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Summary

This paper proposes an approach for the estimation of states, actuator, and sen-
sor faults in nonlinear systems represented by a polytopic linear parameter varying
(LPV) systemwith inexact scheduling parameters. In the traditional LPV approaches,
the scheduling variables are considered to be perfectly known. However, in prac-
tical applications, their measurement may contain precision and calibration errors
or noise that can affect the performance of the diagnostic systems. Therefore, this
work proposes the design of a proportional multiple-integral sliding mode observer
(PMISMO) for fault diagnosis that copes with LPV systems with inexact schedul-
ing parameters. Due to the introduction of some nonlinear functions, the proposed
observer is a nonlinear parameter varying (NLPV) system for which stability and
robustness performance are formulated using the Lyapunov technique and a H∞

performance criterion. It is shown that the design conditions boil down to a set of
linear matrix inequalities (LMIs) whose solution allows computing the observer gain
matrix along with the tunable parameters of the nonlinear functions. Results obtained
using the simulator of an octocopter-type unmanned aerial vehicle (UAV) are used
to demonstrate the applicability and performance of the proposed fault diagnosis
scheme.

KEYWORDS:
Nonlinear parameter varying (NLPV) systems, Fault diagnosis, Proportional multiple-integral sliding
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1 INTRODUCTION

Modern control systems are prone to faults, which can damage the systems themselves or the environments in which they operate.
For this reason, fault diagnosis (FD) algorithms become essential, since they enable fault-tolerant actions that minimize the
effect of faults and improve the overall system’s reliability and safety. An FD algorithm can be seen as a two-step process in
which at first the fault is detected, i.e., a boolean logic value about the presence of a fault is provided, and then it is isolated,
which means that its location is discovered. In many cases, fault estimation is also considered because it provides an information
about the magnitude of the fault that can be sent to the fault-tolerant modules in order to improve the system’s performance.1
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Among the possible approaches to achieve fault detection, the model-based ones have been recognized as a handy tool by the
scientific community and have been applied successfully to many physical systems, e.g. lateral dynamics of a vehicle2, aerospace
benchmarks,3 aircraft,4 satellites,5 unmanned aerial vehicles,6,7 and wind turbines,8 among others. These approaches use a
description of the process in terms of a mathematical model, so that the fault is detected by comparing discrepancies between
the model and the estimated states.
Most physical systems are nonlinear, and therefore their fault diagnosis should employ nonlinear algorithms, which are dif-

ficult to generalize and apply in many cases. Convex mathematical models such as Takagi-Sugeno and quasi-linear parameter
varying (quasi-LPV), have proved to be a good representation for systems with complex dynamics.9,10 Convex systems are
composed of a set of linear state-space models whose dynamics vary as a function of specific time-varying parameters. These
functions are known as weighting functions, scheduling functions, or membership functions. It should not surprise that many
works have proposed extensions of fault diagnosis approaches initially developed for LTI systems to convex systems.11,12 In this
way, the range of applicability of these approaches could be widened to include many nonlinear systems. For example, Rodriguez
et al.13 proposed an adaptable polytopic observer to estimate constant and time-varying actuator faults for LPV descriptor sys-
tems. Bedioui et al.14 developed a robust adaptive observer to estimate sensor and actuator faults. Brizuela et al.15 proposed to
use an observer based on a polynomial LPV system for simultaneous actuator and sensor fault estimation. The solution presented
in work by Li and Zhu16 employed a reduced-order observer to accomplish this task. On the other hand, Li et al.17 obtained the
estimates using an unknown input proportional-integral observer.
The above works, similarly to the majority of the FD methods proposed for convex systems, assume that the scheduling

variables can be measured correctly. However, in most cases, perfect knowledge of the scheduling variables is an unrealistic
assumption, since in practice they are immeasurable or affected by strong uncertainties due to noise, offsets, low-quality, or
uncalibrated sensors, among other factors.18 If these limitations are not considered during the design, then the applicability and
effectiveness of the FD methods are reduced, as discussed in the work by Zhang et al.19
Therefore, in a more realistic scenario, it is essential to take into account inexact scheduling variables in order to obtain an

