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Local symmetry transformations play an important role for establishing the existence and form of
a conserved (Noether) current in systems with a global continuous symmetry. We explain how this
fact leads to the existence of linear relations between Noether currents of distinct global symmetries
that coincide on the local level, thus generalizing the well-known relationship L = r × p between
momentum p and angular momentum L. As a byproduct, we find a natural interpretation for the
discrepancy between the canonical and metric energy-momentum tensors in theories of particles
with spin. A symmetric energy-momentum tensor can thus be obtained from the Noether procedure
without adding any ad hoc corrections or imposing additional constraints such as gauge invariance
in Maxwell’s electrodynamics.

I. INTRODUCTION

The link between symmetry and conservation laws, dis-
covered by Noether,1 underpins much of our understand-
ing of the fundamental laws of nature. An excellent his-
torical overview of the subject was given by Ref. 2, to
which we refer the reader for more details; see also Ref. 3
for a gentle introduction.

In this note, we revisit the application of Noether’s
ideas to classical field theory. Our starting point is a
simplified derivation of the Noether current associated
with a given global symmetry of the action, in which one
identifies the current with the help of a local, coordinate-
dependent transformation. This approach, sometimes at-
tributed to Gell-Mann and Lévy,4 is well established in
standard textbooks on quantum field theory.5

We consider the general class of theories whose action
S is expressed as a spacetime integral of a Lagrangian
density L that itself is a local function of a set of fields φA
and their derivatives. Suppose that the action is invariant
under some global transformation of both the fields and
spacetime coordinates, denoted collectively as x. Now
perform an infinitesimal transformation whose parame-
ter ε(x) is allowed to depend on the coordinates, only
assuming that for constant ε(x) = ε the transformation
reduces to the assumed global symmetry. The variation
of the action under such a transformation then necessar-
ily depends on ε(x) only through its derivatives, and by
integration by parts can be brought to the form6

δS =

∫
dxJµ(x)∂µε(x). (1)

Here Jµ(x) is the Noether current associated with the
assumed global symmetry. The Hamilton principle dic-
tates that for fields satisfying the equation of motion
(“on-shell” fields), δS = 0 for any infinitesimal varia-
tion of the fields, in particular for the one induced by the
performed local transformation. This implies that the
Noether current is conserved on-shell, ∂µJ

µ = 0.7

The master equation (1) constitutes the starting point
for the rest of the paper. In Sec. II we discuss ambi-
guities in the definition of the Noether current, and list
several explicit expressions for the current under increas-

ingly relaxed assumptions. This section does not contain
any new material, yet it offers a more general treatment
than many introductory texts on the subject. The core
of the paper consists of Secs. III and IV, which approach
the relations between Noether currents of locally identi-
cal symmetries8 following two similar but complementary
methodologies. A collection of examples is worked out in
Sec. V.

The important case of the energy-momentum (EM)
tensor is covered separately in Sec. VI. It is a common
lore that in theories of particles with spin, the canoni-
cal EM tensor is generally not symmetric and needs to
be “improved” in order to match the “metric” EM, ob-
tained by coupling the system to a background geometry
in a generally covariant fashion. Here we show that the
discrepancy between the two EM tensors arises from a
mismatch between the respective local translations un-
derlying their derivation. With some care, a symmetric
EM tensor can be obtained from the canonical Noether
procedure without further “improvements.”

II. SOME EXPLICIT EXPRESSIONS

It is clear from Eq. (1) that the Noether current is only
defined up to addition of terms whose divergence vanishes
for all field configurations (“off-shell”). Moreover, adding
a term to Jµ that vanishes identically on-shell has no ef-
fect on the ensuing conservation law. The same conser-
vation law therefore corresponds to a whole equivalence
class of currents, Jµ + J̄µ1 + J̄µ2 , where ∂µJ̄

µ
1 = 0 off-shell

and J̄µ2 = 0 on-shell.9 We will demonstrate below that
the ambiguity of the Noether current with respect to J̄µ2
can be traced to the ambiguity in the choice of the local
transformation, employed to produce the variation (1).
This requires, however, a sufficiently general notion of a
local symmetry transformation. The ambiguity with re-
spect to J̄µ1 , on the other hand, is inevitable when Eq. (1)
is used to define the Noether current.

