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We establish the existence of a far-from-equilibrium attractor in weakly coupled gauge theory
undergoing one-dimensional Bjorken expansion. We demonstrate that the resulting far-from-equilibrium
evolution is insensitive to certain features of the initial condition, including both the initial momentum-
space anisotropy and initial occupancy. We find that this insensitivity extends beyond the energy-
momentum tensor to the detailed form of the one-particle distribution function. Based on our results,
we assess different procedures for reconstructing the full one-particle distribution function from the
energy-momentum tensor along the attractor and discuss implications for the freeze-out procedure used in
the phenomenological analysis of ultrarelativistic nuclear collisions.
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Fluid-dynamic description is a powerful tool in the
phenomenological analysis of ultrarelativistic nuclear
collisions [1–3]. In a fluid-dynamic description of the
evolution of the collision system, only a small subset of
the degrees of freedom are dynamically evolved. These are
quantities derived from the energy-momentum tensor Tμν,
namely, local temperatures, velocities and, in the case of
viscous hydrodynamics, information about the shear and
bulk viscous tensors. The experiments do not, however,
measure fluid-dynamic variables, but rather distributions of
particles that have “frozen out” and free stream to the
detectors—the angular and momentum distributions of
these particles inform us about the material properties of
the fluid created [4]. To convert fluid-dynamic fields to
particle distributions, a freeze-out procedure has to be
applied. While the energy-momentum tensor depends only
on the first momentum-integral moments of the distribution
function, the particle distributions contain information
about all the moments. Therefore, the conversion of
the fluid-dynamic information to particle distributions
necessarily involves injection of new information in the
form of theoretical assumptions. The common procedure
is to assume that the distribution function has a near-
equilibrium form whose deviations from equilibrium arise
from formally small corrections—the shape of the correc-
tions is determined by the response of a linearized collision

kernel in some assumed kinetic theory to an infinitesimal
strain [5,6].
As the freeze-out procedure strongly affects the

phenomenological analysis and conclusions about the
matter created in ultrarelativistic heavy-ion collisions, it
is of great interest to scrutinize quantitatively how well
justified are the theoretical assumptions about the shape of
the nonequilibrium distribution functions. The need for
such scrutiny becomes increasingly important in the
case of small systems, e.g., peripheral nucleus-nucleus
collisions, proton-nucleus, and high-multiplicity proton-
proton collisions where fluid-dynamical description is
being applied to situations which most likely remain far
from equilibrium throughout their dynamical evolution.
There has been a large body of work quantifying to what

extent various different formulations of viscous fluid
dynamics are able to reproduce the time evolution of the
components of the energy-momentum tensor undergoing
expansion in various geometries. In particular, it has been
observed that the hydrodynamic constitutive equations that
relate the stress tensor to gradients of the flow fields are
well satisfied in systems which are still far from equi-
librium at least in systems characterized by flow with a
large degree of symmetry [7,8] (for systems with
less symmetry cf. Ref. [9–12])—a feat dubbed hydro-
dynamization without thermalization [13–35]. It has also
been observed that many microscopic models, as well as
various formulations of fluid dynamics, exhibit rapid
information loss of some details (in particular the initial
longitudinal pressure) of the initial condition leading to
nonequilibrium attractor behavior. The qualitative similar-
ity of the attractors between different theories has
been advocated to extend the applicability of the fluid-
dynamic models to far-from-equilibrium regimes where the
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ordinary justification of fluid dynamics as a near-
equilibrium expansion is questionable.
Much less attention has been paid to the validity of the

freeze-out procedure far from equilibrium. One of the
challenges is that models with trivial momentum depend-
ence, such as kinetic theory in relaxation time approxima-
tion, can give only limited information about the
validity of the freeze-out procedure, whereas strongly
coupled models without quasiparticle structure do not
even possess underlying particle distributions. Here, we
discuss the reconstruction of the particle distributions
from the energy-momentum tensor in the effective
kinetic theory (EKT) for weak-coupling quantum chromo-
dynamics (QCD) that becomes leading-order accurate in
the limit of high center-of-mass energy collisions [36]. The
rich momentum-dependent structure of the EKT collision
kernel allows for a nontrivial test of the freeze-out
procedure in this theoretically clean limit. We follow
0þ 1 d far-from-equilibrium Bjorken flow within this
model and compare different moments of the distribution
function to those predicted by hydrodynamic freeze-out
prescriptions. We find that EKT seems to exhibit qualita-
tively similar far-from-equilibrium attractor behavior to
kinetic theory in the relaxation time approximation (RTA)
and Israel-Stewart-type hydrodynamics [13,17,32] both at
early (early-time or pullback attractor) and late times (late-
time or hydrodynamic attractor). We find that this attractive
behavior is not restricted to the components of the
energy-momentum tensor but extends to other integral
moments as well. We observe that the commonly used
freeze-out prescriptions reproduce low-order moments of
the distribution well at late times, however, they can fail at
early times or when considering moments sensitive to
momenta much larger than the temperature. We discuss the
implications for phenomenological fluid-dynamic model-
ing of small collision systems such as pp and pA.
Methodology.—We make use of a numerical implemen-

