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Abstract
In recent years, considerable resources have been invested to exploit vast amounts of data that get collected during explora-
tion, drilling and production of oil and gas. Data-related digital technologies potentially become a game changer for the 
industry in terms of reduced costs through increasing operational efficiency and avoiding accidents, improved health, safety 
and environment through strengthening situational awareness and so on. Machine learning, an application of artificial intel-
ligence to offer systems/processes self-learning and self-driving ability, has been around for recent decades. In the last five 
to ten years, the increased computational powers along with heavily digitized control and monitoring systems have made 
machine learning algorithms more available, powerful and accurate. Considering the state-of-art technologies that exist 
today and the significant resources that are being invested into the technologies of tomorrow, the idea of intelligent and 
automated drilling systems to select best decisions or provide good recommendations based on the information available 
becomes closer to a reality. This study shows the results of our research activity carried out on the topic of drilling automation 
and digitalization. The main objective is to test the developed machine learning algorithms of formation classification and 
drilling operations identification on a laboratory drilling system. In this paper, an algorithm to develop data-driven models 
based on the laboratory data collocated in many scenarios (for instance, drilling different formation samples with varying 
drilling operational parameters and running different operations) is presented. Moreover, a testing algorithm based on data-
driven models for new formation detection and confirmation is proposed. In the case study, results on multiple experiments 
conducted to test and validate the developed machine learning methods have been illustrated and discussed.
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Introduction

Background

Recently, the concept of drilling digitalization and auto-
mation has advanced from primarily being automation of 
rig floor equipment to novel solutions that rapidly can be 
deployed to the rig environment and assist drillers in a vari-
ety of operations. Aside from providing an early warning to 
drillers, intelligent systems aim to improve efficiency and 
reduce financial costs through continuous monitoring and 
interaction with drillers. Smart drilling systems could also 
be anticipated to suggest operating parameters to drillers 
through correlating real-time drilling data with vast amounts 

of historic data stored in a virtual environment. Digital sys-
tems target solutions and new technologies to even exert full 
control of all rig equipment if permissible (top drive, draw 
works, mud pumps, elevator, rough neck and so on), leav-
ing only major decision points to be determined by drillers. 
The later automation level described above is most likely 
still several years away from being deployable to fields. A 
timeline that highlights artificial intelligence applications 
in drilling practices is given in Bello et al. (2015). Short-
term advances in drilling automation and digitalization lie in 
developing simple, yet robust tools for drillers to strengthen 
the understanding of operations during critical phases.

Related research problems

The past decade has seen rapid growth in the ability of net-
worked and mobile computing systems to gather and trans-
port vast amounts of data, or Big Data (Mayer-Schnberger 
and Cukier 2013). Machine learning (Shalev-Shwartz and 
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Ben-David 2014; Kelleher et al. 2015) becomes a more and 
more powerful tool to solve problems of obtaining useful 
insights, predictions and decisions (Jordan and Mitchell 
2015). Given big amounts of wells that get drilled every 
year, approaches for data interpretation, performance pre-
diction and optimization, and decisions making based on 
historical data through machine learning approaches are 
important areas of research.

Literature review

In recent years, many research works and studies have 
proposed to develop and implement machine learning 
approaches in different drilling applications, aiming to aid 
drilling engineers to detect drilling incidents, predict drilling 
parameters, analyze drilling behaviors and advise drilling 
actions. For instance, several works to use machine learn-
ing classification approaches to identify drilling-related 
parameters and drilling incidents have been proposed. In 
Sun et al. (2019), a machine learning approach was proposed 
to identify the lithology while drilling that provides valuable 
information for drilling geosteering of oilfield development. 
In Klyuchnikov et al. (2019), machine learning classification 
methods were used to identify rock types around the drill bit. 
Hegde et al. (2019) have proposed to use machine learning 
to identify the drilling stick slip severity to help vibration 
mitigation during rate of penetration optimization. The most 
recent work (Zaytsev et al. 2020) used machine learning to 
detect drilling incidents for directional drilling.