To start, let us at first for the sake of simplicity assume
that the Lagrangian density L depends only on the fields
φA and their first derivatives ∂µφA, L = L (φ, ∂µφ, x),
where the argument x indicates possible explicit coordi-
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nate dependence. Now perform the following infinitesi-
mal local transformation of the fields and coordinates,

φ′A(x′) = φA(x) + ε(x)ξA(x),

x′µ = xµ + ε(x)ωµ(x).
(2)

Under this transformation, the action varies by10

δS =

∫
dx

{
L ∂µ(εωµ) + εωµ∂µL +

∂L

∂φA
εξA

+
∂L

∂(∂µφA)

[
∂µ(εξA)− ∂µ(εων)∂νφA

]}
.

(3)

The first term comes from the Jacobian of the coordinate
transformation, the second from the explicit coordinate
dependence of the Lagrangian, the third from variation of
φA, and the last from variation of ∂µφA. Upon collecting
terms proportional to ε(x) and ∂µε(x), we readily extract
both the condition for the existence of global symmetry of
the action and the corresponding Noether current. The
former reads

∂L

∂φA
ξA +

∂L

∂(∂µφA)
∂µξA + ∂µ(L ωµ)

− ∂L

∂(∂µφA)
(∂νφA)∂µω

ν = ∂µK
µ, (4)

where Kµ(x) is some vector function. This expresses in-
variance of the Lagrangian up to a divergence, a concept
that was first clearly formulated by Bessel-Hagen,11 but
apparently goes back to Noether herself.2 In the follow-
ing, we will refer to Eq. (4) as the “invariance condition.”
The Noether current then takes the form

Jµ =
∂L

∂(∂µφA)
ξA +

[
δµνL − ∂L

∂(∂µφA)
∂νφA

]
ων −Kµ.

(5)
Note that despite the limitation on the number of deriva-
tives acting on the fields in the Lagrangian, this result is
already pretty general. First, it allows for explicit co-
ordinate dependence of the Lagrangian. Second, we did
not require that the functions ξA(x) depend only on the
fields and ωµ(x) only on the coordinates. Both of these
can depend on the coordinates, on the fields as well as
on their derivatives.

It is now easy to check that both the invariance condi-
tion (4) and the Noether current (5) remain unchanged
under the following simultaneous replacements

ωµ → ωµ + ω̄µ, ξA → ξA + ω̄µ∂µφA,

Kµ → Kµ + L ω̄µ,
(6)

where ω̄µ is an arbitrary function of the coordinates,
fields and their derivatives. This indicates a redundancy
in the description of the same physical symmetry: for-
mally a whole family of transformations gives the same
Noether current.12 The reason for this is that the space-
time coordinate xµ is merely a dummy variable that is

integrated over. The action should rather be thought of
as a functional of the fields only; redefinitions of the coor-
dinate cannot have any physical content.13 In particular,
one can always eliminate ωµ by setting ω̄µ = −ωµ, and
thereby arrive at an equivalent description of the same
physical symmetry in terms of a transformation of φA
alone,

φ′A(x) = φA(x) + ε(x)ξA(x)− ε(x)ωµ(x)∂µφA(x). (7)

This underlines the importance of symmetry transforma-
tions that depend on the derivatives of the fields. Note
that such “generalized symmetries” were introduced al-
ready by Noether;1 Eq. (7) is now known as the “evolu-
tionary form” of the symmetry transformation.14

We will now generalize the discussion by allowing for
Lagrangians containing arbitrarily high derivatives of the
fields. To simplify the result, we will set ωµ = 0, as this
can always be absorbed into a redefinition of ξA as we
just argued. The invariance condition on the Lagrangian
then takes a very simple form, generalizing Eq. (4),

∞∑
n=0

∂L

∂(∂µ1
· · · ∂µn

φA)
∂µ1
· · · ∂µn

ξA = ∂µK
µ. (8)

By inspecting the variation of the action under a local
symmetry transformation, we then get the corresponding
expression for the Noether current. After some manipu-
lation, one thus finds

Jµ = −Kµ +

∞∑
n=1

n∑
k=1

(−1)k+1 (9)

×
[
∂µ2
· · · ∂µk

∂L

∂(∂µ∂µ2 · · · ∂µnφA)

]
(∂µk+1

· · · ∂µn
ξA).

