
Received August 1, 2020, accepted August 15, 2020, date of publication August 18, 2020, date of current version August 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017643

PSO-GA-Based Resource Allocation Strategy
for Cloud-Based Software Services
With Workload-Time Windows
ZHEYI CHEN 1, LIJIAN YANG2, YINHAO HUANG2, XING CHEN 2, XIANGHAN ZHENG2,
AND CHUNMING RONG 3, (Senior Member, IEEE)
1Department of Computer Science, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.
2College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
3Department of Electronic Engineering and Computer Science, University of Stavanger, 4036 Stavanger, Norway

Corresponding authors: Xing Chen (chenxing@fzu.edu.cn) and Xianghan Zheng (xianghan.zheng@fzu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1004800, and in
part by the Talent Program of Fujian Province for Distinguished Young Scholars in Higher Education, and the China Scholarship Council.

ABSTRACT Cloud-based software services necessitate adaptive resource allocation with the promise of
dynamic resource adjustment for guaranteeing the Quality-of-Service (QoS) and reducing resource costs.
However, it is challenging to achieve adaptive resource allocation for software services in complex cloud
environments with dynamic workloads. To address this essential problem, we propose an adaptive resource
allocation strategy for cloud-based software services with workload-time windows. Based on the QoS
prediction, the proposed strategy first brings the current and future workloads into the process of calculating
resource allocation plans. Next, the particle swarm optimization and genetic algorithm (PSO-GA) is proposed
to make runtime decisions for exploring the objective resource allocation plan. Using the RUBiS benchmark,
the extensive simulation experiments are conducted to validate the effectiveness of the proposed strategy on
improving the performance of resource allocation for cloud-based software services. The simulation results
show that the proposed strategy can obtain a better trade-off between the QoS and resource costs than two
classic resource allocation methods.

INDEX TERMS Cloud-based software services, resource allocation, QoS prediction, workload-time win-
dows, particle swarm optimization, genetic algorithm.

I. INTRODUCTION
In cloud computing, different resources including central
processing units (CPUs), memories, and storage units in data
centers are virtualized to provide users with renting services,
which is expected to promise the on-demand resource provi-
sioning and authorize users the basic access to massive data
and cloud resources [1]–[3]. However, changeable workloads
commonly occur in cloud environments, whichmay seriously
degrade the QoSwhen resource demands rapidly increase [4].
In order to guarantee the scalability and resiliency of cloud
resources, cloud service providers (CSPs) need to offer on-
demand configurations of software and hardware resources
in the shared infrastructure [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

In recent years, widespread applications of cloud-based
software services have proved that cloud software engineer-
ing is gaining a strong development momentum [6]. However,
it is still challenging to balance the QoS and resource costs
when allocating resources for cloud-based software services
under such dynamic cloud environments [7]. In response to
this challenge, it is necessary to develop an adaptive technol-
ogy to improve the effectiveness of resource allocation for
cloud-based software services.

A. LITERATURE REVIEW
Although there are classic methods that can address the
resource allocation problem to some extent, most of them
allocate resources based on the current workload in cloud
environments. With the consideration of the current work-
load, AlQayedi et al. [8] proposed a queuing-theory based
scheme to estimate the number of virtual machines (VMs)

151500 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6349-068X
https://orcid.org/0000-0001-9641-3528
https://orcid.org/0000-0002-8347-0539
https://orcid.org/0000-0001-8041-0197


Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

needed for meeting the requirements of response time. In this
scheme, the CPU utilization was regarded as a threshold,
the workload status was checked regularly (e.g., every 1 or
2 minutes), and then the number of VMs to be adjusted (i.e.,
add or delete) was calculated. However, it is hard for this
scheme to produce effective resource allocation plans when
future workloads fluctuate significantly. Maurer et al. [9]
designed a resource-efficient decision-making method in
response to workload fluctuations, where a rule-based knowl-
edge management strategy was proposed to achieve the
autonomous reconstruction of VMs. Zahid et al. [10]
designed a ruled-based language for CSPs with adaptation
schemes, in order to enhance the QoS compliance in high-
performance computing (HPC) clouds. However, these two
works did not regard the minimization of resource costs as
an optimization goal, which may lead to excessive resource
costs. Ficco et al. [11] proposed a meta-heuristic resource
allocation approach with the game theory for optimizing
policies. Moreover, a clustering-based heuristic approach for
edge resource allocation was proposed in [12] to reduce
the average service response time of applications. How-
ever, these two works only considered the deterministic user
demands without implementing the dynamic resource allo-
cation. When the workloads changed, it may not well meet
the QoS requirements. Using the control theory, Haratian
et al. [13] designed a resource allocation framework for
guaranteeing the QoS, where the fuzzy controller was used
to determine the resource provisioning in the control loop.
Moreover, Avgeris et al. [14] developed a resource allocation
mechanism for computation offloading with the control the-
ory, which can reduce the response time and resource costs
when processing application tasks. However, these two tra-
ditional control-theoretic methods need massive iterations to
search for better resource allocation plans, which may cause
excessive resource waste if VMs are frequently discontinued.
Based on the PSO algorithm, Xie et al. [15] developed a strat-
egy of resource allocation with the price adjustment, where a
utility function was designed to evaluate the QoS. According
to the user demands from workloads, the resource agent can
dynamically adjust the resource price, in order to obtain the
maximum profit for each workload. However, the PSO algo-
rithm may fall into the local convergence, and thus it is hard
to obtain the overall optimal solution of resource allocation.
Moreover, Kumar and Gondhi [16] designed a self-scaling
model that can dynamically adjust resource provisioning
referring to the QoS indicators, which performed the resource
correction at the VM level while considering the situations of
under-utilization and over-utilization for resources. Although
this model can make on-demand resource adjustments for
the applications under changeable workloads, it did not well
consider the relationship between the QoS and VM rental
costs nor take into account future workload changes with
complex fluctuations. Besides, Chen et al. [17] proposed an
adaptive resource management framework for cloud-based
software services. This framework first trained the QoS pre-
diction model by using historical data. Next, it utilized the

PSO-based algorithm to determine future resource allocation
plans with the predicted QoS. Finally, the feedback control
was introduced to achieve the desired effect of resource allo-
cation. However, this work did not consider the impact of
future workloads when making the QoS prediction, which
may seriously degrade the model effectiveness and limit its
performance for cloud resource allocation.

