̂ 0
I

)2 − P̂ 2
I for type A1, (4.37)

D(I)(z) ≡ P̂ 0
I − P̂ 2

I for type B2. (4.38)

It follows that

An = −
∑
I

2∑
i=1

Res
z=ziI

Â
(I)
L (z)Â(I)

R (z)
zFns(z)D(I)(z)

. (4.39)

The recursion relation (4.39) is suitable for reconstruction of higher-point amplitudes
from lower-point ones using symbolic computation. For manual calculation of scattering
amplitudes via recursion, a different way of evaluating An is often more convenient. To
that end, we observe that the contribution to eq. (4.39) from the factorization channel I
matches the sum of residues at z = ziI , i = 1, 2 of the meromorphic function

Â
(I)
L (z)Â(I)

R (z)
zFns(z)D(I)(z)

. (4.40)

This function may also have nonvanishing residues at z = 1/ai and z = 0 due to the fact
that Â(I)

L (z) and Â(I)
R (z) are off-shell for z 6= ziI , and therefore no longer necessarily cancel

the zeros of Fns(z). In the special case where Â(I)
L (z) and Â(I)

R (z) are both local functions
of momenta, i.e. have no poles, one can apply Cauchy’s theorem to the function (4.40) to
recast the amplitude An as a sum over residues at z = 0 and z = 1/ai alone,

An =
∑
I

Â
(I)
L (0)Â(I)

R (0)
D(I)(0)

+
∑
I

ns∑
i=1

Res
z=1/ai

Â
(I)
L (z)Â(I)

R (z)
zFns(z)D(I)(z)

. (4.41)

The first term on the right-hand side of eq. (4.41) corresponds to the sum over Feynman
diagrams with an internal propagator line, whereas the second (double) sum corresponds to
contributions from n-point contact operators.

8There is a mathematical possibility that the leading, z2 term of the polynomial vanishes. It is normally
possible to avoid this by shifting the momentum shift parameters by a suitable constant, ai → ai + c. This
will work as long as the intermediate momentum PI is not identically zero, which is a kinematical singularity
that we will not include in our considerations.
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The above-derived expressions for An rely on the absence of a pole at infinity. A simple
way to check whether the contribution at infinity really vanishes is by performing a uniform
rescaling of momenta {pi} → {λpi}. If the n-point amplitude scales as An → λmAn,
then it is guaranteed that Ân(z)/Fns(z) at worst goes like zm−nsσ at large z. Thus, the
contribution to An from the contour at infinity vanishes if

m < nsσ. (4.42)

A more precise sufficient criterion for eq. (4.42) to be satisfied was put forward in ref. [35].
It is worth pointing out that soft recursion relations are also applicable to theories

with universal albeit not necessarily vanishing soft behavior, see refs. [16, 23, 57] and
references therein for details. The principal idea then is to redefine Fns(z) so that the
contribution from the pole at infinity still vanishes, and use subleading terms from soft
theorems to determine additional poles from Fns(z) in the contour integral (4.31). Soft
theorems encoding information beyond the soft scaling of scattering amplitudes can be used
as input in soft bootstrap techniques to extend the exploration of the EFT landscape [26, 58],
but this is beyond the scope of the present work.

5 Soft bootstrap

In this and the next section we use the soft recursion relations developed in section 4 to
examine the existence of single-flavor EFTs with nontrivial soft behavior from a bottom-up
perspective. This represents a first extension of the soft bootstrap program to nonrelativistic
(effective) field theories. The soft bootstrap program is already well established in the
literature, and detailed treatments of it with various applications can be found e.g. in
refs. [22, 25, 59, 60] and references therein. The following two paragraphs give a brief
working introduction to soft bootstrap techniques. Applications to the landscape of type
A1 and type B2 theories follow respectively in sections 5.1 and 5.2.

The standard approach to exploring the landscape of EFTs through soft bootstrap can
be understood as a two-step procedure. The first step involves writing down all possible
amplitudes Am with m smaller than some fixed value n, which are consistent with the
imposed spectrum of particles, symmetries, and soft scaling properties. We will refer to
these amplitudes as seed amplitudes. Normally n is so small that all seed amplitudes are
polynomials in the particle momenta and energies. The problem of classifying all possible
seed amplitudes with the given properties is then equivalent to classifying all contact
operators in the Lagrangian with m fields, modulo equations of motion and integration by
parts. In the present work the problem of classifying seed amplitudes never exceeds a level
of difficulty that is tractable by brute force. However, we point out that there are powerful
mathematical tools that can be used to identify all independent kinematical polynomials
with given symmetries and kinematical constraints in a systematic manner [61, 62].

In the second step, the seed amplitudes are used as input in the soft recursion relations.
The result is supposed to be a physical amplitude, and must therefore be independent of the
unphysical momentum shift parameters ai. Any dependence on ai rules out the existence
of a consistent theory with the given seed amplitude. If, on the other hand, the result of
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recursion is ai-independent, then there might be an underlying theory with the assumed
properties. One cannot use soft bootstrap as a tool to rigorously assert the existence of
a consistent theory, as that would require extending the recursion inductively to all n.
This already hints that soft bootstrap is best suited for narrowing down the landscape of
candidate theories with given soft behavior.

5.1 Type A1 bootstrap

The discussion in sections 4.1 and 4.3 shows that in D ≤ 4 dimensions, which is the case of
most physical interest, all amplitudes with n ≥ 6 can be reconstructed from lower-point
seeds using recursion based on the all-line soft shift. We do not need to take into account
possible seed three-point amplitudes. First, in Lorentz-invariant theories, there are no such
amplitudes due to kinematical constraints. Second, we argue below in section 6.1.2 that
even in nonrelativistic type A1 theories, existence of any three-point amplitude necessarily
leads to trivial soft behavior, whereby the soft scaling parameter σ cannot exceed the value
implied by mere counting of derivatives in the contact operator. It thus remains to classify
all possible seed four-point and five-point amplitudes. We shall now elaborate the n = 4
case in detail, and return to the n = 5 case below.

5.1.1 Seed four-point amplitudes

For the sake of simplicity, we will replace the notation p0
i for the particle energies with ωi. We

will return to the convention whereby all the four-momenta are treated by default as outgoing;
incoming particles then carry negative energy. This will simplify the implementation of the
permutation (Bose) symmetry of the seed amplitudes. Rotational invariance requires that
the seed amplitude A4 is a polynomial in the energies ωi and the dot products pi · pj . The
latter can always be expressed in terms of the relativistic Mandelstam variables,

s≡ (p1 +p2)2 = 2p1 ·p2, t≡ (p1 +p3)2 = 2p1 ·p3, u≡ (p1 +p4)2 = 2p1 ·p4, (5.1)

and the energies. Altogether, the seed amplitude A4 can therefore be sought as a polynomial
in s, t, u and ωi that is invariant under the action of the permutation group S4, modulo the
energy-momentum conservation constraints

s+ t+ u = 0, ω1 + ω2 + ω3 + ω4 = 0. (5.2)

The classification of seed four-point amplitudes now in principle reduces to an exercise
in group theory. The set of monomials {s, t, u} carries a representation, R1, of S4; the
set of monomials {ω1, ω2, ω3, ω4} carries a representation R2 thereof. In order to ensure a
nontrivial realization of an enhanced soft limit of the four-point amplitude, that is σ = 2,
we can restrict to polynomials of total degree in momenta less than 8. This amounts to
inspecting the tensor products R⊗m1 ⊗R⊗n2 with 2m+ n < 8, and finding all singlets of S4
in their decomposition into irreducible representations.

In practice, the problem can be solved even more straightforwardly using symbolic
computation, without the theory of group representations. It is convenient to start with the
monomial bases {s̄, t̄, ū} and {ω̄1, ω̄2, ω̄3, ω̄4}, defined by subtracting respectively (s+t+u)/3
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(m,n) Label Amplitude

(2, 0) A
(1)
4 s2 + t2 + u2

(2, 2) A
(2)
4 (s2 + t2 + u2)(ω2

1 + ω2
2 + ω2

3 + ω2
4)

(2, 2) A
(3)
4 s2(ω1ω2 + ω3ω4) + t2(ω1ω3 + ω2ω4) + u2(ω1ω4 + ω2ω3)

(2, 3) A
(4)
4 (s2 + t2 + u2)(ω1ω2ω3 + ω1ω2ω4 + ω1ω3ω4 + ω2ω3ω4)

(3, 0) A
(5)
4 s3 + t3 + u3

Table 2. Seed four-point amplitudes in type A1 theories with 2m + n < 8 and the soft scaling
parameter σ ≥ 2. Here s, t, u are the usual relativistic Mandelstam variables, whereas ωi are the
energies of the participating particles.

and (ω1 + ω2 + ω3 + ω4)/4 from each element. This ensures that we do not carry trivial
components vanishing by energy and momentum conservation throughout the calculation.
In the next step, we form a Kronecker product of m factors of the Mandelstam basis and n
factors of the energy basis, and symmetrize the result with respect to permutations from S4.
The resulting set of symmetric polynomials is typically largely redundant and only contains
a handful of linearly independent elements. In the last step, the resulting candidate seed
amplitudes have to be inspected one by one for the value of σ they imply.

We find altogether five independent amplitudes with the required properties, as displayed
in table 2. Some of them are easy to identify. The only two seed four-point amplitudes
that are manifestly Lorentz-invariant are A(1)

4 and A(5)
4 . These satisfy respectively σ = 2

and σ = 3 and correspond to the relativistic DBI and special Galileon theories [14]. Note
that both of these theories are exceptional in the sense that they correspond to the lowest
possible number of derivatives per field for given σ. Furthermore, it is easy to check that
the quartic (k = 3) WZ term (2.19) of the spatial Galileon theory generates an amplitude
that is a linear combination of A(3)

4 and A(5)
4 . It remains to clarify what, if any, consistent

EFTs the other amplitudes in table 2 correspond to.
Before doing so, let us remark that rotationally invariant four-point amplitudes of a

single real massless scalar of type A1 were classified recently in ref. [63] using the Hilbert
series techniques [61, 62]. Our result is consistent with theirs in that (i) there is a single
four-derivative amplitude (E2) with σ = 2, (ii) there are two six-derivative amplitudes
(E2e2, S2) with σ = 2 and one (E3) with σ = 3, (iii) there is one additional seven-derivative
amplitude (E2e3) with σ = 2. Finding the exact mapping between our result and that of
ref. [63] is impeded by the fact that they represent the amplitudes by polynomials in ωi
and (pi + pj)2. Choosing the basis monomials as we do here makes it straightforward to
identify the subset of Lorentz-invariant seed amplitudes.

5.1.2 Consistency constraints from soft bootstrap

Let us now inspect the full set of candidate seed amplitudes as displayed in table 2. We
employ the recursion relation (4.39) to generate the six-point amplitude from the seed
four-point amplitude. In order not to exclude a priori any possibility, we have to allow the
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latter to be an arbitrary linear combination of the basis amplitudes in table 2,

A4 =
5∑
i=1

ciA
(i)
4 . (5.3)

Based on the symmetry approach laid out in sections 2 and 3, we do not expect it to be
possible, for instance, to combine the seed amplitudes of the DBI and Galileon theories.
However, it is one of the goals of our soft bootstrap analysis to check whether there might
possibly be other theories featuring nontrivial enhanced soft limits than those predicted by
the Lie-algebraic classification of section 2.

The result is simple to state. We find that independence of the six-point amplitude
on the momentum shift parameters ai requires c2 = c4 = 0. The amplitudes A(2)

4 and
A

(4)
4 therefore do not correspond to any physically consistent theory. Moreover, c1c3 = 0,

which means that the amplitudes A(1)
4 and A(3)

4 are mutually exclusive; no nontrivial linear
combination of them is consistent. The contribution of A(5)

4 turns out to be unconstrained at
the six-point level. Further constraints might be obtained by extending the soft bootstrap to
the eight-point amplitude. This however cannot be done without first considering possible
seed five-point amplitudes.