This result dates back at least to 1966,12,15 even though
higher-order derivatives of fields were implicitly allowed
already in the original work of Noether.1

For yet another line of generalization, note that a gen-
eral local symmetry transformation can be cast as a se-
ries in the derivatives of the parameter ε(x). The leading
term with no derivatives, displayed in Eqs. (2) or (7), de-
fines the corresponding global symmetry. Higher-order
contributions, which by construction do not affect the
global symmetry, may however be present. To see what
this implies for the Noether current, let us replace the
first line of Eq. (2) with

φ′A(x′) = φA(x) + ε(x)ξA(x)

+

∞∑
n=1

σµ1···µn

A (x)∂µ1
· · · ∂µn

ε(x),
(10)

where σµ1···µn

A (x) is a set of tensor functions of the co-
ordinates, fields and their derivatives. Since the added
terms only depend on the derivatives of ε(x), they do
not affect the invariance condition on the action. Upon
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some integration by parts, one can directly extract the
corresponding contribution to the Noether current,

Jµ = Jµ
∣∣∣
σ=0

+

∞∑
n=1

(−1)n+1∂µ2 · · · ∂µn

(
σµµ2···µn

A

δS

δφA

)
,

(11)
where δS/δφA is the variation of the action with respect
to φA. As the latter defines the equation of motion, it is
obvious that the new contributions to the current vanish
on-shell for any choice of σµ1···µn

A .
This finishes our discussion of ambiguities in Noether

currents and the associated local symmetry transforma-
tions. Equations (5), (9) and (11) will serve as a reference
in Secs. V and VI where we work out concrete examples.

III. RELATIONS AMONG CURRENTS

Some (typically spacetime) symmetries, albeit distinct
globally, may not be distinguishable locally.16 The sim-
plest example is that of spatial rotations and transla-
tions, which locally both correspond to a coordinate shift.
Since the Noether current of a global symmetry is essen-
tially determined by its localized version, as we saw in
the previous section, we expect that relations between
local symmetries will be reflected in relations between
the corresponding Noether currents.

To see how this comes about, consider two sets of sym-
metries of the same action, characterized by infinitesimal
parameters εα1 and εa2 .17 Suppose that the two classes of
symmetries are locally identical, that is, there is a set of
coefficients faα(x) such that a transformation of the first
type is equivalent to a transformation of the second type
with the choice εa2(x) = faα(x)εα1 (x). The variation of the
action under εa2(x) reads, by Eq. (1),

δS =

∫
dxJµ2a∂µε

a
2 =

∫
dxJµ2a(faα∂µε

α
1 +εα1 ∂µf

a
α), (12)

which, due to the assumed local equivalence of the two
symmetries, should be equal to

δS =

∫
dxJµ1α∂µε

α
1 . (13)

This is only possible if

Jµ2a∂µf
a
α = ∂µN

µ
α (14)

for some vector function Nµ
α (x); we will refer to Eq. (14)

as the “integrability condition.” Integration by parts
then leads to a linear relation between the currents,

Jµ1α = faαJ
µ
2a −Nµ

α , (15)

modulo the ambiguity due to adding a vector function
whose divergence vanishes off-shell.

Equation (15) is our main result. We stress, however,
that Eq. (14) imposes a nontrivial constraint, as it has

to hold off-shell. As such, it is not a mere consequence
of Eq. (15) and current conservation. In fact, by tak-
ing a divergence of Eq. (15) and using the integrability
condition (14), we obtain another off-shell identity,

∂µJ
µ
1α = faα∂µJ

µ
2a. (16)

This underlines the close relation between the conserva-
tion laws stemming from the two symmetries.

The correction term Nµ
α spoils somewhat the elegance

of the result (15), which otherwise copies the relation
between the associated symmetry transformations. It is
therefore natural to ask whether the ambiguity in the def-
inition of the currents could be exploited to remove Nµ

α .
This is unfortunately not always the case, as shown by
an explicit counterexample in Sec. V A.

IV. GAUGE INVARIANCE APPROACH

The Noether current can also be derived following an
alternative approach that likewise makes use of the local
symmetry transformation. The starting point is the as-
sumption that the Lagrangian density can be modified by
adding a vector field Aµ(x) so that the action is invariant
under the local rather than just global transformations.
Technically, this amounts to assuming that the original
action S[φ] is replaced with a new action S̃[φ,A] such

that S̃[φ, 0] = S[φ] and that the new action is invari-
ant under a simultaneous transformation of the original,
“matter” fields φA as in Eq. (7) as well as of the gauge
field Aµ. We further assume that the transformation of
the gauge field takes the generic form

A′µ(x) = Aµ(x) + ε(x)Ξµ(x) + Σ(x)∂µε(x); (17)

the notation is chosen to resemble that used in Eq. (10).
The variation of the new action to first order in ε(x)

consists of contributions from varying φA(x) and Aµ(x),

δS̃ = δφS̃ + δAS̃ (18)

= δφS̃ +

∫
dx

δS̃

δAµ(x)

[
ε(x)Ξµ(x) + Σ(x)∂µε(x)

]
.