B. CONTRIBUTIONS
When dealing with the resource allocation problem for cloud-
based software services, the workload status has become
one of the most essential factors that affect the performance
of resource allocation [18]. For example, when many users
make requests at the same time, workloads burst and thus
the available resources might be inadequate for satisfying
the requirements of cloud-based software services. On the
contrary, when workloads remain low, the excessive alloca-
tion may lead to resource waste. Therefore, the workload
prediction can be regarded as a feasible solution for promising
efficient resource allocation in cloud environments [19]–[21].
If the cloud resource allocation plans are developed only
based on the current workload, the effectiveness of resource
allocation will undoubtedly be affected by future workload
changes. However, it is difficult to exactly match the pre-
dicted workloads with the actual results. Meanwhile, the sys-
tem performance in the scheduling stage may be seriously
affected by the inaccurate workload prediction [22]–[24].
To this end, some advanced methods, e.g., [4] and [25], to cite
two of the most recent, have been proposed to provide the
high accuracy of workload prediction, and thus the schedul-
ing efficiency can be improved. Next, we assume that future
workloads have been precisely predicted with the support of
the advanced method. Furthermore, the predicted workloads
in workload-time windows are utilized to better handle the
problem of cloud resource allocation. With the considera-
tion of the above problems, inspired by the work in [26],
we propose an adaptive resource allocation strategy for
cloud-based software services with workload-time windows.
The main contributions of this article are summarized as
follows.
• The problem of resource allocation for cloud-based soft-
ware services is formulated by introducing workload-
time windows. Further, we build a calculation model for
optimizing VM resource allocation plans.

• A new PSO-GA based decision-making method is
proposed with the combination of the QoS predic-
tion model. Specifically, the PSO-GA has absorbed
the advantages of the PSO and the GA and improved
their inadequacies in population diversity, search range,
and convergence speed. Moreover, the current and
future workloads in workload-time windows are utilized
during the process of calculating resource allocation
plans. Furthermore, through integrating the PSO-GA
with workload-time windows, the proposed method can
effectively adjust the current resource allocation plan to
approach the objective one.

VOLUME 8, 2020 151501



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

TABLE 1. Main symbols used in the problem formulation.

• The extensive simulation experiments using the RUBiS
benchmark are conducted to demonstrate the effective-
ness of the proposed resource allocation strategy for
cloud-based software services. The results show that the
proposed strategy can make a better trade-off between
the QoS and resource costs compared to the other two
classic resource allocation methods.

The rest of this article is organized as follows. In Section II,
we formulate the problem of resource allocation for cloud-
based software services. Section III discusses the proposed
resource allocation strategy in detail. In Section IV, we show
the performance evaluation for the proposed strategy with the
RUBiS benchmark. SectionV concludes this article and looks
for future work.

II. PROBLEM FORMULATION
In this section, we formulate the problem of resource allo-
cation for cloud-based software services by introducing
workload-time windows.

The dynamic changes of cloud environments may result in
different QoS for cloud-based software services, and these
changes can be divided into external and internal environ-
mental changes. More specifically, the external environ-
mental changes are commonly caused by external factors
(e.g., dynamic workloads), and the internal ones usually are
affected by cloud management systems (e.g. different types
and numbers of VMs with various rental prices in resource
allocation plans). With the consideration of the above two
factors, the main symbols used in the problem formulation
are described in Table 1.

As mentioned before, the external factors refer to dynamic
workloads. Therefore, we assume that the workload changes
are defined by the following piecewise function, where each
workload is constant during a specific time interval.

W =



w0, t0 ≤ t<t1
w1, t1 ≤ t<t2
. . . , . . .

wi, ti ≤ t<ti+1
. . . , t ≥ ti+1,

(1)

where each workload is defined as a 2-tuple, denoted by
wi = 〈ni, ri〉, with the same workload duration. ni is the
number of requests and ri is the read-write rate of requests
at time ti, respectively. When t ≥ ti+1, workloads cannot be
observed.

Moreover, the above-mentioned internal factors refer to
different types and numbers of VMswith various rental prices
in resource allocation plans. Because VMs are commonly
charged by hours when they are leased, we assume that
each VM is leased for one hour each time and it will be
automatically shut down after one hour. Therefore, we only
need to consider the number of VMs to be added when
adjusting resource allocation plans. For various workloads
in different time intervals, the corresponding operations of
adding VM resources are defined as

ADD =



add0, t = t0
add1, t = t1
. . . , . . .

addi, t = ti
. . . , t ≥ ti+1.

