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Gravitational wave observations of the ringdown of the remnant black hole in a binary black hole
coalescence provide a unique opportunity of confronting the black hole no-hair theorem in general
relativity with observational data. The most robust tests are possible if multiple ringdown modes
can be observed. In this paper, using state-of-the-art Bayesian inference methods and the most up-
to-date knowledge of binary black hole population parameters and ringdown mode amplitudes, we
evaluate the prospects for black hole spectroscopy with current and future ground based gravitational
wave detectors over the next 10 years. For different population models, we estimate the likely number
of events for which the subdominant mode can be detected and distinguished from the dominant
mode. We show that black hole spectroscopy could significantly test general relativity for events
seen by the proposed LIGO Voyager detectors.

I. INTRODUCTION

The remnant black hole (BH) formed after the coa-
lescence of two compact objects emits gravitational ra-
diation while settling down to a Kerr BH. This stage is
known as the ringdown. Perturbation theory predicts
that, at late enough times, the ringdown consists of a
superposition of exponentially damped sinusoids called
quasinormal modes (QNM) [1, 2] (see also [3, 4]). The
QNMs are characterized by a set of complex frequencies
Ω`mn labeled by three integers; `,m are angular quan-
tum numbers while n = 0, 1, 2 . . . is the overtone index.
According to the no-hair theorem in standard general rel-
ativity (GR), Ω`mn is uniquely defined by the BH mass
and spin. The measurement of multiple QNMs in a BH
ringdown, known as BH spectroscopy, is crucial for robust
observational tests of the no-hair theorem with gravita-
tional waves based only on the ringdown signal [5, 6].

The excitation of different QNMs depends on the na-
ture of the perturbation, i.e. on the properties of the
binary progenitor [7–11]. Thus, for aligned spin systems,
the amplitude of the different modes are determined by
the spins of the initial compact objects and the mass ra-
tio q = m1/m2 ≥ 1, with m1,2 the mass of each object.
The ringdown signature is dominated by the fundamental
(`,m) = (2, 2) mode [12]. For non-spinning binaries with
equal masses (q = 1), odd ` modes vanish and the loud-
est subdominant mode is the (`,m) = (4, 4) mode [7, 8].
As the mass ratio increases, the (`,m) = (3, 3) mode
becomes the loudest subdominant mode, reaching ampli-
tude ratios as large as A330/A220 ' 0.3. Hence, coales-
cences of two unequal-mass BHs or neutron-star black-
hole binaries (NSBH) are the most promising sources for
measurability of subdominant modes in the ringdown.
For still higher mass ratios, the relative amplitude of the
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modes can also tell us about the alignment of the orbit
relative to the BH spin during the inspiral phase [9–11].

Two main conditions are necessary to test the no-
hair theorem: (i) the detectability of at least two
modes, and (ii) the resolvability of the frequencies and/or
damping times of each mode. Theoretical estimates
of the necessary ringdown signal-to-noise ratio (SNR)
for each of these conditions can be found in the liter-
ature [6, 13]. These studies have predicted that Ad-
vanced LIGO should observe several ringdown events at
design sensitivity, but will not be able to detect subdom-
inant modes from the coalescence of stellar-mass BBH
for BH spectroscopy [14, 15]. In this paper we revisit the
prospects for accurate BH spectroscopy with the next
decade of LIGO detectors. In general, asymmetric bina-
ries are more likely to produce higher amplitudes for the
subdominant ringdown modes. However, based on the
gravitational-wave observations to date, more asymmet-
ric systems are also likely to be much fewer in number [16]
(although recent public alerts from the third observing
run of Advanced LIGO and Virgo suggest possible de-
tections of NSBH [17, 18]). In addition, the orientation
of a source relative to the detectors also has an important
effect on the observed amplitudes. Systems where the an-
gular momentum is aligned with the line-of-sight to the
source are more luminous, but these orientations are not
favorable for observing the subdominant modes. Taking
all these effects into account, along with the most up-to-
date estimates of the ringdown mode amplitudes [8] and
state-of-the-art gravitational wave parameter estimation
techniques [19, 20], we show that black hole spectroscopy
can provide non-trivial limits on general relativity with
the LIGO Voyager detector.