Besides classification approaches, machine learning has 
huge capacity for predictions and regressions. In Hegde et al. 
(2017), different rate of penetration (ROP) models devel-
oped via physics-based and machine learning approaches 
have been evaluated through uncertainty analysis. Similar 
comparison work has been done by Soares and Gray (2019), 
where machine learning models were observed to reduce test 
errors much more effectively than analytical models with 
incremental data availability. A detailed literature review on 
machine learning methods for ROP prediction and optimiza-
tion has been given in Barbosa et al. (2019). In Spesivtsev 
et al. (2018), a bottom hole pressure prediction model has 
been used for multi-phase wellbore flows via the machine 
learning approach. In Kanin et al. (2019), laboratory data has 
been used to develop machine learning model for pressure 
prediction. Artificial neural network model for predicting 
the density of oil-based drilling fluids in high-temperature 
and high-pressure wells has been presented in Agwu et al. 
(2019). In AlAzani et al. (2019), cuttings concentration for 
horizontal and deviated wells was predicted using machine 
learning. In addition, machine learning approaches were 
used in many other applications, for instance, mud loss esti-
mation during lost circulation (DunnNorman et al. 2018), 
permeability prediction (Arigbe et al. 2018), titration-based 

asphaltene precipitation (Gholami et al. 2015), oil/gas ratio 
for volatile oil and gas condensate reservoirs (Fattah and 
Khamis 2018) and hydraulic fracturing prediction (Makhotin 
et al. 2019). In Al-Mudhafar (2017), both machine learning 
classification and regression approaches were used for litho-
facies classification and permeability prediction.

Our novelty and contributions

In this paper, the data-driven models developed to classify 
different rock formations are presented. The models have 
been developed, got trained and validated using time-based 
experimental data collected in a laboratory environment on 
a test bench. Furthermore, unsupervised machine learning 
models (DeepAI 2019; Roman 2019; Michael 2019) have 
been developed to classify drilling operations such as trip-
ping and rotating on bottom. Learning outcome from the 
study is to show how to develop machine learning algo-
rithms from the data collection phase to real-time algorithm 
implementation phase. Laboratory testing and evaluation is 
an essential part of promoting the adaptation of digital tech-
nologies. Such study is a useful and cost-effective solution 
for testing data-driven approaches before expensive full-
scale testing and development.

Drilling rig

Figures 1 and 2 show the laboratory drilling rig and its 
sketch, respectively. The detailed information about the 
rig structure, its software and control system was given in 
Løken and Løkkevik (2019), Løken et al. (2018, 2019), The 
top drive is controlled by a driver to set the rotary speed 
(RPM) and maximum torque. The construction is equipped 
with a complete hoisting system consisting of actuators, 
stepper motors and brakes. The top plate is where the top 
drive and other components are mounted. It is positioned 
between three tri-axial load cells connected to the actuators 
to provide enough lifting force and for proper stabilization. 
The circulation system is a simple system consisting of two 
pumps. Each pump has a maximum flow rate of 19 L/min 
and the maximum working pressure at 3.1 bar.

The rig includes the following sophisticated functions and 
capabilities (Khadisov et al. 2019):

•	 Conducting vertical/deviated well drilling tests in man-
ual/autonomous mode;

•	 Having a data management system for data processing, 
analysis, visualization and storage;

•	 Being instrumented with high-speed and reliable down-
hole and surface sensors;

•	 Having an adaptive advisory system for optimization.
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Having such drilling system allows us to conduct multiple 
experiments in a laboratory scale and create possibilities 
to test and validate the developed data-driven approaches.

Model development

Drilling data

Data pre‑processing

In order to develop accurate models, the major importance 
lies in ensuring that the data with high quality. According 
to Good and Hardin (2006), the following steps should be 
carried out in order to improve the data quality:

•	 Review quality assurance reports,
•	 Describe the dataset with statistics,
•	 Remove duplicate values,
•	 Verify physical units of measured data,
•	 Remove missing data,
•	 Remove outliers.

Before a data-driven model is developed, cleaning the 
dataset is essential (van der Aalst 2016; James 2016). Data 
cleaning includes several steps, but not limited to: outlier 
removal, removing invalid data, removing missing data, 
duplicates and so on.

Invalid data  If a significant part of the dataset falls outside 
of a validity range, one approach is to replace the values 
with NaN (not a number) and later remove the complete row 
of observations. Measurements are kept from the other vari-
ables (sensors) in the dataset, but discard measurements in 
a single variable where invalid data is present. Invalid data 
can cause issues when developing data-driven algorithms. 
For the drilling data captured using the laboratory drilling 
system, invalid data would typically be data measured out-
side of the specific sensors measurement range, Table 1.