(2)

In each resource allocation plan, there arem types of VMs,
denoted by Type = 〈1, 2, 3, . . . ,m〉, that are available to be
added. Therefore, the operation of adding VM resources at
the time ti can be defined as

addi = {a1i , a
2
i , . . . , a

j
i, . . . , a

m
i }, (3)

where aji indicates the number of VMs of the j-th type to be
added at the time ti.
Therefore, the allocated VM resources in different time

intervals can be described as

VM =


add0, t0 ≤ t<t1
. . . , . . .∑i

k=max{0,i−q+1} addk , ti ≤ t<ti+1
. . . , t ≥ ti+1,

(4)

where q = 1h/1t is the maximum number of unexpired
VMs and 1t = ti+1 − ti indicates the duration of each
workload. In each time interval, the allocated VM resources
are calculated by adding up the unexpired VMs.

When allocating resources to cloud-based software ser-
vices, a common objective of cloud engineers or self-adaptive
systems is to balance the relationship between the QoS and
resource costs, which can be expressed by using an objective
function [27].

On one hand, QoSi represents the QoS value at the
time ti, which is usually specified by the service level
agreements (SLAs) with corresponding performance indica-
tors, including the response time (RT) and data throughput
(DT) [28]. Specifically, the RT indicates the time that a user
needs to wait for a response when requesting a service, and
the DT represents the amount of information that a system
can process in a given time. However, these two indicators
cannot be used to predict the QoS values of a system because
they can be monitored only after completing the resource
allocation. To this end, it is necessary to design an effective
QoS prediction model [29]–[31]. Based on our previous work
in [32], the QoS prediction model can be defined as

QoSpredicted = QoS(w, vm), (5)

151502 VOLUME 8, 2020



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

where the input of the model includes workloads and the
corresponding allocated VM resources, and the output of the
model is the predicted QoS values.

On the other hand, Costi represents the costs of rent-
ing VMs (i.e., the operation of adding VMs) at the time
ti. We denote the rental prices of each type of VMs as
P = 〈p1, p2, p3, . . . , pm〉, and thus Costi can be defined as

Costi =
m∑
j=1

aji × pj. (6)

Therefore, the objective function can be described as

Minimize w1 ×
1

QoSi
+ w2 × Costi, (7)

where w1 and w2 are used to weight 1
QoSi

and Costi, and these
two weights are defined by cloud engineers based on their
experience.

However, it is hard to well guarantee the effectiveness of
resource allocation plans if they are developed only based
on the current workload. Through introducing workload-time
windows, the operations of addingVM resources can be taken
according to both current and future workloads, and thus the
resource allocation plans in different time intervals can be
calculated more effectively. This is because the workloads
within a period of future time can be observed by using
workload-time windows when allocating resources at the
current moment. Thus, the current resource allocation plan
can be accordingly adjusted and become more effective.

We assume that the workload-time window i can be used
to predict the future workloads with the length of l (i.e.,
the number of time intervals), and thus the corresponding
workloadW i can be defined as

W i
=


wi, ti ≤ t<ti+1
wi+1, ti+1 ≤ t<ti+2
. . . , . . .

wi+l−1, ti+l−1 ≤ t<ti+l .

(8)

Moreover, the operations of adding VM resources within
the window i can be defined as

ADDi =


addi, t = ti
addi+1, t = ti+1
. . . , . . .

addi+l−1, t = ti+l−1.

(9)

Correspondingly, the allocated VM resources within the
window i can be defined as

VM i
=



∑i
k=max{0,i−q+1} addk , ti ≤ t<ti+1

. . . , . . .∑i+j
k=max{0,i−q+j−1} addk , ti+j ≤ t<ti+j+1

. . . , . . .∑i+l−1
k=max{0,i−q+l} addk , ti+l−1 ≤ t<ti+l .

(10)

Therefore, the problem is transferred to explore the objec-
tive resource allocation plan by adjusting VM resources in

workload-time windows, which can be regarded as an NP-
hard combinatorial optimization problem.

III. WORKLOAD-TIME WINDOWS ENABLED ADAPTIVE
RESOURCE ALLOCATION
A. FRAMEWORK OVERVIEW
In this section, we present the proposed adaptive resource
allocation strategy for cloud-based software services with
workload-time windows in detail. Figure 1 illustrates an over-
all framework of the proposed strategy, where the main steps
are described as follows.

Step 1: Initialize the data and parameters of workload-
time windows, including the workloads and corresponding
allocated resources in different time intervals.

Step 2: Utilize the PSO-GA with the support of the QoS
prediction model to search for the objective resource alloca-
tion plan in workload-time windows.

Step 3: Make adjustments to the current resource alloca-
tion plan to approach the objective one.

B. PSO-GA FOR OBJECTIVE RESOURCE ALLOCATION
1) HYBRID OF PSO AND GA
The particle swarm optimization (PSO) simulates the bird
migration in the nature [33], which continuously makes parti-
cles iterating to explore the optimal solution. As an important
element in the PSO, a particle represents a candidate solution
for an optimization problem. In the solution space, particles
are updated iteratively by comparing the optimal values in the
individual and population histories. In the PSO, the velocity
and position equations of a particle, denoted by V t+1

i and
X t+1i , are defined as

V t+1
i = wV t

i +c1r1(pBest
t
i −X

t
i )+c2r2(gBest

t
i −X

t
i ), (11)

X t+1i = X ti + V
t+1
i , (12)

where V t
i and X ti are the velocity and position of the i-th

particle at the t-th iteration, respectively. w is used to weight
the ability of particles in keeping the velocity. pBest ti and
gBest t are the optimal values in the individual and population
histories at the t-th iteration, respectively. r1 and r2 represents
random factors. c1 and c2 are learning factors that control the
learning ability of particles. Moreover, a fitness function is
used to evaluate particles.
The genetic algorithm (GA) is used to simulate the evolu-

tionary process in organisms by using computational mod-
els [34]. Following the principle of the fittest survival in
nature, the GA initially uses random solutions and then
searches for better ones. During this process, the crossover
and mutation operations are taken to the excellent individuals
in the previous generation, and thus the next generation with
better performance can be produced.
Through combining the advantages of the PSO and GA,

we propose a particle swarm optimization and genetic
algorithm (PSO-GA) based resource allocation method for
cloud-based software services. With the support of the PSO,
the proposed method optimizes the individual particles in