Altogether, our soft bootstrap program for type A1 EFTs has turned out partially
successful. We have been able to very efficiently isolate mere three seed four-point amplitudes,
A

(1)
4 , A(3)

4 and A(5)
4 , two of which are Lorentz-invariant. We even have three specific EFTs

that produce such amplitudes: the relativistic DBI and special Galileon theories, and the
nonrelativistic spatial Galileon theory. At this stage, we however cannot exclude possible
“hybrid” theories whose four-point amplitudes would be linear combinations of the amplitude
of either the relativistic DBI or the spatial Galileon and the amplitude of the special Galileon.

5.1.3 Effective Lagrangian scan

To complement the above soft bootstrap analysis, we have approached the problem of
finding EFTs with enhanced soft limits from the brute-force Lagrangian perspective. Our
goal was to gain additional insight into the Lagrangian representation of the seed four-point
amplitudes listed in table 2, and to extend the analysis to five-point amplitudes without
having to deal with the nonlinear kinematical constraints on the on-shell four-momenta in
a five-particle scattering process.

As the first step, we used symbolic computation to generate all contact operators for a
single real scalar field θ with up to five factors of θ under the constraint that each factor
of θ carries one or two (temporal or spatial) derivatives.9 Moreover, we only included in
the analysis operators where not all factors of θ carry two derivatives, that is the average
number of derivatives per field is less than two. This is the Lagrangian representation of
the requirement that the enhanced scaling with σ = 2 in the soft limit be nontrivial.

Importantly, we discarded a priori all cubic interaction vertices. It is known that in
derivatively coupled Lorentz-invariant theories of a single scalar, cubic vertices can always

9Requiring at least one derivative on each θ ensures manifest invariance under the shift symmetry that
makes θ a NG boson.
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be removed by a nonlinear field redefinition [21]. This is no longer the case in theories
lacking Lorentz invariance. However, as already remarked above and as shown in detail in
section 6.1.2, there are no type A1 theories with a nontrivial three-point on-shell amplitude
where the soft limit would be enhanced beyond naive counting of derivatives. Whatever cubic
operator present in the Lagrangian must therefore give a vanishing three-point amplitude.
Still, the role of cubic interaction vertices in nonrelativistic EFTs is less trivial than in their
Lorentz-invariant counterparts. We will get back to this point below.

With the collection of interaction operators at hand, we computed the four-point and
five-point amplitudes following the algorithm detailed in appendix A. Imposing the scaling
of these amplitudes in the soft limit with σ = 2, we then obtained constraints on the
effective couplings. While the resulting set of candidate interaction operators is highly
redundant, there is only a small number of corresponding four-point amplitudes. These
turn out to exactly correspond to the amplitudes listed in table 2. The corresponding result
for the five-point amplitude is quite surprising. In spite of the large basis of candidate
operators, there turns out to be only one seed amplitude that realizes nontrivially σ = 2
scaling. This is Lorentz-invariant, and corresponds to the (Lorentz-invariant version of the)
k = 4 Galileon WZ term (2.19). There are no genuinely nonrelativistic enhanced five-point
amplitudes, at least in D = 4 spacetime dimensions.

The Lagrangian scan also offers additional insight beyond mere verification of the
results of section 5.1.1. We were thus able to inspect directly an interesting subclass of
theories where each factor of θ carries exactly one derivative. These theories are defined by
the class of Lagrangian densities

L = 1
2(∂0θ)2 − 1

2(∇θ)2 +
∞∑
n=3

bn/2c∑
k=0

cn,2k[(∇θ)2]k(∂0θ)n−2k, (5.4)

where n labels the valency of the interaction vertex and 2k the number of spatial derivatives.
Requiring Adler zero (σ = 1) restricts the cubic vertex to a single parameter c3, in terms of
which c3,0 = c3 and c3,2 = −c3. This constraint follows from the inspection of the four-point
amplitude, but turns out to guarantee the Adler zero property also for all higher-point
amplitudes. This agrees with the general argument given in section 3.3.

Imposing furthermore enhanced scaling with σ = 2 similarly reduces the three couplings
cn,2k at n = 4 to a single free parameter, c4 ≡ c4,0. It turns out that all the other couplings
in the Lagrangian (5.4) are then uniquely determined by c3 and c4; we have checked this
numerically for amplitudes up to n = 8. We thus end up with a two-parameter family of
EFTs featuring enhanced scaling with σ = 2, represented by

L = 1
8c̃4

{
1− 2c3∂0θ −

√
(1− 2c3∂0θ)2 − 8c̃4[(∂0θ)2 − (∇θ)2]

}
, (5.5)

where c̃4 ≡ c4 − 2c2
3. Note that for c3 = 0, this recovers the relativistic DBI theory. For

c3 6= 0, this however appears to be a genuinely nonrelativistic theory. In fact, it is possible
to tune the couplings to make eq. (5.5) a special case of an EFT with the symmetries of a
Galilei-invariant superfluid. Namely, by setting c3 = 1/2 and c̃4 = 1/8 (that is c4 = 5/8),
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the Lagrangian (5.5) becomes

L = −
√

1− 2∂0θ + (∇θ)2 (5.6)

up to a total time derivative, which is indeed a special case of eq. (2.23).
Obviously, the class (5.5) includes theories with different symmetries. It may therefore

come as a surprise that, upon a closer look, the on-shell amplitudes generated by eq. (5.5) are
independent of c3. The amplitudes of the entire class of theories are identical to those of the
relativistic DBI theory. This point is worth stressing. We started with spacetime translation
and spatial rotation invariance, yet by imposing enhanced soft limit with σ = 2, we ended
up with the amplitudes of a Lorentz-invariant theory. In this sense, Lorentz invariance has
emerged as a consequence of our assumptions on the soft behavior of scattering amplitudes.

It may still appear puzzling that the entire class of Lagrangians (5.5) should map to a
single relativistic theory. The resolution of this paradox is that the parameter c3 can be
removed from the theory by a time-dependent shift of θ, followed by a rescaling of the time
coordinate. Note that this is not the type of field redefinition one usually considers in EFT.
The common lore is to perform a nonlinear redefinition that preserves the kinetic term.
The corrections generated by the redefinition within the kinetic term may then serve e.g. to
remove the cubic coupling. Here, the cubic vertex is removed by a correction to the quartic
vertex, generated by the shift of θ. We are not aware of a general argument that would
guarantee a priori that such field redefinitions leave the S-matix unchanged. Should we
however take such a generalized notion of reparameterization invariance of the S-matrix for
granted, then we can discard cubic interaction vertices from the outset, as we after all did
in our scan of effective Lagrangians with less than two derivatives per field.

5.2 Type B2 bootstrap

According to sections 4.2 and 4.3, the soft recursion based on the all-line shift can be used
to reconstruct amplitudes in type B2 theories that satisfy n ≥ d+ 4. This means that in
the most interesting case of d = 3 spatial dimensions, we would need seed amplitudes up to
n = 6. This would impose on us the necessity to deal with the nontrivial analytic structure
of the six-point amplitude, which cannot be captured by contact operators in the effective
Lagrangian. In order to circumvent this problem, we switch temporarily to d = 2 spatial
dimensions and restrict to theories conserving particle number, i.e. theories of a Schrödinger
scalar. In such theories, only amplitudes An with even n exist. Cubic vertices are not an
issue and all we need to do is to classify seed four-point amplitudes.

Before we can do that, we have to deal with the type B2 kinematics though. The
seed amplitudes are going to be polynomials in the energies ωi = p2

i and the rotationally
invariant dot products

sij ≡ pi · pj . (5.7)

But these are not all independent due to energy and momentum conservation. We need to
find the type B2 equivalent of the constraints (5.2). The energy and momentum conservation
conditions take the form ∑

j

ejωj = 0,
∑
j

ejpj = 0, (5.8)
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where the signs ej distinguish particles in the initial and final state. Dotting now the
momentum conservation condition into pi gives an explicit expression for the energies in
terms of sij ,

ωi = −ei
∑
j

(j 6=i)

ejsij . (5.9)

The notation used to indicate the summation range is such that the first line indicates the
summation variable(s), whereas the second line indicates in parentheses possible constraints
on these variables.

Equation (5.9) exhausts all possible rotationally invariant constraints implied by mo-
mentum conservation. Using now energy conservation in combination with eq. (5.9) gives

0 =
∑
i

∑
j

(j 6=i)

ejsij =
∑
i,j

(i 6=j)

ejsij = 1
2
∑
i,j

(i 6=j)

(ei + ej)sij . (5.10)

Obviously, only such pairs i, j that both the i-th and the j-th particle belongs to the initial
or the final state contribute to the sum. This implies one additional constraint,∑

i,j∈IN
(i 6=j)

sij =
∑

k,l∈OUT
(k 6=l)

skl, (5.11)

where the “IN” and “OUT” in the subscripts indicate that only incoming and outgoing
particles are to be included in the sum.

5.2.1 Seed four-point amplitudes

So far we have not used anywhere the assumption that the given type B2 theory conserves
particle number. This implies that the numbers of particles in the initial and the final
state of the scattering process must match. For n = 4, we label the incoming particles by
convention with the indices 1, 3, and the outgoing particles with 2, 4. The constraint (5.11)
then reduces to

s13 = s24. (5.12)

Altogether, the four-particle scattering process is characterized by five kinematical parame-
ters, which may be chosen as

s13 + s24
2 , s12, s14, s23, s34. (5.13)

Note that this is the same number of independent kinematical variables as for type A1
kinematics, where the seven variables s, t, u and ω1,2,3,4 are constrained by the two linear
relations in eq. (5.2).

The four-point amplitude has to be invariant under the permutation group S2 × S2,
which allows to swap independently the two particles in the initial and final state. As in the
type A1 case, we are looking for seed amplitudes that realize nontrivially enhanced scaling
in the soft limit, σ = 2. This amounts to restricting to permutation-invariant polynomials
of degree less than four in the kinematical variables (5.13). There turn out to be altogether
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Label Amplitude

A
(1)
4 (s13 + s24)2

A
(2)
4

1
2(s13 + s24)(s12 + s14 + s23 + s34)− (s12 + s14)(s23 + s34)

A
(3)
4 (s13 + s24)2(s12 + s14 + s23 + s34)

A
(4)
4 (s13 + s24)(s12s23 + s14s34)

A
(5)
4 (s13 + s24)(s12s34 + s14s23)

A
(6)
4

1
2(s13 + s24)(s12s14 + s23s34)− (s12s14s23 + s12s14s34 + s12s23s34 + s14s23s34)

A
(7)
4

1
2(s13 + s24)(s2

12 + s2
14 + s2

23 + s2
34)

− (s2
12s34 + s12s

2
34 + s2

14s23 + s14s
2
23)− (s2

12s23 + s12s
2
23 + s2

14s34 + s14s
2
34)

A
(8)
4 (s13 + s24)3

Table 3. Seed four-point amplitudes in type B2 theories with soft scaling exponent σ ≥ 2. The
nonrelativistic “Mandelstam variables” sij are defined by sij ≡ pi · pj .

eight candidate amplitudes that admit an enhanced soft limit as the momentum of the first
particle is taken to zero, as displayed in table 3.

Note that only for A(i)
4 with i ∈ {1, 3, 4, 5, 8} the enhanced scaling in the soft limit

is manifest. For i ∈ {2, 6, 7} the scaling only becomes visible once we use the relation
s12− s13 + s14 = s11 = ω1. Nevertheless, not all of these eight amplitudes are physical. The
amplitude A(2)

4 is not invariant under the exchange of incoming and outgoing momenta.
The same applies to A(4)

4 and A(6)
4 , although their linear combination 1

2A
(4)
4 +A

(6)
4 does not

have this problem. Altogether, we therefore end up with six physically sensible candidate
four-point amplitudes. Based on our previous discussions, we are able to identify a priori
two of these amplitudes. The sole amplitude corresponding to one derivative per field, A(1)

4 ,
is generated by the Schrödinger-DBI theory. In addition, a detailed calculation shows that
the Schrödinger-Galileon theory possesses a four-point amplitude that is proportional to
1
4A

(3)
4 − 1

2A
(4)
4 −A

(5)
4 −A

(6)
4 .