tation of the effective kinetic theory of Refs. [8,36,37]. In
parametrically isotropic systems, EKT gives a leading order
accurate description (in αs) of the QCD time evolution of
the one-particle distribution function and allows for a
numerical realization of the so-called bottom-up thermal-
ization scenario [38]. In practice, we solve the EKT
Boltzmann equation for a gluonic plasma undergoing
one-dimensional Bjorken expansion with transverse trans-
lational symmetry such that the effective Boltzmann
equation reads [39]

−
dfðpÞ
dτ

þ pz

τ
∂pz

f ¼ C1↔2½fðpÞ� þ C2↔2½fðpÞ�; ð1Þ

where fðpÞ is the gluonic one-particle distribution function
(per degree of freedom). The elastic scattering term C2↔2

and the effective inelastic term C1↔2 include physics of

dynamical screening and Landau-Pomeranchuck-Migdal
suppression [8,36,37].
For the numerical solution of Eq. (1), we discretize

nðpÞ ¼ p2fðpÞ on an optimized momentum-space grid and
use Monte Carlo sampling to compute the integrals
appearing in the elastic and inelastic collisional kernels.
The algorithm used is based on Refs. [37,40] and exactly
conserves energy while also exactly accounts for the
particle number violation originating from the inelastic
contributions to the collisional kernel. Because of the
azimuthal symmetry of Bjorken flow, one can discretize
momentum space on an effectively two-dimensional grid—
here we use 250 × 2000 points in the p and x ¼ cos θ
directions, respectively. The momenta p are distributed on
a logarithmic grid in the ranges ½0.02; 45�Λ, where Λ is
the typical energy scale of the initial condition. In all
figures presented herein, we used ‘t Hooft coupling
λ ¼ Ncg2 ¼ 10 corresponding to a specific shear viscosity
of η̄ ¼ η=s ≈ 0.62 [14,41].
We follow the time evolution of a complete set of integral

moments characterizing the momentum dependence of the
distribution function [27]

MnmðτÞ≡
Z

d3p
ð2πÞ3 p

n−1p2m
z fðτ;pÞ; ð2Þ

where p ¼ jpj. Note that the energy density is given by
ε ¼ νM20, longitudinal pressure by PL ¼ νM01, and
number density by n ¼ νM10 for ν degrees of freedom
(ν ¼ 2dA for dA adjoint colors of gluons). The other
moments do not have an interpretation in terms of the
usual hydrodynamic moments considered in the literature,
although the m ¼ 0 modes are simply related to the
effective temperatures introduced in Refs. [42,43].
In our results, these moments will be scaled by their

corresponding equilibrium values with M̄nmðτÞ≡
MnmðτÞ=Mnm

eq ðτÞ, where, using a Bose distribution, one
obtains

Mnm
eq ¼ Tnþ2mþ2Γðnþ 2mþ 2Þζðnþ 2mþ 2Þ

2π2ð2mþ 1Þ : ð3Þ

The temperature T here corresponds to the temperature of
an equilibrium system with the same energy density, given
by T ¼ ð30ε=νπ2Þ1=4.
The different moments are sensitive to different

momentum regions of the distribution function and for
future comparisons, we note that, in equilibrium, the
typical momentum contributing to a given moment
is hpinmeq ¼ Mnþ1;m

eq =Mnm
eq , giving, e.g., hpi10eq ≃ 2.7T,

hpi01eq ¼ hpi20eq ≃ 3.83T, hpi21eq ≃ 5.95T, and hpi33eq ≃ 11T.
Results.—In Figs. 1 and 2, we present results for the

evolution of three scaled moments, M̄01, M̄21, and M̄33,
in panels (a), (b), and (c), respectively. These simulations
have been initialized with either of the two following initial
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conditions: (i) spheroidally deformed thermal initial
conditions which we will refer to as “RS” initial conditions
[44] and (ii) nonthermal color-glass-condenssate (CGC)
inspired initial conditions [8]. In the first case, the initial
gluonic one-particle distribution function is taken to be of
the form