VOLUME 8, 2020 151503



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

FIGURE 1. Overview of the proposed cloud resource allocation strategy.

the GA, and thus the problem of low efficiency in the later-
stage searching of the GA can be well addressed. More
specifically, the PSO-GA first sorts the particles based on
their evaluation values of the fitness function, where the
high-performance individuals will be preserved in the next
iteration and the poor-performance ones will be eliminated.
Next, the crossover and mutation operations will be taken
on these high-performance individuals and the remaining
particles will go to the next generation. In this article, the par-
ticles represent potential resource allocation plans within a
workload-time window. After a fixed time interval, the PSO-
GA will be used to select an optimal particle as the objective
resource allocation plan at the current moment. The follow-
ing will provide detailed descriptions of the particle coding,
fitness function, and update strategy in the PSO-GA.

2) PARTICLE CODING
As for the PSO-GA based resource allocation for cloud-based
software services, the discrete coding [33] is used to encode
particles. In the workload-time window k with the length of
l, ADDk (defined in Equation (9)) is regarded as a particle X ,
where the particle represents a resource allocation plan within
the window k . When there are m types of VMs, the i-th
particle at the t-th iteration can be defined as

X ti = (x ti11, . . . , x
t
il1, . . . , x

t
i1m, . . . , x tilm), (13)

where the particle X ti is composed of m × l elements. Each
element indicates the number of different types of VMs to be
added in the workload-time window.

Figure 2 shows an example of the particle coding, where
the length of thewindow is 3 and the number of VM types is 3.
This example indicates that the different types of VMs added
in the 1st, 2nd and 3rd resource allocation plan are (1, 2, 0),
(1, 0, 3) and (2, 1, 0), respectively.

FIGURE 2. An example of the particle coding.

3) FITNESS FUNCTION
In workload-time windows, resource allocation plans are
evaluated by the fitness function. The fitness function com-
monly makes a trade-off between the QoS and resource costs,
which can be used to guide the PSO-GA in the right direction
for finding the optimal solution. With the consideration of
workload-time windows and the optimization objective in
Equation (7), the fitness function can be defined as

Fitnessi = w1 ×
1

QoSi
+ w2 × Costi

= w1 ×

i+l−1∑
k=i

1
QoS(wk , vmk )

+w2 ×

i+l−1∑
k=i

m∑
j=1

ajk × pj, (14)

where wk ∈ W i and vmk ∈ VM i. The total QoS values in the
window can be calculated by using Equation (5). Moreover,
ajk is the number of VMs of the j-th type to be added, the pj
indicates the rental costs of the j-th type of VMs. Thus,
the total resource costs in the window can be calculated. The
above two parts make up the fitness function, and it can be
noticed that better resource allocation plans (with higher QoS
and lower resource costs) in a workload-time window are
with smaller values of the fitness function.

4) UPDATE STRATEGY OF PARTICLES
In the PSO-GA, the state of the particle swarm is updated by
using the mutation and crossover operations.

151504 VOLUME 8, 2020



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

FIGURE 3. Mutation in the particle update.

FIGURE 4. Crossover in the particle update.

On one hand, the mutation operation randomly selects
a gene segment in the particle and irregularly mutates
the gene values within a specific threshold. For example,
Figure 3 illustrates the mutation operation for the particle
encoded in Figure 2, where a gene segment, denoted by mg1,
is randomly selected and the corresponding gene values are
mutated from ((1, 0, 3) to (3, 1, 4).
On the other hand, Figure 4 illustrates an instance of the

crossover operation in the particle update. More specifically,
two gene segments, denoted by cg1 and cg2, are first ran-
domly selected. Next, the corresponding gene values are
replaced by the local or global optimum (denoted by pBest
and gBest , respectively) with the same crossover probability.

5) PROCESS OF RESOURCE ALLOCATION
As shown in Algorithm 1, the main steps of the PSO-GA for
searching the objective resource allocation plan are described
as follows.

Step 1: (Lines 2∼6) Initialize the parameters, including the
population size N , the maximum number of iterations, addi,
pBest , and gBest .
Step 2: (Lines 7∼18) When the execution conditions are

satisfied, the particle swarm is first updated by taking the
crossover and mutation operations. Next, the particle i is
evaluated, and pBest and gBest are updated by comparing the
values of the fitness function.

Step 3: (Line 19) Finish iterations and output gBest .

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
PSO-GA based resource allocation strategy for cloud-based
software services and make comparisons with the other two
classic methods.

A. DATASETS AND SETTINGS
The simulation environment is established based on
the CloudStack [35], where the Kernel-based Virtual
Machine (KVM) is used as the hypervisor that is run on
a physical server with Intelr CoreTM i7-6700HQ CPU

Algorithm 1 PSO-GA for Searching the Objective Resource
Allocation Plan
Input: Population size N .
Output: Global optimal solution gBest .
1: Procedure
2: for each particle i do
3: Initialize addi for the particle i.
4: Evaluate the particle i and set pBesti = addi.
5: end for
6: gBest = min{pBesti}.
7: while not stop do
8: for i = 1 to N do
9: Update the particle i by mutate and crossover.
10: Evaluate the particle i.
11: if Fitnessi(addi) < Fitnessi(pBesti) then
12: pBesti = addi.
13: end if
14: if Fitnessi(pBesti) < Fitnessi(gBest) then
15: gBest = pBesti.
16: end if
17: end for
18: end while
19: Output gBest .
20: End Procedure

TABLE 2. Different types of VMs with various rental prices.