FD system that can be trustworthy and effective. This issue has been investigated by a few papers. For instance, the problem of
robust fault detection observer design for convex systems with immeasurable scheduling variables was addressed by Aouaouda
et al.20 by means of a mixedH−∕H∞ performance index. López-Estrada et al.21 proposed a sensor fault estimation observer for
descriptor LPV systems for which the influence of the error induced by the immeasurable scheduling variables was minimized
using H∞ optimization. Hassanabadi et al.22 proposed a polytopic unknown input proportional-integral observer to estimate
actuator faults in singular delayed LPV systems. Zhu and Zhao23 dealt with switched LPV systems where they presented an
approach for simultaneous control and fault detection in systems with inexact scheduling parameters. More recently, Gomez-
Peñate et al.24 proposed a method for simultaneous state and actuator/sensor fault estimation in quasi-LPV systems using a
proportional-integral observer that took into account the uncertainty in the scheduling variables to enhance the performance
and robustness. The original idea behind their work is that, apart from setting up a H∞ optimization problem to constrain the
effect that the exogenous disturbance and the faults have on the 2-norm of the output signal of interest, some nonlinear signals
were introduced in the observer equations to compensate for the effect of the inexact scheduling variables. In this sense, their
work fits into the innovative class of nonlinear parameter varying (NLPV) techniques25,26 that, in contrast with traditional LPV
techniques, maintain some nonlinear characteristics in the formulation, such as quadratic27,28,29 and Lipschitz30 terms.
It is well known that sliding mode techniques offer good potential for increasing the robustness of FD by including a non-

linear discontinuous term that depends on the output estimation error into the observer31,32. For this reason, there has been a
lot of interest in using sliding mode observers for fault diagnosis,33,34 with the development of extensions that allow for fault
estimation in convex systems.3,35 Notably, one of the recent research directions points towards obtaining design conditions for
sliding mode FD schemes that can be applied to convex systems under the situation of imperfectly known scheduling parameters.
For example, Chen et al.36 have proposed an adaptive algorithm driven by an equivalent output error injection signal to adapt the
values of the scheduling parameters used by the observer such that the performance level is maintained in spite of the mismatch
between the real and the measured scheduling parameters.
In line with the recent developments, the main contribution of this work is to build upon the previous work reported in

Gomez-Peñate et al.24 by incorporating a sliding mode action which improves the performance of the fault estimation observer,
in particular concerning the robustness to disturbances and uncertainty. Hence, this works presents the development of a propor-
tional multiple-integral sliding mode observer (PMISMO) for LPV systems with inexact variables that achieves a simultaneous
estimation of the system states and the time-varying actuator and sensor faults. Due to the introduction of some nonlinear func-
tions, the proposed observer is an NLPV system for which stability and robustness requirements with respect to noise and
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uncertainty in the scheduling variables are formulated in the form of linear matrix inequalities (LMIs).37 The performance and
effectiveness of the proposed observer are shown using results obtained with the simulator of an octorotor-type unmanned aerial
vehicle (UAV).
The rest of the paper is organized as follows. Section 2 presents the background and problem description. Section 3 describes

the design of the NLPV PMISMO for actuator and sensor fault estimation with inexact scheduling variables. Section 4 shows
the simulation results obtained by applying the NLPV PMISMO to an octorotor UAV. Finally, Section 5 presents the conclusion
and the proposed future work.