Missing data  A number of reasons lead the data missing in 
a dataset. One common cause is when different sensors get 
sampled with varying sampling frequencies, for instance, 
10 Hz for one sensor and 20 Hz for another. Second com-
mon cause could be hardware (electrical) failure, where the 
signal is lost for a short duration of time. Third cause could 
be that the data is held up in the buffer where the computer 
stores the data short-term before it gets used.

To handle missing data, the common interpolation tech-
niques (linear, quadratic, cubic or polynomial) can be used, 
see (Al Bakri et al 2014).

Outlier removal  Outliers are ones that are situated away 
from the main observation window. An important factor to 
consider before removing outliers is to find out whether they 
consist of relevant information or are the result of noises. In 
some datasets, for example, when dealing with kick detec-
tion or stuck pipe detection, the important information could 
be apparent in the outlying points. In our research, several 
techniques have been evaluated for optimal outlier removal. 
The interquartile range (IQR) method has been identified as 
the most optimal when dealing with outliers, see the detailed 
discussions in Holdaway (2014).

Normalization and  standardization  Considering drilling 
data where the variables or features originate from different 
sources or sensors, an important task is to scale all data to a 
common unit range. Ideally data that is normal distributed 
gets represented as values from 0 to 1. This can be achieved 
through performing a linear feature scaling (LFS), by con-
sidering the minimum and maximum value of each variable 
(James 2016). For a dataset, X = {x1, x2,… , xn} , the normal-
ized data point becomes

While the LFS provides a sensible method to scale data that 
has no predefined range, this technique could still cause 
a challenge if a significant outlier is present. The outlier, 
which could be either very large or very small, would then 
cause the rest of data to be skewed either toward 0 or 1, 

(1)xN
i
=

xi −min(X)

max(X) −min(X)
.

Fig. 1   Laboratory rig test platform
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see (James 2016). Standardization is the other commonly 
used technique. It refers to a process of subtracting the mean 
value of the set of values for a variable from each measure-
ment and dividing by the standard deviation of the set of 
values, see (James 2016). The standardized data point is 
calculated as
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Fig. 2   Schematics of the rig construction

Table 1   Sensor measurement range

Measurement Unit Min range Max range

LC (load cell) (g) − 10000 10000
RPM (rev/min) 0 1500
Torque (Nm) 0 8.59
Depth (mm) 0 1000
WOB (weight on bit) (kg) − 30 30
Pressure (bar) 0 10
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where � represents the standard deviation and � is the true 
mean value of the set. For our case, the measurements for 
each variable relative to the threshold are considered. For 
instance, for the weight on bit data, the load cells are con-
figured to measure - 300 N (compression) to 300 N (ten-
sion) of force, Table 1. Therefore, the first step of processing 
the WOB data would remove all measurements where the 
data is invalid, leaving only those measurements within the 
(- 300 N, 300 N) range. In terms of normalizing data, Eq. 
(1) is used to calculate normalized data based on the range 
of sensor measurements.

Laboratory data

Formation classification  Six different rocks were drilled 
with different drilling parameter combinations given in 
Table 2. The rock samples are shown in Fig.  3.

The process of concatenating all experiments and labe-
ling them is repeated for rock formations 1 through 6. The 
pool of data consists of the relatively big number of obser-
vations for each rock formation specimen, Table 3.

The difference in number of observations per rock spec-
imen is based on the availability of different rock specimen 

to drill, as well as the drilling speed. (A 150-mm-thick 
chalk specimen is drilled in less than a minute for refer-
ence; however, a well drilled in granite rock would require 
several hours to drill.)

Rig operations classification  A total of nine experiments 
were conducted to collect data on three rig operations 
in an attempt to develop models to distinguish between 
drilling and non-production time (NPT) activities such as 
tripping. These three operations are tripping up (POOH), 
tripping down (RIH) and rotating on bottom (ROnB). The 
experiments contain data for each operation, either with or 
without bit rotation, circulation or a combination of both. 
The data is labeled so that each operation is represented 
by Table 4.

