
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

BACHELOROPPGAVE

Studieprogram/spesialisering: Høstsemesteret 2022

Bachelor i ingeniørfag / Åpen

Automatisering og elektronikkdesign

Forfatter(e): Asbjørn Stokka

Fagansvarlig: Kristian Thorsen

Veileder(e): Kristian Thorsen

Tittel: mikrokontrollerbasert plattform for arbeid med autonom kjøring

Engelsk tittel: Microcontroller based platform for autonomous driving

Studiepoeng: 20

Emneord: Sidetall: 61

kretskortdesign, mikrokontrollere, RTOS + vedlegg/annet: 16

Stavanger 15. desember 2022

Innhold

Content i

Summary 1

Terms, Abbreviations, and Acronyms 1

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition . 2

1.3 Usecases . 2

1.4 Existing work . 3

1.5 Planning . 3

1.5.1 Product Requirement Specification 3

1.5.2 Functionality Specification 4

1.5.3 Product/System Design Specification 8

i

INNHOLD

1.5.4 Notes and alternate Specification 11

2 Theory 12

2.1 Communication - Media layers 12

2.1.1 I2C - Inter-Integrated Circuit 12

2.1.2 UART - Universal asynchronous receiver-transmitter
[2] . 14

2.1.3 CAN bus . 14

2.1.4 Data Link layer . 16

2.1.5 CAN Filtering . 19

2.1.6 Wireless communication 20

2.1.7 Communication needs 20

2.1.8 Discussion on communication choices 21

2.2 TDD - Test Driven Development and Testing 23

2.3 Firmware/Software . 25

2.3.1 STM32Cube . 25

2.3.2 VSCode . 25

2.3.3 Zephyr RTOS . 26

2.3.4 Python . 26

2.4 3D printing and laser cutting 27

ii

INNHOLD

3 Design and construction of the hardware, firmware, software
and physical components 29

3.1 Single Board Computer - Embedded Linux 29

3.1.1 Raspberry pi . 29

3.1.2 BeagleBone . 30

3.1.3 Conclusion . 31

3.2 PocketBeagle, a development tool 31

3.2.1 Debugging . 31

3.2.2 Automated testing with Zephyr 32

3.3 SBC system . 32

3.4 CAN-Sensor-Node . 33

3.4.1 PCB design . 33

3.4.2 Firmware . 35

3.4.3 Use case for the sensor node 45

3.4.4 Further improvements 45

3.4.5 Conclusion . 45

3.5 RC Platform Board . 46

3.5.1 PCB . 46

3.5.2 Manufactured parts 47

3.5.3 Zephyr RTOS firmware 48

iii

INNHOLD

3.5.4 BLE Over The Air firmware update 53

3.5.5 Further improvements 54

3.6 Python software . 55

3.6.1 Computer Control System 56

3.6.2 CAN bus Socket server 56

3.7 Building a small autonomous car 57

4 Results and discussion 58

4.1 SBC - development tool . 58

4.2 Testing . 58

4.3 Small single-board car . 59

4.4 Small autonomous car . 59

4.5 Python software . 60

4.6 Discussion . 60

5 Conclusion 61

Bibliography 63

Vedlegg 63

A Tests 64

iv

INNHOLD

B Design files 75

C Datablad 80

v

Abstract

This report covers setting up a development system for embedded devel-
opment for microcontrollers and Linux Embedded SBC systems. And, the
development and testing of a microcontroller-based platform that can be
used for prototyping and developing autonomous driving. The Platform
can be used as a single board small car, or as a small multi-sensor-node
vehicle with CAN bus connecting the different nodes. A SBC system can be
used for computer vision and controlling and driving the car. It should be
built using cheap, off-the-shelf components making it accessible for anyone
interested.

vi

Terms, Abbreviations, and
Acronyms

3D-printing A form of additive manufacturing where you add
material to an object

ABS Acrylonitrile butadiene styrene. A common thermo-
plastic polymer. Offers desired properties like
impact resistance, structural strength, electrical in-
sulating properties, as well as being easy to paint
and glue. It is considered cheap, though somewhat
advanced/difficult to use for 3D printing.

BeagleBone High-performance, low power, and Open Source
system. SBC available in several configurations.

BeagleBone
Cape

Capes are daughter-board addons extending the
functionality of BeagleBone and PocketBeagle pro-
ducts.

CAD Computer Aided Design
CAN Controller Area Network, a bus for communication

between microcontrollers
CRC Cyclic Redundancy Check
Git commit A commit is a snapshot of a repository at a specific

time. As you "commit"your changes, you also add
a message to that commit. This message can also
tag one or more issues triggering automation, and
linking the commit to that issue.

GitHub A development platform to build, scale, deliver, and
manage software projects with Git.

vii

INNHOLD

Github ac-
tions

Github actions is a yaml based framework for ad-
ding automation to repositories. Each action will be
triggered only on specified events, and can be used
for error checking, linting, releases etc.

GitHub issue An issue is a note added to a github repository con-
taining. An issue can contain information, discus-
sions, tags, be given a deadline, assigned to a user,
be tracked as part of a project milestone. As an is-
sue is closed, it may also be tagged in a commit to
signify that the commit has addressed the issue.

GNSS More than just GPS, typically also includes GPS,
GLONASS, Baidu, Galileo and other satellite sys-
tems.

GPIO General-Purpose Input/Output
HAL Hardware Abstraction Layer - libraries and func-

tions to let you write more universal code that can
be compiled for other microcontrollers

KiCad A Cross Platform, Open Source Electronic design
software suite

Linux Em-
bedded
device
Makerspace A place were people with a shared interest in com-

puting and technology gather around their shared
interest. Often sharing ideas, knowledge, and/or
equipment.

MicroPython A small implementation of Python3 with a subset
of the standard library meant to run on microcon-
trollers.

OSI layer
model

Open Systems Interconnection model, an abstract
conceptual model describing communication betwe-
en computers by splitting it into seven different lay-
ers: Physical, Data Link, Network, Transport, Ses-
sion, Presentation, and Application

PCB Printed Circuit Board
Rapid proto-
typing

A production process to move quickly from a CAD
model to a produced prototype

viii

INNHOLD

Raspberry pi The name of the UK foundation behind the
Raspberry Pi SBC. First started to develop a small,
cheap computer solution that would have a low
power usage. Now the Raspberry Pi boards (and
Pi compute modules) can be found in many hobby
projects and embedded systems.

Repo Repositories contains project files, and version his-
tory for all the managed files.

RTOS Real Time Operating System, operating system for
systems with real time applications where events
have critically defined time constraints. Switches
between tasks based on their priorities.

SBC Single Board Computer. Started as a tool for
teaching computer science, was conceptually used
in computers meant to give access to computers in
development countries with little/unreliable power.
And are now widely used in embedded systems.

Voron pro-
ject

A community driven project to create a nn-
o-compromise"3d printer design. They have various
3D printer designs for core-xy 3d printers capable
of printing high quality fdm prints in various mate-
rials.

ix

Kapittel 1

Introduction

This bachelor thesis is a

1.1 Motivation

Starting a UiS we early on had a great project using the LEGO EV3 robots
for projects in applied physics and mathematics. Though we quickly met
several limitations when developing scripts to control them in Matlab it was
very interesting to work with. Later on, as a student assistant in ELE130, I
tested a similar syllabus where Matlab could be changed for micro-python.
Though it offered increased processing capabilities, there were large issues
in debugging the code. And students often ran into issues with communi-
cation between the computer software and the robot.

And, most of all, at the end of the semester everyone has to hand in the
Lego hardware and is left without the possibility to continue their projects
and efforts. Buying their own Lego robots would be a large investment as it
is somewhat expensive, and you can only use Lego pieces, sensors, motors,
and parts to build them.

I have for several years worked on a variety of hobby projects, and been
active in the local Makerspace community. Through working on increasing-

1

1.2 Problem definition

ly advanced projects I have come to see that there is a lot of possibilities
with various Open Source systems. And, that it is possible to get far using
those solutions instead of expensive industry software/hardware. For hobby-
ists a lot of companies offer free or cheap licenses, but that is not always
the case for startups, and small/medium sized companies.

1.2 Problem definition

Building a small car, where the main goal is not the finished car itself, but
the total framework. The goal is to make resources for a set valuable tools
(both software and hardware) available for working on embedded projects
(both SOB and micro-controllers). The project will be a combination of
SBC (Single Board Computer) and micro-controller based boards commu-
nicating together using an industry standard protocol. Creating a low-cost
platform that can be used for control theory training, computer vision expe-
rimentation, and for developing autonomous vehicles. With a set of relevant
development, and debugging tools easily available.

1.3 Usecases

The main usecase of this project is to make ready a platform to use in a
bachelor degree in computer science in driving with computer vision. The
project result can be used for computer science projects, studying or wor-
king on embedded development, for control-theory studies, as an alternati-
ve platform for applied science and math projects in robot programming,
for developing autonomous vehicles and/or projects in computer vision, or
simply as a guide/toolbox for using Embedded Linux on SBC in CAN bus
projects, getting started with Zephyr RTOS and remote flashing/GDB de-
bugging using an Embedded Linux platform, or for getting started with
automated pyTest testing. The repositories also contain example GitHub
actions to inspire the use of pipelines with a more automated workflow.

2

1.4 Existing work

1.4 Existing work

From ING100 (now ELE130) we had a project on applied physics and math
in robot programming, where we programmed in Matlab to control LEGO
EV3 robots for various tasks. The robots came with a set of different sensors
and motors, and you could choose a set of four sensors and four motors to
use at the same time. With ELE130 the subject also had the possibility to
program the robots using Micro-Python. Using Micro-Python allowed for
faster processing of sensor data, and more responsive application. However,
debugging the Micro-Python scripts proved more difficult for the students.
The LEGO EV3 robots are also quite costly, which is something most stu-
dents do not have access to outside of labs and classes.
Before starting this bachelor thesis I made a small prototype robot based on
an Atmega328p micro-controller and L298N motor driver. It worked quite
well but had limited communication capabilities besides a radio transmitter
for direct control signals.

1.5 Planning

1.5.1 Product Requirement Specification

The end product here is divided in three parts. An Embedded Linux plat-
form running on a SBC communicating with and controlling a vehicle. A
system to be used in a small form factor vehicle with sensors, and mo-
tors that can be programmed to be used for a variety of purposes (control
theory/distance-servo regulating). A modular platform for sensors that can
be used and connected to the system to give extra information. These are
meant to be used on a slightly larger, but still relatively small form factor
vehicle.

• The SBC can communicate with computers, and with the platform
cards.

• The system logs sensor data, presents them, and shows system status.

• The system can control motors/servo-motor for mobility.

3

1.5 Planning

• The sensor-nodes require a distance sensor.

• The sensor node should be powered and have communication with a
single cable and should be easy to connect to the system.

• The sensor nodes should be modular in such a way that you can easily
change the number of nodes, and where they are connected.

• The platform card should be possible to use stand-alone and/or in
combination with the sensor nodes and embedded Linux SBC system.

1.5.2 Functionality Specification

• Power supply for the nodes, and the platform card.

• Needs to have a useful guide to set up the development environment.

• Needs to be a user-friendly interface for controlling and testing.

• A distance sensor based on transmission and reflection of ultrasonic
sound.

• Easy to expend/change sensors, and a varied basic set of sensors and
sensor data.

• The system communicates by CAN bus.

Figure 1.1 is a sketch of a basic version of the system featuring only a single
platform board with directly connected sensors. It can be used as a stand-
alone training platform in control theory, or other autonomous tasks using
the somewhat limited amount of sensors available. Given a BLE/Bluetooth
connection it can communicate with an external control system. It can al-
so be connected to an SBC Embedded Linux system and used with image
sensors, for example in a small-scale track/testing environment. It is small,
lightweight, cheap, and accessible. Built of cheap parts, and a frame/modu-
les needed to build it can quickly be laser-cut and/or 3D printed.

4

1.5 Planning

Figur 1.1: Small form-factor car with RC-platform board

5

1.5 Planning

Figur 1.2: Sketch of full system with Embedded Linux controller, computer vision
and sensor nodes

Figure 1.2 is a concept sketch of a small battery-powered vehicle with a
CAN bus for sensors, lights, and motor control. It can be used for computer
vision using a number of USB image sensors etc. it can also feature a wireless
connection to a computer control station where you can monitor and record
sensor values.

6

1.5 Planning

Figur 1.3: Diagram of a full sensor system with CAN bus and image sensors

Figure 1.3 is a diagram of the full scale"modular system with a SBC bb-
rain"with an Embedded Linux CAN bus connection, sensor nodes, power
delivery, and image sensors. It could be made as shown in the conceptual
drawing in figure 1.2. Communication between nodes in the system is based
on CAN bus. Other sensors and functionality can easily be added by con-
necting them to the CAN bus and adding message-id/packet description
to relevant parts of the system. The "car system"can communicate with

7

1.5 Planning

an external control system using a Socket connection over WiFi. If in an
area with access points the range of this would be good. In remote areas, it
would be smart to consider a 4G or 5G modem.