Upon setting Aµ = 0, the term δφS̃ must reproduce the
variation of the action in the ungauged theory, Eq. (1).

The assumed gauge invariance of S̃ then implies that
there must be a vector function Rµ(x) such that

δS̃

δAµ(x)
Ξµ(x)

∣∣∣∣
A=0

= −∂µRµ(x). (19)

An explicit expression for the Noether current follows in
turn,

Jµ(x) = −Σ(x)
δS̃

δAµ(x)

∣∣∣∣
A=0

−Rµ(x). (20)

The alternative approach presented here is completely
equivalent to the derivation of the Noether current given
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in Sec. I, as long as the global symmetry in question can
be gauged. As a concrete application of this formalism,
we will rederive the main result of Sec. III, Eq. (15). To
that end, introduce a set of gauge fields AIµ(x) and pa-
rameterize their transformation under the two classes of
symmetries with infinitesimal parameters εα1 (x) and εa2(x)
by the functions ΞI1αµ(x), ΣI1α (x) and ΞI2aµ(x), ΣI2a (x). As-

suming that the gauge transformations of AIµ(x) are iden-
tical provided one identifies the infinitesimal parameters
as εa2(x) = faα(x)εα1 (x),18 we obtain from Eq. (17)

A′Iµ −AIµ = εa2ΞI2aµ + ΣI2a ∂µε
a
2

= εα1
(
faαΞI2aµ + ΣI2a ∂µf

a
α

)
+ ΣI2a f

a
α∂µε

α
1 .

(21)

We thus identify the coefficient functions as ΣI1α = faαΣI2a
and ΞI1αµ = faαΞI2aµ+ΣI2a ∂µf

a
α. The condition (19) applied

to the first symmetry transformation then takes the form

δS̃

δAIµ
faαΞI2aµ

∣∣∣∣
A=0

+
δS̃

δAIµ
ΣI2a ∂µf

a
α

∣∣∣∣
A=0

= −∂µRµ1α. (22)

Using Eqs. (19) and (20) applied to the second symmetry
transformation, this can be rewritten as

−∂µRµ1α = −faα∂µR
µ
2a − (Jµ2a +Rµ2a)∂µf

a
α

= −∂µ(faαR
µ
2a)− Jµ2a∂µfaα.

(23)

Consistency now leads to the integrability condition (14),
whence we obtain Rµ1α = faαR

µ
2a+Nµ

α . Plugging this back
into Eq. (20) together with the relation ΣI1α = faαΣI2a then
finally reproduces the relation (15) among the currents.

V. EXAMPLES

In order to illustrate the results and arguments of the
preceding sections, we will now work out several concrete
examples of internal and spacetime symmetries. For the
sake of simplicity, we will mostly consider theories whose
Lagrangian density depends just on the fields and their
first derivatives.

A. Shift symmetries of a massless scalar

Consider the theory of a free massless scalar field as
given by the Lagrangian

L =
1

2
(∂µφ)2. (24)

Its action is invariant under the following coordinate-
dependent transformation,

φ′(x) = φ(x) + a+ bαx
α, (25)

known as the “Galileon” symmetry.19 For the constant
shift parameterized by a, we have ξ = 1 and the in-
variance condition (4) is trivially satisfied with Kµ = 0.

According to Eq. (5), the corresponding Noether current
is Jµ = ∂µφ. On the other hand, for the linear shift pa-
rameterized by bα, we have ξα = xα and the invariance
condition (4) is satisfied with Kµ

α = δµαφ. The Noether
current then reads Jµα = xα∂

µφ− δµαφ by Eq. (5).
Observe that the local forms of the two symmetries in

this example are identical, as follows by setting a(x) =
xαb

α(x). The integrability condition (14) where we take
fα(x) = xα then implies that Nµ

α = δµαφ. The current
Jµα = xα∂

µφ− δµαφ then follows from Eq. (15) at once.
This example also shows that it is not always possible

to remove the correction term Nµ
α in Eq. (15) by ex-

ploiting the ambiguity in the definition of the Noether
currents. Indeed, suppose that there were improved cur-
rents J̃µ(x) and J̃µα(x) such that J̃µα(x) = xαJ̃

µ(x) holds.
By taking the divergence and using the assumed on-shell
conservation of both currents, we arrive at the condition,

0 = ∂µJ̃
µ
α = J̃α + xα∂µJ̃

µ = J̃α, (26)

which makes both currents identically vanish on-shell.
Finally, let us use this example to illustrate the gauge

invariance method presented in Sec. IV. The gauged ver-
sion of the Lagrangian density (24) reads

L =
1

2
(∂µφ−Aµ)2, (27)

and is invariant under a simultaneous local transforma-
tion of the scalar and the gauge field,

φ′(x) = φ(x) + ε(x), A′µ(x) = Aµ(x) + ∂µε(x). (28)

The transformation of the gauge field has the form (17)
with Ξµ = 0 and Σ = 1. The condition (19) is then
trivially satisfied with Rµ = 0, and the general result for
the current (20) yields Jµ = ∂µφ.