Table 2   Data is collected from 
6 formations

WOB = 3,6 means that WOB is set 3 kg and 6 kg, respectively

Type RPM = 400 RPM = 600 RPM = 800 RPM = 1000

Cement WOB = 3,6 WOB = 3,6,10 WOB = 10 –
Salt WOB = 3,6 WOB = 3,6,10 WOB = 8,10 –
Sandstone WOB = 3,6 WOB = 3,6,10 WOB = 3,6,10 WOB = 10
Chalk WOB = 5 WOB = 5 WOB = 10 WOB = 10
Shale WOB = 3,6 WOB = 3,6,10 WOB = 3,6,10 WOB = 10
Granite WOB = 3,6 WOB = 3,6,10 WOB = 3,6,10 WOB = 10

Fig. 3   Collection of different rock specimen drilled to gather experi-
mental drilling data

Table 3   Data concatenation for rock classification

Rock specimen Label Number of samples

Cement 1 8.263 × 106

Chalk 2 1.864 × 106

Granite 3 1.473 × 107

Sandstone 4 1.020 × 107

Salt 5 7.149 × 106

Shale 6 1.375 × 107

Table 4   Data concatenation for rig operation classification

Rig operation Label Number of samples

POOH 1 8.153 × 105

RIH 2 9.633 × 105

ROnB 3 1.77 × 106
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Feature engineering

Feature selection

Natural features when classifying rock formations and rig 
operations are: LC(1/2/3) denote the hook load strain gauge 
measurements from load cells; RPM (rotary speed of drill 
string); torque (surface torque); depth (measured depth); 
WOB and pump pressure.

Several drilling-related features have been created from 
the above natural features, as shown in Table  5 (More 
information of drilling parameters in Table 5 is given in 
“Appendix.”)

Several statistical features have also been created for the 
cases of rock classification. They describe the average value, 
standard deviation, median, maximum, minimum, P25, P50 
and P75 value for each natural feature, like pressure, weight 
on bit or torque.

Similar to the DOC and BA, some features consider-
ing the data transformation are created to add additional 
interactions of the drilling parameters, Table 6. The basis 
for calculating the interactions of natural features is a data 
analysis experiment conducted to investigate whether the 
feature importance of these natural interactions is higher 
than the natural features.

Feature extraction

Principal component analysis (PCA) (Otterbach 2019) is a 
method of analyzing small or large datasets. It extracts the 
numerical values from the variables and calculates a set of 
new orthogonal variables called principal components. The 
benefit of using this method is to extract only the required 
information to explain the variance in the data and thus 
reduce the size of the dataset by keeping only the valuable 
information required for prediction and classification. After 
creating the principal components, the quality of the model 
can be evaluated by cross-validation (Herv and Williams 
2010). The following workflow as shown in Fig. 4 is to 
extract the features that have provided the highest score in 
the feature importance evaluation.

Feature extraction methods give a good indication of 
the importance of features from data science perspective. 
When working with drilling data, manual feature selec-
tion and optimization should be performed, besides these 
standard methods. Some features that are considered 
important from drilling engineers’ perspective to describe 
a particular phenomenon (such as bit-rock interaction for 
rock formation classification) should get selected rather 
than blindly trusting the score from an algorithm. A high 
accuracy score does not guarantee that the model can 
correctly classify the observations in a new dataset if the 
selected features are not directly applicable.

Table 5   Engineering features, where MSE is mechanical specific 
energy; DOC is depth of cut and BA is bit aggressiveness

Features Description (“Appendix”)

Mean depth Average height sensor measurement
ROP Change of bit depth per time unit
MSE Mechanical energy used to remove a unit rock volume
DOC Distance that drill bit cuts into formation per revolution
BA How high the DOC is
D-exponent Being used to correct drilling rate

Table 6   Artificial features

Feature Parameters Feature Parameters

TF1 RPM * WOB TF2 RPM * WOB/ROP
TF3 RPM2 TF4 WOB2

TF5 WOB/RPM

Fig. 4   Flowchart of data flow and processes performed for real-time 
classification
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Machine learning models

The different classifiers used to develop the models in 
“Discussions” section have all been taken from the Scikit 
Learn library (Scikit 2019). These are: multilayer percep-
tron (MLP) classifier (Wilson 1994), decision tree (DT) 
classifier (Kamiski et al. 2017), support vector machine 
(SVM) classifier (Christiani and hawe-Taylor 2000), ran-
dom forest (RF) classifier (Ho 1998), gradient boosting 
(GB) classifier (Elith 2018), K-neighbors (K-NN) classifier 
(Altman 1992), K-means (Hartigan and Hartigan 1979), 
density-based spatial clustering of applications with noise 
(DBSCAN) (Fan et al 2011) and tree-based pipeline opti-
mization tool (TPOT) classifier (Randal 2019). The flow-
chart for model development is shown in Fig. 5.