1.5.3 Product/System Design Specification

• The control system can run on a computer or an Embedded Linux
system (Raspberry Pi or BeagleBone).

• The Graphical User Interface on the sensor system is built using Pyt-
hon with Qt.

• The Embedded Linux system can communicate on CAN bus, and over
a computer network.

• The firmware for the sensor-node (STM32F1) is written in C,

• The firmware for the platform card is built on Zephyr RTOS.

• To build the sensor-board an STM32F103C8T6 Blue pill board will
be used for development. And the dedicated small board will be made
based on the STM32F103C4T6A chip.

• To build the platform board will be easy to solder and have a feather
connector. It will use a Particle Xenon (NRF52840), and a set of i2c
breakout board sensors in development.

• For a use case with manufacturing the feather connector can be re-
designed and changed to a SMD E73-2G4M08S1C (nRF52840), and
a set of sensors can be mounted directly on the board instead of on
breakout boards keeping it compatible with the firmware.

• The platform board can control 2 motors using the onboard motor
controller, and/or an external motor using PWM, as well as a servo-
motor.

• The platform board can communicate using CAN bus, and using
UART over serial.

• Optionally the platform board can communicate over Bluetooth/BLE.

8

1.5 Planning

• To maintain a constant sampling interval, interrupts are used to get
samples from the distance sensor and accelerometer (in STM32Cube
fw, SysTick timer).

• The platform board has a PID regulator.

• The platform board uses FPU for floating point calculations in the
microcontroller.

• Communication between the embedded Embedded Linux SBC and
computer uses a network socket or SSH.

• The power supply for the different parts of the system is done through
voltage regulators on each card. The platform is designed to have
between DV 7.2 V and DC 12 V battery power supply. The Embedded
Linux system generally uses a 5 V USB power input and will need a
voltage regulator accordingly.

• On the platform card, a switched-mode power supply takes the voltage
from 7.2-12 V to 3.3 V. And an LDO voltage regulator from 7.2-12 V
to 5 V.

• On the sensor-node boards LDO voltage regulators will be used to
take the voltage from 7.2-12 V to 3.3 V/5 V.

Following here are three figures 1.4, 1.5, and 1.6 showing a diagram of the
different boards. Generic names have been used for several of the sensors
where they can be easily exchanged for similar devices. For the exact mo-
dules used refer to the BOM for that board. Not also the CAN H and CAN
L lines that connect the systems, and they should have a 120Ω resistor for
termination at each end. Read more about this in the theory chapter about
CAN bus. And, the wired computer connections shown are used for pro-
gramming and direct interaction with the board/microcontrollers. They are
not needed when the system is in use.

9

1.5 Planning

Figur 1.4: STM32 Sensor CAN Node

Figur 1.5: RC Platform board

10

1.5 Planning

Figur 1.6: SBC Embedded Linux device

1.5.4 Notes and alternate Specification

The Particle Xenon can be switched for an STM32-based board by ma-
king new board files for the Zephyr RTOS system, and defining the various
hardware interfaces. That would require designing a new board, or finding
a suitable feather-based STM32 microcontroller.
Figure 1.4 shows the sensor board as used in development with the STM32
Blue Pill dev board. As the first revision of the CAN Sensor Node board
had a design flaw.
In figure 1.6 the Beaglebone WiFi board can easily be substituted with a
Raspberry Pi by adding an SPI CAN driver. It is also possible to use Beagle-
bone boards without built-in WiFi by using a wired ethernet connection,
USB wifi module, or without an internet connection.

11

Kapittel 2

Theory

2.1 Communication - Media layers

In the following section, we will briefly go through some of the relevant
communication alternatives focusing on the media layers: the physical layer
and the data link layer of the OSI model. That will be relevant for hardware
design choices, and be useful for testing, debugging, and verification of the
hardware.

2.1.1 I2C - Inter-Integrated Circuit

I2C is a synchronous controller/target (formerly known as master/slave)
bus. It is widely used for connecting low-speed peripherals over short dis-
tances. And, it is very popular in prototyping systems, with a great num-
ber of cheap breakout boards available. By design, the peripheral and the
processor should be on the same PCB, and be wired together at a relatively
short distance, of less than 30 cm. There can be a single controller (master)
and multiple target (slaves) nodes, and the lines have a pull-up to Vdd as
seen in figure 2.1.

12

2.1 Communication - Media layers

Figur 2.1: i2c example schematic, illustration from Wikipedia [3]

The SDA (data) and SCL (clock) lines of the bus should have a passive
pull-up, and be at Vdd when be bus is inactive. The lines are never driven
high, but is pulled to ground to give a logic "0", and left floating by the
controller (pulled high by the pull-up resistor) for logic "1". And, messages
should be started by the controller claiming the line by creating a falling
edge on the SDA line. Each bit is read on the SDA line after the rising edge
on the SCL (clock) line.

Figur 2.2: i2c signal example, illustration from Wikipedia [3]

A significant feature of i2c is clock stretching, where a target device can
hold the SCL (clock) line low to indicate that it needs more time to process
data before continuing the transmission.

13

2.1 Communication - Media layers

2.1.2 UART - Universal asynchronous receiver-transmitter
[2]

UART transmits data sequentially in frames starting with a start bit, then
5-9 bits of data, and then it can have a parity bit (stating the odd/evenness
of the data), and stops with 1 - 2 stop bits. UART communication does not
have any shared timing/clock. The operation is controlled by an internal
clock signal, and you set this by the baud rate setting. It is important that
both the sender and receiver have a matching clock setting. The transmitter
and receiver can be connected in different modes, one of them being full-
duplex where Tx (transmit) on the transmitter is connected to Rx (receive)
on the receiver (and again the same for Rx/Tx for the changed roles).

Figur 2.3: UART data packet

When idle, the line should be high (logic ’1’) showing that the line and
transmitter are working. A common setting for UART data frames is shown
in figure 2.3 called 8N1 where there is 1 start bit (logic ’0’), 8 data bits, no
parity, and 1 stop bit (logic ’1’).

2.1.3 CAN bus

CAN bus [1] (Controller Area Network) was first developed for the automo-
tive industry. It is a robust standard designed for microcontrollers and other
devices to communicate. The bus allows for multiple devices to communica-
te on the same bus and has a priority system to avoid collisions. There are
several different specifications, and the latest one is CAN 2.0. We will focus
on the CAN 2.0A specification with an 11-digit identifier. The CAN stan-

14

2.1 Communication - Media layers

dards have also been extended with CAN FD (Flexible Data-Rate), which
can optionally switch to other data rates (faster).

Physical layer

The CAN-bus is a differential bus with two digital signals CAN-H and
CAN-L (CAN High and CAN Low). It is asynchronous as it does not use a
clock signal. The two signal lines (CAN H and CAN L) are terminated in
each of the two ends with a 120ω resistor. The termination helps suppress
reflections, as well as return the bus to the recessive state when not kept
dominant by a node. There are two logical states specified in CAN, recessive
and dominant. When recessive (a logic 1) both CAN H and CAN L are
approximately 2.5 V, and the differential voltage is below the minimum
threshold (<0.5 V). For the dominant (a logic 0) state CAN H is high
at approximately 3.5 V, and CAN L is low at approximately 1.5 V. The
differential voltage is then 2 V. A dominant bit overdrive a recessive bit, and
this is used in arbitration [13]. A recessive and dominant signal is illustrated
in figure 2.4.

Figur 2.4: CAN signal (inspired by [13])

There is no specification made on connectors, colors, labels, or pin-out for
CAN. But some of the electrical aspects like voltage and current can be
found in ISO 11898-2:2003. Even though different vendors use different con-
nectors, one common connector is a 9-pin D-sub male connector with:

15

2.1 Communication - Media layers

• Pin 2: CAN-L

• Pin 3: GND

• Pin 7: CAN H

• Pin 9: Can V+ (power)

2.1.4 Data Link layer

When transmitting data, a message is called a frame. As mentioned in the
CAN bus introduction there are two frame formats: CAN 2.0A and CAN
2.0B where CAN 2.0B has an extended frame supporting 29-bit identifiers.
To make sure the signal is synchronized, if there are 5 consecutive bits with
the same polarity, a bit of the opposite polarity (stuff bit) will be added.
This bit is simply removed again by the receiver.

Figur 2.5: CAN frame (Source Wikipedia [1])

16

2.1 Communication - Media layers

Base CAN frame format:

Field name Length Bit value Description
Start-of-frame 1 0 Denotes the start of a frame

Id 11 1/0 Message Id, also used for arbitra-
tion/message priority

RTR 1 0: data frame
1: request frame Remote transmission request

frame, requests data
IDE 1 0 Identifier extension bit, 0 for base

frame format with 11-bit identi-
fier.

r0 1 0 Reserved bit, must be 0

DLC 4 1/0
Data Length Code:
4 digit number bytes of data
(0-8 byte) will be in the data field

Data field 0-64 1/0 Transmitted data
CRC 15 1/0 Cyclic redundancy check. For er-

ror checking the frame.
CRC delim 1 1 CRC delimiter, must be recessive

(1)
ACK slot 1 1 Transmitter sends recessive (1),

receiver can ACK with dominant
(1)

ACK delim 1 1 ACK delimiter, must be recessive
(1)

EOF 7 1 End Of Frame. Must be recessive
(1)

IFS 3 1 Inter-Frame-Spacing. Separation
between frames.

Id and Message priority

The id are the bits marked in green in figure 2.5. For arbitration on a CAN
bus if two nodes start transmitting at the same time there is a system for
arbitration and message priority. Both Nodes would start off by sending a
dominant (0) for SOF (start of frame) and then start transmitting their ID.
The first node to see a dominant (0) on the line when it is trying to transmit

17

2.1 Communication - Media layers

a recessive (1) loses the arbitration and stops transmitting. Remember from
the physical layer description that a recessive signal is the passive state for
the line. While the node with the lowest message Id continues transmitting.
A lower id will always win the arbitration and have higher priority on the
bus (has the most leading dominant (0) bits in the id field). The Frame
id field has to be unique for each node to avoid two nodes completing the
arbitration without a winner, causing collisions. And the id field is also used
for filtering which will be covered in more detail later.

Control

IDE (in white) is a 0 for 11-bit identifiers, and 1 for extended id (29-bit).
r0 (also white) is a reserved bit and is always 0.
The Data length code is the set of bits marked in yellow in figure 2.5. This
is a binary number for how many bytes of data will be given in the data
field (bits marked in red). 0001 is 1 byte of data, if you changed it to 1000
that would be 8 bytes of data.

Data

A number of bytes of data are given by the data bits. This is the actual
data transmitted with the data frame. Request frames do not have these
bytes.

CRC - Cyclic Redundancy Check

This is a check to see if there are any errors in the received data packet.
The sender calculates a 15-bit checksum and adds it as the CRC bits of
the frame. The CRC is generated by doing a polynomial division on the
data, using a polynomial based on the bit pattern in the beginning of the
frame. The remainder of the division is used as the checksum. When the
receiving node checks the data, the checksum it calculates should match the
checksum given in the CRC bits. The microcontroller uses XOR operations
and bit-shifting on the data to perform this division.

18

2.1 Communication - Media layers

ACK

After the CRC check there is a slot where a node receiving the frame can
write a dominant bit (0) to the bus to signal to the sending node that the
frame has been received.

End of Frame

The end of the frame consists of 7 recessive bits (1). And there is a spacing
of 3 bit left recessive before the next frame is allowed to be sent on the bus.

2.1.5 CAN Filtering

CAN bus has a system for filtering incoming frames by id. This filtering is
done to reduce interrupts as only the accepted frames will cause an inter-
rupt, while the rest are discarded by the controller. The CAN controllers
can filter based on a list or mask mode.

Id filter

The incoming frame id is checked with a list of accepted ids. If the incoming
frame id is present in the filter bank identifier register, the frame is accepted.

Mask filter

A filter bank register is used as an identifier register, and another as a mask
register. The mask register identifies the bits in the identifier register to
compare, and what bits to ignore. If the bits to compare in the identifier
register matches those in the incoming frame id, the frame is accepted. The
remaining bits in the id field are simply ignored (not compared, but still
follow the frame).

19

2.1 Communication - Media layers

2.1.6 Wireless communication

For the wireless connections, we will not go into depth on the physical, data
link, network, or transport layer of the OSI model [4]. But only make some
remarks regarding the use of wireless networks and Bluetooth in embedded
systems.