@2.60 GHZ, RAM 8.00 GB, and CentOS 6.2 64-bit.
As shown in Table 2, there are three types (i.e., small,
medium, and large) of VMs with different rental prices.
Furthermore, the RUBiS benchmark [36], a prototype of the
auction site that simulates user behaviors under different
workload patterns on the eBay.com, is used to evaluate the
proposed strategy. Through running the RUBiS benchmark
on the CloudStack with a period of one month, we collect
the runtime datasets used for experiments, which include the
current and objective resource allocation plans with different
QoS under various workloads. Moreover, we assume that
the workload (i.e., the number of clients) is distributed in
[2000, 7000] with two types of tasks including reading (e.g.,
browsing) and writing (e.g., bidding and rating). Besides,
the proposed strategy is implemented based on Python 3.6,
where the essential parameters including the population size,
the number of iterations, and the mutation rate are set to 50,
100 and 0.5, respectively.

As shown in Figure 5, a Sigmoid function is used to map
the response time (RT) to the interval [0, 1] according to the
empirical data, which reflects the QoS values.

The simulation experiments are conducted under the
premise of continuous workloads for a known time period.
Specifically, we define a workload-time window as

VOLUME 8, 2020 151505



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

FIGURE 5. Mapping from RT to QoS.

TABLE 3. Workload changes with different read-write ratios.

W i
= {wi,wi+1,wi+2} with the length of 90 minutes. There-

fore, the workload is predicted every 30 minutes. Table 3
shows the workload changes within the predicted 540 min-
utes. To guarantee the high prediction accuracy, we assume
that the workloads after 540 minutes cannot be observed.
Moreover, the workloads in different time intervals are with
corresponding read-write ratios.

Moreover, better resource allocation plans are common
with smaller values of the fitness function. The pre-defined
weights w1 and w2 in Equation (14) reflect different pref-
erences of cloud engineers for the QoS and resource costs.
In practical cloud systems, the common objective of the
fitness function is to balance the QoS and resource costs.
However, it is hard to achieve this objective due to the
complex relationship between the QoS and resource costs in
cloud-based software services. To relieve this problem, we set
w1 = 900 and w2 = 1/6 according to our experience.
Specifically, the following fitness function is used in our
simulation experiments.

Fitnessi = 900×
i+2∑
k=i

1
QoSk

+
1
6
×

i+2∑
k=i

Costk . (15)

To validate the effectiveness of the proposed strategy,
comparative experiments are conducted with the other two
baseline methods including the greedy algorithm and the
single-point optimal local random method [37], which are
commonly used in the problem of cloud resource allocation.
The detailed settings are described as follows.
• Greedy algorithm. The algorithm does not consider the
workload changes in workload-time windows. More-
over, the optimal resource configuration at the last
moment will be used to calculate the optimal resource
allocation plan under the current workload.

• Single-point optimal local random method. For each
workload within the same time window, the method
first traverses all resource allocation plans to find a plan
with the smallest value of the fitness function, which is
called the single-point optimal plan. Next, two VMs will
be randomly added or subtracted based on this single-
point optimal plan, and a feasible resource allocation
plan within the window will be obtained under the same
running time (i.e., 2 minutes) as the PSO-GA.

• PSO-GA. In each iteration, the evaluation value of each
particle will be first calculated by using the fitness
function and the global and local optimal particles will
be selected. Next, these particles will be updated by
the mutation and crossover operations and the iterations
continue.

B. EXPERIMENTAL RESULTS
Based on the above settings of simulation experiments,
we evaluate the performance of the proposed PSO-GA based
resource allocation strategy for cloud-based software services
and make comparisons with the greedy algorithm and single-
point optimal local random method.

Figures 6 to 8 show the resource allocation plans generated
by using the greedy algorithm, single-point optimal local
random method, and the proposed PSO-GA strategy under
various workloads in different time intervals, respectively.
As we can see from the results, the VM resources can be
roughly adjusted by all these three methods according to the
workload changes at different times. When the workloads
are high, more VMs tend to be leased in the corresponding
resource allocation plans. Otherwise, fewer VMs would be
used. However, various types and numbers of VMs may be
adopted in the same time interval by using these three meth-
ods, which would result in diverse QoS and resource costs.
To further analyze the effectiveness of our proposed resource
allocation strategy, we regard the QoS values, resource costs,
and the total values of the fitness function (obtained by using
Equation (15)) as performance indicators and evaluate the
above three resource allocation methods in the following
simulation experiments.

As shown in Figure 9, the average values of the fitness
function of each time interval within the time period from
0 to 390 minutes are compared among different methods.
It can be noticed that the proposed PSO-GA strategy outper-
forms both the greedy algorithm and the single-point optimal

151506 VOLUME 8, 2020



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

FIGURE 6. Resource allocation plans generated by using the greedy algorithm under various workloads in different time intervals.

FIGURE 7. Resource allocation plans generated by using the single-point optimal local random method under various workloads in different time
intervals.

FIGURE 8. Resource allocation plans generated by using the proposed strategy under various workloads in different time intervals.