f0;RSðpÞ ¼ fBoseð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξ0p2

z

q
=Λ0Þ; ð4Þ

where −1 < ξ0 < ∞ encodes the initial momentum
anisotropy and Λ0 is a temperaturelike scale that sets the
magnitude of the initial average transverse momentum. In
the second case, we take for the form of the initial gluonic
one-particle distribution

f0;CGCðpÞ ¼
2A
λ

Λ̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξ0p2

z

p e−
2
3
ðp2þξ0p̂2

zÞ=Λ̃2
0 : ð5Þ

This form has been used in several earlier works (see, e.g.,
Refs. [8,10,42,43,45]), and is motivated by the saturation
framework, where the initial average transverse momentum
scale Λ̃0 is related to the saturation scale Λ̃0 ¼ hpTi0 ≈
1.8Qs [46–48]. For LHC heavy-ion collisions one has
Qs ∼ Λ0 ∼ 1–2 GeV. The overall constant A is set by fixing
the initial energy density to match an expectation τ0ϵ0 ¼
0.358νQ3

s=λ from a classical Yang-Mills simulation of
Lappi [48].
In both figures, the dotted and dashed black lines

correspond to EKT evolution using RS- and CGC-type
initial conditions, respectively. Figure 1(a) shows the time
evolution of the longitudinal pressure normalized by its
equilibrium value. The different lines correspond to
different initial PL=P

eq
L ¼ M̄01 with momentum-space

anisotropy parameters ξ0 ∈ f−0.84; 0; 5.25; 10.1; 24g at
initial time τ0 ¼ 0.095ðν=εÞ1=4.
The integral moments are plotted as a function of a

rescaled time variable τ=τRðτÞ, which measures the age of
the system in units of the instantaneous interaction time

τRðτÞ. As the density of the system changes, so does the
interaction timescale, which is given by τRðτÞ ¼ 4πη̄=TðτÞ.
Scaling time in this manner guarantees that, as long as the
system is described by hydrodynamics close to thermal
equilibrium, M̄01 will eventually be described by the first-
order gradient expansion, M̄01 ¼ 1 − ð120ζð5Þ=π5ÞτR=τ,
at late times [15,27]. This is independent of the microscopic
details or specific values of macroscopic hydrodynamic
parameters. This fluid-dynamic behavior is seen in Fig. 1(a)
where the evolutions of all the various different initial
conditions eventually converge onto a universal curve—the
late-time attractor (see also Refs. [51,52]). However, as
observed also in other models [13,17,18,27,30,32,53], this
collapse takes place before the system is well described by
the hydrodynamic gradient expansion, the first order of
which is shown in Fig. 1(a) as an orange dashed line.
While the late-time attractor behavior for the longi-

tudinal pressure has been observed earlier in simplified
kinetic theories, the solutions at hand allow us to study to
what extent the attractive behavior determines the full
overall shape of the distribution function. Our first main
finding is shown in panels (b) and (c) of Fig. 1, which
display the time evolution of two higher moments of the
distribution function, M̄21 and M̄33. We observe that the
higher moments collapse to a universal curve on the same
timescale as M̄01, demonstrating that the universality
extends beyond simple hydrodynamic moments and it is
the entire distribution as a function of p that reaches an
attractor form. For corresponding results for a large set of
moments see the Supplemental Material [49].
The timescale at which the different solutions to Eq. (1)

collapse in Fig. 1 is roughly τ=τR ∼ 0.5. While all theories
must eventually collapse on a single curve, the time at
which individual solutions collapse to the attractor depends
on the details of the model. In Ref. [32] two qualitatively
different patterns were identified. In kinetic theory with an
RTA collisional kernel and second-order viscous hydro-
dynamics, the decay to the attractor took place by a power
law whose scale was set by the initial time τ0 such that a
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FIG. 1. Evolution of the scaled moments (a) PL=P
eq
L ¼ M̄01, (b) M̄21, and (c) M̄33 when varying the initial momentum-space

anisotropy. Black dotted and dashed lines show EKT evolution with RS and CGC initial conditions, respectively. The orange long-
dashed line shows the first-order gradient expansion result (Navier-Stokes). See Supplemental Material, Fig. S1 [49] for plots of more
moments.
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unique attractor exists at arbitrarily early time and can be
found by studying initialization with decreasing τ0. In
contrast, in AdS=CFT, a unique attractor exists only after a
finite timescale (related to the decay of the so-called
quasinormal modes [13,32]).
Figure 2 shows a set of solutions with fixed initial