WiFi

A WiFi connection (like 802.11n or 802.11ac) has a range of 10 - 100 meters
and is easy to configure using standard tools in the operating system. Having
a standard network connection on an Embedded Linux system will allow
the use of a Socket connection for communication (primarily the transport
layer), which will be discussed later on under software as it is more relevant
there.

Bluetooth Low Energy

Bluetooth low energy has been developed to offer a low-energy alternative
for radio communication. It has a similar range to WiFi with a nominal
range of 100 meters, though there is also BLE Long Range/Coded PHY
that has been tested with a range of up to 1300 meters [8].

2.1.7 Communication needs

In this project, there are several different communication needs. The microp-
rocessor on the board needs to communicate with the different sensors on
the board to read sensor data. The different boards/nodes need to commu-
nicate with each other, and to keep it modular it needs to be a bus where
you can easily change what type and number of nodes are connected. For
GPS a lot of the available modules communicate using UART and/or i2c.
As cable between an autonomous vehicle and the control interface would be
a limiting factor, it should have wireless communication.

20

2.1 Communication - Media layers

Figur 2.6: Machine- and software platform

2.1.8 Discussion on communication choices

It would be wrong to say that one of these types of communication is sim-
ply better than the other, but they have different use cases. I2C is designed
for, and very suitable for inter-circuit communication within a board, but
would quickly perform badly because of noise if used between boards and
on longer distances. It needs only two GPIO pins (SDA/SCL), and it is
possible to have multiple targets on the same line. It is a popular interface
used on a lot of sensor ICs. This makes it a good choice for communication
with sensors on the RC platform board, and also for possibly connecting a
couple of sensors directly to the SBC Linux Embedded device (can also be
done with a cape/pi-hat board).

CAN bus is not a single controller bus, it uses differential lines, and support
longer distances. It was developed for and is the industry standard for com-

21

2.1 Communication - Media layers

munication in cars. The bus has a system for message priority where critical
frames win arbitration and go before less important frames. And nodes can
use filters on incoming frames to avoid the CPU handling interrupts due to
frames not being relevant for their functionality. These features make it a
good choice for communication between nodes.

WiFi was chosen as the main focus mainly because it needs little setup/con-
figuration, it is widely available on SBC devices directly or using a USB
peripheral. Devices can connect to existing infrastructure/access points or
WiFi hotspots. Most Android/iPhones can easily create a local hotspot, or
in a larger test site, it is possible to connect to a larger network with one
or more access points and larger coverage.
The negative side of microcontrollers using wifi directly is the high power
consumption, and the space it takes to implement network and IP stack
support on smaller embedded devices. A Zephyr RTOS device could howe-
ver use an ESP32 as a modem for wireless connections, especially if using
a driver that offloads part of the network stack. For a stand-alone RC plat-
form board setup, BLE/Bluetooth uses far less power, making it a viable
alternative for wireless communication between the RC platform board and
a computer. And it can be used for both OTA flashing of firmware and
transmitting commands/sensor data.

22

2.2 TDD - Test Driven Development and Testing

2.2 TDD - Test Driven Development and Testing

Test-driven-development focus on converting the requirement to test cases
before starting on the implementation. Writing the test case before writing
the code keeps the tests from being tied to the specific code implementation,
and makes sure it is tied to testing the required functionality instead. The
steps as described on Wikipedia [7] and Uncle Bob (Clean Code [12]) are:

• Add a test

• Run all tests. The new test should fail for expected reasons

• Write the simplest code that passes the new test

• All tests should now pass

• Refactor as needed, using tests after each refactor to ensure that func-
tionality is preserved

• Repeat

Figur 2.7: TDD Sequence

Following these steps, you will end up
with both a fully tested codebase, and
know for sure that your refactoring of
the code does not break anything. The
goal is to avoid having to debug, as
that is often very time-consuming. Co-
de with a test suite also helps ensure
that library upgrades/changes, and la-
ter changes, refactoring or feature ad-
ditions to the project code do not unin-
tentionally introduce bugs. A common
type of test is a "Unit test". A Unit
test is a test for a unit of code, testing
a single unit of functionality. On a higher level, there are integration tests,
testing functionality across different units. To create unit tests that do not
rely on an external dependency it is possible to use "mocking"where you
make a pretend interface to test against.

23

2.2 TDD - Test Driven Development and Testing

As an example, if you want to test code related to interacting with socket
communication you could create a mocking socket object where it doesn’t
actually interface with a network connection but rather just pretend to do
so. That way you could let the mock object store connections attempted,
data being sent with the socket, or hand out data, and let the Unit test
system check input given to the mock object.

Working with TDD and version control platforms you can create a pipeline
to run Unit tests etc on pushing new commits to the tree, or on pull requests
or releases. Often a test can also be good documentation of functionality
and an easy place for programmers to read and understand how to use a
library or function [12].

Writing good tests, learning to use different test frameworks, mocking, and
fakes definitely require effort. Learning to write tests and testable code is
not always as straightforward in practice as it seems when you read or hear
about it. One of the interesting questions is what value it adds, and how it
affects the resulting code.

TDD also seems quite a bit more straightforward for cod libraries and
functions doing different calculations, than in embedded development in-
teracting with hardware GPIO pins, and external systems. It is possible to
mock these interfaces, but would that give the same value? As an alternati-
ve, it is also possible to have a microcontroller connected to an Embedded
Linux system and run tests where the chip is programmed and the logical
level of GPIO pins checked in different states of the firmware. As well as
automated testing it is also possible to create documentation for manual
testing describing how to perform the tests and the expected results. How-
ever, doing manual testing is quite costly in terms of time and will most
likely not be run as often, and more changes to the code between the tests.

24

2.3 Firmware/Software

2.3 Firmware/Software

When working in development it is important to have good tools for the job.
Here is an introduction to some of the key software tools for this project.

2.3.1 STM32Cube

STM32Cube [6] is a complete ecosystem with libraries and tools for working
with STM32 microcontrollers. The STM32Cube IDE is based on the Open
Source Eclipse and GNU C/C++ toolchain and offers capabilities to write
code, compile code, debug and write/verify devices.
The development, debugging and programming of the STM32 (sensor-can-
node) boards have been done using the STM32Cube IDE, and libraries.

2.3.2 VSCode

VSCode [9] is an extensible IDE with plugins to extend it to work with a
huge variety of programming languages and use cases. It has built-in debug-
ging capabilities and works seamlessly with GitHub and several unit testing
systems.

VSCode has been used for the development and debugging of the Python
code, and the Zephyr RTOS-based firmware. It also supports remote de-
bugging with GDB. The built-in GitHub integration gives you direct access
to information and management of issues, commits, pull requests, and lets
you see who (and when) has made different changes in the code. For Unit
testing, using pyTest [5] it will let you run the test by simply clicking test,
and show you the status of the tests with green marks in the test file for
tests that pass. When building code it parses the compiler output and tries
to give hints and directions with red lines and mouseover text directly in
the source code.

25

2.3 Firmware/Software

2.3.3 Zephyr RTOS

Zephyr RTOS Project website

Figur 2.8: Zephyr RTOS logo

[14] Real-time operating systems for
embedded systems offer support for
multiple boards, devices, and dri-
vers. They can simplify a lot of the
work when building connected de-
vices sending and receiving data as
they can handle a lot of the low-
level work. The abstraction offered
when developing firmware based on
a RTOS means you can keep a lot
of the code when switching compo-
nents. You just have to redefine the board dts and config files to describe
the new hardware and ensure the new hardware has any necessary device
or GPIO capability. There is a broad number of device drivers available
with Zephyr, and you can also build your own driver if a piece of hardware
you are using is not already supported. You can define, compile and run
the firmware using Posix for testing/debugging. And, it has a testing fram-
ework for writing Unit tests. At the time of writing the current LTS version
of Zephyr is 2.7.0 (Long term support).

2.3.4 Python

Python website

Figur 2.9: Python
logo

[14] Python is a high-level programming language avai-
lable for all the major platforms, and it is suitable for
rapid development. There are bindings for the Qt fram-
ework for GUI, and a lot of libraries available through
pip. It is possible to use a Dependency management
system like Poetry to keep track of libraries and de-
pendencies to make distribution and deployment easi-
er. It is possible to use the pyTest framework for Unit
testing.

26

https://www.zephyrproject.org/
https://www.python.org/

2.4 3D printing and laser cutting

2.4 3D printing and laser cutting

Vorondesign Project website

Figur 2.10: Voron 2.4r2 printer used for
this project

Working on rapid prototyping pro-
jects both 3D printers and laser cut-
ters can be great assets. 3D printing
is a type of additive manufacturing
and refers to manufacturing pri-
marily by building layer by layer.
Two very common and available 3d
printing technologies are SLA and
FDM. SLA [11] or Stereolithograp-
hy refers to printing by exposing a
resin to light from a screen to build
a model layer by layer. FDM [10]
or Fused Deposition Modeling (also
referred to as FFF, Fused Filament
Fabrication) is a printing technolo-
gy where the printer layer-by-layer
extrudes filament to build the mo-
del. There is a wide range of avai-
lable materials that can be used, and each of them with specific physical
properties making them more or less suitable, as well as different environ-
mental impacts. However, 3D printing wastes less material being an additive
manufacturing technique compared to subtractive manufacturing methods
both because you only print the structure you want to keep (and in some
cases some support structures), and because you will often use only 10 -
40% infill in the parts. Print quality, printing capabilities, print speed, and
material compatibility depend on the specific printer.

Laser cutters work on flat surfaces/objects by using a laser to cut through
or engrave on the object. You can plan for three-dimensional objects by ma-
king slots and puzzling together a set of boards. It is a very fast method for
cutting out parts, and it works very well on acrylics and MDF. For safety, it
is important to make sure not to use materials that will not melt, or make
toxic fumes when cut by the laser cutter.

When planning for 3d printing or laser cutting a lot of models can be found

27

https://vorondesign.com/

2.4 3D printing and laser cutting

using online resources like Thingiverse or Grabcad. Or designed using CAD
software like Fusion 360. Most PCB design software can also export a 3D
model of the finished board (including components), allowing you to import
it to create a digital twin of your project. The CAD software can provide
you with model files, technical drawings, and simulations that you can use
when preparing for production, and use in production.

28

Kapittel 3

Design and construction of the
hardware, firmware, software
and physical components

3.1 Single Board Computer - Embedded Linux

Single Board Computers have a central role in this project as a tool, and
platform in development, automated testing, and as a part of the system.
Because of limited availability, and slight differences in specifications and
use cases, both BeagleBone and Raspberry Pi boards have been in the scope
of the project. Is one of them a clearly better choice than the other?

3.1.1 Raspberry pi

The Raspberry Pi 3+ and 4 boards used to be fairly cheap, there are a lot of
different expansion pi-hat boards, and you can find a lot of system images
you can use as they are. That made it a very popular board for a lot of
hobby projects, and smart house systems. Over the last year or so there has
been a shortage of Raspberry Pi boards on the market, making it difficult
to find them in stores, and the second-hand prices for them increased a lot.

29

3.1 Single Board Computer - Embedded Linux

And, even if you have one, the SBC is not without shortcomings. Using a
MicroSD card as the boot and main storage drive is known to eventually
cause disk errors, it does not work well with other Linux distributions than
the Raspberry Pi OS, the GPIO pins are somewhat limited, and more im-
portantly for this project: it does not have a CAN bus controller.

It has a lot to offer as an affordable option, with low power consumption,
and a fairly fast CPU, especially on the Raspberry Pi 4. It has built-in
WiFi and Bluetooth, an onboard connector for a raspberry pi camera, and
for a screen, and four USB ports. The Raspberry Pi OS has a fairly good
library of available software packages. And it is easy to find information and
examples on a lot of topics and uses for it online.

3.1.2 BeagleBone

The BeagleBone boards are made as Open Hardware and come in several
different flavors. They run well on Debian for Arm, and there is a lot of
information available in online communities for them. They are less focu-
sed on features like HDMI output or being used as a personal computer.
But feature a lot more interesting Hardware when you look at the GPIO
side of it. With the Programmable real-time unit and industrial commu-
nications subsystem (PRU-ICSS) you have a fast 200 Mhz processor with
direct access to a number of pins, and access to the internal memory and
peripherals of the board.

The BeagleBone family features the tiny PocketBeagle with a 1 Ghz CPU,
2x PRU 32-bit microcontrollers, and a Click board-compatible header with
room for two click boards facing opposite directions. The larger BeagleBone
Black (or BeagleBone Black WiFi), and SeedStudio BeagleBone Green (and
BeagleBone Green Wifi). For AI purposes there is also the BeagleBone AI
with DSP cores, and embedded vision engine cores available through an
optimized TIDL machine learning API.