FIGURE 9. Comparisons of the average values of the fitness function
among different methods.

local random method with the improvement of over 5% and
4%, respectively. This is because the PSO-GA used in the

proposed strategy not only pays attention to the evolution
process between each generation of the population but also
attaches importance to the retention and re-maturation of
excellent individuals, which can thus enhance the population
diversity and make the potential resource allocation plans
closer to the objective one. By contrast, it is difficult for
the single-point optimal local random method to get close
to the objective resource allocation plan because the search
style adopted by this method is random without a clear target.
Moreover, the greedy algorithm only considers the optimal
resource allocation plan at the current workload, and thus
the plans may fluctuate with workload changes and it cannot
stably obtain the global optimal solution.

Furthermore, we evaluate the performance of different
resource allocation methods in terms of QoS and resource
costs, respectively. As shown in Figure 10, on one hand,

VOLUME 8, 2020 151507



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

FIGURE 10. Comparisons of the resource costs and QoS among different methods.

TABLE 4. Influence of the running time of the proposed PSO-GA on the
average values of the fitness function.

the proposed PSO-GA strategy can maintain stable QoS
values (between 0.91∼0.99) within the whole time period
(0∼390 minutes) with the average of around 0.96, which
outperforms the other two methods. This is because the pro-
posed strategy considers future workloads during resource
allocation but the other two methods do not take workload-
time windows into account. Even when the workloads rise
rapidly between the time period of 60∼150 minutes, the pro-
posed strategy can also keep the QoS at a high level.
By contrast, the QoS values fluctuate seriously when using
the greedy algorithm. Moreover, the QoS values locate
in 0.80∼0.94 when the single-point optimal local random
method is used. On the other hand, we compare the resource
costs of the proposed strategy with the other two methods.
The results show that the average resource costs of using the
greedy algorithm and the single-point optimal local random
method in each time interval are around 89.24 RMB and
91.94 RMB, respectively. Although the proposed strategy
leads to slightly higher average resource costs, they are still
within an acceptable range under the premise of ensuring
the QoS.

From the above simulation experiments, we can find that
the proposed strategy outperforms the single-point optimal
local randommethod within the same running time. Although
the running speed of the greedy algorithm is fastest among the
three methods, it cannot well guarantee good performance
indicators. Furthermore, we evaluate and analyze the influ-
ence of the running time of the proposed PSO-GA on the per-
formance of resource allocation in terms of the average values
of the fitness function in different time intervals. As shown
in Table 4, although the running time affects the performance

of the PSO-GA to some extents, the PSO-GA can still keep
stable and high performance on resource allocation (low val-
ues of the fitness function) even if the running time of the
algorithm is less than 2 minutes (e.g., 1 or 1.5 minutes). From
the perspective of systemmanagement, this optimization time
delay is acceptable.

V. CONCLUSION AND FUTURE WORK
In dynamic cloud environments with fluctuating workloads,
it is hard to guarantee the effectiveness of resource alloca-
tion plans if they are developed and performed based on
the current workload. To address this problem, in this arti-
cle, we propose an adaptive resource allocation strategy for
cloud-based software services by introducing workload-time
windows. The proposed strategy takes the current and future
workloads into the process of producing resource allocation
plans, where the PSO-GA based runtime decision-making
method is utilized to explore the objective resource allocation
plan. The extensive simulation experiments are conducted to
verify the effectiveness of the proposed strategy. The results
show that the proposed strategy outperforms the other two
classic resource allocation methods and it can achieve a better
trade-off between the QoS and resource costs.

In real-world cloud environments, workloads are usually
continuous and thus it has become a new challenge to make
use of such continuous workloads in workload-time windows
during the decision-making process of cloud resource alloca-
tion. In the future, we will continue our work by using the
learning-based algorithms (e.g., reinforcement learning) and
introduce a continuous workload function to further enhance
the performance of resource allocation under dynamic cloud
environments with continuous workloads.

ACKNOWLEDGMENT
(Zheyi Chen and Lijian Yang contributed equally to this
work.)

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A view of
cloud computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

151508 VOLUME 8, 2020



Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

[2] V. Prokhorenko and M. A. Li Babar, ‘‘Architectural resilience in cloud,
fog and edge systems: A survey,’’ IEEE Access, vol. 8, pp. 28078–28095,
2020.

[3] M. Ala’Anzy and M. Othman, ‘‘Load balancing and server consolidation
in cloud computing environments: A meta-study,’’ IEEE Access, vol. 7,
pp. 141868–141887, 2019.

[4] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi, ‘‘Towards accu-
rate prediction for high-dimensional and highly-variable cloud workloads
with deep learning,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4,
pp. 923–934, Apr. 2020.

[5] X. Chen, F. Zhu, Z. Chen, G. Min, X. Zheng, and C. Rong, ‘‘Resource
allocation for cloud-based software services using prediction-enabled feed-
back control with reinforcement learning,’’ IEEE Trans. Cloud Comput.,
early access, May 4, 2020, doi: 10.1109/TCC.2020.2992537.

[6] W. A. Simm, F. Samreen, R. Bassett, M. A. Ferrario, G. Blair, J. Whittle,
W. A. Simm, and P. Young, ‘‘SE in ES: Opportunities for software
engineering and cloud computing in environmental science,’’ in Proc.
40th IEEE/ACM Int. Conf. Softw. Eng., Softw. Eng. Soc. (ICSE-SEIS),
May/Jun. 2018, pp. 61–70.

[7] T. Chen and R. Bahsoon, ‘‘Self-adaptive and online QoS modeling for
cloud-based software services,’’ IEEE Trans. Softw. Eng., vol. 43, no. 5,
pp. 453–475, May 2017.

[8] F. AlQayedi, K. Salah, and M. J. Zemerly, ‘‘Adaptive cloud resource
allocation scheme to minimize SLO response time violation,’’ in Proc.
IEEE/ACS 13th Int. Conf. Comput. Syst. Appl. (AICCSA), Nov. 2016,
pp. 1–5.