2 PRELIMINARIES AND PROBLEM DESCRIPTION

Consider an LPV system affected by disturbances, sensor noise, as well as faults in sensors and actuators described by:

ẋ(t) =A(�(t))x(t) + B(�(t))u(t) + Fa(�(t))fa(t) + J (�(t))w(t),
y(t) =C(�(t))x(t) + Fs(�(t))fs(t) +D(�(t))w(t), (1)

where x(t) ∈ ℝn, u(t) ∈ ℝnu , and y(t) ∈ ℝny , are the state, input and output vectors respectively. fa(t) ∈ ℝnfa , fs(t) ∈ ℝnfs and
w(t) ∈ ℝnw are actuator faults, sensor faults and exogenous disturbance/noise vectors respectively. �(t) ∈ ℝq denotes the vector
of scheduling parameters, for which dependence on time will be omitted from now on, in order to simplify the notation. A(�) ∈
ℝn×n denotes the state matrix, B(�) ∈ ℝn×nu the input matrix, and C(�) ∈ ℝny×n the output matrix. Fa(�) ∈ ℝn×nfa and Fs(�) ∈
ℝny×nfs are the actuator and sensor fault distribution matrices, and J (�) ∈ ℝn×nw , D(�) ∈ ℝny×nw are the disturbance/noise
distribution matrices, respectively. It is assumed that Fa(�) and Fs(�) are full rank, and that there is no interdependence between
different scheduling variables. Then, if the scheduling variables bounds are known, (1) can be represented by a polytopic LPV
model with 2q vertices with matrices  = {A(�), B(�), C(�), D(�), J (�), Fa(�), Fs(�)}, such as:

 =

{

Υ(�)|Υ(�) =
2q
∑

i=1
�i(�)Υi; 0 ≤ �i(�) ≤ 1;

2q
∑

i=1
�i(�) = 1

}

, (2)

where Υi = {Ai, Bi, Ci, Di, Ji, Fa,i, Fs,i} and, for each vertex, the values of the matrix set is known. The weighting functions
�i(�) can be computed online since the values of the scheduling variables are measured in real-time.
It is important to note that if the scheduling variables were measured perfectly, the weighting factor could be used straight-

forwardly for the design of control systems elements such as controllers and observers. Nevertheless, in many cases, these
parameters cannot be measured with high accuracy. For example, in electric vehicles, the speed is estimated through the rotation
of the motors, the radius of the tires, the drive train, among other factors that change continuously with respect to time, and there-
fore the estimated speed is not exact. These differences between the measured and the real values affect the weighting factors
and could deteriorate or destabilize the system. Therefore, the use of a robust approach that takes into account inexact schedul-
ing parameters is required to ensure stability and performance requirements not only under sensor noise and disturbance but also
under the inexact scheduling variables. To solve this problem, the weighting factors are assumed hereafter to be described by:

�i(�) = �i(t)�̂i(�̂), (3)

where the terms �̂i(�̂) are uncertain due to the inexact scheduling variables denoted as �̂; �i(t) are the uncertainty factors, which
are bounded by minimum and maximum values, denoted as �i and �i, respectively. Then, the elements of (2) can be rewritten as:

Υ(�) =
2q
∑

i=1
�i(�)Υi =

2q
∑

i=1
�i(t)�̂i(�̂)Υi =

2q
∑

i=1
�̂i(�̂)(Υi + (�i(t) − 1)Υi) =

2q
∑

i=1
�̂i(�̂)

(

Υi + ΔΥi(t)
)

, (4)

with
∑2q
i=1 �̂i(�̂) = 1 and:

ΔΥi(t) = (�i(t) − 1)Υi. (5)
Based on the above discussion, (1) can be expressed as the following uncertain system:

ẋ(t) = (A(�̂) + ΔA(�̂)) x(t) + (B(�̂) + ΔB(�̂)) u(t) +
(

Fa(�̂) + ΔFa(�̂)
)

fa(t) + (J (�̂) + ΔJ (�̂))w(t),
y(t) = (C(�̂) + ΔC(�̂)) x(t) +

(

Fs(�̂) + ΔFs(�̂)
)

fs(t) + (D(�̂) + ΔD(�̂))w(t). (6)
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In order to estimate actuator and sensor faults simultaneously, the LPV system (6) is transformed by introducing z(t) ∈ ℝny ,
which is a filtered version of y(t),38,14 updated as ż(t) = E (y(t) − z(t)), where E is any Hurwitz matrix with appropriate
dimensions, as shown in Figure 1.
By defining augmented state and fault vectors as X(t) =

[

x(t)T z(t)T
]T ∈ ℝn̄ and f (t) =

[

fa(t)T fs(t)T
]T ∈ ℝnf with

n̄ = n + ny, nf = nfa + nfs , the dynamics of the augmented system is expressed by:

E
∫

y(t) ż(t) z(t)

−
+

1
FIGURE 1 Block diagram of the filter.

Ẋ(t) =(Ā(�̂) + ΔĀ(�̂))X(t) + (B̄(�̂) + ΔB̄(�̂))u(t) + (F̄ (�̂) + ΔF̄ (�̂))f (t) + (H̄(�̂) + ΔH̄(�̂))w(t),
Y (t) =z(t) = C̄X(t), (7)

with:

Ā(�̂) =
[

A(�̂) 0
EC(�̂) −E

]

, ΔĀ(�̂) =
[

ΔA(�̂) 0
EΔC(�̂) 0

]

, B̄(�̂) =
[

B(�̂)
0

]

, ΔB̄(�̂) =
[

ΔB(�̂)
0

]

, C̄ =
[

0 Iny
]

F̄ (�̂) =
[

Fa(�̂) 0
0 EFs(�̂)

]

, ΔF̄ (�̂) =
[

ΔFa(�̂) 0
0 EΔFs(�̂)

]

, H̄(�̂) =
[

J (�̂)
ED(�̂)

]

, ΔH̄(�̂) =
[

ΔJ (�̂)
EΔD(�̂)

]

.

Note that in the augmented system (7), sensor and actuator faults are embedded in a single fault vector f (t) and the matrix
F̄ (�̂) is full column rank.

Assumption 1. The faults f (t) are assumed to be time-varying signals whose k−th time derivatives are bounded by f0:38

̇f (t) = f1(t),
̇f1(t) = f2(t),

⋮
̇fk−1(t) = fk(t),
fk(t) ≤ f0. (8)

The following Lemma will be consider to derived our main result:

Lemma 1. (Ichalal et al.39) Given matrices X and Y of suitable dimensions, the following property holds for any � > 0:

XT Y + Y TX ≤ �XTX + �−1Y T Y .

3 PROPORTIONAL MULTIPLE-INTEGRAL SLIDING MODE OBSERVER

The proposed NLPV PMISMO estimates system states and faults simultaneously regardless of inexact scheduling variables, and
is defined as follows:



Gómez-Peñate. ET AL 5

̇̂X(t) =Ā(�̂)X̂(t) + B̄(�̂)u(t) + F̄ (�̂)f̂ (t) +KP (�̂)sign (S(t)) + 'x(�̂),
̇̂f (t) =KI (�̂)

(

Y (t) − Ŷ (t)
)

+ f̂1(t) + 'f (�̂),
̇̂f1(t) =KI1(�̂)

(

Y (t) − Ŷ (t)
)

+ f̂2(t) + 'f1(�̂), (9)
⋮

̇̂fk−2(t) =KIk−2(�̂)
(

Y (t) − Ŷ (t)
)

+ f̂k−1(t) + 'fk−2(�̂),
̇̂fk−1(t) =KIk−1(�̂)

(

Y (t) − Ŷ (t)
)