At least 10 binary black-hole (BBH) coalescences have
been observed in the first two observing runs of Advanced
LIGO and Virgo [21–26]. The loudest BBH event is
still the first detection, GW150914 [27], with a ringdown
signal-to-noise ratio (SNR) ρ ' 8.5 [28] at 3 ms after
merger. This event has not provided significant evidence
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for the presence of measurable subdominant modes with
` 6= 2 [29]. However, recent work suggests that the in-
clusion of higher overtones of the dominant ` = 2 mode
allows for the modeling of the ringdown immediately af-
ter the merger, hence obtaining higher SNR in ringdown
signatures [30]. The analysis of the GW150914 ringdown
using the fundamental mode and its first overtone pro-
vides the first constraints to date of deviations of the
no-hair theorem using two QNMs [31]. Here we use the
Bayesian inference and model selection frameworks [32]
on simulated BBH populations to establish the measura-
bility and accurate resolvability of two ringdown QNMs
over the next decade, providing rate estimates for con-
straining the no-hair theorem to within ±20% at the 90%
credible level. We restrict ourselves to the resolvability
of subdominant QNMs (` 6= 2) for two reasons: (1) the
excitation amplitudes of overtones on the general param-
eter space of the binary’s properties are not yet well-
understood and we lack predictions to model ringdown
signatures that include overtones for a large population of
BBH mergers, and (2) the frequencies of the overtones are
very similar to each other, hence accurate resolvability of
an overtone is more challenging than of a subdominant
mode.

This manuscript is organized as follows. Section II
introduces the Bayesian inference and model selection
frameworks, as well as the ringdown model used. Sec-
tion III describes the details on the BBH population con-
sidered. In Section IV we report the rates on measurable
subdominant modes and prospects for resolvability of the
necessary parameters to perform tests of the no-hair the-
orem. Finally, we conclude our findings in Sec. V.

II. BAYESIAN FRAMEWORK

We use Bayesian methods to infer the properties of
the remnant BH from our data, d(t), and to determine
the presence of a measurable subdominant mode in the
ringdown signature. Given a model hypothesis of the
ringdown signal, H, parametrized by the source proper-

ties, ~ϑ, Bayes’ theorem defines the posterior probability
distribution:

p(~ϑ|d,H) = p(~ϑ|H)
p(d|~ϑ,H)

p(d|H)
, (1)

where p(~ϑ|H) is the prior knowledge based on astro-
physical populations or theoretical models, the likelihood

p(d|~ϑ,H) is the conditional probability of observing the

data d(t) given the model H with parameters ~ϑ, and the
evidence p(d|H) is a normalization constant that only
depends on the data and the chosen model. Calculat-
ing the evidence requires marginalization over the en-
tire parameter space, which can become computationally
challenging. While this computation can be avoided for
Bayesian parameter estimation, model selection between

two competing models requires accurate estimates of the
evidence.

In Bayesian model selection, the Bayes factor weighs
the evidence provided by the data in support of one
model versus another [32, 33]:

BAB =
p(d|HA)

p(d|HB)
. (2)

The larger BAB is, the stronger the data supports hy-
pothesis HA over HB . Following the nomenclature
of [32], a Bayes factor > 3.2 indicates “substantial” sup-
port for HA over HB ; BAB > 10 indicates “strong” sup-
port, while BAB > 100 is “decisive”. A Bayes factor be-
tween 1/3.2 and 3.2 is “not worth mentioning”; i.e., the
data is inconclusive as to whether HA or HB is favored.

A. The likelihood function

For a GW detector network with uncorrelated station-
ary Gaussian noise, the likelihood is given by

p(d|~ϑ,H) ∝ exp

[
−1

2

N∑
a=1

〈da − ha(~ϑ), da − ha(~ϑ)〉

]
,

(3)
where N is the number of detectors, da is the data for

each detector, and ha(~ϑ) is the waveform model evaluated

for a set of parameters ~ϑ as observed by detector a. The
noise-weighted inner product is defined as

〈x, y〉 = 4<
∫ ∞

0

x̃∗(f)ỹ(f)

Sn(f)
df , (4)

with Sn(f) being the one-sided power spectral density
(PSD) of the detector’s noise, x̃(f) the Fourier transform
of x(t), and ∗ indicating the complex conjugate.