5.2.2 Consistency constraints from soft bootstrap

It remains to be clarified whether there are other consistent EFTs than the Schrödinger-DBI
and Schrödinger-Galileon theories that give rise to some of the amplitudes in table 3 or
their linear combinations. To that end, we again use the recursion relation (4.39). With
the seed four-point amplitude at hand, we want to check whether or not the recursively
constructed six-point amplitude is independent of the momentum shift parameters ai used
in the recursion. It is here that we use the lower spatial dimension, d = 2; this guarantees
the existence of nontrivial solutions for ai that allow us to take the soft limit for one
particle at a time. Note that this constraint on the dimension of space rules out a priori
the Schrödinger-Galileon theory, since the WZ term (2.27) only exists for d ≥ 3.
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What we have done in practice was to take the generic seed

A4 = c1A
(1)
4 + c3A

(3)
4 + c4

(
1
2A

(4)
4 +A

(6)
4

)
+ c5A

(5)
4 + c7A

(7)
4 + c8A

(8)
4 (5.14)

and evaluate the six-point amplitude using eq. (4.39). The outcome of the recursion is that
the six-point amplitude is only consistent if all the coefficients ci but c1 are zero. Thus,
the only consistent EFT left is the Schrödinger-DBI theory. To this we have to add the
Schrödinger-Galileon theory which we know to have amplitudes with σ = 2, but which
cannot be captured by the soft bootstrap in d = 2 spatial dimensions.

Altogether, our findings for the type A1 and type B2 theories confirm our expectation
that soft bootstrap is very efficient in narrowing down the landscape of physically consistent
EFTs with enhanced soft limits. The detailed analysis has however not revealed any new
theory that was not already known based on the symmetry-based Lie-algebraic classification
carried out in section 2.

5.2.3 Effective Lagrangian scan

Let us conclude the discussion of soft bootstrap with a brief report on a complementary,
brute-force Lagrangian scan of EFTs for a Schrödinger scalar, similar to the scan of type
A1 theories discussed in section 5.1.3. We have considered a class of effective Lagrangians
with interactions containing exactly one derivative per field,

L = ψ†(i∂0 + ∇2)ψ +
∞∑
n=2

L
(2n)
int , (5.15)

where L
(2n)
int is a charge-conjugation-invariant interaction Lagrangian with valency 2n, built

out of ∂0ψ,∇ψ and their complex conjugates. For instance, the most general quartic
interaction Lagrangian of this type reads

L
(4)
int = c4,1(∂0ψ

†∂0ψ)2 + c4,2(∂0ψ
†∂0ψ)(∇ψ† ·∇ψ) + c4,3(∇ψ† ·∇ψ)2

+ c4,4|∇ψ ·∇ψ|2 +
[
c4,5(∂0ψ

†)2∇ψ ·∇ψ + c̄4,5(∂0ψ)2∇ψ† ·∇ψ†
]
,

(5.16)

where all c4,i with 1 ≤ i ≤ 4 are real but c4,5 may be complex.
The ordinary Adler zero is automatically guaranteed for this class of effective La-

grangians as a consequence of the shift symmetry and the absence of cubic vertices. Imposing
enhanced soft limit (σ = 2) restricts the parameter space to one free parameter at each
order 2n. The most general allowed interaction Lagrangian with one derivative per field
can then be folded into the form

Lint = −1 + s∇ψ† ·∇ψ +
√
|G|

[
1 +

∞∑
n=2

c2n(δAB∇0θ
A∇0θ

B)n
]
, (5.17)

where |G| and δAB∇0θA∇0θB are given respectively by eqs. (2.33) and (2.34). We have
checked the validity of this result numerically up to and including the eight-point amplitude.
This confirms that the Schrödinger-DBI theory is the sole type B2 theory conserving particle
number that has interactions with a single derivative per field and features enhanced scaling
of scattering amplitudes in the soft limit.
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6 Bounds on the EFT landscape

The numerical bootstrap in section 5 did not lead to the discovery of any novel theories
not already known. However, the scope of the analysis was restricted to seed amplitudes
with less than two derivatives per field, leaving out possible higher-derivative theories with
enhanced soft limits. In this section, we will apply a series of analytical consistency checks to
further narrow down the landscape of type A1 and type B2 EFTs. The result is a collection
of constraints on how enhanced soft limits different types of EFTs can possess. This
represents an extension of bounds on relativistic EFT space obtained by Cheung et al. [21].

We will start by reconsidering type A1 theories to review and extend important ideas
and results from the relativistic literature. This leads to new insights into the emergence
of Lorentz invariance, observed in section 5.1, and thus provides a clearer understanding
of the role played by Lorentz invariance in the type A1 landscape. It will also serve as a
warm-up for the novel challenge of bounding the type B2 landscape, which culminates with
a derivation of a no-go theorem for exceptional type B2 theories with σ > 2.

6.1 Type A1 theories

In ref. [21], the authors derived bounds on the soft scaling parameter σ as a function
of the average number of derivatives per field in the Lagrangian. We will refer to these
bounds as leading interaction bounds. To obtain similar results for the whole class of
nonrelativistic type A1 theories, we will adopt a new classification scheme applicable to
EFTs with enhanced soft limits.10 Since EFTs with enhanced soft limits are on-shell
constructable, their S-matrices are completely determined by fundamental operators. The
latter are defined as the lowest-dimension operators whose on-shell matrix elements are
needed to recursively construct any tree-level amplitude of the theory at the leading order
of its derivative expansion. It therefore seems sensible to classify EFTs with enhanced soft
limits in terms of the properties of their fundamental operators.

Our classification scheme consists of four parameters, D, σ, v and τ . The D and σ
have already been used extensively throughout this paper. Furthermore, v is the highest
number of external legs such that the amplitude Av is nonvanishing and local in momenta.
Finally, τ ≡ max{τn}n≤v, where τn denotes the average number of derivatives per field in
the fundamental operator with n fields. In type A1 theories, the number of derivatives refers
to the sum of spatial and temporal derivatives. Intuitively, τ/σ measures how enhanced
soft limits a given theory has. As shown below, leading interaction bounds are simply
inequalities relating the parameters τ , σ and v.

6.1.1 Soft limit of leading interaction

An EFT with enhanced soft limits parameterized by (τ, σ,D, v) has a nonvanishing local
amplitude Av, which is a polynomial function in spatial momenta and frequencies (hereafter
collectively denoted as momenta). A soft momentum shift lifts Av to a complex polynomial

10The classification scheme employed in refs. [14, 20, 21] applies to EFTs both with and without enhanced
soft limits. The scheme put forward here is restricted to EFTs with enhanced soft limits. However, it makes
it possible to include fundamental operators with different average numbers of derivatives per field.
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of degree τvv in z, Av → Âv(z). Vanishing of the amplitude in the single soft limit for a
particular external leg corresponds to a zero of this polynomial. Denoting as vs the number
of external legs whose single soft limit is accessible using the chosen momentum shift, the
total number of zeros, counting multiplicity, must be at least vsσ. At the same time, this
cannot be higher than the degree of the polynomial, hence

τ ≥ τv ≥
vsσ

v
. (6.1)

The most stringent bound on τ requires maximal vs. However, the applicability of soft
shifts also depends on v and D. Below we summarize bounds obtained using different types
of soft shifts, along with the values of v and D for which these shifts are applicable.

All-but-two-line shift bounds. The most general bounds arise from the all-but-two-line
shift as this allows the smallest value of vs but can be used for any v ≥ 4 as long as D ≥ 4,

τ ≥ v − 2
v

σ, v ≥ 4, D ≥ 4. (6.2)

Since (v − 2)/v is a monotonously increasing function of v, we get the least stringent but
most universal bound by evaluating eq. (6.2) at v = 4,

τ ≥ σ

2 , v ≥ 4, D ≥ 4. (6.3)

This inequality is saturated by the relativistic exceptional theories: the NLSM with (τ, σ) =
(1/2, 1), the DBI theory with (τ, σ) = (1, 2), and the special Galileon with (τ, σ) = (3/2, 3).

All-line shift bounds. The most stringent bounds arise from the all-line soft shift, which
is applicable when v ≥ D + 2,

τ ≥ σ, v ≥ D + 2. (6.4)

However, for operators with at least σ derivatives per field, the enhanced soft limit with
the soft scaling parameter σ will be realized trivially. The bound (6.4) therefore forbids the
existence of EFTs with nontrivially enhanced soft limits and v ≥ D + 2. Notice how this is
consistent with the properties of known EFTs such as the Galileon.

All-but-one-line shift bounds. In line with the discussion in section 4.1, the bound
obtained from the all-but-one-line soft shift is valid when v ≥ 5,

τ ≥ v − 1
v

σ, v ≥ 5. (6.5)

This provides a more stringent bound than eq. (6.2) for theories where v ≥ 5. Equation (6.5)
is saturated by the quintic (k = 4) Galileon WZ term (2.19), both the spatial Galileon and
its relativistic version, where (τ, σ) = (8/5, 2).
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Summary. Theories with v = 4 in D ≥ 4 are subject to the universal bound τ ≥ σ/2.
EFTs living on the line τ = σ/2 are called exceptional. This terminology indicates that
such theories have maximally enhanced scattering amplitudes for given average number of
derivatives per field τ . Theories with nontrivial five-point contact amplitudes are moreover
subject to the more stringent bound τ ≥ 4σ/5. If the six-point amplitude is also local, then
the theory cannot have enhanced soft limits in D = 4.

The case of D = 3 spacetime dimensions requires separate treatment. Here the all-line-
shift bound implies that theories with a contact five-point amplitude cannot have enhanced
soft limits. Hence, all three-dimensional theories with enhanced soft limits have v = 4.

6.1.2 Three-point amplitudes

The bounds on the EFT space discussed above revolved largely around local four-point and
five-point amplitudes. We have ignored possible three-point amplitudes. Let us now explain
why this is justified.

First of all, in (derivatively coupled) Lorentz-invariant theories, there are no three-point
amplitudes due to the lack of nonzero relativistic invariants in three-particle kinematics.
Hence, any nonvanishing three-point amplitude in a nonrelativistic type A1 theory must
necessarily be a function of the energies ω1,2,3 alone. By permutation invariance, the
three-point amplitude must then be a function of ω1ω2 + ω1ω3 + ω2ω3 and ω1ω2ω3. (The
third independent elementary symmetric polynomial, ω1 + ω2 + ω3, vanishes by energy
conservation.) For a given average number of derivatives per field τ3, we may thus express
the generic three-point amplitude as∑

2a+3b=3τ3

λb(ω1ω2 + ω1ω3 + ω2ω3)a(ω1ω2ω3)b

=
∑

2a+3b=3τ3

λb[ω1ω2 − (ω1 + ω2)2]a[−ω1ω2(ω1 + ω2)]b,
(6.6)

where λb are arbitrary constants. In the single soft limit ω1 → 0, eq. (6.6) scales as ωb1.
The maximum value that b can take is τ3. Hence σ ≤ τ3, implying that theories with a
nonvanishing three-point amplitude cannot have nontrivially enhanced soft limits.

We conclude that even in nonrelativistic type A1 theories, it is justified to discard
possible three-point amplitudes, as long as one is interested only in EFTs with nontrivially
enhanced soft limits. A direct consequence is that all five-point amplitudes in such theories,
consistent with factorization, are necessarily local functions of momenta.

6.1.3 Bounds on exceptional theories from soft recursion

Consistency of the S-matrix requires that higher-point amplitudes should not depend on the
specific way in which recursion is applied, for instance on the choice of the momentum shift
parameters ai. In ref. [21], Cheung et al. use this simple albeit powerful statement to obtain
further bounds on the EFT parameter space. In particular, they apply soft recursion to a
completely general local and Lorentz-invariant four-point amplitude ansatz and require the re-
sulting six-point amplitude to be independent of unphysical parameters. This is shown to put
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surprisingly powerful constraints on the four-point amplitude ansatz. One of their main re-
sults is a no-go theorem for exceptional theories with “super-enhanced” soft behavior, σ > 3.