30

3.2 PocketBeagle, a development tool

3.1.3 Conclusion

As it is for this project’s purposes possible to go either way. Designing
to make it possible to use any of them seems to be a good choice. That
requires a slightly different approach for the CAN bus as the BeagleBone
boards have a CAN bus driver, while the Raspberry Pi does not. But it
is easy to overcome that obstacle by using an SPI CAN driver. For most
purposes, both boards can be used, and the Python scripts will run fine as
long as the CAN bus interface is configured.

3.2 PocketBeagle, a development tool

Embedded Linux repository

3.2.1 Debugging

Figur 3.1: PocketBeagle
with e73 Click Board

By programming a PRU-SWD interface in as-
sembly (as the PocketBeagle has the PRU-
ICSS CPU), and by slightly patching and con-
figuring OpenOCD for use on the Pocket-
Beagle (Based on OpenOCD patched for Zep-
hyr from https://github.com/zephyrproject-
rtos/openocd). The PocketBeagle can be used
as an SWD programmer or a remote GDB de-
bugger for Zephyr. Through VSCode you can
attach to the remote GDB session running on
the PocketBeagle. A deb package with the con-
figured OpenOCD (including the PRU-SWD binary file is located in the
Embedded Linux repository) together with production files for a Pocket-
Beagle Cape for connecting an e73 chip (NRF52840-based microcontroller)
and a WiFi module (connected to the PocketBeagle USB pins), and anot-
her PocketBeagle Cape for connecting only an e73. The two of them can
currently not be connected at the same time due to physical constraints.
It is however possible to connect to the PocketBeagle through a network
connection when it is connected by USB, and also to share an internet con-

31

https://github.com/stokka-elebac-22/embedded-linux

3.3 SBC system

nection with the PocketBeagle through the computers (Also documented in
the Embedded Linux repository).

3.2.2 Automated testing with Zephyr

As described in the Zephyr documentation their Unit testing framework also
works with pyTest. And having a microcontroller connected to an Embedded
Linux system makes it possible to run automated testing to evaluate GPIO
signals, and interact with the microcontroller on I2C, CAN bus, etc. The
same board used for debugging could also be used for this. Due to limited
time, this was left as a theoretical possibility and not completed.

3.3 SBC system

Familiarity with flashing a system image to a MicroSD card, using basic
Linux terminals, connecting to an SSH server, basic network knowledge,
and being able to use the Raspberry pi pin-out to connect an SPI device
is expected to follow along with the guides to set up the SBC system. But,
there is a guide for settings and usage for both Raspberry Pi and Beagle-
Bone, including a description of example hardware. And a link to a page
where you can find design files for a BeagleBone CAN bus Cape.

SBC CAN bus guide on GitHub

This setup is the prerequisite to get the CAN network interface used by
the Python scripts, and it enables the SBC to be used for testing CAN
communication by using candump and cansend to listen to messages and
send messages on the CAN bus. A couple of things worth noting:

• If there are no other nodes on the CAN bus sending an ACK, the CAN
network on the SBC gets unhappy. This can be fixed by restarting the
network.

32

https://github.com/stokka-elebac-22/embedded-linux/blob/main/canbus.md

3.4 CAN-Sensor-Node

• When you have a functional CAN network on the SBC the Python
scripts will not know any difference between running on a Raspberry
Pi or BeagleBone as they use a library communicating with the CAN
network interface.

• The guide currently does not have the required steps to configure
the CAN bus CAPE for BeagleBone AI boards as that requires also
compiling a uBoot overlay file for am572x. If you try to use the overlay
for am335x that will cause it to freeze.

3.4 CAN-Sensor-Node

3.4.1 PCB design

STM32 CAN Node PCB repository

Figur 3.2: PocketBeagle with
e73 Click Board

The first revision, rev 1.0, of the CAN sen-
sor board was not functional due to a coup-
le of design errors. After production seve-
ral flaws became apparent, and steps were
taken to get a working prototype with ba-
sically the same hardware. When ordering
the CAN transceiver chips from China, a
couple of STM32 Blue Pill boards were al-
so purchased. This was done as a redun-
dancy as the existing development experi-
ence with STM32 chips and CAN bus was
limited, at best. The Blue Pill dev board
has the same family STM32 chip that is al-
so used on the CAN-Node-PCB. After rea-
lizing the flaws in the rev 1.0 design of the board, a Blue Pill dev board was
connected with the CAN transceiver on the prototype CAN sensor node
board using the transceiver test pins, and to two LEDs and a distance sen-
sor on a breadboard. It is not a very elegant solution but it is a solution
that allows for developing and testing both hardware and firmware before
ordering a new revision of the board.

33

https://github.com/stokka-elebac-22/stm32-can-board

3.4 CAN-Sensor-Node

Figur 3.3: STM32 CAN transceiver schematic

Through the design process, the CAN transceiver chip was changed betwe-
en different pin-compatible options while checking the availability on RS-
Online. While changing back and forth the choice landed on the MCP2551,
as that was the chip also used on the MCP2515 CAN driver module. Later
on the datasheet revealed that VDD on the MCP2551 should be between
4.5 V and 5 V, not as low as 3.3 V. The other design issue was that the
STM_canTx label had been misplaced on the STM32 chip routing it to the
incorrect pin. The correct connection on the STM32F103C8Tx would be:

• PA12 (CAN_TX) connected to U2 pin 1 (TxD)

• PA11 (CAN_RX) connected to U2 pin 4 (RxD)

• PD0 and PD1 should have an 8 Mhz crystal. (this is correct in rev
1.0)

Note also the possibly unintuitive, but correct, the connection from CAN-

34

3.4 CAN-Sensor-Node

Tx to Tx and CAN-Rx to Rx. As there will be a new revision of the board
anyway several modifications have been suggested as well while investigating
possible ways to use the board on a mini-car system.

• Include a connector for an HC-SR04 sensor (and 5 V LDO for it, and
voltage divider for the echo pin)

• Add two jumpers for assigning sensor position (front/back, left/right)

• Add two or three pins connected to N-channel Mosfets (with pulldown
on the gate) to control external lights (at least for signal light and
brake light).

Besides these comments, there is not much to note about the sensor node
PCB as it was a fairly small and simple design, and it is meant to have a
small and limited purpose. The initial idea was to create a generic sample
PCB, where that design could be easily modified for specific use cases before
running production. After working on the project for while, creating a more
specific sensor-node-PCB for a single distance sensor and external light
control seems to be a better approach.

3.4.2 Firmware

STM32 CAN Node firmware repository
The STM32 CAN Node firmware is a very basic test firmware with CAN
bus communication, distance sensor reading, reading two GPIO pins to set
a position, and controlling two separate LEDs (front light and signal light).
It has an example of parsing incoming packages for commands/settings, and
it can send a test message on the CAN bus (data that can be used when
working on CAN software on the SBC).

35

https://github.com/stokka-elebac-22/stm32-can-node-fw

3.4 CAN-Sensor-Node

Figur 3.4: Program flow of the CAN Sensor node firmware

The current program flow in the firmware is very simple. A timer was initi-
ally used as an interrupt for the timed event of flipping the blinking light
on/off and given a time interval suitable for that. And, the idea was to
also add a SysTick interrupt to set flags for timing sensor readings, mess-
aging, and blinking. And using preprocessor macros to store values for the
different intervals making them easy to modify. #define macros have been
added to set the various pin numbers for different functionalities, and a
set of #define macros have been added to Inc/defines.h for values shared
across platforms. This file is used to make it easier to synchronize the set
of relevant id numbers and static values used in the project.

Guide to setting up CAN bus in STM32Cube

Start by opening the .ioc file with the project settings.

36

3.4 CAN-Sensor-Node

Figur 3.5: Pinout view

Change the PD0 and PD1 pins to RCC_OSC_IN/OUT (this is where the
8 Mhz crystal is connected). And Change PA11/PA12 to CAN_Rx and
CAN_Tx.

37

3.4 CAN-Sensor-Node

Figur 3.6: Reset and Clock Control settings

Go to the System Core->RCC (Reset and Clock Control) settings, and chan-
ge the "High Speed Clock (HSE)to Crystal/Ceramic Resonator to configure
the controller to use the external high-speed oscillator.

Figur 3.7: Clock config

38

3.4 CAN-Sensor-Node

Change tab to "Clock config"and change the following values (as also shown
in figure 3.7:

• Input frequency is 8 Mhz (matching the external oscillator)

• HSE is selected in PLL Source Mux

• Change PLLMul to X9

• Select PLLCLK in System Clock Mux

• Change APB1 Prescaler to /2

Figur 3.8: Activate CAN

Go to the pinout and configuration tab. In connectivity, choose CAN. Check
the box underneath "modeto activate CAN.

39

3.4 CAN-Sensor-Node

Figur 3.9: Configure the CAN bus

• Using the set prescaler as 9, giving a Time Quantum of 250.0 ns.

• Time for 1 bit = Tq + (TQ* TQ in bit segment 1") + (TQ * TQ in
bit segment 2")

• Time Quanta in Bit Segment 1 = 3 Times

• Time Quanta in Bit Segment 2 = 4 Times

• 250 + (250*3) + (250*4) = 2000 ns

• Gives a baud rate of 500 kbps

40

3.4 CAN-Sensor-Node

Figur 3.10: Activate CAN rx interrupt

Finally, we head over to NVIC Settings and check USB low priority or CAN
RX0 interrupts to enable CAN Rx interrupts. Saving this configuration will
trigger quite a bit of code to be generated in our project to reflect the con-
figuration we did.

First, we add some variables for RX and Tx CAN headers, a can data buffer,
filter, and mailbox.

1 CAN_RxHeaderTypeDef rxHeader; //CAN Bus ...
Transmit Header

2 CAN_TxHeaderTypeDef txHeader; //CAN Bus ...
Receive Header

3 uint8_t canRX[8] = {0,0,0,0,0,0,0,0}; //CAN Bus ...
Receive Buffer

4 CAN_FilterTypeDef canfil; //CAN Bus Filter
5 uint32_t canMailbox; //CAN Bus Mail ...

box variable

Next, we add code in main(), before the loop, to fill the filter and Tx header

41

3.4 CAN-Sensor-Node

with data. We can let the Filter be 0, 0 now to allow all frames through.
And the last lines will insert the filter, start the CAN bus and activate
notifications.

1 canfil.FilterBank = 0;
2 canfil.FilterMode = CAN_FILTERMODE_IDMASK;
3 canfil.FilterFIFOAssignment = CAN_RX_FIFO0;
4 canfil.FilterIdHigh = 0;
5 canfil.FilterIdLow = 0;
6 canfil.FilterMaskIdHigh = 0;
7 canfil.FilterMaskIdLow = 0;
8 canfil.FilterScale = CAN_FILTERSCALE_32BIT;
9 canfil.FilterActivation = ENABLE;

10 canfil.SlaveStartFilterBank = 14;
11

12 txHeader.DLC = 8;
13 txHeader.IDE = CAN_ID_STD;
14 txHeader.RTR = CAN_RTR_DATA;
15 txHeader.StdId = CAN_TEST_MSG_ID;
16 txHeader.ExtId = 0x02;
17 txHeader.TransmitGlobalTime = DISABLE;
18

19 HAL_CAN_ConfigFilter(&hcan,&canfil);
20 HAL_CAN_Start(&hcan);
21 HAL_CAN_ActivateNotification(&hcan,CAN_IT_RX_FIFO0_MSG_PENDING);

And then add the function called by the CAN receive interrupt. This can
be placed in USER CODE 4. This function will be called when there is
incoming data on the CAN bus.

1 void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef ...

*hcan1)
2 {
3 HAL_CAN_GetRxMessage(hcan1, CAN_RX_FIFO0, &rxHeader, ...

canRX);
4 switch (rxHeader.StdId) {
5 case CAN_LIGHT_CONTROL_ID:
6 if (canRX[0] == 0) {
7 flag_blink_light ^= 0x01;
8 }
9 break;

10 case CAN_BLINK_CONTROL_ID:
11 if (canRX[0] == 1) {
12 light_status = 1;
13 } else {

42

3.4 CAN-Sensor-Node

14 light_status = 0;
15 }
16 break;
17 case CAN_DEVICE_SETTINGS_ID:
18 if (canRX[0] == Placement) {
19 if (canRX[1] == 1) {
20 flag_send_test_msg = 1;
21 } else {
22 flag_send_test_msg = 0;
23 }
24 }
25 break;
26 }
27 }

Code for interrupt with timer

The other interesting piece of code is the code for the HC-SR04 distance
sensor as which uses interrupts with a timer on the echo pin. First, a trig
signal is sent on the trig pin for 10 us, and htim1 is enabled.