How can we get the other current, Jµα , from the same
Lagrangian and gauge transformation? We must match
Eq. (28) to a localized version of the linear shift with
parameter bα, i.e. to identify ε(x) = xαb

α(x). The trans-
formation of the gauge field then becomes

A′µ(x) = Aµ(x) + bµ(x) + xα∂µb
α(x). (29)

Matching this to Eq. (17) gives Ξαµ = δαµ and Σα = xα.
The consistency condition (19) then gives Rµα = δµαφ,
upon which Eq. (20) reproduces the correct expression
for the current, Jµα = xα∂

µφ− δµαφ.

B. Spacetime translations

A shift of the spacetime coordinate, x′µ = xµ + aµ,
can be written in the form (2) with ξA = 0 and ωµα = δµα;
the index α labels translations in different directions and
aα plays the role of the parameter of the transformation.
The invariance condition (4) is satisfied with Kµ = 0
provided that the Lagrangian density does not depend
explicitly on the coordinate, which will be assumed in the
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following without further mentioning. The corresponding
Noether current is the canonical EM tensor,

Tµα = δµαL − ∂L

∂(∂µφA)
∂αφA. (30)

A generalization of this result to Lagrangians with deriva-
tives of higher order is trivial. Indeed, upon setting
ξAα = −∂αφA, cf. Eq. (7), the generalized invariance
condition (8) is satisfied with Kµ

α = −δµαL , and Eq. (9)
then gives a general expression for the EM tensor,

Tµα = δµαL −
∞∑
n=1

n∑
k=1

(−1)k+1 (31)

×
[
∂µ2 · · · ∂µk

∂L

∂(∂µ∂µ2 · · · ∂µnφA)

]
(∂µk+1

· · · ∂µn∂αφA).

This important example of a Noether current will be dis-
cussed in much more depth in Sec. VI.

C. Spacetime rotations

For the sake of illustration, we now limit our discus-
sion to the simplest case of scalar fields. We can then
again set ξA = 0 and take the coordinate transformation
as x′µ = xµ − θµνxν = xµ + 1

2θ
αβωµαβ , where θαβ is an

antisymmetric rank-two tensor of infinitesimal transfor-
mation parameters and ωµαβ = xαδ

µ
β − xβδ

µ
α. The in-

variance condition (4) is satisfied with Kµ = 0 provided
[∂L /∂(∂µφA)]∂νφA, or equivalently Tµν , is symmetric
in the indices µ, ν, which is the case for scalar fields.20

Eq. (5) then implies for the conserved tensor current,

Mµαβ =

[
ηµνL − ∂L

∂(∂µφA)
∂νφA

] (
xαδβν − xβδαν

)
= xαTµβ − xβTµα.

(32)

This relation between the EM and angular momentum
tensors is not accidental. Local infinitesimal translations
and rotations coincide provided one identifies their pa-
rameters by aµ(x) = 1

2f
µ
αβ(x)θαβ(x), where fµαβ = ωµαβ =

xαδ
µ
β − xβδµα. Next, we note that Tµν∂µf

ν
αβ = Tαβ − Tβα

vanishes provided Tµν is symmetric. The integrabil-
ity condition (14) is then satisfied with Nµ

αβ = 0, and

Eq. (15) immediately tells us that

Mµ
αβ = fναβT

µ
ν = xαT

µ
β − xβT

µ
α, (33)

in agreement with the result obtained above directly from
Noether’s (first) theorem.

D. Dilatations

For a further illustration, let us return to the theory
of a free massless scalar field, Eq. (24). An infinitesimal

dilatation is a rescaling of the coordinate with infinites-
imal parameter δ, x′µ = (1 + δ)xµ, so that ωµ(x) = xµ.
Suppose that the scalar field rescales simultaneously ac-
cording to

φ′(x′) = (1 + δ)∆φ(x), (34)

so that ξ(x) = ∆φ. The invariance condition (4) is satis-
fied with Kµ = 0 provided that ∆ = 1− d/2, where d is
the dimension of the spacetime. Equation (5) then gives
the canonical dilatation current21

Dµ = xνTµν + ∆φ∂µφ, (35)

where the canonical EM tensor is given by the right-hand
side of Eq. (30).