In section 5.1, we observed emergence of Lorentz invariance in the class of nonrelativistic
type A1 theories from the assumed exceptionally soft behavior. It therefore seems natural
to ask whether a similar no-go theorem also applies to the whole class of type A1 EFTs.
The answer to this question is indeed yes. First, it follows from the bound (6.5) that no
exceptional theory can have any five- or higher-point contact amplitude. Moreover, we
argued in section 6.1.2 that theories with a nontrivial three-point amplitude cannot have
enhanced soft limits at all. To prove that all exceptional type A1 theories are necessarily
Lorentz-invariant, it is therefore sufficient to show that all exceptional four-point amplitudes
are. We do this in detail in appendix B.1. This allows the no-go theorem of ref. [21] for
consistent exceptional theories with σ > 3 to be lifted to a more general no-go theorem
valid for all type A1 theories in D ≥ 4 spacetime dimensions.

6.2 Theories with quadratic dispersion relation

Our next objective is to study nonrelativistic EFTs with enhanced soft limits where the
NG bosons have a quadratic dispersion relation, i.e. type A2 and type B2 theories. The
first step is to adapt the leading interaction bounds from section 6.1. This requires a
modification of the definition of the classification parameter τ , which now counts the
average number of spatial derivatives per field, whereby every temporal derivative is counted
as two spatial derivatives. In the second step, we use the leading interaction bounds to
define exceptional theories of type B2. We show that locality and factorization imply strong
constraints on the soft scaling parameter σ. These lead to a no-go theorem for the existence
of “super-exceptional” type B2 theories with σ > 2.

All-but-two-line shift. The least stringent bounds on EFTs where the NG boson has a
quadratic dispersion relation arise from the all-but-two-line soft shift. This shift is applicable
when v ≥ 4 and D ≥ 3, as shown in section 4.2. Hence

τ ≥ v − 2
v

σ, v ≥ 4, D ≥ 3. (6.7)

Since (v − 2)/v is a monotonously increasing function of v, the least stringent but universal
bound valid for all v ≥ 4 follows by substituting v = 4,

τ ≥ σ

2 , v ≥ 4, D ≥ 3. (6.8)

Similarly to type A1 theories, we define exceptional EFTs with a quadratic dispersion
relation as those for which τ = σ/2. This bound is saturated for the Schrödinger-DBI
theory with (τ, σ) = (1, 2). In addition, there is a nonrelativistic version of the NLSM which
is also exceptional by our definition, although it does not have enhanced soft limits in the
usual sense. This NLSM lives on CP 1 and has (τ, σ) = (1/2, 1). It describes the low-energy
dynamics of ferromagnets [8, 64]. We are not aware of any other exceptional EFTs of type
A2 or B2.

– 39 –



J
H
E
P
0
3
(
2
0
2
2
)
0
8
6

All-but-one-line shift. In complete analogy with type A1 theories we obtain the following
bound from the all-but-one-line soft shift,

τ ≥ v − 1
v

σ, v ≥ 5. (6.9)

This again provides a more stringent bound for v ≥ 5 than the inequality in eq. (6.7).

All-line shift. The following constraint is obtained from the all-line soft shift and is only
valid when v ≥ D + 3,

τ ≥ σ, v ≥ D + 3. (6.10)

Thus, there cannot exist EFTs of type A2 or B2 with nontrivially enhanced soft limits that
have v ≥ D + 3.

Summary. As a consequence of conservation of particle number, there are no interaction
vertices with an odd number of fields in Schrödinger-type theories. This leads to the
following refined bounds for type B2 theories,

τ ≥ σ

2 , v ≥ 4, D ≥ 3, (6.11)

τ ≥ v − 1
v

σ, v ≥ 6, (6.12)

τ ≥ σ, v ≥ D + 3. (6.13)

Hence, any type B2 theory with τ < 5σ/6 must have a nonvanishing four-point amplitude.
Type A2 theories can have both odd and even interaction vertices. However, due to

the generalized CHMW theorem they may only exist in D ≥ 4 spacetime dimensions. This
leads to the following refined bounds,

τ ≥ σ

2 , v ≥ 4, D ≥ 4, (6.14)

τ ≥ v − 1
v

σ, v ≥ 5, (6.15)

τ ≥ σ, v ≥ D + 3 ≥ 7. (6.16)

We conclude that any type A2 EFT with τ < 4σ/5 must have a nonvanishing four-point
amplitude.

6.3 Bounds on exceptional type B2 theories

The above-derived bounds show that exceptional theories satisfy σ = τ/2 regardless of the
dispersion relation of the NG boson. While all exceptional theories of type A1 have already
been identified [21], finding all exceptional theories where NG bosons have a quadratic
dispersion relation remains an open problem. So far, the only known such theories are the
CP 1 NLSM and the Schrödinger-DBI theory, which are both of type B2. In this subsection,
we will prove that there cannot be any “super-exceptional” type B2 theories with σ ≥ 3,
respecting locality and factorization. When combined with the soft bootstrap approach
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to type B2 theories, developed in section 5.2, this rules out the existence of any other
exceptional Schrödinger-type theories than the above two.

The S-matrix of type B2 exceptional theories is fully constructable from the four-point
seed amplitude via on-shell recursion. In appendix B.2, we prove that the four-point
amplitude in exceptional type B2 theories takes the following simple form,

A4 = λσs
σ
13, (6.17)

where λσ is a parameter. We use the same kinematical conventions as in section 5.2, that
is, the particles 1 and 3 are incoming and the particles 2 and 4 outgoing, and s13 ≡ p1 · p3.
For the time being, we do not assume anything about σ except that it is a positive integer.

We shall adopt an analytical bootstrap approach similar to that of ref. [21]. There, it
was shown that consistency of six-point amplitudes recursively constructed from a generic
Lorentz-invariant four-point seed only allows very specific EFTs to have enhanced soft limits.
In fact, very similar methods have also been used to study the consistency of theories of
massless particles of higher spin in four-dimensional Minkowski spacetime [65, 66] through
Britto-Cachazo-Feng-Witten-type recursion [67, 68].

Our strategy to rule out the existence of super-exceptional theories (in d ≥ 3 spatial
dimensions) will be as follows. First, we derive a condition that recursively constructed
six-point amplitudes in consistent (super-)exceptional type B2 theories must satisfy. This
does most of the job and the derivation given in section 6.3.1 is rather technical. Since the
consistency condition turns out to be purely kinematical, it is subsequently easy to show
that it cannot be satisfied for a generic four-particle kinematical configuration in any type
B2 theory where σ ≥ 3. This we do in section 6.3.2.

6.3.1 Six-point amplitude

Six-point amplitudes have the special feature that they can be decomposed into factorization
and contact terms, cf. eq. (4.41). Using eq. (4.41) together with the all-but-one-line shift
(ns = 5), the second, contact contribution to the six-point amplitude acquires the form

Acontact
6 =

∑
I

5∑
i=1

Res
z=1/ai

Â
(I)
L (z)Â(I)

R (z)
zF (z)D(I)(z)

, (6.18)

where we have defined F (z) as

F (z) ≡
5∏
i=1

fσi (z) ≡
5∏
i=1

(1− aiz)σ. (6.19)

The shifted subamplitudes Â(I)
L (z) and Â

(I)
R (z) are local four-point amplitudes given by

eq. (6.17) with equal values of σ. In order to distinguish different factorization channels, we
will adopt the notation whereby the labels 1, 2, 3 indicate particles in the initial state and
the labels 4, 5, 6 particles in the final state. Then the factorization channel I is uniquely
specified by choosing one outgoing particle for the “left” subamplitude and one incoming
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A4A4 I
ω(2)

ρ(4)

ρ(5)

ω(1)

ω(3)

ρ(6)

Figure 1. Graphic representation of a generic contact contribution to the six-point amplitude. Here
1, 2, 3 label incoming particles and ω their S3 permutation, whereas 4, 5, 6 label outgoing particles
and ρ their S3 permutation.

particle for the “right” subamplitude; see figure 1. Combining this notation with eq. (6.17),
the contact contribution to the six-point amplitude (6.18) can be expressed as follows,

Acontact
6 = 1

4
∑
ω,ρ

5∑
i=1

Res
z=1/ai

λ2
σs
σ
ω(1)ω(3)s

σ
ω(2)(ρ(4̂)+ρ(5̂)−ω(2̂))

2zX̂
1

fσ4 (z)fσ5 (z)

 , (6.20)

X̂ = p̂ω(1) · p̂ρ(6) + p̂ω(3) · p̂ρ(6) − p̂ω(1) · p̂ω(3) − p̂2
ρ(6)

= p̂ω(2) · p̂ρ(4) + p̂ω(2) · p̂ρ(5) − p̂ρ(4) · p̂ρ(5) − p̂2
ω(2). (6.21)

Recall that the momenta of particles 1 to 5 are shifted according to eq. (4.15), whereas that
of particle 6 is shifted by eq. (4.17). We have also employed a shorthand notation whereby
siĵ = pi · p̂j , si(ĵ+k̂) = pi · (p̂j + p̂k) and similar. The overall factor of 1/4 in eq. (6.20)
accounts for the fact there are nine factorization channels; the sum over all permutations
ω, ρ of incoming and outgoing particles counts each channel four times.

In the following, we scrutinize the dependence of eq. (6.20) on the parameters ai. Since
this contact contribution to the six-point amplitude is a rational function of the ais, any
unphysical dependence on ai is likely to manifest itself by spurious poles. Demanding
absence of such spurious poles in eq. (6.20) is therefore a simple yet strong necessary
condition for the amplitude to be physically consistent.

First, note that the factors fσi (z), i ≤ 3 in the denominator have been cancelled by
the momentum shift. Hence only the residua at z = 1/a4 and z = 1/a5 will be nonzero.
Since eq. (6.20) is manifestly invariant under the exchange 4↔ 5, we can without loss of
generality restrict to the residue at z = 1/a4. This may give rise to two types of spurious
poles in a4. First, the fσ5 (z) factor in the denominator will give a contribution singular
as a4 → a5. Second, the factor of X̂ will give contributions singular as a4 → ai, i ≤ 3.
Below, we will focus on spurious poles of the second type, coming from the intermediate
propagator in the diagram in figure 1. Thanks to the invariance under S3 permutations of
the oncoming particles, it is sufficient to inspect the case i = 1, that is singularities of the
amplitude of the type 1/(a4 − a1).

It follows from the definition of X̂ in eq. (6.21) that when ρ(6) = 4, the contribution of
the residue at z = 1/a4 to eq. (6.20) will be proportional to 1/[(a4− aω(1))(a4− aω(3))]. On
the other hand, if ρ(4) = 4 or ρ(5) = 4, we find a spurious pole of the type 1/(a4 − aω(2)).
In either case, particles 1 and 4 must be on the same side of the factorization channel
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A4A4 I 4

1

k

Figure 2. Sketch of a factorization channel with spurious pole 1/(a4 − a1) where particles 1 and 4
are on the same side with another outgoing particle k.

I to generate a spurious pole contribution of the form 1/(a4 − a1). This leaves us with
two possibilities, depending on whether the third particle that is on the same side of the
factorization channel as particles 1 and 4 is incoming or outgoing. In both cases, there are
two different factorization channels that contribute. We consider these contributions below.