1 void HCSR04_Read (void)
2 {
3 HAL_GPIO_WritePin(TRIG_PORT, TRIG_PIN, GPIO_PIN_SET);
4 delay(10); // wait for 10 us
5 HAL_GPIO_WritePin(TRIG_PORT, TRIG_PIN, GPIO_PIN_RESET);
6 __HAL_TIM_ENABLE_IT(&htim1, TIM_IT_CC1);
7 }

When the echo pin is triggered with a rising flank the capture callback is
triggered, and it will check a flag to see if it is the first or second time it
has been triggered (rising or falling edge). This will be the first trigger for
this distance reading and running the following code:

1 void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) {
2 if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
3 if (!flag_hcsr04_first_captured) {
4 IC_Val1 = HAL_TIM_ReadCapturedValue(htim, ...

TIM_CHANNEL_1);
5 flag_hcsr04_first_captured = 1; //

43

3.4 CAN-Sensor-Node

6 __HAL_TIM_SET_CAPTUREPOLARITY(htim, ...
TIM_CHANNEL_1, ...
TIM_INPUTCHANNELPOLARITY_FALLING);

This stores the value captured by the timer HAL_TIM_ReadCapturedValue,
sets the flag to show that the first value has been captured, and changes the
polarity of the interrupt. When the echo signal falls again, the timer will
trigger once more. And the remaining code in the function will run (because
of the flag).

1 } else if (flag_hcsr04_first_captured) {
2 IC_Val2 = HAL_TIM_ReadCapturedValue(htim, ...

TIM_CHANNEL_1);
3 __HAL_TIM_SET_COUNTER(htim, 0);
4 if (IC_Val2 > IC_Val1) {
5 Difference = IC_Val2-IC_Val1;
6 } else if (IC_Val1 > IC_Val2) {
7 Difference = (0xffff - IC_Val1) + IC_Val2;
8 }
9 hcsr04_dist = Difference * .034/2;

10 flag_tx_sensor_data = 1;
11 flag_hcsr04_first_captured = 0;
12 // set polarity to rising edge, in case it was ...

changed
13 __HAL_TIM_SET_CAPTUREPOLARITY(htim, ...

TIM_CHANNEL_1, ...
TIM_INPUTCHANNELPOLARITY_RISING);

14 __HAL_TIM_DISABLE_IT(&htim1, TIM_IT_CC1);
15 }
16 }
17 }

What remains is to record the second value from the timer. Calculate the
difference between them. Multiply delta t with the speed of sound divided
by two (the ultrasonic sound travels out to an object, bounces and returns).
Set a flag that there is a new distance measurement available, reset the first
capture flag, reset the polarity of the interrupt and disable the timer.

44

3.4 CAN-Sensor-Node

3.4.3 Use case for the sensor node

The sensor node board can easily be developed to serve several functions
on a small car system. It can handle regular distance measurements at mul-
tiple locations (by adding multiple boards) and can be connected to control
signal lights, brake lights, and front lights. Controlling the lights might not
be useful for working on autonomous driving with computer vision, but
it serves a purpose by making the model more realistic, and it can give
immediate visual feedback on actions planned by the vehicle (stopping or
changing direction). Implementing other or more sensors can be done by
further developing the firmware, and adding respective channels to the de-
finitions files on the various systems.

3.4.4 Further improvements

Adding support for an i2c accelerometer to the firmware might be useful,
as that could give acceleration data from all four corners of the vehicle.
The CAN bus sending code should use a bitwise "or"operation on the id
with the position to make sure all ids are unique. And the code used for
parsing received data should similarly check if a message to activate a signal
light has an id corresponding with the left or right side (matching its own
position). The id set should also be expanded with useful id numbers for
a variety of control functions and sensor logs. The id numbers should be
configured in such a way that the most important/critical messages have
the lowest id, and the least important is left with the highest id values, to
make sure the important messages will win arbitrations. The sensor nodes
could also filter irrelevant messages to avoid unnecessary interrupts.

3.4.5 Conclusion

The firmware works well as a sample, and testing firmware. It works as a
proof of concept, and there are only a few steps left to integrate it into a
small autonomous car platform as conceptualized in the introduction.

45

3.5 RC Platform Board

3.5 RC Platform Board

The first revision of the concept was done using an atmega328p microcon-
troller, a L298N motor controller, and a HC-SR04 distance sensor. A wireless
PS2 controller was added for controlling the RC-car (also giving affecting
the name), even though the idea was to work on control theory and compu-
ter vision. Starting with the bachelor thesis the ambitions and requirements
were put to a far higher level, especially when challenged to implement CAN
bus for communication.

3.5.1 PCB

RC-feather-platform-board
The current PCB is very simple but also works very well for its purpose.
As it builds on a microcontroller dev board with a feather connector, relies
on i2c for most of the sensors, and has one UART device (GPS), and one
SPI device (CAN bus) the schematic turned out to be fairly simple. The
need for both 3.3 V and 5 V made one interesting decision to be made. The
decision landed on making a switchmode 3.3 V voltage regulator, and a 5 V
LDO voltage regulator. The reasoning behind this was that it is primarily
the distance sensors (if used) and the GPS (if even connected) that use 5 V,
and the total current draw will be fairly limited anyway. Most of the board
relies on 3.3 V, and even though the current draw there is also quite limited,
a switchmode power supply is more efficient.

Figur 3.11: Voltage regulators

Another part worth noting on the PCB is the voltage divider for the HC-

46

https://github.com/stokka-elebac-22/rc-feather

3.5 RC Platform Board

SR04 distance sensor. It runs on a nominal 5 V Vcc, but will trigger on
the 3.3 V logical signals from the Particle Xenon board. When the echo
signal returns, the Particle Xenon cannot handle a 5 V input signal on the
GPIO pins and has to have a voltage divider to lower the signal voltage.
The maximum voltage for the Particle Xenon GPIO pin is 0.7 x VCC,
0.7x2,31 V. I have also found sources stating the minimum to be 2.1 V.
With a voltage divider with a 20K and a 10K resistor, the input voltage
should be 3.33 V.

Figur 3.12: Voltage divider for the distance sensors

An almost identical design, with an e73 SMD chip, was created and manu-
factured at the same time as the feather connector one. After taking into
consideration the difficulties of soldering that chip successfully the design
was abandoned.

3.5.2 Manufactured parts

There is a set of model files for manufacturing the needed parts to assemble
a small robot car with the RC-platform-board, a handful of sensors, a rolling
ball wheel, and two geared motors. Assembling the robot requires mostly M3
screws, heat inserts, a bit of soldering, and making cables for the distance
sensors. The parts can be produced in about an hour, the soldering can be
done quite quickly even for people with little experience, and the parts are
easy to assemble. Drawings and technical documentation of the parts can

47

3.5 RC Platform Board

be found in the attachments at the end of the report. The model files are
available on GitHub.

3.5.3 Zephyr RTOS firmware

RC-platform Zephyr firmware
The current firmware implements most of the functionality on the board.
Here are some interesting pieces of code highlighting some of the differences
when working with a RTOS compared to developing in C with STM32Cube
and HAL. The advantages of using a RTOS would have been even greater
when adding BLE and GATT, a network stack or other more advanced
IoT functionality. As it is currently written the firmware will make sensor
readings and output the data as logs to the console, and periodically run
the motor driver at different speed levels in both directions. This is meant
as a functionality test, and as a basis to create a small car with a distance
regulator, or a larger setup combining the RC-platform board with CAN
sensor nodes, and/or a SBC working on autonomous driving with computer
vision.

Figur 3.13: Activate CAN

48

https://github.com/stokka-elebac-22/RC-Zephyr-RTOS-fw

3.5 RC Platform Board

Particle Xenon Board config

Example of part of the board config (Kconfig based) for the Particle Xenon
board in the Zephyr RTOS firmware. Here drivers for various bus and sen-
sors are defined. These defined tags can also be used in #ifdef preprocessor
flags making it possible to adjust the firmware depending on activated mo-
dules in the board configuration.

1 # CAN bus
2 CONFIG_SPI=y
3 CONFIG_CAN=n
4 CONFIG_CAN_MCP2515=n
5

6 # Sensors
7 CONFIG_SENSOR=y
8 CONFIG_I2C=y
9 CONFIG_BME280=y

10 ## CONFIG_MPU6050_TRIGGER_NONE=n
11 CONFIG_VL53L0X=y
12 CONFIG_VL53L0X_PROXIMITY_THRESHOLD=100
13

14 CONFIG_CBPRINTF_FP_SUPPORT=y
15

16 # # GPIO
17 CONFIG_GPIO=y
18 CONFIG_PWM=y
19 CONFIG_PWM_NRFX=y
20

21 CONFIG_FPU=y

Particle Xenon Board overlay

The following code is from the Particle Xenon overlay file. That file adds
to the board .dts file, and describes what is connected, and where it is con-
nected. The pwm modules are listed, and you can see the channels referring
to the GPIO pin linked to that channel. GPIO0 have pin numbers from 0 to
31 (0*32 + pin number), while GPIO1 has GPIO from 32-63 (1*32 + pin
number). Underneath you can see the i2c definition, without any SDA/SCL
pin definition. The pin definition for SDA/SCL on i2c0 is defined in the Par-
ticle Xenon dts files, but it is possible to override them in the overlay file,

49

3.5 RC Platform Board

or leave it out to keep the predefined values. It is activated by setting status
= "okay", and connected sensors are listed with their id. SPI1 was defined
with pin numbers to configure it with suitable pins for the RC-platform-
board layout. The mcp2515 SPI CAN driver has also been added to the
board overlay, with suitable configuration for the BUS as also configured
on the other nodes. The combination of adding the hardware to both the
config, and the .dts/overlay files adds the device to the system device tree
and makes it accessible in the firmware.

1 &pwm0 {
2 status = "okay";
3 ch0-pin = <44>;
4 };
5 &pwm1 {
6 status = "okay";
7 ch0-pin = <42>;
8 ch1-pin = <40>;
9 ch2-pin = <43>;

10 };
11 &pwm3 {
12 status = "okay";
13 ch0-pin = <34>;
14 ch1-pin = <33>;
15 };
16

17 &i2c0 {
18 status = "okay";
19 bme280: bme280@76 {
20 compatible = "bosch,bme280";
21 reg = <0x76>;
22 label = "ENVIRONMENTAL_SENSOR";
23 };
24 vl53l0x: vl53l0x@29 {
25 compatible = "st,vl53l0x";
26 reg = <0x29>;
27 // xshut-gpios = <&gpioc 6 GPIO_ACTIVE_HIGH>;
28 label = "LASER_DISTANCE_SENSOR";
29 };
30 };
31 &spi1 {
32 status = "okay";
33 compatible = "nordic,nrf-spi";
34 sck-pin = <47>; /* 32 + 15 */
35 mosi-pin = <45>; /* 32 + 13 */
36 miso-pin = <46>; /* 32 + 14 */
37 cs-gpios = <&gpio0 4 GPIO_ACTIVE_LOW>;

50

3.5 RC Platform Board

38 can1: mcp2515@0 {
39 compatible = "microchip,mcp2515";
40 spi-max-frequency = <1000000>;
41 int-gpios = <&gpio0 3 0>; /* D2 */
42 status = "okay";
43 label = "CAN_1";
44 reg = <0x0>;
45 osc-freq = <16000000>;
46 bus-speed = <125000>;
47 sjw = <1>;
48 prop-seg = <2>;
49 phase-seg1 = <7>;
50 phase-seg2 = <6>;
51 #address-cells = <1>;
52 #size-cells = <0>;
53 sample-point = < 875 >; // ?
54 };
55 };

GPIO and PWM control

The high level of abstraction can also be seen in the code when interacting
with hardware. Here is an example of interacting with GPIO pins, and ad-
ding callbacks. This code has the same functionality as the example from the
CAN sensor node firmware when sending the TRIG pulse to the HC-SR04
distance sensor. In a situation where it was interesting to port this code to
another hardware, the GPIO pins would be defined in the board/config file
of the other board, while the rest of the source code would remain the same.
And, after creating the new board files, it would be possible to compile the
same project for both boards.

1 void send_trig() {
2 trig_time = k_cycle_get_32();
3 if (!cur_dist_sensor) {
4 gpio_pin_set_dt(&trig_0, 1);
5 k_sleep(T_TRIG_PULSE_US);
6 gpio_pin_set_dt(&trig_0, 0);
7 gpio_add_callback(echo_0.port, &echo_0_cb_data);
8 LOG_DBG("Trig sent on %s pin %d", ...

echo_0.port->name, echo_0.pin);
9 } ...