Results

Cases

A sensitivity study is conducted to evaluate which fea-
tures result in the most optimal models for the drilling 
cases given below. Since the most optimal features have 
only been presented for rock formation classification, each 
classification task will also be presented with the recom-
mended feature priority. Regardless of the feature prior-
ity from the algorithm, manual selection is performed to 
ensure that only those features that are regarded as appli-
cable are used. The cases in this study are shown below:

•	 Laboratory rock formation classification—4 cases (Case 
1–Case 4)

•	 Laboratory rig operation classification–3 cases (Case 5–
Case 7)

Table 7 shows the cases with different machine learning 
methods. Table 8 shows the cases with different features 
used to the models.

Evaluation (Cases 1–4)

For the support vector machine, the ability to extract linear 
combinations of features is high, but the model is both weak 
with regard to computational scalability and natural handling 
of mixed-type data. For Cases 3 and 4 however, when the 
number of rock types has been reduced to three, an increase 
by approximately 10% can be noted. The same applies to 
the multilayer perceptron model, which appears to perform 
much better when the type of samples has been reduced to 
three. With regard to K-NN, the model appears to score bet-
ter when the number of features is low.

Figure 6 shows the output from Case 1, where the best 
predictions are achieved with the decision tree, gradient 
boosting and random forest models. Figure 7 shows the out-
put from Case 2. While the decision tree, gradient boost-
ing and random forest models continue to deliver the best 
predictions, all models except the multilayer perceptron 
and support vector machine now deliver almost identical 
predictions.

While the above experiments were conducted for six dif-
ferent formations, several of the formations are similar in 
drillability such as sandstone and cement. For this reason, 
the models from Case 3 have been trained on class 3: granite, 
4: sandstone and 5: salt, respectively, representing a hard-
drilling formation, a medium to hard-drilling formation and 
a soft formation. From Table 9 and Fig. 8, it is seen that 
except from K-NN model, all other models perform well. 
Finally, the same dataset is run through the models in Case 
4 that have been developed with the six highest scoring fea-
tures. From the results, Fig. 9, all models except for MLP 
and K-NN perform well.

Considering all models, it is our recommendation to use 
decision tree classifiers for rock formation classification 
on the laboratory drilling rig. It can be observed that the 

Fig. 5   Flowchart of model development

Table 7   Cases with methods

Case Classification Models

1 6 formations MLP, DT, SVM, GB, RF, K-NN, TPOT
2 6 formations MLP, DT, SVM, GB, RF, K-NN, TPOT
3 3 formations MLP, DT, SVM, GB, RF, K-NN, TPOT
4 3 formations MLP, DT, SVM, GB, RF, K-NN, TPOT
5 Rig operations K-NN
6 Rig operations K-means, DBSCAN
7 Rig operations K-means, DBSCAN
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Table 8   Cases with features

Case Features Labels

1 LC1, LC2, LC3, RPM, Torque, WOB, ROP, TF1, TF2, TF3, TF4, TF5, MSE, DOC, BA, D-exponent 1, 2,… , 6

2 RPM, Torque, ROP, TF3, DOC, BA (6 highest scores) 1, 2,… , 6

3 LC1, LC2, LC3, RPM, Torque, WOB, ROP, TF1, TF2, TF3, TF4, TF5, MSE, DOC, BA, D-exponent 3, 4, 5
4 RPM, Torque, ROP, TF3, DOC, BA (6 highest scores) 3, 4, 5
5 LC1, LC2, LC3, RPM, Torque, WOB, ROP, TF1, TF2, TF3, TF4, TF5, MSE 1, 2, 3
6 ROP, WOB 1, 2, 3
7 ROPmin , ROPmedian 1, 2, 3

Table 9   Model accuracy Case MLP (%) DT (%) SVM (%) RF (%) GB (%) K-NN (%) TPOT (%)

1 95.53 99.66 89.66 98.50 99.26 85.37 98.29
2 93.10 99.71 85.12 98.68 99.18 92.34 98.02
3 99.36 99.93 98.83 99.53 99.85 89.92 99.32
4 98.60 99.94 97.50 99.66 99.93 97.74 99.83

Fig. 6   Prediction from Case 1 Fig. 7   Prediction from Case 2
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number of features to train and classify formations can be 
reduced from 16 to 6 without losing the accuracy.