Particles 1 and 4 plus another outgoing particle. In this case, particles 1 and 4
are attached to the right subamplitude in figure 1. The second outgoing particle may be
either 5 or 6. Setting without loss of generality ρ(4) = 4 and accordingly ω(2) = 1, we thus
have ρ(5) = k ∈ {5, 6}; see figure 2 for a sketch. The inverse propagator of the respective
factorization channels becomes

P̂0 − P̂ 2
I = 2

(
p̂1 · p̂4 + p̂1 · p̂k − p̂4 · p̂k − p̂2

1
)
≡ 2X̂k, (6.22)

which defines a new variable X̂k for future convenience. The contributions of the two
factorization channels with k = 5, 6 to the residue at z = 1/a4 in eq. (6.20) together read

1
2λ

2
σs
σ
23

6∑
k=5

Res
z=1/a4

sσ1(4̂+k̂−1̂)

zfσ4 (z)fσ5 (z)X̂k

. (6.23)

Since the pole at z = 1/a4 is not simple for any σ ≥ 2, the residue requires taking
derivatives. To that end, note that the inverse propagator 2X̂k vanishes in the limit
z → 1/a4 and a4 → a1, whereas its derivative does not,

X̂k

∣∣∣
z=1/a4

= f1(z)s1(k̂−1̂)

∣∣∣
z=1/a4

, (6.24)

dX̂k

dz

∣∣∣∣∣
z=1/a4

= a4p̂k · (p4 − p1)
∣∣∣
z=1/a4

+O(a4 − a1). (6.25)

The leading spurious pole at a4 → a1 therefore comes from the contribution where all the
σ− 1 derivatives involved in the calculation of the residue act on X̂k. This leading spurious
pole then takes the form

−1
2λ

2
σs
σ
23

6∑
k=5

[p̂k · (p4 − p1)]σ−1

[f1(z)f5(z)]σ

∣∣∣∣∣
z=1/a4

. (6.26)
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i

Figure 3. Sketch of a factorization channel with spurious pole 1/(a4 − a1) where particles 1 and 4
are on the same side with another incoming particle i.

Particles 1 and 4 plus another incoming particle. Here the additional incoming
particle on the same side of the factorization channel as particles 1 and 4 may be either
particle 2 or particle 3. We can set without loss of generality ρ(6) = 4, ω(1) = 1 and
ω(3) = i ∈ {2, 3}; see figure 3 for a sketch. The inverse propagator associated with the two
possible factorization channels then is

P̂0 − P̂ 2
I = 2

(
p̂1 · p̂4 + p̂i · p̂4 − p̂1 · p̂i − p̂2

4
)
≡ 2X̂i. (6.27)

The contributions of these two factorization channels to the residue at z = 1/a4 in eq. (6.20)
now read

1
2λ

2
σ

3∑
i=2

Res
z=1/a4

sσ1is
σ

ī(5̂+6̂−ˆ̄i)

zfσ4 (z)fσ5 (z)X̂i

, (6.28)

where we defined the label ī to denote the incoming particle on the opposite side of the
factorization channel than particles 1 and 4.

Following the same steps as in the previous case, we observe that the inverse propagator
2X̂i vanishes in the limit z → 1/a4 and a4 → a1, whereas its derivative does not,

X̂i

∣∣∣
z=1/a4

= −f1(z)fi(z)s1i
∣∣∣
z=1/a4

, (6.29)

dX̂i

dz

∣∣∣∣∣
z=1/a4

= a4p̂i · (p1 − p4)
∣∣∣
z=1/a4

+O(a4 − a1). (6.30)

The leading spurious pole at a4 → a1 then comes from the contribution where all the σ − 1
derivatives act on X̂i. This leading spurious pole then takes the form

−1
2λ

2
σ

3∑
i=2

sσ
ī(5̂+6̂−ˆ̄i)

[p̂i · (p1 − p4)]σ−1

[−f1(z)fi(z)f5(z)]σ

∣∣∣∣∣∣
z=1/a4

. (6.31)

To recast this expression into a more useful form we employ the fact that sending a4 → a1
and simultaneously setting z = 1/a4 corresponds to a double soft limit where both particles
1 and 4 become soft. In this limit p̂2, p̂3, p̂5, p̂6 form a (shifted) four-particle Schrödinger
kinematics with p̂2 + p̂3 = p̂5 + p̂6, which in turn implies

sσ
ī(5̂+6̂−ˆ̄i)

= sσ
ī̂i

= sσ23f
σ
i (z). (6.32)
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This reduces eq. (6.31) to

1
2λ

2
σs
σ
23

3∑
i=2

[p̂i · (p4 − p1)]σ−1

[f1(z)f5(z)]σ

∣∣∣∣∣
z=1/a4

. (6.33)

Putting this together with eq. (6.26) gives the leading contribution to the spurious pole
at a4 → a1 in the six-point amplitude,

λ2
σs
σ
23

2[f1(z)f5(z)]σ
{

[p̂2 · (p4 − p1)]σ−1 + [p̂3 · (p4 − p1)]σ−1 − [p̂5 · (p4 − p1)]σ−1

− (p̂6 · (p4 − p1))σ−1
}∣∣∣∣∣
z=1/a4

.

(6.34)

Vanishing of this expression is a necessary condition for the recursively constructed excep-
tional six-point amplitude to be physically consistent. Equivalently, a sufficient condition
for an exceptional type B2 theory with soft scaling parameter σ to be unphysical is{

[p̂2 · (p4 − p1)]σ−1 + [p̂3 · (p4 − p1)]σ−1 − [p̂5 · (p4 − p1)]σ−1

− (p̂6 · (p4 − p1))σ−1
}∣∣∣
z=1/a4

6= 0.
(6.35)

It is useful to verify that the already known exceptional type B2 theories actually pass the
proposed test. The CP 1 NLSM with σ = 1 passes trivially. It is likewise easy to see that
the Schrödinger-DBI theory, where σ = 2, passes thanks to the four-particle kinematical
relation p̂2 + p̂3 − p̂5 − p̂6 = 0, valid at z = 1/a4 in the limit a4 → a1.

6.3.2 Beyond σ = 2

It is now easy to see that the leading contribution to the spurious pole, displayed in eq. (6.34),
does not vanish for a generic kinematical configuration for any σ ≥ 2. It is again sufficient
to consider the limit in which p̂1 and p̂4 vanish so that the momenta p̂2, p̂3, p̂5, p̂6 define
on-shell four-particle Schrödinger kinematics. Using the shorthand notation p4 − p1 ≡ v,
we are then in other words asking whether the condition

(p̂2 · v)σ−1 + (p̂3 · v)σ−1 = (p̂5 · v)σ−1 + (p̂6 · v)σ−1 (6.36)

with some fixed vector v can be satisfied simultaneously with the energy and momentum
conservation conditions

p̂2
2 + p̂2

3 = p̂2
5 + p̂2

6, p̂2 + p̂3 = p̂5 + p̂6. (6.37)

It is once again obvious that eq. (6.36) is satisfied for both σ = 1 and σ = 2. To
show that it cannot in general hold for σ ≥ 3, it is sufficient to find a suitable kinematical
configuration that violates it. The menu is vast, but one particularly simple and transparent
choice is the limit in which one of the momenta, say p̂2, is very small. In this limit, the
remaining momenta satisfy the three-particle kinematical conditions

p̂2
3 = p̂2

5 + p̂2
6, p̂3 = p̂5 + p̂6. (6.38)
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We can for instance choose p̂3 to point in the direction of v, and both p̂5, p̂6 to make the
angle π/4 with v. Then |p̂5| = |p̂6| = |p̂3|/

√
2, and eq. (6.36) reduces to

1 = 22−σ. (6.39)

This is satisfied for σ = 2 but no σ ≥ 3, as we wanted to show.11

7 Summary and comparison of different approaches

In this paper, we have employed an arsenal of different methods to explore nonrelativistic
EFTs with enhanced soft limits. Here we briefly summarize our main findings, focusing
on the pros and cons of the various approaches. We divide the discussion into two parts,
addressing respectively the symmetry-based top-down approach and the bottom-up approach
based on on-shell recursion.

As stressed in the introduction, the motivation behind the Lie-algebraic approach to
the classification of EFTs with enhanced soft limits is that all currently known examples of
such theories do possess redundant symmetry. In fact, the authors of ref. [21] have proven
the one-way implication that invariance under polynomial shifts of NG fields of order σ in
spacetime coordinates guarantees scaling of the scattering amplitudes in the soft limit with
the scaling parameter σ or higher. With this in mind, one of us worked out a classification
of nonrelativistic EFTs with spatial redundant symmetry [36], which roughly speaking
corresponds to invariance under shifts polynomial in spatial coordinates. This classification
is reviewed and slightly extended in section 2. The first main observation of section 3 is
that invariance under spatial polynomial symmetry is no longer sufficient to guarantee
particular scaling of scattering amplitudes in the soft limit. The second main result is that
it is still possible to derive soft theorems controlling the soft scaling parameter σ, if one uses
as an additional input information about the dispersion relation of the NG bosons. Thus,
invariance under polynomial shift symmetry of degree n in spatial coordinates, together
with dispersion relation ω ∝ |p|m, implies (under some mild regularity assumptions) that
σ ≥ min(m,n + 1). By combining this result with the generalized CHMW theorem, we
showed that the infrared behavior of scattering amplitudes crucially depends on what type
of NG bosons are being scattered.

The Lie-algebraic approach has proven very successful in identifying concrete examples
of EFTs with enhanced soft limits. One of its advantages is that it can treat on the same
footing theories with an in principle arbitrary number of NG flavors. Moreover, it can easily
generate subleading contributions to the effective Lagrangian. The main drawback of the Lie-
algebraic approach probably is that it is based on an a priori assumption on the soft scaling
parameter σ. The setup used previously in refs. [17, 36] as well as here contains a single layer
of (spacetime or spatial) vector redundant generators, which corresponds to σ = 2. The
complexity of the classification problem rapidly increases as additional layers of redundant
generators are added for higher σ. While it was still feasible in ref. [18] to identify the special

11Note that eq. (6.39) does not contradict the conclusion that σ = 1 passes the consistency test. Upon
taking the limit p̂2 → 0, we removed the first term from eq. (6.36), which is of course not the case for σ = 1.
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Galileon theory by adding a set of rank-two tensor generators corresponding to σ = 3, going
to even higher σ would be very cumbersome. This should be contrasted with the on-shell
recursion approach of ref. [21], which allowed to rule out all theories with σ > 3 at once.

The bottom-up approach that we employed in sections 4, 5 and 6 is based on three
main ingredients: seed amplitudes, on-shell recursion relations and soft bootstrap. The
seed amplitudes, constructed in section 5 for type A1 and type B2 theories, implement the
basic properties of locality, energy and momentum conservation and Bose symmetry. They
correspond to contact operators in the effective Lagrangian but, unlike the latter, do not
suffer from ambiguities due to integration by parts and field redefinitions. Thus, they offer
a very efficient way to encode the leading interactions among a given set of NG bosons. The
crucial step of the bottom-up approach is the on-shell recursion, allowing one to iteratively
reconstruct higher-point amplitudes from the seeds. The nonrelativistic recursion relations,
derived previously in ref. [35] and reviewed in section 4, rely on the assumption that the
scattering amplitudes have an enhanced soft limit, with given value of σ.

The soft bootstrap is an algorithmic procedure based on on-shell recursion that allows
one to check which of the seed amplitudes actually correspond to a consistent EFT, and to
rule out a priori theories with certain values of σ. Thus, in section 5 we used numerical soft
bootstrap to construct six-point amplitudes out of the seeds found therein. By investigating
the consistency of the six-point amplitude, we were able to rule out a range of combinations
of the seed amplitudes as unphysical. Consistent combinations of seed amplitudes were
mapped to EFTs found using the Lie-algebraic classification in section 2. Interestingly,
we did not discover any exceptional type A1 theories beyond the well-known relativistic
exceptional theories. In this sense, Lorentz symmetry emerged from the numerical bootstrap.

In section 6, we obtained bounds on the landscapes of type A1, A2 and B2 EFTs by
combining analytic soft bootstrap with the generalized CHMW theorem. These bounds
constrain how enhanced the scattering amplitudes of an EFT may be without violating
locality. Motivated by the emergence of Lorentz symmetry observed in section 5, we went on
to prove that all exceptional type A1 theories in fact are Lorentz-invariant. This promotes
the relativistic no-go theorem for exceptional EFTs with σ > 3 [21] to the whole type A1
subfamily in D ≥ 4 dimensions. We also proved a novel no-go theorem for exceptional
Schrödinger-type theories with σ > 2. This means that the only exceptional theories of
a single complex Schrödinger scalar in D ≥ 4 dimensions are the CP 1 NLSM and the
Schrödinger-DBI theory. There is no type B2 analog of the special Galileon.