In d = 2 dimensions, the scale dimension ∆ of the
scalar field vanishes and a local dilatation can be recov-
ered from a local translation with aµ(x) = fµ(x)δ(x)
where fµ(x) = xµ. Moreover, Tµν∂µf

ν = 0, hence the
integrability condition (14) is trivially satisfied. Equa-
tion (15) then implies that the dilatation current is re-
lated to the EM tensor by Dµ = fνTµν = xνT

µν , which
agrees with the above explicit calculation. Note that the
EM tensor is sometimes “improved” ad hoc so that the
relation Dµ = xνT

µν holds;21 our discussion of locally
equivalent symmetries suggests that this relation is only
natural in two spacetime dimensions.

E. Galilei transformations

Until now, most of the discussed examples were ex-
plicitly relativistic, and we even used consistently the
four-vector notation. However, our general results of
course apply equally well to nonrelativistic systems. For
a concrete example, consider a theory of a complex
Schrödinger field ψ(x). This is usually equipped with
the symmetry under a change of phase of the field,
ψ′(x) = eiθψ(x), which implies conservation of the num-
ber of particles.

What really distinguishes nonrelativistic systems from
relativistic ones, however, is the invariance under Galilei
boosts as opposed to Lorentz transformations. Under
a coordinate boost x′ = x + vt with velocity v, the
Schrödinger field transforms as

ψ′(x′, t) = eim(v·x+ 1
2v

2t)ψ(x, t). (36)

An infinitesimal boost takes accordingly the form
ψ′(x′, t) = ψ(x, t) − imvixiψ(x, t).22 We can thereby
identify ξi(x) = −imxiψ(x) and ωµi (x) = δµi t, where the
velocity vi serves as the parameter of the transformation.

We will not attempt to write down a fully general ex-
pression for the Noether current arising from invariance
under Galilei boosts. Instead, we will concentrate on its
interplay with Noether currents of other symmetries. A
local infinitesimal Galilei boost is equivalent to a combi-
nation of a local translation with aµ(x) = δµi v

i(x)t and
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a local phase transformation with θ(x) = −mxivi(x). In
the language of Sec. III, this corresponds to fµi (x) = δµi t

and f̃i(x) = −mxi. By Eq. (14), the EM tensor Tµν and
the particle number current Jµ must satisfy the integra-
bility condition23

T 0i −mJ i = ∂µN
µi (37)

with some vector function Nµi. By Eq. (15), the boost
Noether current Bµi then satisfies the relation

Bµi = tTµi −mxiJµ −Nµi. (38)

Whether or not the vector function Nµi(x) vanishes
is a dynamical question that can be answered by an
analysis within a concrete model. It can nevertheless
be shown that Nµi = 0 provided the spatial translation
and phase symmetries of the Schrödinger field can be
simultaneously gauged as required by the approach of
Sec. IV. Namely, by a slight generalization of the argu-
ment therein, one can then deduce identities equivalent
to Eqs. (37) and (38) with Nµi = 0.8 A detailed discus-
sion would, however, take us far beyond the scope of this
paper, as it would require the knowledge of the nonrela-
tivistic version of general coordinate invariance.24

VI. ENERGY–MOMENTUM TENSOR

The EM tensor is undoubtedly the most important ex-
ample of a Noether current. In Sec. V B, we derived the
canonical EM tensor Tµν(x) using Eq. (9). However, a
different definition of the EM tensor is often used when
the given set of matter fields is (or can be) coupled to a
background metric tensor gµν(x) in such a way that the

resulting action S̃[φ, g] is invariant under general coordi-
nate transformations. The “metric” EM tensor is thus
defined by

θµν(x) = 2
δS̃

δgµν(x)

∣∣∣∣
g=η

, (39)

where ηµν is the actual (Minkowski) metric of the space-
time. It is not a priori obvious how the tensors Tµν(x)
and θµν(x) are related, and it is in fact well known that
they in general do not coincide, notably when the theory
contains fields with spin (see Ref. 25 for a review of the
various constructions of the EM tensor).