Evaluation (Cases 5–7)

The three rig operations POOH, RIH and ROnB can be pre-
dicted, as shown in Fig. 10 and Table 10. The dataset is run on 
the K-NN model in Case 5 that is built using a combination of 
natural features and engineered features. From Case 6, it shows 
that the unsupervised K-means model is capable of identifying 
the three different rig operations using the WOB and the ROP. 
The unsupervised DBSCAN model, however, interprets that 
four clusters are present, suggesting that only natural features 
are not robust enough. Considering Case 7, the two engineered 
features ROP median and ROP maximum—ROP minimum, 
both K-means and DBSCAN models are capable of identifying 
the different rig operations by their correct classes. Consider-
ing the results from Cases 5–7, there is no challenge in clas-
sifying the rig operations using the K-NN model developed. 

It appears that high accuracy can be achieved using only a 
few selected features being either natural or engineered. For 
Cases 6 and 7, the models appear to more easily be capable of 
separating the engineered features from each other.

Fig. 8   Prediction from Case 3
Fig. 9   Prediction from Case 4

Table 10   Results for rig operation classification, where ARI is 
adjusted rand index (Alexander 2017)

Case K-NN K-Means DBSCAN

5 100% – –
6 – ARI: 1.0000 ARI: 0.9989
7 – ARI: 0.9970 ARI: 0.9970
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Implementation

Voting system

A voting system has been developed to combine the predic-
tions from the seven models into one formation class predic-
tion with a confidence level score. The voting system could be 
further used to signal that a new formation is possibly detected, 
as well as to confirm a new formation that indeed has been 
encountered. From analyzing the performance of the models 
and checking the model performance on a test set separately, 
the weights in Table 11 are given to the different models.

The control system is configured to operate at 60 Hz, i.e., 
60 predictions per second per model. The voting system can be 
illustrated by considering a case, as shown in Table 12. Each 
weight given in the table is counted as a separate problem. 
For instance, a model is given weight 2; the prediction from 
that model is equal to the prediction of two models that each 
have weight 1.

Then, a count is performed of the six classes. They repre-
sent six different rock formations, and a percentage score is 
calculated that represents the number of times that the class is 
predicted divided by 11 (total amount of all predictions mul-
tiplied by the weight), Table 13.

This suggests that the machine should recognize a granite is 
being drilled with a 63.64% confidence, a 18.18% chance that 
the formation is a sandstone and a 18.18% chance that salt is 
being drilled. The prediction and confidence level is performed 
once every second.

Confirmation

New formation detection is handled by evaluating whether a 
class (formation type) gets predicted with a higher confidence 
level than 60% that is different from the previously confirmed 
formation class. Then, new formation confirmed is handled by 
considering the predictions over the last 10 s. For example, if 
70% of the predictions in the last 10 s are of the same class (all 
with a higher confidence level than 60%) the machine could 
now replace granite with sandstone as the formation being 
drilled.

Table 14 shows how it works in real-time operation in terms 
of formation detection and confirmation. In such example, a 
new formation is not yet confirmed in the second last row, 
since even though a new formation gets detected, this forma-
tion class has not occurred in 70% of the last 10 seconds worth 
of predictions. The highest class is only filled into the array 

Fig. 10   Prediction from Case 5 (laboratory rig operations classifica-
tion with raw- and median-filtered prediction)

Table 11   Weights added for 
real-time voting system

MLP DT SVM RF GB TPOT K-NN

1 3 1 2 2 1 1

Table 12   Example for voting 
system

Model Label pre-
diction

Model 
weight

MLP 3 1
DT 3 3
SVM 4 1
RF 3 2
GB 5 2
TPOT 4 1
K-NN 3 1

Table 13   Example for confidence level calculation

Class (rock type) Occurrences Confi-
dence 
level (%)

1 (cement) 0 0
2 (chalk) 0 0
3 (granite) 7 63.64
4 (sandstone) 2 18.18
5 (salt) 2 18.18
6 (shale) 0 0
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if the confidence score from the voting output is higher than 
60%.