As is clear from the above, the top-down approach based on symmetry and the bottom-
up approach based on on-shell recursion are largely complementary to each other. On the
one hand, the top-down approach is able to quickly produce concrete examples of EFTs
with desired properties. It however becomes extremely inefficient when the task is to show
that no other EFTs with the prescribed soft properties exist. On the other hand, the
bottom-up approach is an invaluable tool to discard the existence of theories with given
particle spectrum and soft behavior. However, it cannot be used to prove that a given set
of seed amplitudes actually yields a consistent complete tree-level S-matrix; that would
require infinitely many recursion steps. The complete EFT has to be constructed by other
means, for instance the coset construction [5, 6].
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8 Outlook

The modern scattering amplitude program aspires not only to supply practitioners with
efficient tools for computation of scattering amplitudes, but also, and perhaps more im-
portantly, to build new foundations of quantum field theory itself. Should this ambition
succeed, it is mandatory not to remain limited to the realm of Lorentz-invariant field theory.
The present work along with ref. [35] constitutes a first step in the program of extending
results of the study of Lorentz-invariant scattering amplitudes to theories without Lorentz
invariance. Here we considered only the properties of amplitudes of a single type of NG
boson in the single soft limit. There are however many other aspects of nonrelativistic
scattering amplitudes that await being explored.

Apart from extending the present study to theories with multiple NG boson flavors [36],
some natural directions for further study include other kinematical limits than the single
soft limit, theories of particles with nonzero spin, or scattering amplitudes in nonrelativistic
string theory. More ambitiously, one could use the bottom-up bootstrap approach to search
for hidden structures in nonrelativistic field theories that may or may not resemble known
relations and dualities among relativistic theories. The recently proposed Kawai-Lewellen-
Tye bootstrap program [69] for generalizing the double copy could be an inspiring starting
point for work in this direction. Last but not least, the analogy with Lorentz-invariant
theories suggests that the exceptional type B2 EFTs found here may provide interesting
benchmark models for future studies of nonrelativistic theories with special properties.
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A Numerical calculation of scattering amplitudes

Some of the material presented in the main text of this paper relies on numerical evaluation
of tree-level scattering amplitudes. This applies in particular to the scans for new theories
featuring enhanced soft limits. However, we have also used numerical computation to
check the expected behavior of scattering amplitudes predicted using other methods, for
instance on-shell recursion. In this appendix, we briefly discuss the bundle of Wolfram
Mathematica® codes that we used for the purpose.

We do not reproduce here the complete code used for our numerical computations.
We do, however, describe the main algorithms used. Our approach to evaluation of
tree-level scattering amplitudes is modular in nature. The code consists of three fairly
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Diagrams All Only cubic and
quartic vertices

Only cubic
vertices

No cubic
vertices

Only even
vertices

Charge
conserving

4-point 4 4 3 1 1 1
5-point 26 25 15 1 0 0
6-point 236 220 105 11 11 10
7-point 2 752 2 485 945 36 0 0
8-point 39 208 34 300 10 395 372 337 265
9-point 660 032 559 405 135 135 2 311 0 0
10-point 12 818 912 10 525 900 2 027 025 26 252 20 267 13 401

Table 4. Some benchmark values for the numbers of tree-level Feynman diagrams with up to ten
participating particles. The second column displays the total number of diagrams without any
restrictions on the interaction vertices. The notation for the other columns is largely self-explanatory.
“Even vertices” are vertices with even valency. “Charge-conserving” diagrams are oriented diagrams
with only even vertices such that the numbers of legs entering and leaving each vertex are equal.

independent units, dedicated respectively to the construction of topologies of Feynman
diagrams, extraction of Feynman rules from a given Lagrangian, and generation of on-shell
kinematical variables consistent with energy and momentum conservation. We discuss these
one by one.

A.1 Feynman diagram topologies

With an increasing number n of participating particles, the number of Feynman diagrams
grows rapidly. It is therefore necessary to automatize the construction of all topologies of
Feynman diagrams for given n. In the terminology of graph theory, this amounts to finding
all connected tree graphs with exactly n vertices of unit valency (“external legs”) and all
other vertices of valency greater than or equal to three (“interaction vertices”). Each of the
external legs is decorated with a label, representing the momentum of the particle entering
the graph through that leg.

The construction was carried out recursively using the built-in graph theory tools
of Wolfram Mathematica®. Starting with a single seed three-point graph, the set of
all (n+ 1)-point graphs was obtained from the already available set of n-point graphs by
attaching a new external leg in all possible ways. The latter include connecting the new leg
to all already existing interaction vertices in the graph, and to all edges (“propagators”) of
the graph, thereby creating a new cubic vertex. The growth of the number of Feynman
diagram topologies with n is well illustrated by table 4. Evaluating the tree-level amplitude
on a desktop computer quickly becomes infeasible for n > 10, unless we can make some
assumptions on the structure of interaction vertices. As the table shows, the computational
workload is for instance much lower in theories with only even interaction vertices. In fact,
for n ≤ 10, the total number of diagrams is largely dominated by graphs containing cubic
vertices. In practice, it is therefore clearly advantageous to remove cubic interaction terms
from the Lagrangian by a field redefinition. This is always possible in derivatively coupled
Lorentz-invariant scalar theories [21].
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Once all the Feynman graph topologies were generated, the individual diagrams were
decorated with labels facilitating later application of Feynman rules. Thus, each propagator
was labeled with the momentum flowing through it. In tree diagrams, this momentum is most
easily determined by cutting the propagator and adding up all external momenta appearing
in one of the resulting connected components of the graph. With all the propagators
decorated, each interaction vertex was decorated with a list of momenta flowing through
the propagators adjacent to the vertex.

The above steps are sufficient for theories of a single real scalar. In multiflavor theories
(not considered in this paper), an additional label indicating flavor is needed for each
external leg and each propagator. In theories of a complex scalar, the graphs have to
be oriented so as to indicate the flow of the U(1) charge. One only needs to keep those
diagrams where all interaction vertices have even valency and equal numbers of incoming
and outgoing propagators. Such graphs are represented by the last column of table 4.

The Feynman diagram topologies are independent of the choice of interaction Lagrangian.
They were therefore generated once for all, separately for real scalar and complex scalar
theories, and stored for later reuse in an output file.

A.2 Feynman rules

Generating the set of Feynman rules from a given interaction Lagrangian is an exercise
in list manipulation. It is practically convenient to split up the Lagrangian explicitly into
parts containing interaction vertices with different valency,

Lint =
nmax∑
n=3

Ln. (A.1)

Each Ln is then expanded into a sum of monomials. A given monomial consists of a
numerical coefficient multiplying an operator composed solely of the NG field and its
derivatives. For the purposes of automatic generation of Feynman rules, the operator can
be represented as a nested list. At the top level, each element of the list corresponds to
one factor of the NG field θ in the operator. Each such element is itself a list of indices
indicating derivatives acting on θ; for instance {0, r, s, t} stands for ∂0∂r∂s∂tθ. This encodes
all the information needed to generate the Feynman rules.

There are some details of the procedure one needs to pay particular attention to. For
instance, one has to remember to sum over all permutations of legs in each monomial to
get the correct Feynman rule. Also, dummy indices appearing in a given monomial need to
be labeled with a unique identifier each. In fact, it appears practically convenient to avoid
using dummy indices altogether as far as possible. This can be achieved by representing
derivatives of θ with tensors. Manipulation and simplification of tensor contractions was
done using the TensorSimplify package by Carl Woll. Once generated, the Feynman
rules characterizing a given class of Lagrangians were stored for later reuse in an output
file, just like the Feynman diagram topologies.
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A.3 Random kinematics

Importantly, vanishing of the scattering amplitudes of NG bosons, whether through the
ordinary Adler zero or its enhancements, requires that all the particles participating in
the scattering process be on-shell. In addition, the total energy and momentum in the
scattering process must be conserved. For the textbook problem of scattering of four
massless scalars in Lorentz-invariant theories, these requirements boil down to the fact that
the invariant amplitude is a function of the Mandelstam variables s, t, u that satisfy the
constraint s+ t+ u = 0. For a higher number of particles, or in theories lacking Lorentz
invariance, the on-shell and conservation constraints may however be highly nontrivial. It
is then often more feasible to replace analytic manipulations of amplitudes as functions of
external momenta and energies with “numerical experiments.” In the latter, one generates
randomly a set of momenta satisfying all the kinematical constraints and evaluates the
amplitude numerically. Generic features of a given theory can then be tested by simply
repeating the computation with different sets of random momenta. In this subsection, we
describe in detail how to generate random sets of kinematical data in two classes of theories:
type A1 theories of a real scalar, and type B2 theories of a complex scalar.

A.3.1 Type A1 theories

Theories of type A1 possess the same kinematics as Lorentz-invariant theories; Lorentz
boosts are only broken by the interactions. We can therefore use the insight gained by
studying genuinely Lorentz-invariant theories. The discussion below mirrors closely the
random kinematics generator contained in the BCFW package introduced in ref. [70].

The starting point is the observation that in d = 3 spatial dimensions, any on-shell
massless four-momentum pµ can be represented by a 2× 2 Hermitian matrix P , defined by

P ≡

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

 , (A.2)

where the on-shell condition is equivalent to detP = 0. As a consequence, the matrix P
can be represented in terms of the projector to its sole eigenvector with nonzero eigenvalue,
or equivalently as P = ±λλ†, where λ ∈ C2 and the sign corresponds to the sign of the
energy p0. This in turn determines whether the four-momentum represents a particle in the
initial or final state of the scattering process. We use the convention wherein the positive
sign of p0 corresponds to outgoing particles and the negative sign to incoming particles.

A set of n four-momenta satisfying all the kinematical constrains can then be generated
as follows. We choose randomly (including random signs) the first n − 2 four-momenta.
The first of these is rescaled by the soft factor ε, which allows one to probe the soft limit by
taking ε→ 0. Let us now denote

n−2∑
i=1

Pi ≡
(

α β + iγ
β − iγ δ

)
(A.3)
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with α, β, γ and δ being all real. Let us also introduce a notation for the spinor λn
representing the last particle,

λn =
(
w

x

)
, (A.4)

where we assume without loss of generality that w is real. By the conservation of energy
and momentum, the four-momentum of the (n− 1)-th particle is then fixed by

Pn−1 = −
n−2∑
i=1

Pi − λnλ†n = −
(

α+ w2 β + iγ + wx∗

β − iγ + wx δ + xx∗

)
. (A.5)

The only kinematical constraint that remains to be satisfied is that the four-momentum
represented by Pn−1 actually is on-shell, that is, detPn−1 = 0. This gives us a single
condition for the real variable w and the complex variable x. We can use it for instance to
solve for w in terms of x, which gives two solutions,

w± = 1
2δ
[
x(β + iγ) + x∗(β − iγ)±

√
∆
]
, (A.6)

∆ ≡ [x(β + iγ) + x∗(β − iγ)]2 + 4δ(β2 + γ2 − αδ − αxx∗). (A.7)

A particularly simple setup follows if we choose x = 0, that is orient the n-th particle along
the third coordinate axis. Namely, we then find

Pn−1 = −
(
β2+γ2

δ β + iγ
β − iγ δ

)
, Pn =

(
β2+γ2

δ − α 0
0 0

)
. (A.8)

The great advantage of this choice is that the four-momenta of the (n− 1)-th and the n-th
particle are rational functions of the four-momenta of the first n− 2 particles. It is therefore
possible to generate consistent kinematics where all n four-momenta take rational values.
This is very useful for the numerical analysis of the scaling of scattering amplitudes in the
limit ε→ 0, as one can take advantage of infinite-precision arithmetic.

The above-described algorithm to generate random kinematics however has a problem
for n = 4. In this case, the sum in eq. (A.3) reduces to a single term in the limit ε → 0
where the first four-momentum vanishes. Accordingly, in this limit, β2 + γ2 − αδ → 0.
But then by eq. (A.8) the n-th four-momentum also vanishes. In other words, for n = 4
this generator does not capture a single soft limit, but rather a limit in which two of the
four four-momenta vanish simultaneously. This problem can be avoided by not setting x
to zero, but rather to some other randomly chosen number. The price to pay is that the
four-momenta (A.8) are then no longer rational-valued.