51

3.5 RC Platform Board

Working with PWM signals is also quite straightforward. In the pwm_control.c
file there is code to send PWM signals the motor controller using the
int pwm_pin_set_cycles(structdevice *dev, u32_t pwm, u32_t period,
u32_t pulse, pwm_flags_tflags) function. period and pulse are given in
a number of clock cycles and are hardware specific, but there are functions
to get a calculation in microseconds if the exact timing is important. Here
it is set based on adjusting the pulse as a given part of the period:

1 pwm_pin_set_cycles(pwm3_dev, MOTOR_1_0_PWM_PORT, 200, ...
speed_value, 0);

2 pwm_pin_set_cycles(pwm3_dev, MOTOR_1_1_PWM_PORT, 200, ...
200, 0);

In sensor_reading.c there is functionality to initialize the sensors. Here is
an example of code to initialize and test the BME280 environment sensor,
if defined in the board config. The initialization function will output error
logs on the interface configured to receive log output.

1 int init_sensors() {
2 #ifdef CONFIG_BME280
3 dev_env = DEVICE_DT_GET_ANY(bosch_bme280);
4 if (dev_env == NULL) {
5 LOG_ERR("Error: BME280 not found.");
6 }
7 if (!device_is_ready(dev_env)) {
8 LOG_ERR("Device BME280 is not ready, check the ...

driver initialization logs for errors.");
9 }

10 LOG_INF("Found device BME280 getting sensor data\n");
11 #endif

SEGGER/RTT interface as a console

Using the J-Link programmer it is possible to connect to the device to
receive a lot of useful information over RTT. RTT can be configured in the
board config, or as an overlay file, and you can specify extra custom overlay
files to use when running the build command. With that method, you can
have special settings for debugging and log output that you compile with
only when you are compiling for development or debugging, and you can

52

3.5 RC Platform Board

simply use the RTT interface for accessing the logs, instead of UART/GPIO
pins that might be in use for other purposes. Here are config options to
enable the RTT backend:

1 CONFIG_RTT_CONSOLE=y
2 CONFIG_USE_SEGGER_RTT=y
3 CONFIG_LOG_BACKEND_RTT=y

Version control

To keep track of different versions of the firmware, and to make it easier to
retrieve the source code they are built on the code in git_watcher.cmake"is
designed to retrieve git information, and insert it into a header file src/hea-
ders/git.h". That header file has been imported in relevant modules of the
firmware. This is triggered through code in "CMakeLists.txtresponsible for
the build process.

3.5.4 BLE Over The Air firmware update

Zephyr MCUBoot bootloader repository
For the microcontroller device: compile and flash a bootloader using a suit-
able board file for that device. Particle Xenon works for the microcontroller
used throughout this project, and it has built-in BLE.
Zephyr smp-svr sample project
Compile and flash a signed firmware of the smp_svr from the sample pro-
ject. Make some changes to it, and prepare an additional firmware file (bin)
that can be uploaded over Bluetooth.

As the SBC runs Linux, and has Bluetooth, I decided to use that to run
mcumgr, but Windows/Mac/Linux computers can also be used for this.
To enable Bluetooth on the BeagleBone Green, and run bluetoothctl to scan
for nearby devices run these commands:

1 sudo bb-wl18xx-bluetooth
2 sudo bluetoothctl

53

https://github.com/zephyrproject-rtos/mcuboot
https://github.com/zephyrproject-rtos/zephyr/tree/main/samples/subsys/mgmt/mcumgr/smp_svr

3.5 RC Platform Board

Then install Go, and download and compile mcumgr:
https://go.dev/doc/install
go install github.com/apache/mynewt-mcumgr-cli/mcumgr@latest

The following is an example of commands to use to upload a firmware
bin file to a device using mcumgr over Bluetooth, and then list what is in
the two firmware slots on the device (remember to get the firmware hash
at this point), test if the new image is good, and then reset the device. By
doing a listing after the reset you can confirm that the device now runs
the upgraded firmware. Flashing firmware over Bluetooth typically takes
several minutes.

1 sudo mcumgr --conntype ble --connstring ...
ctlr_name=hci0,peer_name='Zephyr' echo hello

2 sudo ./mcumgr --conntype ble --connstring ...
ctlr_name=hci0,peer_name='Zephyr' image upload ...
/tmp/zephyr.signed.bin

3 sudo ./mcumgr --conntype ble --connstring ...
ctlr_name=hci0,peer_name='Zephyr' image list

4 sudo ./mcumgr --conntype ble --connstring ...
ctlr_name=hci0,peer_name='Zephyr' image test [hash of ...
the firmware to test]

5 sudo ./mcumgr --conntype ble --connstring ...
ctlr_name=hci0,peer_name='Zephyr' reset

6 sudo ./mcumgr --conntype ble --connstring ...
ctlr_name=hci0,peer_name='Zephyr' image list

Flashing new firmware OTA to the device works, but is for development
and testing purposes far too slow and takes too much effort to be a good
solution. For devices and products where there are few updates, and infre-
quent firmware upgrades it would be a more interesting possibility. At this
time it does not make sense to add this feature to the RC-platform-board,
but it is useful to know of the possibility.

3.5.5 Further improvements

The RC-platform-board would be greatly improved as a stand-alone project
base by setting up BLE and defining GATT for different sensor data read-
ings. Creating drivers from the conceptual code for distance sensors and

54

3.6 Python software

the motor driver would also improve on the code. The project is configured
with "out-of-treedrivers, and it is possible to put custom drivers in a sub-
folder in the project. Currently, the implementation for the distance sensor
is less than ideal as it works very differently from other connected sensors.
I planned to spend more time getting familiar with pyTest and twister and
creating tests for Zephyr, but in the end, I did not get to it.

3.6 Python software

The two Python programs written for this project have been made with
Poetry as the dependency manager. Poetry could probably have been used
far better than it is, as this is the first attempt on using it.

Besides the Python GUI class, each of the other written classes has an
example of using it that you can test by running that python script, and
the main applications start by running the __main__.py files. I also star-
ted implementing some tests using the pyTest framework and tried to find
a good way of testing this project. My lack of experience with sockets and
can bus limited my options on implementing them.
Even though the programs are said to be using Threads", the Python inter-
preter is in most cases not really multithreading as the Global Interpreter
Lock (GIL) functions as a mutex protecting it.

The main goal of the Python programs is to be a sample of how Python
can communicate over Socket, gather data from, and send data to the CAN
bus. As well as being a nice test implementation showing as a proof of con-
cept that data sent from a number of sensor nodes can be quickly streamed
over CAN and socket and be shown in the Qt GUI of the control system.
And, the concept of "Abstract classes"was used to allow for other server
implementations"and data storage implementationsthan the ones already
used.

55

3.6 Python software

3.6.1 Computer Control System

Computer control system
The computer control system is built similarly to the control system built
in the computer design project in ELE340 [14]. It is currently not very
feature-rich but has a basic Qt GUI design created in Qt designer showing
a badly designed car shape from above. This can easily be exchanged by
modifying the Qt designer file or creating a new one with controllers with
the same name. The program itself starts up, checks the input arguments
given, and defaults to standard arguments if not given as input arguments.
And then, launches the Qt GUI. The GUI creates a socket client object, and
a data_storage object. And spawns a thread that keeps checking the sock-
et connection for data. When data is received it is sent to the data_storage.
The GUI has a timer triggering a function that reads data from the data_storage
and updates the GUI. The data_storage is an abstract class, and current-
ly, the only implementation is an SQLite-based one that reads/writes to a
database stored as a file.

3.6.2 CAN bus Socket server

The CAN Socket server spawns up a thread with a CAN Bus interface
listening for new messages, and a thread running a socket server allowing
incoming connections. Any incoming message on either will be stored in a
FIFO list in the object. The main thread keeps looping, checking for new
data on either FIFO list, and forwards it if anything is found.

This software can easily be extended by making a module that makes data
available in a similar way as the two existing server classes. It can create
a new thread to work on logic in the background, and data can be sent to
it as well from the other servers to receive sensor data or commands over
the socket connection. It is also possible to use the CAN server, more or
less directly, or use this implementation as an inspiration to build a python
program that communicates on the CAN bus from scratch.

56

https://github.com/stokka-elebac-22/RC-computer-control-system

3.7 Building a small autonomous car

3.7 Building a small autonomous car

Figur 3.14: Building a small autonomous car

As a summary of the evaluations for each of the preceding parts. Yes, the
board concepts, firmware shells, and Python scripts resulting from this pro-
ject can be used to make this small autonomous car a reality. A new revision
of the can sensor node board is needed, but the proof of concept version of
it shows real promise. Both the BeagleBone and the Raspberry Pi boards
work well with CAN bus and run the Python programs for CAN and Socket
communication well. Three motor choices are available, but testing them is
still to be done. And there is a bit of work on manufacturing fastening brack-
ets and parts to fix boards, cameras, etc to. When the physical car is ready,
there is also a bit of planning left on commands. One of the possible motor
choices is to control the main drive motor directly using a BeagleBone, in-
stead of the RC-platform-Card, and leaving the RC-platform card as a base
only used on the smaller single-board car. An alternative BeagleBone Cape
called BBBMini aimed to make a BeagleBone into an ArduPilot-based flight
controller and is also an alternative as the main control board for such a
car. Ardupilot, and that Cape offers support for multiple sensors, GPS, and
motor control, and it has a CAN transceiver for communicating with CAN
nodes.

57

Kapittel 4

Results and discussion

4.1 SBC - development tool

Aiming to provide a range of ways how to use an SBC, focusing on Raspber-
ry pi and BeagleBone, as development tools the project was successful. The-
re is still a lot left to be tested, but it has already started to be a useful
asset for embedded development. Flashing and debugging with it works
well, even though the limitation of the current board design is that you can
only flash/work on a chip soldered on the PocketBeagle Cape. Using it for
automated testing is still to be tested.

4.2 Testing

Implementing a TDD workflow, and integrating Unit testing in the develop-
ment process was not successful. As the project was wide and consisted of a
lot of moving parts, elements needed to be designed, and both an unfamiliar
microcontroller (STM) and an unfamiliar bus (CAN bus). A lot of atten-
tion went into piecing things together, and testing was continuously being
postponed. Even though few tests were written throughout the process, a
lot of thought has gone into how it might have been possible to implement
good tests, especially for the Python code.

58

4.3 Small single-board car

4.3 Small single-board car

The RC-platform-board, is primarily designed to be used as a stand-alone
solution. It turned out quite well. And, besides the microcontroller, the
remaining electrical components can be ordered cheaply from China, and
most of the supporting parts can be manufactured in less than an hour with
a 3D printer and a laser cutter. The Zephyr RTOS development environment
can be easily set up, and anyone with a basic knowledge of C could be able
to start playing with the car within a reasonably short amount of time. The
board also features, an external motor PWM pin, servo control, and an SPI
CAN driver adding the possibility to extend it to be controlled by a SBC,
or be part of a larger system. With just small modifications a SBC can be
directly mounted on the existing frame. Part of the project requirements
specifications was to implement BLE and GATT for the stand-alone setup,
but that has not yet been finished.

4.4 Small autonomous car

Developing a system that can be used to make a set of sensor nodes, a motor
controller board, combined with a SBC controller. Did in many ways end
up as the ultimate goal of the project. The CAN sensor node PCB design
was flawed, but the errors have been found, and the design has been tested
using a development board, and breadboards. This development setup has
been less reliable than a finished design would be. And electrical connections
on the test setup are most likely to be more affected by noise, and a new
revision CAN sensor node board should give even better results than the
development system. The test system reliably transmitted large amounts of
CAN frames and acted on them. The sensor node by controlling the LEDs,
and the Python system by logging and displaying the data in the Python
software.

59

4.5 Python software

4.5 Python software

The Python software works as described, and offers a basis that can easily be
extended when starting a project on autonomous driving using computer
vision with OpenCV. The Python software can work on both the single-
board scale and the small care scale. And as long as the motor response
is tweaked, it is possible to start building algorithms for control on rc-
platform-board, and then move the SBC to a physically larger small car,
and use the same algorithms and logic with the larger vehicle.

4.6 Discussion

The project might have been a bit ambitious, large, and a bit divided.
Working on a combination of platforms, with different microcontrollers, as
well as single-board computers, and computer software. Aiming to both set
up a useful set of development tools for embedded development, and to use it
in the development of a platform for working on a future project in computer
vision. The large amount of new information led to some design mistakes
that should have been avoided. But, it was possible to make corrections
and still complete a working prototype system. Even though there is a
working prototype system today, there is still a lot of work remaining to
extend and build on this autonomy platform. Is it better than existing
alternatives? Compared to the LEGO EV3 robot you can program using
Python or Matlab this would require programming in C. Compared to the
Duckietowm autonomous cars this project does not offer a working setup
driving on a track.