[9] M. Maurer, I. Brandic, and R. Sakellariou, ‘‘Self-adaptive and resource-
efficient SLA enactment for cloud computing infrastructures,’’ in Proc.
IEEE 5th Int. Conf. Cloud Comput., Jun. 2012, pp. 368–375.

[10] F. Zahid, A. Taherkordi, E. G. Gran, T. Skeie, and B. D. Johnsen,
‘‘A self-adaptive network for HPC clouds: Architecture, framework, and
implementation,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 12,
pp. 2658–2671, Dec. 2018.

[11] M. Ficco, C. Esposito, F. Palmieri, and A. Castiglione, ‘‘A coral-reefs
and game theory-based approach for optimizing elastic cloud resource
allocation,’’ Future Gener. Comput. Syst., vol. 78, pp. 343–352, Jan. 2018.

[12] L. Zhao, J.Wang, J. Liu, and N. Kato, ‘‘Optimal edge resource allocation in
IoT-based smart cities,’’ IEEE Netw., vol. 33, no. 2, pp. 30–35, Mar. 2019.

[13] P. Haratian, F. Safi-Esfahani, L. Salimian, and A. Nabiollahi, ‘‘An adaptive
and fuzzy resource management approach in cloud computing,’’ IEEE
Trans. Cloud Comput., vol. 7, no. 4, pp. 907–920, Oct. 2019.

[14] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
‘‘Adaptive resource allocation for computation offloading: A control-
theoretic approach,’’ ACM Trans. Internet Technol., vol. 19, no. 2, p. 23,
2019.

[15] F. Xie, Y. Du, andH. Tian, ‘‘A resource allocation strategy based on particle
swarm algorithm in cloud computing environment,’’ in Proc. 4th Int. Conf.
Digit. Manuf. Automat., Jun. 2013, pp. 69–72.

[16] D. Kumar and N. K. Gondhi, ‘‘A QoS-based reactive auto scaler for
cloud environment,’’ in Proc. Int. Conf. Next Gener. Comput. Inf. Syst.
(ICNGCIS), Dec. 2017, pp. 19–23.

[17] X. Chen, H. Wang, Y. Ma, X. Zheng, and L. Guo, ‘‘Self-adaptive resource
allocation for cloud-based software services based on iterative QoS pre-
diction model,’’ Future Gener. Comput. Syst., vol. 105, pp. 287–296,
Apr. 2020.

[18] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, ‘‘Proactive workload man-
agement in hybrid cloud computing,’’ IEEE Trans. Netw. Service Manage.,
vol. 11, no. 1, pp. 90–100, Mar. 2014.

[19] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, ‘‘Workload pre-
diction using ARIMA model and its impact on cloud applications’ QoS,’’
IEEE Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, Oct./Dec. 2015.

[20] J. Kumar and A. K. Singh, ‘‘Workload prediction in cloud using artificial
neural network and adaptive differential evolution,’’ Future Gener. Com-
put. Syst., vol. 81, pp. 41–52, Apr. 2018.

[21] X. Tang, ‘‘Large-scale computing systems workload prediction using
parallel improved LSTM neural network,’’ IEEE Access, vol. 7,
pp. 40525–40533, 2019.

[22] F.-H. Tseng, X. Wang, L.-D. Chou, H.-C. Chao, and V. C. M. Leung,
‘‘Dynamic resource prediction and allocation for cloud data center using
the multiobjective genetic algorithm,’’ IEEE Syst. J., vol. 12, no. 2,
pp. 1688–1699, Jun. 2018.

[23] T. Ahammad, U. K. Acharjee, and M. M. Hasan, ‘‘Energy-effective
service-oriented cloud resource allocation model based on workload pre-
diction,’’ in Proc. 21st Int. Conf. Comput. Inf. Technol. (ICCIT), Dec. 2018,
pp. 1–6.

[24] H. M. Nguyen, G. Kalra, T. J. Jun, S. Woo, and D. Kim, ‘‘ESNem-
ble: An echo state network-based ensemble for workload prediction and
resource allocation of Web applications in the cloud,’’ J. Supercomput.,
vol. 75, no. 10, pp. 6303–6323, Oct. 2019.

[25] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, ‘‘Forecasting cloud
application workloads with CloudInsight for predictive resource manage-
ment,’’ IEEE Trans. Cloud Comput., early access, May 27, 2020, doi:
10.1109/TCC.2020.2998017.

[26] H. Wang, Y. Ma, X. Zheng, X. Chen, and L. Guo, ‘‘Self-adaptive
resource management framework for software services in cloud,’’ in
Proc. IEEE Int. Conf. Parallel Distrib. Process. With Appl., Big Data
Cloud Comput., Sustain. Comput. Commun., Social Comput. Netw.
(ISPA/BDCloud/SocialCom/SustainCom), Dec. 2019, pp. 1528–1529.

[27] A. Soltanian, D. Naboulsi, R. Glitho, and H. Elbiaze, ‘‘Resource alloca-
tion mechanism for media handling services in cloud multimedia con-
ferencing,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 1167–1181,
May 2019.

[28] I. V. Paputungan, A. F.M. Hani, M. F. Hassan, and V. S. Asirvadam, ‘‘Real-
time and proactive SLA renegotiation for a cloud-based system,’’ IEEE
Syst. J., vol. 13, no. 1, pp. 400–411, Mar. 2019.

[29] J. Zhu, P. He, Z. Zheng, andM. R. Lyu, ‘‘Online QoS prediction for runtime
service adaptation via adaptive matrix factorization,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 10, pp. 2911–2924, Oct. 2017.