In this paper we use the PyCBC Inference [19, 20]
toolkit to compute the likelihood function and estimate
posterior probability distributions. Accurate marginal-
ization for evidence estimation is achieved using the
nested sampling algorithm cpnest [34].

B. The ringdown model

The strain h(t) produced by a gravitational wave at
the detector is given by

h(t) = F+(α, δ,Ψ)h+(t) + F×(α, δ,Ψ)h×(t) , (5)

where F+,× are the antenna pattern functions determined
by the relative orientation between the detector frame
and the wave frame [35], i.e. the sky location of the
source (right ascension α and declination δ in a geocen-
tric coordinate system) and the polarization angle Ψ that
defines the relative orientation of the wave frame with the
geocentric coordinate system. For short transient signals,



3

these orientation angles (and hence F+,×) are assumed to
be time independent. For future generation of observa-
tories with improved low frequency sensitivity, it might
become necessary to account for the time dependence of
F+,×. However, the ringdown itself will be short enough
that for our purposes we do not need to consider this
effect here.

The ringdown signal of a Kerr BH consists of a sum of
exponentially damped sinusoids:

h+ + ih× =
M

DL

∑
`,m,n

−2S`m(ι, ϕ)A`mne
i(Ω`mnt+φ`mn) ,

(6)
where M is the mass of the BH in the detector frame
and DL is the luminosity distance to the source. The
functions −2S`m(ι, ϕ) are the spin-weighted spheroidal
harmonics, which depend on the inclination angle ι be-
tween the BH spin and the line-of-sight from the observer
to the source, and the azimuth angle ϕ between the BH
and the observer. The complex QNM frequencies Ω`mn,
determined from the Teukolsky equation [36, 37], define
the frequency and damping time of the damped sinusoid,
Ω`mn = ω`mn + i/τ`mn. The amplitudes A`mn and φ`mn
depend on the initial perturbation and take different val-
ues for different (`,m, n) modes. Henceforth, we restrict
ourselves to the n = 0 overtone and drop the overtone
index n for simplicity.

Assuming that the ringdown begins at t = 0, the two
gravitational-wave polarizations are given by

h+(t) =
M

DL

∑
`,m

−2Y
+
`m(ι)A`me

−t/τ`m cos(ω`mt+ φ`m) ,

h×(t) =
M

DL

∑
`,m

−2Y
×
`m(ι)A`me

−t/τ`m sin(ω`mt+ φ`m) ,

(7)

where we have approximated the spheroidal harmonics

−2S`m by spin-weighted spherical harmonics −2Y`m [13,
38]:

−2Y
+
`m(ι) = −2Y`m(ι, 0) + (−1)`−2Y`-m(ι, 0) ,

−2Y
×
`m(ι) = −2Y`m(ι, 0)− (−1)`−2Y`-m(ι, 0) . (8)

The ringdown analysis in this paper follows the meth-
ods developed in [39, 40]. We use two different waveform
models, a (i) Kerr model where we assume the remnant
object to be a Kerr BH, hence the ringdown QNM fre-
quencies Ω`mn are uniquely determined by the mass M
and the spin χ of the BH, and an (ii) agnostic model
where we assume the nature of the remnant object to be
unknown, hence the ringdown is parameterized by each
individual QNM frequency Ω`mn and we drop the fac-
tor M/DL in Eq. (7). The Kerr model (i) is our starting
point for determining the measurability of a subdominant
mode. Resolvability of the subdominant mode for test-
ing the no-hair theorem is determined using the agnostic
model (ii).