60

Kapittel 5

Conclusion

A small set of guides to set up development tools, and debugging tools have
been created and tested. Boards that can be used to create a stand-alone
driving vehicle, or a larger (but small) car/vehicle consisting of a set of
nodes (sensor and controllers), have been created and tested. There is a
working prototype firmware for both controller and sensor nodes. As well
as prototype software that works on Linux Embedded devices. The software
is written in Python and can easily be extended and built on to implement
different strategies to control the car/vehicle. Both the smallest and the
larger vehicles have CAN bus communication, making it possible to change
between the differently sized platforms with the same controller hardware.
The rc-platform-board is cheap and is easy to assemble by solder, most
structural parts can be manufactured quickly using a 3d printer and laser
cutter. And, can also be used on similar projects as the suggested projects
in the applied physics and math subject. Programming to control it using
Python is quite accessible, but there is still work to be done before it would
be possible to do a project without having to do any embedded development
to modify the platform slightly first.

61

Bibliografi

[1] Can bus. https://en.wikipedia.org/wiki/CAN_bus.

[2] I2c. https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-
transmitter.

[3] I2c. https://en.wikipedia.org/wiki/I%C2%B2C.

[4] Osi model. https://en.wikipedia.org/wiki/OSI_model.

[5] pytest: helps you write better programs. https://docs.pytest.org.

[6] Stm32cube ecosystem. https://www.st.com/content/st_com/en/ecosystems/stm32cube-
ecosystem.html.

[7] Test driven development. https://en.wikipedia.org/wiki/Test-
driven_development.

[8] Tested by nordic: Bluetooth long range.
https://blog.nordicsemi.com/getconnected/tested-by-nordic-
bluetooth-long-range.

[9] Vscode. https://code.visualstudio.com/.

[10] What is fdm 3d printing? – simply explained.
https://all3dp.com/2/fused-deposition-modeling-fdm-3d-printing-
simply-explained/.

[11] What is sla 3d printing? https://www.hubs.com/knowledge-
base/what-is-sla-3d-printing/.

[12] Robert Cecil Martin. Clean code - uncle bob.

62

BIBLIOGRAFI

[13] Pat Richards. A can physical layer discussion. htt-
ps://ww1.microchip.com/downloads/en/appnotes/00228a.pdf.

[14] A. Stokka. Ele340 computer design gr. f. Technical report, Universitet
i Stavanger, 2021. Project report.

63

Vedlegg A

Tests

• Test report 01 - Functionality test the circuit board designs

• Test report 02 - Distance sensor readings

64

ELE340

Functionality testing of rc-feather-pcb and stm32-can-node-pcb

Test 1

Asbjørn Stokka (959810)

Tested: November 24, 2022
Revised: December 13, 2022

Summary

Designed PCBs using KiCad 6, manufactured the PCB at JLCPCB, and assembled them manually.
Tested the main functionality in order to make sure that the main functionality is in place and works
according to the project requirements. Write a list of issues if there are changes that have to be
made for the next revision, and make necessary adjustments for the prototype boards usable at this
stage.

1 Introduction/Purpose

This report documents functionality testing using an oscilloscope, lab power supply, multimeter, and
signal generator to test and debug main parts of the circuits individually making sure voltages and
signals work per the project requirements. Testing and assembly were done incrementally,

2 Equipment

• RC-feather-PCB rev 1.0

• RC-feather-PCB parts as described in rev 1.0 BOM for setup with UART GPS

• RC-feather-PCB rev 1.0 Schematic and PCB-layout for reference (iBom)

• STM32-CAN-Node-PCB rev 1.0

• STM32-CAN-Node-PCB basic parts as described in rev 1.0 BOM

• STM32-CAN-Node-PCB rev 1.0 Schematic and PCB-layout for reference (iBom)

• FLUKE 101 digital multimeter

1

• Lab power supply

• 4 channel oscilloscope with a signal generator

• 2 channel signal generator

• Banana plug cables and connectors to connect equipment to the PCB test-points

3 Method RC-feather-board

3.1 PCB preparation

Checked the machining to make sure vias, holes, and routes had been machined out correctly according
to the board layout.

3.2 Voltage regulator assembly

Assembled the 3.3 V voltage regulator circuit (VR1) with associated resistors and capacitors, and
tested them using 5 V input (power connector). After successful testing assembled the 5 V regulator
(U5), and associated capacitors. Tested it using 8-10 V input (100 mA limit). Lowered the input
voltage step by step to find the lower voltage limit where it would still provide a stable voltage output.
3.3 V and 5 V output can be tested on any of the headers rated for that supply output for external
boards.

3.3 Remaining PCB assembly

Soldered remaining pin sockets and components on the board (excluding the extra i2c connectors and
the i2c GPS module). And inspected the soldering with a digital microscope. Connected external
modules and sensors according to the board layout.

2

Figure 1: Assembled PCB

The board works nicely as a prototype/testing board. It is fairly straightforward and easy to solder.
The hardest part was the 3.3 V voltage regulator circuit.

4 Method STM32-CAN-Node

4.1 PCB preparation

Checked the machining to make sure vias, holes, and routes had been machined out correctly according
to the board layout. Through the inspection, several layout issues became apparent, among them the
Rx/Tx for the CAN transceiver being flipped (on the STM32F103C6Tx side). And the fact that the
planned CAN transceiver would need 5V VCC. An issue was filed on Github Issue #1 for this to
be fixed in the next revision of the board. And, I deviated from the planned testing and use of the
board. This issue should have been avoided by better control of the schematic and board layout before
production. Better knowledge and more experience with the STM32 chip and CAN bus transceivers
might also help avoid this sort of error.

3

Figure 2: PCB before assembly

4.2 Planned voltage regulator assembly

Assemble the 3.3 V voltage regulator circuit (U3) with associated resistors and capacitors, and test
them using 5 V input (power connector).

4.3 Planned PCB assembly

After successful testing, assemble the STM32 IC, oscillator, and connected resistors and capacitors.
Test that it can be reached through the programming header. Solder and test the CAN bus transceiver
and signal output connectors.

Figure 3: PCB before assembly

4.4 PCB assembly

I checked the size of the footprints to make sure there were no issues with footprint sizes and/or
components being placed too close to each other. Assembled the CAN transceiver (U2) and test pins

4

J9/J10 (Tx/Rx), as well as J5 (for 5 V supply) and CAN H and CAN L for J4/J5. The board would
in that way serve as a breakout board for the CAN transceiver for testing purposes.

I used an STM32 Blue Pill dev board with the CAN-Node PCB assembling it on a small bread-
board. The planned output pins with MOSFETs for controlling lights were for simplicity replaced by
two LEDs. This change also inspired to add a HC-SR04 distance sensor to the board.

4.5 Remaining RC-feather-PCB testing

4.5.1 Motor controller

Sent different signal combinations through the pins on the feather pin header and measured the motor
output signal to see if it outputs the correct high/low voltages.

4.5.2 HC-SR04 Distance sensors

Checked for connection on the pins to the sensor (V, GND, trig, echo).

4.5.3 i2c devices

Used shell on the particle xenon and scanned for known addresses for the different sensors.

5 Tests and results

5.1 3.3 V voltage regulator

5.1.1 Schematic

Figure 4: 3.3 V switchmode voltage regulator circuit

5

5.1.2 Description

Connected DC 5 V input (100 mA current limit) and ground to the board power connector. Measured
voltage on the 3.3 V pin of the feather connector. The measured voltage should be 3.3 V. Tested ok
on 13. Dec, using a handheld FLUKE 101 multimeter. The voltage source has a stable voltage output
close to 3.3V averaged over 10 seconds, with insignificant deviation.

5.2 Linear 5 V LDO voltage regulator

5.2.1 Schematic

Figure 5: 5 V voltage regulator circuit

5.2.2 Description

Connected DC 8 V input (100 mA current limit) and ground to the board power connector. Measured
voltage one the connector of the HC-SR04 distance sensor. The measured voltage should be 5 V.
Tested ok on 13. Dec. The voltage source has a stable voltage output close to 5 V averaged over 30
seconds readings, with insignificant deviation.

5.2.3 Comments

Tested ok on 13. Dec. When testing for minimum input the input voltage was lowered until there
was a significant drop in output voltage. The output voltage on the 3.3 V dropped significantly when
the input voltage was at 3.4 V and below. The input voltage was increased again until 3.8 V where
the output voltage was stable at 3.3 V again. The minimum input voltage found to achieve a stable
output voltage of 3.3 V was 3.8 V.
The output voltage of the 5 V dropped significantly when the input voltage was at 5.9 V and below.
The input voltage was increased again until 6.0 V where the output voltage was stable at 5 V again.
The minimum input voltage found to achieve stable voltage output for the system is 5.9 V.

6

5.3 Remaining RC-feather-PCB testing

5.3.1 Motor controller

The motor output pins had the described high/low voltages as described in the motor controller
datasheet for combinations of high/low signals on the input pins.

5.3.2 HC-SR04 Distance sensors

Used the FLUKE 101 multimeter to check that there was low resistance/good connection from feather
connector pins to the sensors, and for GND/5 V.

5.3.3 i2c devices

Used shell on the particle xenon and scanned for known addresses for the different sensors. And, the
sensors replied as expected.

6 Conclusion

Throughout the functionality testing some issues, and possible improvements have been identified
with rev 1.0 of the CAN-node-pcb, and bug issues have been filed on Github accordingly (issue #1,
#2, and #3). However, it has been possible to make adjustments in such a way that it possible to
work with the current revisions of the PCB’s through the development process. They are both fairly
simple boards, relying on digital signals, and using fairly low frequencies. The manufactured prototype
boards can be used in their current modified form.

7

ELEBAC

Calibrating and testing HC-SR04 ultrasonic distance sensor readings

Test 02-2022

Asbjørn Stokka (959810)

Tested: December 13, 2022

Summary

Systematic and averaged sensor readings to check that the sensors give reliable data.

1 Introduction/Purpose

This report documents the lab work done to get confirmation data for the distance sensors. The
sensors have been individually tested while implementing them on the systems. And, this test can
be seen as an acceptance test that the sensors are functioning as expected on the final system(s).
The system was set up and connected, and CAN bus reading software was used to read the distance
readings.

2 Equipment

• STM32 Blue pill dev-board

• STM32 CAN node board

• HC-SR04 distance sensor

• Folding ruler

• Cardboard box

• Computer with terminal software

• Embedded Linux device (Raspberry pi / Beaglebone)

• Stokka-elebac-22 embedded-linux CAN tools

• Stokka-elebac-22 stm32-can-node-fw STM32 firmware

1

3 Method

3.1 Data sheet

The HR-SR04 distance sensor is a contactless ultrasonic distance sensor. The datasheet states a range
of 2cm - 400 cm for the sensor, with an accuracy of up to 3mm. The sensor receives an input trigger
for at least 10 us. The module sends eight 40 kHz pulses and detects if there are any pulse signals
bounced back. If the sensor receives a signal back, it will keep the echo signal high for a duration such
that you can calculate the distance: distance = time high * velocity of sound / 2. (Velocity of sound:
340 M/s). The measuring angle of the sensor is 15 degrees, making it difficult to test the furthest
ranges of the sensor within the physical constraints of the room. At a later stage, it might be possible
to do new tests for larger distances.

3.2 Hardware setup

The Blue pill was connected to the CAN transceiver on the STM-node PCB (giving 5V as VCC for the
CAN transceiver), and CanRx connected to CanRx and CanTx connected to CanTx. The HR-SR04
sensor was connected according to the given pin-out in the firmware for trig/echo pin (the echo pin was
chosen depending on an available timer in the STM32 chip). The STM32 was powered through USB.
And CAN-H and CAN-L lines were connected between the Linux-embedded (Beaglebone) device and
the STM node. An oscilloscope was connected to the CAN line to monitor the signals as well. The
sensor was aimed away from tables/obstacles, and a cardboard box was used as an obstacle to bounce
the signals on.

Figure 1: Fully assembled test system

3.3 Software setup

STM32 Blue pill card was flashed with the CAN node firmware using STM32Cube. And, the Linux-
Embedded device was configured with a CAN network with a baud rate of 500000 (as described in

2

the setup instructions in Linux embedded). candump was used to track CAN packages with id 0x30
containing distance measurements.

3.4 Testing instructions

Put the cardboard box at a set distance. Measure the distance. Record the distance shown in
candump, and calculate the distance in cm from the hex value. If the measurements are unstable,
average them.

4 Results

Distance Calculated distance Transmitted value

cm cm hex

1 5 0x05

2 2 0x02

3 3 0x03

7 7 0x07

14 14 0x0E

21 21 0x15

62 62 0x3E

105 101 0x65

117 118 0x76

142 142 0x8e

The measurement done with a smaller distance than the operating range of the sensor was wrong.
Except for that the distances are usually exact. For a couple of measurements, the distance was a
couple of cm off at the time of doing the reading, but that could be due to it being hard to measure
exact distances with the available equipment.