Discussions

It shows that the machine learning models achieve high 
accuracy to detect different rock formations and rig opera-
tions. There are, however, several limitations and challenges 
of machine learning:

•	 First and foremost, it should be emphasized that the 
model accuracy heavily depends on the quality of the 
data used to train the models. It means that while a good 
model can be created for one objective, there is no guar-
antee that a good model can be used for another, unless 
the data can accurately describe the phenomena.

•	 Secondly, the models depend heavily on the environ-
ment that they have been trained. An example of this is a 
model that has been trained on data acquired in the labo-
ratory environment, but when used in the field is not able 
to make the correct prediction, even if the trend might 
be the same. More scaling issues shall be considered in 
terms of model development phase.

•	 Thirdly, another limitation is to understand which fea-
tures that must be selected in order to correctly detect 
the phenomena that the model gets developed for, and to 
blindly trust different importance evaluation techniques.

•	 When compared to physical models, it is our percep-
tion that it can both be difficult to detect and correct if 
the machine learning model makes a mistake. Machine 
learning approaches look like a black box to be difficult 
to be interpreted, translated or understanding. This is 
related to the complexity of fully understanding the pro-
cesses that go into each decision that the machine makes.

•	 Finally, a major limitation lies in computational power 
available to train a model on large sets of data. If for 
instance a deep learning model gets developed from an 
immense number of observations, the required hardware 
to train such model can be both expensive and inacces-
sible. There has, however, been a big shift in recent years 
toward cloud computing, where one can upload the data 
and use the computational power of a data center to build 
the model. This also applies to the time that it takes to 
train a model. If either the time available to train the 
model or to make a prediction is limited, it is absolutely 
necessary to understand which models are computation-
ally expensive to build, and which are not.

Conclusion

In our experimental tests, a total of six different rock forma-
tions can successfully get classified on the laboratory drill-
ing rig by using machine learning approaches. Moreover, the 
predictions from the machine learning models for formation 
classification can be combined through the proposed voting 
system to present the output prediction along with a confi-
dence level. Specifically, a new formation can be confirmed 
by voting if it has been detected successfully over a number 
of consecutive iterations. Having a new formation detected, 
it allows the control system to initiate either a new search for 
an optimal ROP or to use pre-determined drilling parameters 
for the WOB and rotational speed, based on analysis of pre-
vious runs. Different drilling scenarios have been introduced 
to test, evaluate and validate our approaches on the rig while 
drilling different formations. Model calibrations regarding 
data processing, feature selection, hyper-parameter tuning 
and machine learning architecture choice and model valida-
tions to validate model results with the real system can be 
easily conducted by running different tests.

The developed approach of pre-processing the data, 
selecting the most optimal features and developing multiple 
models along with a voting system has resulted in reliable 
results. Future recommendations are:

•	 Integration of reinforcement learning on the rig, in which 
the models constantly get improved by correction of the 
prediction outputs from models,

•	 Developing a larger database containing both different 
rock formations drilled while varying drilling param-
eters,

•	 Develop models and perform PCA based on downhole 
measurements or surface measurements that accurately 
describe the bit interaction with the formations.

Table 14   Example for real-time rock classification

Time inter-
val (s)

Highest 
label

New 
formation 
detected?

Formation 
confirmed

Current label

t:[0,9] Sandstone Yes No Shale
t:[1,10] Sandstone Yes No Shale
t:[2,11] Shale No No Shale
t:[3,12] Sandstone Yes No Shale
t:[4,13] Sandstone Yes No Shale
t:[5,14] Sandstone Yes No Shale
t:[6,15] Sandstone Yes No Shale
t:[7,16] Sandstone Yes No Shale
t:[8,17] Salt Yes No Shale
t:[9,18] Sandstone Yes Yes Sandstone
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Appendix

Mechanical specific energy (MSE) is a measure of the 
mechanical energy required to remove a unit volume of rock. 
The MSE calculation is given in Fear and Pessier (1992):

Depth of cut (DOC) can be described as the axial distance 
that the drill bit cuts into the formation per revolution. The 
formula to calculate the DOC is given by Kenneth and Rus-
sel (2016):

Bit aggressiveness (BA) is determined by how high the DOC 
of a drill bit is, and depends on the bits backrake angle (cut-
ter angle) and the exposure of cutters. The equation for bit 
aggressiveness calculation (Karadzhova 2014) is

D-exponent describes the so-called drillability of different 
formations, see (Akisanmi 2016). It is calculated by:
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