A.3.2 Type B2 theories conserving the number of particles

For theories of a complex scalar, conserving the number of particles, only scattering
processes with equal numbers n of incoming and outgoing particles are possible. We adopt
the convention that the first, third etc. particle is incoming, whereas the second, fourth
etc. particle is outgoing. In terms of spatial momenta pi and the corresponding energies ωi,
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the energy and momentum conservation laws then dictate that

2n∑
i=1

(−1)iωi = 0,
2n∑
i=1

(−1)ipi = 0. (A.9)

The energies are by definition all positive and satisfy the on-shell condition ωi = p2
i .

The algorithm to generate consistent random kinematics now goes as follows. We
choose at will 2n− 2 of the spatial momenta and calculate the corresponding energies. As
for type A1 theories, we can again introduce the soft factor ε for the first particle via the
replacement (ω1,p1)→ (ε2ω1, εp1). Let us take the staggered sum of these 2n− 2 energies
and momenta,

E ≡
2n−2∑
i=1

(−1)i+1ωi =
2n−2∑
i=1

(−1)i+1p2
i , Π ≡

2n−2∑
i=1

(−1)i+1pi. (A.10)

To find the remaining momenta p2n−1 and p2n, we need to choose the spatial dimension d.
Here we will work out in detail the case d = 3, but other choices of d require just a minor
adjustment of the argument. Let us now write p2n−1 and p2n as

p2n−1 = (a, b, c), p2n = (A,B,C). (A.11)

The corresponding energies are defined by the on-shell condition. The only remaining
constraints to be satisfied are those implied by energy and momentum conservation. Out of
the six components of p2n−1 and p2n, we can therefore choose two, e.g. A and B, arbitrarily.
The remaining components are then uniquely determined,

a = A−Π1, c = 1
2Π3

[
E + (Π1)2 + (Π2)2 − (Π3)2 − 2AΠ1 − 2BΠ2],

b = B −Π2, C = 1
2Π3 (E + Π2 − 2AΠ1 − 2BΠ2).

(A.12)

For type B2 kinematics, it is therefore always possible to randomly generate rational-valued
kinematical data. There is no problem to generate data even for n = 2 (four particles) so
that the single soft limit can be taken by setting ε→ 0.

B Exceptional contact four-point amplitudes

The no-go theorems for the existence of super-exceptional theories, discussed in section 6,
rely on detailed understanding of contact four-point amplitudes in exceptional theories. We
work these out in the present appendix. Note that the arguments given below are formally
only valid in D ≥ 4 spacetime dimensions. This is because we assume that there are no
other constraints on the (relativistic or nonrelativistic) Mandelstam variables than those
implied by energy and momentum conservation and the on-shell condition.
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B.1 Type A1 theories

In the case of type A1 theories we will follow the convention introduced in section 5.1.1 and
express the contact four-point amplitude in terms of the relativistic Mandelstam variables
s, t, u and the energies ω1, ω2, ω3, ω4. Any four-point amplitude constructed purely out of
s, t, u is automatically exceptional. Below, we show that there are no other exceptional
four-point amplitudes. That is, we show that no four-point amplitude explicitly depending
on the energies can be exceptional.

We start by writing down the most general manifestly S4-invariant polynomial in our
variables,

A4 =
∑

a,b,c,d,e,f,g

λa···gs
atbucωd1ω

e
2ω

f
3ω

g
4 + permutations, (B.1)

where a, . . . , g are non-negative integers and λa···g a priori undetermined coefficients. Next,
we eliminate the ambiguity in the polynomial form of A4 at the cost of sacrificing manifest
S4-invariance. We do so by expressing s and ω4 in terms of the other variables using energy
and momentum conservation,

sa = (−t− u)a, ωg4 = (−ω1 − ω2 − ω3)g. (B.2)

The amplitude A4 now becomes a sum of monomials of the form

tαuβωx1ω
y
2ω

z
3 . (B.3)

Since there are by assumption no further relations among the remaining variables t, u and
ω1, ω2, ω3, the exceptional scaling of the amplitude must now be manifest term by term,
that is for each monomial contributing to A4.

Demanding exceptional scaling of the amplitude in the single soft limit for the first
particle requires that each monomial of the form (B.3) satisfies the constraint x ≥ y + z.
However, should the amplitude be at the same time exceptional in the soft limit for the
second particle, the corresponding inequality y ≥ x + z must hold. Finally, requiring
exceptional scaling for the third particle leads to z ≥ x + y. Obviously, all these three
inequalities can only be satisfied simultaneously if x = y = z = 0. This concludes the
argument that the contact four-point amplitude in any exceptional theory in D ≥ 4
spacetime dimensions is necessarily a polynomial in the relativistic Mandelstam variables,
hence is Lorentz-invariant.

B.2 Type B2 theories

As explained in section 5.2, the four-point amplitude in type B2 (Schrödinger-type) theories
can be expressed in terms of the following kinematical variables,

s13 = s24, s12, s14, s23, s34, sij ≡ pi · pj . (B.4)

The particles in the initial (final) state are labeled with indices 1, 3 (2, 4). In d ≥ 3 spatial
dimensions, which we will henceforth assume, the variables (B.4) are mutually independent.
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The contact four-point amplitude is then given by a unique polynomial in these variables
that is required to be invariant under the permutation group S2 × S2, acting separately on
the incoming and outgoing particles, as well as under charge conjugation (C). Note that
thanks to the constraint s13 = s24, s13 itself is invariant under all the required symmetries.
It is thus convenient to highlight the dependence of the four-point amplitude on s13. A
generic exceptional amplitude with soft scaling parameter σ and τ = σ/2 derivatives per
field is then a polynomial of degree σ in the variables (B.4) that can be written in the form

A4 =
σ∑
n=0

cns
n
13(· · · )σ−n, (B.5)

where cn are undetermined coefficients and the shorthand notation (· · · )m indicates a
polynomial of degree m in the variables s12, s14, s23, s34. Since the variables (B.4) are
algebraically independent and the coefficients of sn13 in eq. (B.5) thus unique, all the
polynomials (· · · )σ−n therein are necessarily themselves invariant under both S2 × S2 and
C.

Unlike in the case of type A1 kinematics, we can not impose the assumed exceptional
scaling individually on each term in eq. (B.5). The reason for this is that our variables (B.4),
while independent, satisfy a set of momentum conservation relations of the type

s12 − s13 + s14 = s11 = p2
1, (B.6)

which may lead to soft scaling with a higher σ than naively expected. We will therefore
follow a different approach. Namely, we will use induction in σ to prove that any exceptional
four-point amplitude with soft scaling parameter σ is necessarily proportional to sσ13. In
other words, only the coefficient cσ in eq. (B.5) may be nonzero. The exceptional theories
with σ = 1 and σ = 2 are already known and can be identified using the approach of
section 5.2. The only such exceptional theories are the CP 1 NLSM and the Schrödinger-DBI
theory, both of which satisfy our induction hypothesis.

Let us now take the induction step. We write eq. (B.5) as

A4 = c0(· · · )σ + s13

σ∑
n=1

cns
n−1
13 (· · · )σ−n. (B.7)

We shall focus on the first term, assuming first that this term vanishes. Then the sum in
the second term,

∑σ
n=1 cns

n−1
13 (· · · )σ−n, has the soft scaling parameter σ − 1, and moreover

has all the symmetries required of a four-point amplitude. By our induction hypothesis, it
is therefore proportional to sσ−1

13 , hence A4 ∝ sσ13 as we wanted to prove.
It remains to address the case where the first term on the right-hand side of eq. (B.7)

is nonzero. To that end, let us inspect more closely the properties of the polynomial (· · · )σ.
A general ansatz for (· · · )σ can be written as

(· · · )σ =
∑
a,b,c,d

(a+b+c+d=σ)

λabcds
a
12s

b
14s

c
23s

d
34, (B.8)
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where λabcd are a priori undetermined coefficients, and we employed the summation range
notation introduced below eq. (5.9). Terms with c+ d > σ/2 are automatically forbidden,
as they would inevitably spoil the exceptional scaling properties of A4. S2×S2 permutation
invariance of eq. (B.8) then implies that also terms where c+ d < σ/2 are forbidden. This
constrains possible contributions to (· · · )σ to terms with a+ b = c+ d = σ/2,

(· · · )σ =
∑
a,b,c,d

(a+b=c+d=σ/2)

λabcds
a
12s

b
14s

c
23s

d
34, (B.9)

which among others implies that (· · · )σ can only be nonzero if σ is even. Imposing moreover
C-invariance, eq. (B.9) can be further reduced to a polynomial of the following form,

(· · · )σ =
∑
a,b

(a+b=σ/2)

λas
a
12s

b
14s

b
23s

a
34. (B.10)

Suppose now that we take the single soft limit for the first particle. The only way how
the soft scaling parameter could be enhanced beyond naive counting of powers of p1 in the
amplitude is if cancellations of the type (B.6) occur. This means that should terms of the
type sb23s

a
34 with a+ b = σ/2 appear in the amplitude at all, then A4 must necessarily take

the following form to preserve its exceptional scaling,

A4 = (s12 − s13 + s14)σ/2
∑
a,b

(a+b=σ/2)

λ′as
b
23s

a
34 + · · · , (B.11)

where the ellipsis denotes terms proportional to s13. Matching the terms herein independent
of s13 to the expression (B.7) for A4 combined with eq. (B.10), we get the condition

(s12 + s14)σ/2
∑
a,b

(a+b=σ/2)

λ′as
b
23s

a
34 = c0

∑
a,b

(a+b=σ/2)

λas
a
12s

b
14s

b
23s

a
34. (B.12)

This equality can however only be satisfied if both sides vanish, which contradicts our
assumption that c0(· · · )σ is nonzero.

This concludes the proof that all physically consistent exceptional four-point amplitudes
in type B2 theories take the simple form

A4 = λσs
σ
13. (B.13)

C Quarton theory

In this appendix we work out the basic properties of the exotic quarton theory briefly
outlined in section 2.2.3. Let us start by writing down its Lie algebra in order to avoid
multiple cross-references to the main text of the paper,

[Pr,KsA] = igrsQA, [KrA,KsB] = iεABgrsH,
[Q,KrA] = −iε B

A KrB, [Q,QA] = −iε B
A QB,

(C.1)
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where the indices A,B take values from the set {1, 2}. All the other commutators among
the generators Jrs, Pr, KrA, Q, QA and H are either fixed by rotational invariance or zero.
What makes the quarton theory exotic, and genuinely nonrelativistic, is the commutator
[KrA,KsB], proportional to the Hamiltonian. This is the only place where the Lie algebra
of the quarton theory differs from that of the Schrödinger-Galileon theory, discussed in
section 2.2.1. The former can therefore be considered a nontrivial deformation of the latter.

To convert the Lie algebra into a concrete effective action, we use the coset construc-
tion [5, 6] in a form applicable to spontaneously broken spacetime symmetries [56, 71].
We start by writing down a parameterization of the coset space, including all nonlinearly
realized symmetries,

U(t, x, θ, ξ) ≡ eitHeixrPreiθAQAeiξrAKrA . (C.2)

It is instructive to work out the symmetry transformations generated by the Lie algebra (C.1).
The generators H, Pr, QA act by trivial shifts on t, xr, θA, respectively. The generator Q
acts on θA and ξrA by SO(2) rotations. The only nontrivial transformation is that generated
by KrA, with parameter βrA, which acts as

t→ t− 1
2εABgrsβ

rAξsB, θA → θA + βAr x
r, ξrA → ξrA + βrA. (C.3)

This again looks just like the symmetry transformation in the Schrödinger-Galileon theory,
deformed by the nontrivial transformation of t.