5 Conclusion

The sensor readings have been rounded to whole numbers to avoid floating-point operations on the
STM32 CPU. Aimed towards being one of several sensors on a larger vehicle the sensor performs well
and offers reliable measurements within the tested range. The datasheet states a 0.3mm accuracy
for the measurements, but that has not been tested due to the rounding done by the firmware when
calculating the distance.

The same calculations and method have also been used on the Particle Xenon firmware with the
NRF52840 CPU. However, as the NRF52 has FPU and is aimed toward more accurate and smaller
settings it also stores the decimal values in the sensor framework of the RTOS. However, due to the
3mm accuracy of the sensor, it will most likely need filtering for the added decimals to give any use
at all.

3

Vedlegg B

Design files

• RC-Platform-board rev 1.0 schematic

• RC-Platform design

• Laser cutting template for the RC-Platoform body

• STM32 CAN Sensor Node Schematic

75

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2022-11-10
KiCad E.D.A. eeschema 6.0.9+dfsg-1~bpo11+1

Rev: 1.0Size: A4
Id: 1/1

Title: RC main controller board
File: RC_feather.kicad_sch
Sheet: /
Max-IT AS
Bachelor project 2022

+3V3

GND

C7
22uF, X7R/X5R, 10V

1 2

L1
12uH

Cboot1
100nF, X7R/X5R, 16V

1
2

J11
M1

GND

1
2

J10
M0

C6
4.7uF, 50V

GND

CB 1

GND 2
FB 3EN4

Vin5 SW 6

VR1
TPS560430X3FDBV

VDD

+3V3

+3V3

GND

VDD

GND

1
2
3
4

J3
Conn_01x04_Male

+3V3

SDA1

V
C

C
10

SCL2

1PPS 3

TX 4
RX 5

~{RESET}6

G
N

D
7

WAKEUP8

V
B

A
C

K
U

P
9

U4
PA1010D

GND

VDD

G
N

D

1
2

J4
Conn_01x02

GND

+5V

1
2

J8
Conn_01x02

1
2
3

J9
Conn_01x03

1
2
3
4

J13
3.3v_i2c0

R1
10K

1

10

2
3
4
5
6
7
8
9

J7
mpu_9250

GND

GND

1
2
3
4

J14
GPS

+3V3

H3
MountingHole

H2
MountingHole

H4
MountingHole

H1
MountingHole

VDD

R7
20K

GND

R8
10K

VDD

R2
10K

1
2
3
4

J12
3.3v_i2c1

GND

C5
100nF

GND

1
2
3
4

J6
dist_sense

GND

+3V3

GND

VCC1

GND2

SCL3

SDA4

CSB5

SDO6

U2
bme280

GND

VCC1 OUT1 10

IN12

IN23

IN34

IN45 GND 6
OUT4 7
OUT3 8
OUT2 9

U3
LB1948MC-AH

C3
100nF

GND

C4
100nF

GND

1
2
3
4

J5
us_1

~{RESET} 1

A5 10

SCK11

MOSI12

MISO13

RX14

TX15

SPARE16

SDA17

SCL18

D019

3V
3

2

D120

D221

D322

D423

D524

D625

U
S

B
26

EN 27

V
B

A
T

28

AREF 3

G
N

D
4

A0 5

A1 6

A2 7

A3 8

A4 9

A1
Adafruit_Feather_Generic

GND

GND

+3V3

GND

+5V

G
N

D
1

VO 2VI3

U5
TLV1117-50

+3V3

R6
10K

R4
20K

1
2
3
4

J2
us_0

+5V

+3V3

1
2
3
4
5
6
7

J1
can_module

+3V3

R3
20K

R5
10K

G
N

D

+5V

+3V3

VDD

I2c-SCL

I2c-SDA

I2c-SDA

I2c-SCL
I2c-SDA

I2c-SCL

I2c-SDA
I2c-SCL

I2c-SDA

I2c-SCL

v_sense

I2c-SDA
I2c-SCL

I2c-SDA
I2c-SCL

v_sense
I2c-SDA
I2c-SCL

us_1_echo

us_0_echo

motor1_0

can_INT

motor0_1

motor1_1

can_SI

can_SCK
can_SI

us_0_echo

us_1_echo

e73_Rx
e73_Tx

can_INT

motor1_0

motor0_0

motor1_1

motor0_0

us_1_trig
us_0_trig

can_SO

e73_Rx

motor0_1

can_SCK

can_SO
can_cs

motor_pwm
servo_pwm

can_cs

e73_Tx

us_1_trig

motor_pwm

servo_pwm

us_0_trig

CanBUS module

Main board connector

i2c pullup

Ultrasonic sensor MPU-9250 i2c breakout board module

3.3v switchmode voltage regulator 5V LDO voltage regulator

8V
2x18650

AUX i2c (picoblade/2.54mm) Motor-pwm / Servo connection

Environment sensor

Motor H-bridge

Voltage divider for battery level

UART-GPS Module

Time of flight sensor VL53LOx

nrf5280 - e73 mcu

Onboard i2c GPS

U5
TLV1117-50

G
N

D
1

VO 2VI3

C4
100nF

J9
Conn_01x03

1
2
3

J8
Conn_01x02

1
2

GND

GND

U4
PA1010D

SDA1

V
C

C
10

SCL2

1PPS 3

TX 4
RX 5

~{RESET}6

G
N

D
7

WAKEUP8

V
B

A
C

K
U

P
9

+3V3

J10
M0

1
2

J11
M1

1
2

GND

VDD

R7
20K

GND

R8
10K

J12
3.3v_i2c1

1
2
3
4

GND

GND

U3
LB1948MC-AH

VCC1 OUT1 10

IN12

IN23

IN34

IN45 GND 6
OUT4 7
OUT3 8
OUT2 9

L1
12uH

1 2

Cboot1
100nF, X7R/X5R, 16V

C6
4.7uF, 50V

VR1
TPS560430X3FDBV

CB 1

GND 2
FB 3EN4

Vin5 SW 6

GND

J3
Conn_01x04_Male

1
2
3
4

G
N

D

J4
Conn_01x02

1
2

J13
3.3v_i2c0

1
2
3
4

G
N

D

A1
Adafruit_Feather_Generic

~{RESET} 1

A5 10

SCK11

MOSI12

MISO13

RX14

TX15

SPARE16

SDA17

SCL18

D019

3V
3

2

D120

D221

D322

D423

D524

D625

U
S

B
26

EN 27

V
B

A
T

28

AREF 3

G
N

D
4

A0 5

A1 6

A2 7

A3 8

A4 9

GND

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. kicad (6.0.8)

Rev: Size: A4
Id: 1/1

Title:
File: stm_can.kicad_sch
Sheet: /

GND

R1
1K

GND

VDC

1 J10
Conn_01x01

1

J9
Conn_01x01

1
2
3
4

J8
Conn_01x04

GND

VDC

GND

TXD1

V
S

S
2

V
D

D
3

RXD4

Vref5 CANL 6

CANH 7

Rs8

U2
MCP2551-I-SN

+3V3

GND

+3V3

GND

VDC

C3
0.1uF

V
B

A
T

1

PA0 10

PA1 11

PA2 12

PA3 13

PA4 14

PA5 15

PA6 16

PA7 17

PB018

PB119

PC132

PB220

PB1021

PB1122

V
S

S
23

V
D

D
24

PB1225

PB1326

PB1427

PB1528

PA8 29

PC143

PA9 30

PA10 31

PA11 32

PA12 33

PA13 34

V
S

S
35

V
D

D
36

PA14 37

PA15 38

PB339

PC154

PB440

PB541

PB642

PB743

BOOT044

PB845

PB946

V
S

S
47

V
D

D
48

PD05

PD16

NRST7

V
S

S
A

8

V
D

D
A

9

U1
STM32F103C6Tx

VSS

VDC
1
2
3
4

J1
Conn_01x04

GND

GND

R5
10K

+3V3 1
2
3
4

J2
Conn_01x04

GND

GND

C9
100nF

C7
100nF

+3V3

+3V3+3V3

GND GND

+3V3

C8
100nF

C10
100nF

+3V3

GND

GND

XTAL1
8MHz

GND

GND
C2
10pF

GND

GND

C6
100nF

+3V3

C4
10pF

+3V3
C1

0.1uF

+3V3

R3
10K

R4
10K

G
N

D
1

VO 2VI3

U3
TLV1117-33

C5
100nF

+3V3

GND

R2
120

R6
10K

1

2
3

Q2
IRLML2030TRPBF

GND

R7
10K

1
2
3
4

J7
Conn_01x04

H1
MountingHole

GND

1
2
3
4
5
6
7
8
9

S
H

J3
Conn_01x09_Shielded

1

2
3

Q1
IRLML2030TRPBF

GND

H3
MountingHole

H2
MountingHole

1
2
3
4

J6
Conn_01x04

GND

VDC

+3V3

1
2
3
4

J4
Conn_01x04

GND

1
2
3
4

J5
Conn_01x04

CANH

STM_can_Tx
STM_can_Rx

SDA
SCL

CANL

SCL
SDA

CANL

CANH

CANL

STM_can_Tx
STM_can_Rx

SCL

pwm_sig_out
mosfet_control

SDA

mosfet_control

CANH pin_ctrl_0-

SWCLK
SWDIO

SWCLK
SWDIO

pwm_sig_out

pin_ctrl_1-

pin_ctrl_1-

SDA

pwm_sig_out
CANL

CANH

SCL

mosfet_control

pin_ctrl_0-

J9
Conn_01x01

1

U1
STM32F103C6Tx

V
B

A
T

1

PA0 10

PA1 11

PA2 12

PA3 13

PA4 14

PA5 15

PA6 16

PA7 17

PB018

PB119

PC132

PB220

PB1021

PB1122

V
S

S
23

V
D

D
24

PB1225

PB1326

PB1427

PB1528

PA8 29

PC143

PA9 30

PA10 31

PA11 32

PA12 33

PA13 34

V
S

S
35

V
D

D
36

PA14 37

PA15 38

PB339

PC154

PB440

PB541

PB642

PB743

BOOT044

PB845

PB946

V
S

S
47

V
D

D
48

PD05

PD16

NRST7

V
S

S
A

8

V
D

D
A

9

GND

C9
100nF

C7
100nF

GND

+3V3+3V3

GND GND

+3V3

C8
100nF

C10
100nF

+3V3

U3
TLV1117-33

G
N

D
1

VO 2VI3

C5
100nF

Q2
IRLML2030TRPBF

1

2
3

R7
10K

Q1
IRLML2030TRPBF

1

2
3

+3V3

J2
Conn_01x04

1
2
3
4

J3
Conn_01x09_Shielded

1
2
3
4
5
6
7
8
9

S
H

GND

U2
MCP2551-I-SN

TXD1

V
S

S
2

V
D

D
3

RXD4

Vref5 CANL 6

CANH 7

Rs8

GND

C1
0.1uF

+3V3

C2
10pF

GNDGND

R5
10K

+3V3

GND

J6
Conn_01x04

1
2
3
4

R6
10K

Vedlegg C

Datablad

80

	Content
	Summary
	Terms, Abbreviations, and Acronyms
	Introduction
	Motivation
	Problem definition
	Usecases
	Existing work
	Planning
	Product Requirement Specification
	Functionality Specification
	Product/System Design Specification
	Notes and alternate Specification

	Theory
	Communication - Media layers
	I2C - Inter-Integrated Circuit
	UART - Universal asynchronous receiver-transmitter Wikiuart
	CAN bus
	Data Link layer
	CAN Filtering
	Wireless communication
	Communication needs
	Discussion on communication choices

	TDD - Test Driven Development and Testing
	Firmware/Software
	STM32Cube
	VSCode
	Zephyr RTOS
	Python

	3D printing and laser cutting

	Design and construction of the hardware, firmware, software and physical components
	Single Board Computer - Embedded Linux
	Raspberry pi
	BeagleBone
	Conclusion

	PocketBeagle, a development tool
	Debugging
	Automated testing with Zephyr

	SBC system
	CAN-Sensor-Node
	PCB design
	Firmware
	Use case for the sensor node
	Further improvements
	Conclusion

	RC Platform Board
	PCB
	Manufactured parts
	Zephyr RTOS firmware
	BLE Over The Air firmware update
	Further improvements

	Python software
	Computer Control System
	CAN bus Socket server

	Building a small autonomous car

	Results and discussion
	SBC - development tool
	Testing
	Small single-board car
	Small autonomous car
	Python software
	Discussion

	Conclusion
	Bibliography
	Vedlegg
	Tests
	Design files
	Datablad