+ 'fk−1(�̂),
Ŷ (t) =C̄X̂(t),

where KP (�̂) and KI (�̂), KI1(�̂), … , KIk−1(�̂) denote the proportional and integral gains, respectively, that must be designed;
'x(�̂), and 'f (�̂), 'f1(�̂),… , 'fk−1(�̂) are signals that compensate for the effects of the inexact scheduling variables, as shown
later in Theorem 1. S(t) ∈ ℝny is the sliding surface, defined as S(t) = Y (t) − Ŷ (t). In order to determine the gain KP (�̂), the
following representation of sign(S(t)) is used:40

sign(S(t)) = S(t)⊘ |S(t)| = S(t) − S(t)◦
(

|S(t)| − 1ny
)

⊘ |S(t)| (10)

where |S(t)| denotes the elementwise absolute value of S(t), 1ny is the column vector of 1s with length ny, and the symbols ◦
and⊘ denote the Hadamard product and division, respectively.
Considering (8), the augmented form of the LPV model (7) and the NLPV PMISMO (9) are given by:

̇̄X(t) =((�̂) + Δ(�̂))X̄(t) + ((�̂) + Δ(�̂))u(t) + (G(�̂) + ΔG(�̂))w(t) + Rfk(t),
Ȳ (t) =X̄(t), (11)

and:
̇̄̂X(t) =(�̂) ̂̄X(t) + (�̂)u(t) +(�̂)(Ȳ (t) − ̂̄Y (t)) −Ks(�̂) + '(�̂),
̂̄Y (t) = ̂̄X(t), (12)

respectively, where:

X̄(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

X(t)
f (t)
f1(t)
⋮

fk−1(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, ̂̄X(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

X̂(t)
f̂ (t)
f̂1(t)
⋮

f̂k−1(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, '(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

'x(�̂)
'f (�̂)
'f1(�̂)
⋮

'fk−1(�̂)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

with X̄(t) ∈ ℝnk , '(�̂) ∈ ℝnk , nk = n̄ + k × nf and ē(t) = X̄(t) − ̂̄X(t),

(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ā(�̂) F̄ (�̂) 0 0 … 0
0 0 Ink 0 … 0
0 0 0 Ink … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

B̄(�̂)
0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

KP (�̂)
KI (�̂)
KI1(�̂)
⋮

KIk−1(�̂)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Δ(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΔB̄(�̂)
0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
⋮
Inf

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Δ(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΔĀ(�̂) ΔF̄ (�̂) 0 0 … 0
0 0 0 0 … 0
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, G(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

H̄(�̂)
0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, ΔG(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΔH̄(�̂)
0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Ks(�̂) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

KP (�̂)Sy(t)
0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

 =
[

C̄ 0 0 0 … 0
]

, Sy(t) = S(t)◦
(

|S(t)| − 1ny
)

⊘ |S(t)|.
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Δ(�̂), Δ(�̂) and ΔG(�̂) are unknown and time-varying matrices with appropriate dimensions. These matrices represent
the model uncertainties, which are due to the inaccurate measurement of the scheduling variables and are related to equation
(5). For further reasoning, the following assumption is considered:

Assumption 2. The uncertainties are bounded by:

‖Δi(t)‖ ≤ �1,i, (13)
‖Δi(t)‖ ≤ �2,i, (14)
‖ΔGi(t)‖ ≤ �3,i, (15)

with positives scalars �1,i, �2,i and �3,i.

A consequence of Assumption 2 is that the following inequalities hold true:

||Δ(�̂)|| =||
2q
∑

i=1
�̂iΔi(t)||≤

2q
∑

i=1
�̂i||Δi(t)|| ≤

2q
∑

i=1
�̂i�1,i = �1(�̂), (16)

||Δ(�̂)|| =||
2q
∑

i=1
�̂iΔi(t)||≤

2q
∑

i=1
�̂i||Δi(t)|| ≤

2q
∑

i=1
�̂i�2,i = �2(�̂), (17)

||ΔG(�̂)|| =||
2q
∑

i=1
�̂iΔGi(t)||≤

2q
∑

i=1
�̂i||ΔGi(t)|| ≤

2q
∑

i=1
�̂i�3,i = �3(�̂), (18)

where the explicit dependence of �̂i and �̂ has been omitted to relieve the notation. The evolution of the augmented state
estimation error, denoted as ̇̄e(t), is given by:

̇̄e(t) =
(

(�̂) −(�̂)
)

ē(t) + Δ(�̂)X̄(t) + Δ(�̂)u(t) + ΔG(�̂)w(t) +W (�̂)v(t) +Ks(�̂) − '(�̂), (19)

where:

v(t) =
[

fk(t)
w(t)

]

and W (�̂) =
[

R G(�̂)
]

. (20)

Equation (19) is associated with the state vector X̄(t), the input u(t), the noise w(t), and the function '(�̂). The design goal
is to select a gain (�̂) which makes (19) asymptotically stable, hence ensuring that the estimation error will converge to zero
when there are no uncertainties. Let us define the new variable:

�(t) = Lē(t), (21)

whereL is a constant matrix that is chosen by the designer to express which elements of ē(t) should be prioritized when rejecting
the effect of v(t) using the ∞ performance index. The following theorem provides the conditions to tune the observer gain
(�̂) and the discontinuous function '(�̂), such that the system (19) is asymptotically stable (in the sense of the estimation error
converging to zero when there are no uncertainty and noise), and the effect of v(t) onto the signal �(t) is bounded by:

‖�(t)‖2 < ‖v(t)‖2, (22)

where ‖ ⋅ ‖2 denotes the 2-norm of a 2-bounded signal and  is the ∞ performance index.
It is important to emphasize that the ∞ performance index  quantifies the influence of the disturbance v(t) over the signal

�(t). The goal is to make the value of the performance index  as small as possible.

Theorem 1. Given a scalar  > 0, let P > 0, matricesMi and positive scalars �2, �5, �6, �8 be such that the following set of
LMI is feasible:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Λi + LTL PR PGi P �1,iI �2,iP �3,iP
∗ −2I 0 0 0 0 0
∗ ∗ (�6 − 2)I 0 0 0 0
∗ ∗ ∗ −�8I 0 0 0
∗ ∗ ∗ ∗ −�2I 0 0
∗ ∗ ∗ ∗ ∗ −�5I 0
∗ ∗ ∗ ∗ ∗ 0 −�6I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, i = 1,… , 2q (23)
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with:

Λi =T
i P + Pi − TMT

i −Mi,

compute the vertex observer gains in (12):
i = P −1Mi, (24)

and choose the nonlinear function '(�̂) as:

'(�̂) =

{

0 if ēy(t)T ēy(t) < �
�3�1(�̂)2

̂̄X(t)T ̂̄X(t)
2ēy(t)T ēy(t)

P −1T ēy(t) + �5
u(t)T u(t)
2ēy(t)T ēy(t)

P −1T ēy(t) + �7
Ks(�̂)TKs(�̂)
2ēy(t)T ēy(t)

P −1T ēy(t) if ēy(t)T ēy(t) ≥ � (25)

where:
ēy(t) = Ȳ (t) − ̂̄Y (t), �3 =

1
�2�4

, �7 =
�8

1 − �2�8(�4 + 1)
,

with �4 and � arbitrarily chosen positive scalars. Then, the estimation error (19) is asymptotically stable with∞ performance
and attenuation level  > 0.