III. POPULATIONS

We construct populations of candidate BBH ringdown
signals based on the observational population model B
of [16] (we ignore NSBH mergers here because popu-
lation models including NSBH are largely uncertain).
The component-mass and mass-ratio distributions follow
power laws with exponents −α and βq, respectively (see
Eq. (2) in [16]). For the component-mass distribution,
the measured median value is α = 1.6, with masses in
the range [5.4, 57)M� (we use the lowest mmin and the
largest mmax values, to account for uncertainties in the
mass bounds of BHs). For the mass-ratio distribution we
use two different exponent values: the measured median
value βq = 6.7, and a uniform distribution βq = 0 (which
is used in model A of [16]). Mass ratios are restricted
to be within the range [1, 8). We assume the individ-
ual BHs to be non-spinning prior to the merger, which
is consistent with the population of BBHs observed by
LIGO/Virgo thus far. Sources are distributed uniformly
in co-moving volume; we choose a maximum luminosity

distance, D
(max)
L , dependent on the considered detector

network. The inclination angle ι is distributed uniformly
in cos ι ∈ [−1, 1), and the polarization angle ψ uniformly
∈ [0, 2π).

The mass and spin of the remnant Kerr BH determine
the ringdown frequencies Ω`m [41]. We obtain an esti-
mate of the remnant’s source frame mass M (src) and di-
mensionless spin χ using the fitting formulae to numerical
relativity [42, 43] implemented in the LALSuite software
package [44]. The detector frame mass M is given by
M = (1 + z)M (src), where z is the redshift calculated
from the luminosity distance, DL, assuming a standard
ΛCDM cosmology [45]. The excitation amplitudes A`m,
which depend on the mass ratio q of the binary, are deter-
mined using the fitting formulae in [8] at t = 10M after
the merger. The phases φ`m of the modes are distributed
uniformly in φ`m ∈ [0, 2π), in contrast to previous work
in the literature where both phases were fixed for sim-
plicity [13, 46, 47].

The BBH parameters for each candidate are drawn
randomly from their respective distributions to generate
two-mode ringdown signals with the dominant (`,m) =
(2, 2) mode and either the (`,m) = (3, 3) or the (`,m) =
(4, 4) subdominant mode. We consider a three-detector
LIGO network consisting of the observatories in Han-
ford (H1), Livingston (L1) and India (I1). We use three
different sensitivities for these detectors [48]: Advanced
LIGO design sensitivity (Adv. LIGO), A+ and Voyager.
We do not consider here the complete third generation
detectors, which include the Einstein Telescope [49–51]
and Cosmic Explorer [52], or the space based LISA mis-
sion [53], since this would take us beyond the 10-year
timeframe.

For each candidate, we calculate the optimal SNR of
the subdominant mode in each detector, ρdet =

√
〈h, h〉,

where h is the ringdown signal of the subdominant mode
projected into the detector (see Eq. (??)). To avoid a
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FIG. 1. Source frame mass, M (src), and spin, χ, of the BHs
with optimal SNR ρc ≥ 2.5 in the subdominant mode (either
the (3, 3) or the (4, 4) mode), obtained using the observational
population models of [16]. The colors represent the luminosity
distance of the source, where the maximum allowed distance

was D
(max)
L = {1, 3, 5} Gpc for Adv. LIGO, A+ and Voyager,

respectively

large number of sources with no measurable subdomi-
nant mode, we reject candidates with combined optimal
SNR ρc =

√∑
det ρ

2
det < 2.5 in the subdominant mode.

For the same reason, the maximum DL considered is lim-
ited to different values for different sensitivities, namely

D
(max)
L = {1, 3, 5} Gpc for Adv. LIGO, A+ and Voy-

ager, respectively. The number of draws required to find
a sample population of 100 signals with ρc ≥ 2.5 in the
subdominant mode yields the fraction of interesting can-
didates out of all BBH signals. Figure 1 shows the result-
ing populations for each detector network considered.

IV. ANALYSIS AND RESULTS

A. Rates of measurable subdominant modes

We add the population of accepted candidate ringdown
signals (shown in Fig. 1) into different Gaussian noise
realizations colored with the PSD of the desired detec-
tor. To determine the measurability of the subdominant
mode, we use the Kerr BH ringdown model and perform
two separate Bayesian parameter estimation analyses us-
ing: (HA) templates with the fundamental (2, 2) mode
plus the corresponding (`,m) subdominant mode, and
(HB) templates with only the fundamental (2, 2) mode.
The Bayes factor BAB is then calculated as the ratio of
the evidences for model HA versus model HB . Those
sources with BAB > 3.2 are further analyzed in the next
section to determine the resolvability of the subdominant
mode.