With the Lie algebra and the coset space parameterization at hand, it is straightforward
to work out the Lie-algebra-valued Maurer-Cartan (MC) form,

ω ≡ −iU−1dU ≡ 1
2ω

rs
J Jrs + ωrPPr + ωHH + ωrAK KrA + ωAQQA + ωQQ. (C.4)

The components ωrsJ and ωQ vanish. The other, nonvanishing components take the values

ωrP = dxr, ωH = dt+ 1
2εABgrsξ

rAdξsB,

ωrAK = dξrA, ωAQ = dθA − ξAr dxr.
(C.5)

C.1 Wess-Zumino terms

With the MC form at hand, we first have to check whether the symmetry of the quarton
theory admits some WZ terms in the Lagrangian. If present, these would be likely to
dominate the low-energy expansion of the quarton EFT. In d spatial dimensions, WZ terms
correspond to closed (d + 2)-forms invariant under all the symmetries of the theory. In
order to be able to test closedness, we write down the MC structure equations, satisfied by
the MC form,

dωrP = 0, dωH = 1
2εABgrsω

rA
K ∧ ωsBK , dωrAK = 0, dωAQ = ωrP ∧ ωAKr. (C.6)

Except for dωH , these are identical to the MC equations of the Schrödinger-Galileon algebra.
We can thus inspect possible presence of WZ terms along the line of argument of section 3.3
of ref. [36]. Out of the five different types of WZ terms discovered therein, three are not
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relevant for the quarton theory due to the absence of any other spontaneously broken scalar
generators but QA. Of the remaining two types of WZ terms, only one seems to respect the
MC equations (C.6). The corresponding closed (d+ 2)-form is proportional to

εABεr1···rdω
A
Q ∧ ωBQ ∧ dxr1 ∧ · · · ∧ dxrd . (C.7)

This integrates to the following action in the physical d+ 1 spacetime dimensions,

SWZ ∝
∫

dt ddx εABθA∂0θ
B. (C.8)

It is easy to check that under (C.3), the integrand changes by a total time derivative.

C.2 Invariant Lagrangians

Let us now see how to build strictly invariant Lagrangian densities out of the components
of the MC form (C.5). To that end, we need a way to contract spacetime indices, which is
done with the help of the spacetime vielbein. The latter is extracted from ωrP and ωH ,

es0 = 0, esr = δsr , n0 = 1 + 1
2εABgrsξ

rA∂0ξ
sB, nr = 1

2εABgstξ
sA∂rξ

tB. (C.9)

Together, es and n define a basis of 1-forms on the (d + 1)-dimensional spacetime. The
corresponding basis of vectors, dual to the vielbein, then is

E0
s = −ns

n0
, Ers = δrs , V 0 = 1

n0
, V r = 0. (C.10)

The dual vielbein is used to project ordinary spacetime derivatives to covariant derivatives,

∇0 ≡ V 0∂0 + V r∂r = 1
n0
∂0, ∇r ≡ E0

r∂0 + Esr∂s = ∂r −
nr
n0
∂0. (C.11)

With the vielbein and the covariant derivatives at hand, we can now project out the
spatial part of ωAQ. Setting this to zero provides us with an inverse Higgs constraint [72]
that can be used to eliminate the unphysical field ξrA in favor of the physical NG fields θA,

ξAr = ∇rθA. (C.12)

The only components of the MC form that are left unused are ωrAK and the temporal
part of ωAQ. These provide us with covariant building blocks for the construction of scalar
Lagrangian densities,

∇0θ
A = 1

n0
∂0θ

A, ∇0ξ
rA = 1

n0
∂0ξ

rA = 1
n0
∂0∇rθA, ∇sξrA = ∇s∇rθA. (C.13)

Whatever scalar Lagrangian we build out of these must be accompanied by the appropriate
volume measure, dt ddxn0 det e = dt ddxn0.
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C.3 Discussion

Let us see what we can construct out of our building blocks. We would like to have a
kinetic term in the first place. But the only way to build an operator that does not contain
temporal derivatives is to use ∇r∇sθA. This suggests a minimal action, based on the Lie
algebra (C.1), of the form

S = SWZ −
1
2

∫
dt ddxn0 δAB(∇r∇rθA)(∇s∇sθB). (C.14)

This is a type B4 theory. There are other operators one can construct that contribute to the
quadratic part of the Lagrangian, such as ∇0θA∇0θB or ∇0θA∇r∇rθB. But these will be
subleading for energy proportional to the fourth power of momentum. Hence the minimal
action (C.14) seems to be natural in the technical sense.

It is interesting to compare this to theories based on polynomial shift symmetries,
discussed in refs. [1, 73]. Therein, the authors constructed higher-order WZ terms which are
enhanced in the sense that they admit a second-order polynomial shift symmetry (which
ensures a kinetic term with four spatial derivatives) but contain less than three derivatives
per field. Still, these WZ terms contain (with the exception of the kinetic term) more than
two derivatives per field. In contrast, the leading part of the action (C.14), and of any
interaction Lagrangian built solely out of ∇r∇sθA, contains exactly two derivatives per
field, and will therefore dominate over the WZ terms of refs. [1, 73] in the infrared.

D Relations among Noether currents and soft theorems

The main goal of this appendix is to derive the relation (3.8) for the remainder function Rµ(p),
following closely the original argument of Cheung et al. [21]. We will start by reviewing the
basics of relations among Noether currents of locally indistinguishable symmetries [12, 13].
These provide a useful tool for analyzing the implications of redundant symmetry for the
matrix elements of the broken current.

D.1 Relations among Noether currents

We consider a generic local theory of a single real scalar field θ whose classical action is
invariant under a global transformation of the type

θ′(x) = θ(x) + εξ[θ, x](x). (D.1)

Here ε is a constant infinitesimal parameter and the notation for ξ[θ, x] is chosen to indicate
that this is a local function of θ and its derivatives, possibly explicitly depending on x. The
corresponding Noether current Jµ[θ, x] is defined by evaluating the variation of the action
under a transformation with a coordinate-dependent parameter ε(x) such that it reduces to
eq. (D.1) when ε(x) = ε is a constant,

δS =
∫

dd+1xJµ∂µε. (D.2)
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This definition leaves the Noether current ambiguous under addition of an arbitrary vector
function whose divergence is identically zero. The corresponding conservation law is however
unambiguous.

Suppose now that the action S enjoys two sets of global symmetries characterized by
infinitesimal parameters εα1 and εa2. Suppose further that the two sets of transformations
are locally indistinguishable in the sense that there is a set of coefficients faα[θ, x] such that
setting εa2(x) = faα[θ, x](x)εα1 (x) makes the two local transformations identical. Then the
variation of the action can be written in two equivalent ways,

δS =
∫

dd+1xJµ2a∂µε
a
2 =

∫
dd+1xJµ2a(εα1∂µfaα + faα∂µε

α
1 ) =

∫
dd+1xJµ1α∂µε

α
1 . (D.3)

The last equality induces a constraint to be satisfied off-shell,

Jµ2a∂µf
a
α = ∂µN

µ
α , (D.4)

where Nµ
α [θ, x] is a set of local functions of the field, its derivatives and the coordinates.

The two Noether currents are then related by

Jµ1α = faαJ
µ
2a −N

µ
α . (D.5)

By taking a divergence and combining the result with eq. (D.4), we obtain another off-shell
identity,

∂µJ
µ
1α = faα∂µJ

µ
2a. (D.6)

This illustrates that on-shell conservation of Jµ1α is a consequence of conservation of Jµ2a.

D.2 Soft theorems from Noether current relations

We shall now apply these general observations to the special case where εa2 is a one-parametric
constant shift symmetry, θ → θ+ ε, with Noether current Jµ[θ]. Here the notation indicates
that the current does not depend explicitly on the coordinate simply because the action is
assumed to be translationally invariant. The second set of transformations (εα1 ) is taken to
be a generalized shift symmetry,

θ′(x) = θ(x) + εj
[
αj(x) + αjB(x)OB[θ](x)

]
, (D.7)

where εj are infinitesimal parameters, αj(x) and αjB(x) are fixed polynomials in the space-
time coordinates, and OB[θ] are local composite operators constructed out of θ and its
derivatives. Promoting ε and εj to coordinate-dependent functions, we can see that the two
transformations coincide if we set

ε(x) = εj(x)f j [θ, x](x), (D.8)

f j [θ, x](x) ≡ αj(x) + αjB(x)OB[θ](x). (D.9)

The off-shell condition (D.4) can then be written in the following form,

Jµ[θ]∂µαj = −∂µ
[
αjBO

B[θ]Jµ[θ]−N jµ[θ, x]
]

+ αjBO
B[θ]∂µJµ[θ]. (D.10)
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The generalized shift symmetry implies the existence of a set of conserved currents, J jµ[θ, x],
via eq. (D.5).

As the next step, we shall lift the above classical relations to the quantum level,
assuming that they remain valid for renormalized quantum operators. See ref. [21] for a
detailed justification of this step.12 The quantum version of eq. (D.10) reads

〈β| Jµ[θ](x) |α〉 ∂µαj(x) = −∂µ 〈β|
[
αjB(x)OB[θ](x)Jµ[θ](x)−N jµ[θ, x](x)

]
|α〉

+ αjB(x) 〈β| OB[θ](x)∂µJµ[θ](x) |α〉 ,
(D.11)

where |α〉 and |β〉 are an arbitrarily chosen initial and final state, respectively. By combining
the Ward identities for the Noether currents,

〈β| ∂µJµ[θ](x) |α〉 = 〈β| ∂µJ jµ[θ, x](x) |α〉 = 0, (D.12)

with the relation (D.6), we obtain

0 = 〈β| ∂µJ jµ[θ, x](x) |α〉 = 〈β|αj(x)∂µJµ[θ](x) + αjB(x)OB[θ](x)∂µJµ[θ](x) |α〉

= αjB(x) 〈β| OB[θ](x)∂µJµ[θ](x) |α〉 .
(D.13)

This lets us simplify eq. (D.11) to

〈β| Jµ[θ](x) |α〉 ∂µαj(x) = −∂µ 〈β|
[
αjB(x)OB[θ](x)Jµ[θ](x)−N jµ[θ, x](x)

]
|α〉

≡ ∂µ 〈β|M jµ[θ, x](x) |α〉 ,
(D.14)

where the new object M jµ[θ, x] is defined just to simplify the notation.
Next we use the standard operator relations

Jµ[θ](x) = eiP ·xJµ[θ](0)e−iP ·x, M jµ[θ, x](x) = eiP ·xM jµ[θ, x](0)e−iP ·x, (D.15)

where Pµ is the momentum operator and the latter relation reminds us that this operator
only acts on the coordinate dependence of the fields, not the explicit coordinate dependence
of M jµ[θ, x]. Then, eq. (D.14) becomes

e−ip·x 〈β| Jµ[θ](0) |α〉 ∂µαj(x) = ∂µ
[
〈β|M jµ[θ, x](0) |α〉 e−ip·x

]
, (D.16)

where p ≡ pα − pβ . The matrix element on the left-hand side has a pole corresponding to a
single NG boson with energy p0 = ω(|p|), cf. eq. (3.3). The same pole must appear in the
matrix element of M jµ[θ, x]. Combining this with the usual rules of polology, we get

〈β|M jµ[θ, x](0) |α〉 = i
p0 − ω(|p|) 〈0|M

jµ[θ, x](0) |θ(p)〉 〈β + θ(p)|α〉+ gjk(x)RkµM (p),

(D.17)

where the remainder function RjµM (p) is regular in the limit p0 → ω(|p|), and the functions
gjk(x) in eq. (D.17) arise from the coefficients of operators in M jµ[θ, x]. For the special
choice |α〉 = |θ(p)〉 and |β〉 = |0〉, eq. (D.16) yields

e−ip·x 〈0| Jµ[θ](0) |θ(p)〉 ∂µαj(x) = ∂µ
[
〈0|M jµ[θ, x](0) |θ(p)〉 e−ip·x

]
. (D.18)

12Everything that follows also remains valid without further assumptions for tree-level amplitudes.
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This in combination with eqs. (3.3) and (D.17) in turn gives the following relation between
the remainder functions,

e−ip·x∂µα
j(x)Rµ(p) = ∂µ

[
gjk(x)e−ip·x]RkµM (p). (D.19)

Integrating this over x and imposing a final assumption that RjµM (p) is regular in the limit
p→ 0,13 we obtain in the sense of distributions [21]

α̃j(p)pµRµ(p) = 0. (D.20)

This proves the relation (3.8) from the main text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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