As a simple example, consider the theory of a massive
vector field Bµ(x), defined by

L = −1

4
FµνF

µν − 1

2
m2BµB

µ, (40)

where Fµν = ∂µBν − ∂νBµ.26 The field Bµ is to be iden-
tified with the matter field φA in Eq. (2), and using the
identity ∂L /∂(∂µBν) = −Fµν , we obtain from Eq. (30)
the canonical EM tensor,

Tµν = ηµνL + Fµα∂νBα. (41)

The metric EM tensor is found by writing the action in a
generally covariant form. Skipping the well-known steps
of the calculation, we just quote the result,

θµν = ηµνL + FµαF να +m2BµBν . (42)

Thanks to the antisymmetry of Fµν , we have

Tµν ' ηµνL + Fµα∂νBα − ∂α(FµαBν)

= θµν −Bν(∂αF
µα +m2Bµ),

(43)

where the symbol' indicates equality up to a term whose
divergence identically vanishes off-shell. The expression
in the parentheses on the second line defines the equation
of motion for the vector field Bµ, and thus vanishes on-
shell. The Tµν and θµν tensors are therefore related, but
not equal or even physically equivalent.

The metric EM tensor (42) is distinguished from the
canonical EM tensor (41) by two appealing properties:
the symmetry in µ, ν and the dependence solely on Fµν

in the limit m → 0. The problem how to “improve” the
canonical EM tensor in order to reproduce these proper-
ties has a long history, from a purely ad hoc argument27

to more refined approaches, typically invoking additional
constraints to fix the ambiguity in the EM tensor, espe-
cially the electromagnetic gauge invariance.28

Here we wish to understand the relation between the
canonical and metric EM tensors using only translational
invariance, building on our understanding of the intimate
connection between the form of the Noether current and
the local symmetry transformation, used to obtain it via
Eq. (1). Naively, the metric EM tensor is exactly what we
would expect from the gauge-invariance-based approach
of Sec. IV, which we claimed therein to be merely an al-
ternative way to derive the same canonical Noether cur-
rent as in Sec. I. How is it then possible that the canonical
and metric EM tensors do not coincide?

This naive expectation has two flaws, which suggest
two possibilities how to reconcile the canonical and met-
ric EM tensors. First, under general coordinate transfor-
mations, a vector field (in fact, any non-scalar field) does
not transform according to Eq. (2) with ξA = 0, which
was the starting point in the derivation of the canonical
EM tensor in Sec. V B. Second, the transformation of the
metric gµν under general coordinate transformations does
not match the ansatz (17), on which our gauge invariance
approach in Sec. IV is based. Below we will show that: (i)
it is perfectly possible to obtain the symmetric EM tensor
θµν using Noether’s canonical approach, provided that we
start from a suitably defined local translation; (ii) it is
perfectly possible to reproduce the canonical EM tensor
Tµν using the gauge invariance approach, provided that
we express the generally covariant action solely in terms
of scalar field variables, whose transformation properties
match Eq. (2) with ξA = 0.
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A. Metric EM tensor from Noether’s theorem

Under the infinitesimal general coordinate transforma-
tion x′µ = xµ + aµ(x), a covariant vector field such as
Bµ(x) transforms as

B′µ(x′) = Bµ(x)−Bν(x)∂µa
ν(x). (44)

This does not match Eq. (2), which does not contain any
derivatives of the transformation parameter. We there-
fore have to resort to its generalization, Eq. (10). Upon
rewriting Eq. (44) as B′µ(x′) = Bµ(x) + σνµα(x)∂νa

α(x),
we can identify σνµα(x) = −δνµBα(x). This gives via
Eq. (11) the canonical EM tensor, corresponding to the
local translation of the field, defined by Eq. (44),

Tµν = Tµν
∣∣∣
σ=0

+ ηνασµλα
δS

δBλ
' θµν , (45)

where we used the fact that δS/δBµ = −(∂αF
µα+m2Bµ)

in the last step.
This shows that the metric EM tensor θµν can be nat-

urally recovered from the canonical Noether procedure.
There is no ambiguity in the derivation apart from that
expressed by the ' relation; we merely insisted that the
local form of the symmetry transformation, used to de-
duce the EM tensor via Eq. (1), matches the form of the
general coordinate transformation of the field.

B. Canonical EM tensor from gauged action

We would now like to apply the formalism developed
in Sec. IV to an action where spacetime translations are
gauged by coupling the matter fields to a background
spacetime geometry. To that end, we trade the met-
ric gµν(x) for the vielbein eµa(x). This constitutes a set
of fixed vectors, labeled by the index a, forming a local
basis at any spacetime point. It is customary, though
not mandatory, to require that the basis be orthonor-
mal, that is gµνe

µ
ae
ν
b = ηab. The vector index µ of the

vielbein is raised and lowered using the spacetime met-
ric gµν , whereas the basis index a is raised and lowered
using the Minkowski metric ηab. The inverse relation
gµν = ηabe

a
µe
b
ν , which expresses the completeness of the

vielbein basis, allows us to trade the metric for the co-
variant vielbein vectors eaµ(x).