[30] W. Hussain and O. Sohaib, ‘‘Analysing cloud QoS prediction approaches
and its control parameters: Considering overall accuracy and freshness of
a dataset,’’ IEEE Access, vol. 7, pp. 82649–82671, 2019.

[31] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, ‘‘QoS prediction for
service recommendations in mobile edge computing,’’ J. Parallel Distrib.
Comput., vol. 127, pp. 134–144, May 2019.

[32] X. Chen, J. Lin, B. Lin, T. Xiang, Y. Zhang, and G. Huang, ‘‘Self-learning
and self-adaptive resource allocation for cloud-based software services,’’
Concurrency Comput., Pract. Exper., vol. 31, no. 23, p. e4463, 2019.

[33] D. Wang, D. Tan, and L. Liu, ‘‘Particle swarm optimization algorithm:
An overview,’’ Soft Comput., vol. 22, no. 2, pp. 387–408, Jan. 2018.

[34] O. Kramer, Genetic Algorithm Essentials. Springer, 2017.
[35] N. Sabharwal, Apache CloudStack Cloud Computing. Birmingham, U.K.:

Packt, 2013.
[36] RUBiS: Rice University Bidding System Benchmark. Accessed:

Jan. 2, 2020. [Online]. Available: http://rubis.ow2.org/
[37] A.Arunarani, D.Manjula, andV. Sugumaran, ‘‘Task scheduling techniques

in cloud computing: A literature survey,’’ Future Gener. Comput. Syst.,
vol. 91, pp. 407–415, Feb. 2019.

ZHEYI CHEN received the B.Sc. degree from
Shanxi University, China, in 2014, and the M.Sc.
degree from Tsinghua University, China, in 2017,
in computer science. He is currently pursuing
the Ph.D. degree in computer science with the
University of Exeter, U.K. His research interests
include cloud computing, mobile edge comput-
ing, deep learning, reinforcement learning, and
resource optimization.

LIJIAN YANG received the B.S. degree in com-
puter science from Fujian Normal University,
Fujian, China, in 2019. He is currently pursuing
the M.S. degree in computer technology with the
College of Mathematics and Computer Science,
Fuzhou University. His current research interests
include system software, edge computing, and
cloud computing.

VOLUME 8, 2020 151509

http://dx.doi.org/10.1109/TCC.2020.2992537
http://dx.doi.org/10.1109/TCC.2020.2998017


Z. Chen et al.: PSO-GA-Based Resource Allocation Strategy for Cloud-Based Software Services With Workload-Time Windows

YINHAO HUANG received the B.S. degree in
software engineering from Fuzhou University,
Fujian, China, in 2018, where he is currently pur-
suing the M.S. degree in technology of computer
application with the College of Mathematics and
Computer Science. Since September 2018, he has
also been a student of the Fujian Key Laboratory
of Network Computing and Intelligent Informa-
tion Processing, Fuzhou University. His current
research interests include deep neural network,
edge computing, and cloud computing.

XING CHEN received the B.S. and Ph.D. degrees
in computer software and theory from Peking Uni-
versity, Beijing, China, in 2008 and 2013, respec-
tively. He is currently an Associate Professor and
the Deputy Director of the Fujian Provincial Key
Laboratory of Network Computing and Intelligent
Information Processing, Fuzhou University, and
also leads the Systems Research Group. He has
authored or coauthored more than 30 journal and
conference articles. His research interests include

the software systems and engineering approaches for cloud and mobility. His
current projects cover the topics from self-adaptive software, computation
offloading, and model-driven approach. He was a recipient of the first
Provincial Scientific and Technological Progress Award, in 2018.

XIANGHAN ZHENG received the M.Sc. degree
in distributed system and the Ph.D. degree in
information communication technology from the
University of Agder, Norway, in 2007 and 2011,
respectively. He is currently a Professor with the
College of Mathematics and Computer Sciences,
Fuzhou University, China. His current research
interests include new generation network with a
special focus on cloud computing services and
applications, and big data processing and security.

CHUNMING RONG (Senior Member, IEEE) is
currently a Professor and the Head of the Cen-
ter for IP-based Service Innovation (CIPSI), Uni-
versity of Stavanger (UiS), Norway. He is also
the Chair of the IEEE Cloud Computing and an
Executive Member of Technical Consortium on
High-Performance Computing (TCHPC) and the
Chair of STC onBlockchain in the IEEEComputer
Society, and has served as the Global Co-Chair
of the IEEE Blockchain, in 2018. He is also an

Advisor of the StandICT.EU to support European scandalization activities
in ICT. He is also a Co-Founder of two start-ups bitYoga and Dataunitor
in Norway, both received EU Seal of Excellence Award in 2018. He was an
Adjunct Senior Scientist leading Big-Data Initiative at NORCE from 2016 to
2019 and the Vice President of CSANorway Chapter from 2016 to 2017. His
researchwork focuses on cloud computing, data analytics, cyber security, and
blockchain.

Prof. Rong has been honoured as a member of the Norwegian Academy
of Technological Sciences (NTVA), since 2011. He has extensive contact
network and projects in both the industry and academic. He has served as
the Steering Chair from 2016 to 2019, a Steering Member and an Associate
Editor of the IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC) since 2016.
He is also a Founder and the Steering Chair of the IEEE CloudCom con-
ference and workshop series. He is the co-Editors-in-Chief of the Journal
of Cloud Computing (Springer) (ISSN: 2192-113X). He has supervised
26 Ph.D. students, nine Postdoctoral researchers, and more than 60 master’s
projects. He has extensive experience in managing large-scale Research and
Development projects, both in Norway and EU.

151510 VOLUME 8, 2020