Proof Requiring (22) is equivalent to19:

 (t) ∶= V̇ (t) + �(t)T �(t) − 2v(t)T v(t) < 0, (26)

where V (t) = ē(t)TP ē(t), with P > 0. Hence, by considering (19), the following inequality is obtained:

 (t) ∶=ē(t)T
[

((�̂) −(�̂))TP + P ((�̂) −(�̂))
]

ē(t) + a(t) + b(t) + c(t) + d(t)
+ ē(t)TPW (�̂)v(t) + v(t)TW (�̂)TP ē(t) − 2ē(t)TP'(�̂) + ē(t)TLTLē(t) − 2v(t)T v(t) < 0. (27)

where:

a(t) =X̄(t)TΔ(�̂)TP ē(t) + ē(t)TPΔ(�̂)X̄(t), (28)
b(t) =u(t)TΔ(�̂)TP ē(t) + ē(t)TPΔ(�̂)u(t), (29)
c(t) =w(t)TΔG(�̂)TP ē(t) + ē(t)TPΔG(�̂)w(t), (30)
d(t) =Ks(�̂)TP ē(t) + ē(t)TPKs(�̂). (31)

Using Lemma 1, we obtain:

a(t) ≤ �−11 (P ē(t))
TP ē(t) + �1X̄(t)TΔ(�̂)TΔ(�̂)X̄(t), (32)

with �1 > 0 and considering (16), the following relationship is established:

�−11 (P ē(t))
TP ē(t) + �1X̄(t)TΔ(�̂)TΔ(�̂)X̄(t) ≤ �−11 ē(t)

TP 2ē(t) + �1�1(�̂)2X̄(t)T X̄(t), (33)

where X̄(t) = ē(t) + ̂̄X(t). Then, (33) becomes:

�−11 ē(t)
TP 2ē(t) + �1�1(�̂)2X̄(t)T X̄(t) = �−11 ē(t)

TP 2ē(t) + �1�1(�̂)2
(

ē(t)T ē(t) + ̂̄X(t)T ē(t) + ē(t)T ̂̄X(t) + ̂̄X(t)T ̂̄X(t)
)

. (34)

Applying Lemma 1 again, (34) can be rewritten as:

�−11 ē(t)
TP 2ē(t) + �1�1(�̂)2

(

ē(t)T ē(t) + ̂̄X(t)T ē(t) + ē(t)T ̂̄X(t) + ̂̄X(t)T ̂̄X(t)
)

≤ �−11 ē(t)
TP 2ē(t)

+ �−12 �1(�̂)
2ē(t)T ē(t) + �3�1(�̂)2 ̂̄X(t)T ̂̄X(t), (35)

where �−12 = �1(1 + �4) and �3 = �1(1 + �−14 ), with �4 > 0.
Following a similar reasoning and taking into account (17)-(18), we obtain:

b(t) ≤ �−15 ē(t)
TPΔ(�̂)Δ(�̂)TP ē(t) + �5u(t)T u(t) ≤ �−15 �2(�̂)

2ē(t)TP 2ē(t) + �5u(t)T u(t), (36)

c(t) ≤ �−16 ē(t)
TPΔG(�̂)ΔG(�̂)TP ē(t) + �6w(t)Tw(t) ≤ �−16 �3(�̂)

2ē(t)TP 2ē(t) + �6w(t)Tw(t), (37)

d(t) ≤ �−17 ē(t)
TP 2ē(t) + �7Ks(�̂)TKs(�̂). (38)

with �5, �6, �7 > 0.
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Since the subsystems of the augmented system in (11) are observable, if ēy(t) is zero, the estimation error is zero, therefore
'(�̂) = 0. If ēy(t) is non-zero, in order to cancel the effect of the uncertainties on the dynamics of the output system, '(�̂) is
selected as in Equation (25), such that:

2ē(t)TP'(�̂) =2ē(t)TP�3�1(�̂)2
̂̄X(t)T ̂̄X(t)
2ēy(t)T ēy(t)

P −1T ēy(t) + 2ē(t)TP�5
u(t)T u(t)
2ēy(t)T ēy(t)

P −1T ēy(t)

+ 2ē(t)TP�7
Ks(�̂)TKs(�̂)
2ēy(t)T ēy(t)

P −1T ēy(t)

=
(

�3�1(�̂)2 ̂̄X(t)T ̂̄X(t) + �5u(t)T u(t) + �7Ks(�̂)TKs(�̂)
) 2ē(t)TP
2ēy(t)T ēy(t)