The parameters (M , χ, A`m, φ`m, ι, ψ) are esti-
mated from the data, which represents a set of 8 pa-
rameters in the two-mode ringdown HA, and 6 pa-
rameters in the single-mode ringdown HB . The pri-

ors used in the parameter estimation analysis are uni-
form in all parameters: BH mass M ∈ [10, 200)M�, BH
spin χ ∈ [−0.99, 0.99), log-amplitude of the fundamental
mode log10(A22) ∈ [−4, 4), relative subdominant mode

amplitude Â`m = A`m/A220 ∈ [0, 0.5), ringdown phases
φ`m ∈ [0, 2π), polarization angle ψ ∈ [0, 2π), and incli-
nation angle cos(ι) ∈ [−1, 1). We fix the start time of
the ringdown, the (`,m) of the subdominant mode, the
sky location and the distance to the source to the in-
jected values. While the start time of the ringdown is
not uniquely defined in the literature, we do not explore
the issue in this paper and assume that this can be deter-
mined by other means [29, 40, 54]. Further, we can safely
assume that we have some knowledge from the inspiral
part of the signal regarding the mass ratio of the binary
to determine which is the loudest subdominant mode to
look for. Since we are using a network of three detectors,
the sky location should be relatively well known from
the analysis of the full gravitational-wave signal. Finally,
while the distance might not be accurately measured, fix-
ing this parameter to a wrong value will only affect the
measurement of the fundamental amplitude A22 and not
affect our conclusions.

We calculate the rate of ringdown events with de-
tectable subdominant mode in each detector network
based on the BBH merger rate density given in [16]
(R = 53.2+58.5

−28.8 Gpc−3 yr−1) and the co-moving volume

up to D
(max)
L for each detector network. Table I lists

the rate of events per year with substantial (BAB > 3.2),
strong (BAB > 10), and decisive (BAB > 100) support
for the presence of a subdominant mode. These rates are
the combination of both the (3, 3) and the (4, 4) modes.
While we have made the simplifying assumption that
only one subdominant mode will be measurable, some
of the considered BBH systems might have two subdom-
inant modes with SNR ρc ≥ 2.5. However, studying the
performance of a three-mode ringdown Bayesian analysis
is beyond the scope of this paper.

B. Resolvable subdominant modes for testing GR

In the presence of two measurable ringdown modes,
resolvability of the Ω`m frequencies allows for BH spec-
troscopy tests. However, QNMs of rotating BHs in mod-
ified theories of gravity have not been calculated [55],
and Kerr-like exotic compact objects can have the same
or similar QNM spectrum as Kerr BHs [56]. While it
might be challenging to disprove all BH alternatives, ac-
curate measurements of the QNM spectrum will be cru-
cial to constrain deviations from GR (see however [57] for
possible ways of parameterizing frequencies and damping
times accounting for deviations from GR). It has been
shown for non-rotating alternative BH models that GR
deviations are more significant in the QNM frequencies
than in the damping times [58]. Hence, we focus here
on constraining deviations from the subdominant mode’s
frequency.
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βq = 0 βq = 6.7

BAB > 3.2 BAB > 10 BAB > 100 BAB > 3.2 BAB > 10 BAB > 100

Adv. LIGO 0.036+0.039
−0.019 0.028+0.031

−0.015 0.011+0.012
−0.006 0.008+0.009

−0.004 0.006+0.007
−0.003 0.003+0.003

−0.001

A+ 0.46+0.51
−0.25 0.28+0.31

−0.15 0.14+0.15
−0.07 0.08+0.09

−0.04 0.06+0.06
−0.03 0.03+0.03

−0.02

Voyager 2.63+2.89
−1.42 1.83+2.01

−0.99 0.89+0.97
−0.48 0.30+0.33

−0.16 0.21+0.24
−0.12 0.11+0.12

−0.06

TABLE I. Rates of BBH ringdown signals per year (yr−1) with a detectable subdominant (3, 3) or (4, 4) mode for a population
with uniform mass-ratio distribution (βq = 0) and for a population with βq = 6.7. The Bayes factors in each column indicate
substantial support (BAB > 3.2), strong support (BAB > 10), and decisive support (BAB > 100) for the presence of a second
mode.