conditions (RS or CGC) with successively decreasing τ0.
The figure demonstrates that earlier initializations lead to
faster decay to the attractor signifying τ0 scaling of the
decay and the existence of an early-time (or pullback [29])
attractor in EKT. We note that at late times the attractor for
both overoccupied (CGC) and the thermal (RS) initial
conditions are the same. This implies that upon reaching
the attractor, the late-time evolution is not only insensitive
to the initial longitudinal pressure of the initial condition
but also to the initial occupancy and momentum profile for
these physically motivated initial condition types and
moderately large couplings (λ ¼ 10). We note that in each
run shown in Fig. 2 we observe a transition from purely
free-streaming behavior to a collisionally broadened longi-
tudinal expansion. This transition is related to the early
stages of the bottom-up thermalization scenario [38,51], in
particular, nonthermal attractors and associated prescaling
behavior observed in prior EKT and classical Yang-Mills
studies [54–58].
In Fig. 2(a) we also compare the EKT attractor to other

known attractors for PL=P
eq
L . The solid purple line

corresponds to the exact solution for the attractor in
kinetic theory in the RTA approximation [27,32,59–62],
the orange long-dashed line is the first-order gradient
expansion result, the blue dot-dashed line corresponds to
a formulation of viscous fluid dynamics used extensively in
phenomenological description of heavy-ion collisions,
namely, second-order viscous hydrodynamics (vHydro)
of Denicol et al. [63,64], and the red dot-dot-dashed line
corresponds to the anisotropic hydrodynamics (aHydro)
attractor [23,65–68]. For details concerning how the
attractors were determined in each case we refer the
reader to the Supplemental Material [49]. We observe

that while all of the attractors share some qualitatively
similar features, the attractors of the different theories
agree quantitatively only at τ=τR ≫ 1 after the attractors
follow the hydrodynamic gradient expansion. In
particular, we emphasize that in vHydro the longitudinal
pressure becomes negative at early times unlike in aHydro
or EKT.
Panels (b) and (c) of Fig. 2 compare two higher-order

moments of the RTA and EKT attractors. While the
agreement between the two kinetic theories is rather good
at late times for n ¼ 0 moments, the agreement becomes
rapidly worse for increasing n [49]. This implies that while
the jpj dependence of the collision kernel may be rather
well approximated by the simple RTA kernel at these values
of coupling λ, the simplified angular structure of the RTA
does not fully capture the shape of the longitudinal
structure of the distribution function.
While the fluid-dynamic theories do not specify the

higher moments of the distribution functions displayed in
panels (b) and (c) of Fig. 2, it is a common practice to infer
the full shape of the distribution from the shear components
of the energy-momentum tensor only. For a given Tμν the
linearized viscous correction to the one-particle distribution
function, δf can be locally computed given an assumption
of the collision kernel. Herein, we consider two possible
forms for δf. The (i) quadratic Ansatz

δfðiÞ
feqð1þ feqÞ

¼ 3Π̄
16T2

ðp2 − 3p2
zÞ; ð6Þ

which results from a wide set of models including RTAwith
momentum-independent relaxation time, momentum dif-
fusion approximation, scalar field theory, and from EKT in
the leading-log approximation [6]. Here Π̄ ¼ Π=ϵ ¼ 1=3 −
Tzz=ϵ is the shear viscous correction to the longitudinal
pressure scaled by the energy density. At full leading
order, the EKT, however, has more structure; for
large p ≫ T, the EKT reduces to power law form of the
(ii) LPM Ansatz
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FIG. 2. Evolution of the scaled moments (a) M̄01, (b) M̄21, and (c) M̄33 when varying the initialization time. Black dotted and dashed
lines show EKT evolution with RS and CGC initial conditions, respectively. The purple solid line is the exact RTA attractor, the orange
long-dashed line is the first-order gradient expansion result, the blue dot-dashed line is the DNMR vHydro attractor, and the red dot-dot-
dashed line is the aHydro attractor. See supplemental Fig. 1 for plots of more moments [49].
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δfðiiÞ
feqð1þ feqÞ

¼ 16Π̄
21

ffiffiffi
π

p
T3=2

�
p3=2 −

3p2
zffiffiffiffi
p

p
�
: ð7Þ

This p1.5 power law is numerically close to ∝ p1.38, which
was found to describe the high-momentum region of the
full EKT result [6].
Additionally, we consider a simple (iii) aHydro freeze-

out Ansatz procedure that does not assume linearization
around equilibrium. Instead, in the aHydro freeze-out
Ansatz, one assumes that the nonequilibrium distribution
function can be approximated by a spheroidally deformed
Bose distribution fðpÞ¼fBoseð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þξp2

z

p
=ΛÞ [44,65,66].