Under the infinitesimal general coordinate transforma-
tion x′µ = xµ + aµ(x), the covariant vielbein transforms
just like the Bµ field in Eq. (44). This can be expressed
equivalently as

e′aµ (x) = eaµ(x)− eaα∂µaα − aα∂αeaµ, (46)

which takes the form of Eq. (17). We thus identify

Ξaαµ = −∂αeaµ, Σaα = −eaα. (47)

The absence of the background gauge field corresponds
to eaµ(x) = δaµ so that the consistency condition (19) is

satisfied trivially with Rµα = 0. The energy-momentum
tensor is then given by Eq. (20) as

Tµα(x) = eaα(x)
δS̃

δeaµ(x)

∣∣∣∣
e=δ

. (48)

As follows from the derivation in Sec. IV, this EM tensor
has to equal that extracted from the canonical procedure
based on Eq. (1), provided that the local symmetry trans-
formations of the matter fields φA in the two approaches
match. To that end, it is important to realize that differ-
ent local symmetry transformations of the matter fields
require different forms of the generally coordinate invari-
ant action S̃[φ, e].

The metric EM tensor θµν is obtained via Eq. (48)
from a generally covariant action where the matter field
Bµ is a covariant vector, that is transforms according to
Eq. (44). Such an action can be taken as

S̃[Bµ, e
a
µ] =

∫
dx
√
−‖g‖ (49)

×
(
− 1

4g
µαgνβFµνFαβ − 1

2m
2gµνBµBν

)
,

where gµν = ηabeµae
ν
b . In order to compute the variation

of the action with respect to the covariant vielbein eaµ,

one can use the identities δeµa = −eµb eνaδebν and δ‖e‖ =
‖e‖eµaδeaµ. Eq. (48) then yields the EM tensor (42) after
a straightforward computation.

The nonsymmetric EM tensor Tµν (41) can likewise be
obtained via Eq. (48) from a generally covariant action
where the matter field is a scalar, that is, transforms
according to Eq. (2) with ξ = 0. This can be achieved by
projecting Bµ on the vielbein to get Ba(x) = eµa(x)Bµ(x),
and analogously Fab = eµa∂µBb − e

µ
b ∂µBa. In this case,

the generally covariant action can thus be taken as

S̃[Ba, e
a
µ] =

∫
dx ‖e‖

(
− 1

4η
acηbdFabFcd − 1

2m
2ηabBaBb

)
.

(50)
It is then a matter of a straightforward exercise to show
that Eq. (48) indeed leads to the canonical EM ten-
sor (41).

VII. SUMMARY AND CONCLUSIONS

The (first) Noether theorem predicts the existence of
a conserved current in a system with a global continu-
ous symmetry. In this article, we showed that additional
insight may be gained by inspecting the role of the cor-
responding local field transformations. While not being
a symmetry of the action on their own, these provide
a useful tool to identify the Noether current. Moreover,
they illuminate part of the ambiguity associated with the
definition of the current.

The emphasis on local symmetry transformations led
us naturally to certain linear relations between currents
of distinct global symmetries that coincide on the local
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level. While none of the examples worked out in Sec. V is
new, our general argument provides a unified framework
for their understanding. Moreover, the utility of the mas-
ter formula (15) goes beyond the examples of Sec. V: it
has been used for instance to analyze the low-energy scat-
tering of massless particles in certain class of exceptional
field theories.29

Finally, our analysis of the correspondence between dif-
ferent local symmetry transformations associated with
the same global symmetry, and different forms of the
Noether current of this symmetry, sheds (what we be-
lieve to be) new light on the infamous discrepancy be-
tween the canonical and metric EM tensors in theories
of particles with spin. It turns out that the discrepancy
is non-existent as long as one uses a fixed form of the
local translation consistently. In particular, this means

that the symmetric EM tensor can be naturally recovered
from the canonical Noether procedure. Somewhat more
surprisingly, the naive canonical EM tensor can likewise
be recovered from a generally covariant field theory, ob-
tained by coupling the system to a background geometry.
We believe that these observations are of certain peda-
gogic value for both students and professionals, as they
refute the lore that the canonical EM tensor needs an ad
hoc “improvement” to match the metric EM tensor.
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