We consider those ringdown events with BAB > 3.2 in
the previous section and perform the same parameter es-
timation analysis, now using the agnostic model defined
in Sec. II B to estimate the ringdown Ω`m frequencies of
the two QNMs. Hence, 10 parameters (ω`m, τ`m, A`m,
φ`m, ι, ψ) are now estimated from the data. The priors
are uniform in the frequencies f`m = ω`m/2π ∈ [50, 1024)
Hz and damping times τ`mn ∈ [0.45, 30) ms, exclud-
ing parameters that yield masses and spins outside of
the ranges used in the previous section with the Kerr
model. The amplitudes of the (`,m) modes have differ-
ent orders of magnitude, because of the missing factor
M/DL when dropping the Kerr assumption. Hence, the
prior in log-amplitude of the fundamental mode is now
log10(A22) ∈ [−25,−17). The priors in the remaining pa-
rameters are the same as in the previous section. Finally,
we apply an additional set of constraints on the subdom-
inant frequency and damping time to be within ±25% of
the GR expectation.

Using the fitting formulae in [41], we can compare the
mass and spin measurement obtained from the (2, 2) pa-
rameters and from the subdominant (`,m) parameters.
Furthermore, based on the measurement of the (2, 2)
mode, we can infer the measured deviation on the fre-
quency of the subdominant (`,m) mode, δf`m. Table II
lists the rates of BBH ringdown signals per year that con-
strain GR within δf`m ± 20% at the 90% credible level.
The results are summarized in Fig. 2.

Network δf`m ≤ ±20%

Adv. LIGO 0.026+0.028
−0.014

A+ 0.27+0.30
−0.15

Voyager 1.34+1.47
−0.73

TABLE II. Rates of BBH ringdown signals per year (yr−1)
with strong support for the presence of a second mode (BAB >
3.2) where deviations of the GR frequencies are constrained
to within δf`m ≤ ±20% at the 90% credible level. We only
show the rates for the population with uniform mass-ratio
distribution (βq = 0), since we know from the previous section
that rates for a population with βq = 6.7 will be lower.

V. CONCLUSIONS

In this paper we have applied for the first time the full
Bayesian inference framework to a population of BH ring-
downs derived from the observational population models
published by the LIGO Scientific and Virgo Collabora-
tions. Furthermore, we have allowed for completely vari-
able ringdown phases, inclination angles, polarization an-
gles and sky locations, contrary to previous works that
have fixed one or more of these parameters for simplic-
ity [13, 46, 47].

Within the Bayesian model selection framework, future
generations of LIGO detectors will likely deliver measur-
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FIG. 2. Expected rates of BBH mergers for which two ring-
down modes can be observed and resolved. We consider two
population models corresponding to βq = {0, 6.7}. Shown
are the rate of events that have “substantial”, “strong”,
and “decisive” Bayesian evidence (using the nomenclature
of Ref. [32]) for a two-mode Kerr hypothesis relative to a
single-mode hypothesis (filled circles, diamonds, and squares,
respectively). Of the events that have substantial evidence,
we perform a followup analysis in which the frequency and
damping time of the subdominant mode is allowed to deviate
from the expected GR value. The rate of events for which
the deviation from GR of the subdominant frequency |δflm|
is constrained to be ≤ 20% is given by the open circles.
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able subdominant QNM modes from BBH mergers over
the next decade. However, resolvability of the subdomi-
nant frequencies is technically challenging, and accurate
tests of the no-hair theorem might only be possible in
very few cases. These results are in agreement with previ-
ously published works [14, 15], where the ringdown SNR
was used to determine the measurability and resolvability
of QNMs.

Merger population models from gravitational-wave ob-
servations are still largely uncertain. The third observing
run of Advanced LIGO and Virgo might be uncovering
a new population of NSBH and other previously unob-
served types of mergers, which could boost the rates of
measurable and resolvable subdominant modes. Hence,
the rates obtained in this work might turn out to be pes-
simistic as more gravitational-wave detections are made
available.
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VII. APPENDIX

Results for the injection with the largest Bayes factor
in the (3, 3) population using the Voyager sensitivity.
This BBH is located at a distance DL ' 250 Mpc.
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