To test this approach, we fix ξ locally such that the energy-
momentum tensor of the Ansatz matches with that of the
full simulation and then make predictions for higher-order
moments.
The different moments obtained by the above prescrip-

tions are compared to the EKT attractor solution in Fig. 3
(see the Supplemental Material [49] for additional moments
compared over our entire set of runs). At late times τ > 5τR,
the low-order moments are described within a few percent
by all the prescriptions, while some discrepancy remains
even at τ ∼ 20τR between the quadratic Ansatz (i) and our
EKT results. The agreement worsens gradually at earlier
times and around τ ∼ τR where the corrections to
longitudinal pressure start to be sizable PL=P

eq
L ∼ 65%,

M11 exhibits an approximately 20% disagreement between
EKT and both linearized Ansätze. The disagreement
increases for higher moments and for earlier times. In
contrast, we observe rather good agreement between the
aHydro Ansatz and our EKT results at all times.
Conclusions and discussions.—An important step in the

phenomenological analysis of nuclear collisions is the
freeze-out procedure in which the hydrodynamical fields
are converted to particle distributions. In the current
phenomenological practice, the quadratic Ansatz (i) is

widely used. This assumes linear deviations from thermal
equilibrium, which is in stark contrast to the far-
from-equilibrium conditions in which fluid-dynamical
modeling is practiced in current phenomenological
applications, in particular in modeling of small systems
(see, e.g., Refs. [69–74]). To address whether these
linearized procedures remain quantitatively predictive far
from equilibrium, we have confronted them with far-
from-equilibrium simulations of QCD effective kinetic
theory. Our results in Fig. 3 show that at least in this
simplified framework—admittedly quite far from the real-
ities of phenomenological modeling—the nonlinear
aHydro freeze-out Ansatz performed better in reconstruct-
ing moments of the distribution function compared to
linearized Ansätze in far-from-equilibrium systems.
To translate the rescaled time variable τ=τR to physical

units in real-world LHC nuclear collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, we set the scale of the simulations
by using the fact that the initial entropy density
with νeff ≃ 40 degrees of freedom satisfies τhydro0 sðτhydro0 Þ≃
7.62 GeV2, consistent with phenomenologically
constrained values at LHC energies. For an initialization
time of τhydro0 ¼ 0.25 fm=c, this corresponds to an initial
temperature of Thydro

0 ≈ 630 MeV [68]. We also implicitly
assume that the results as functions of τ=τR do not depend
on η̄ as seen for the hydrodynamic moments in Ref. [10]
and assume a value of η̄ ≈ 0.2, which is consistent with the
phenomenological extraction of the quantity.
Using this setup and averaging over our full set of runs,

the rescaled times τ=τR ¼ f0.2; 0.5; 1; 2; 5; 10g map to
τ ≃ f0.32; 0.86; 1.88; 4.23; 14.1; 38.5g fm=c. This suggests
that for τfo ≫ 5 fm=c the lowest-order modes, which are
sensitive to p ∼ fewT, can be well described by both
aHydro and linearized freeze-out prescriptions. This
implies that for central ultrarelativistic heavy-ion collisions
one can have a faithful reproduction of the low-momentum

EKT solution
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FIG. 3. Evolution of the scaled moments (a) M̄11, (b) M̄21, and (c) M̄22. The black solid line is a typical EKT evolution, the red-
dashed line is the PL-matched aHydro result for a given moment, the blue and green dot-dashed lines are the corresponding vHydro
results using Eqs. (6) and (7), respectively. The relative error shown in the bottom panels is (approximation=EKT − 1). See
Supplemental Material, Fig. S2 [49] for plots of more moments and comparison with our full set of runs.
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part of the freeze-out distribution function. However, when
considering higher moments, which are sensitive to higher
momenta hpinm, or applying early-time freeze-out for
smaller systems such as peripheral nucleus-nucleus
collisions and proton-nucleus collision, the aHydro freeze-
out Ansatz is favored.
In closing, we note that the current study was performed

in a very simple setting with one-dimensional Bjorken flow
and considering only massless gluonic degrees of freedom.
We leave, for the future, extensions to more realistic
geometries [19,20,25] and inclusion of quark degrees of
freedom [42,43].
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