P −1T ēy(t)

considering that ēy(t) = ē(t):

2ē(t)TP'(�̂) =
(

�3�1(�̂)2 ̂̄X(t)T ̂̄X(t) + �5u(t)T u(t) + �7Ks(�̂)TKs(�̂)
) 2ē(t)TPP −1Tē(t)

2ē(t)TTē(t)
=�3�1(�̂)2 ̂̄X(t)T ̂̄X(t) + �5u(t)T u(t) + �7Ks(�̂)TKs(�̂), (39)

Hence, taking into account (35)-(39), (27) leads to:

 (t) ≤ ē(t)TΓ(�̂)ē(t) + ē(t)TPW (�̂)v(t) + v(t)TW (�̂)TP ē(t) + �6w(t)Tw(t) − 2v(t)T v(t) < 0, (40)

where:

Γ(�̂) = ((�̂) −(�̂))TP + P ((�̂) −(�̂)) + �−18 P
2 + �−12 �1(�̂)

2I + �−15 �2(�̂)
2P 2 + �−16 �3(�̂)

2P 2 + LTL, (41)

and �−18 = �−11 + �−17 , then using (20), (40) can be rewritten in a compact matrix form as follows:

[

ē(t)T fk(t)T w(t)T
]

⎡

⎢

⎢

⎣

Γ(�̂) PR PG(�̂)
RTP −2I 0
G(�̂)TP 0 (�6 − 2)I

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ē(t)
fk(t)
w(t)

⎤

⎥

⎥

⎦

< 0 (42)

which holds if:
⎡

⎢

⎢

⎣

Γ(�̂) PR PG(�̂)
RTP −2I 0
G(�̂)TP 0 (�6 − 2)I

⎤

⎥

⎥

⎦

< 0 (43)

Since (43) is nonlinear, due to the product between decision variables (�̂) and P , the change of variable M(�̂) = P(�̂) is
needed to obtain an LMI representation. Finally, by taking into account (2) and applying Schur complements, (23) is obtained
from (43), thus completing the proof.
In a practical implementation of the proposed technique, as the estimation error ēy(t) approaches to zero, the value of '(�̂)

will increase without limit. One can overcome this problem by considering a small region in the neighborhood of zero defined
by a small positive scalar � where ēy(t) is kept, as pointed out in Theorem 1.

4 FAULT DIAGNOSIS OF AN OCTOROTOR UNMANNED AERIAL VEHICLE

In this section, the proposed methodology for actuator and sensor fault estimation is applied to an octorotor UAV and it is
validated using simulation results. The considered actuator faults are losses of effectiveness in the UAV’s motors.
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Ω1(t)

Ω8(t)
Ω7(t)

Ω6(t)

Ω5(t)

Ω4(t)
Ω3(t)

Ω2(t)

x

z

y

l

Q

Q̃ 22.5 deg

22.5 deg
b

1FIGURE 2 Star-shaped octorotor configuration

Figure 2 shows the configuration of the octorotor UAV considered in this paper whose dynamics are described by the following
equations:41

Translational part

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẍb(t) = (cos�(t) sin �(t) cos (t) + sin�(t) sin (t)) 1
m
uf (t)

ÿb(t) = (cos�(t) sin �(t) sin (t) + sin�(t) cos (t)) 1
m
uf (t)

z̈b(t) = −g + cos�(t) sin �(t) 1
m
uf (t)

(44)

Rotational part

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

 ̈(t) = �̇(t) ̇(t)
(Iy − Iz

Ix

)

−
Ir
Ix
�̇(t)Ω(t) + 1

Ix
��(t)

�̈(t) = �̇(t) ̇(t)
(

Iz − Ix
Iy

)

+
Ir
Iy
 ̇(t)Ω(t) + 1

Iy
��(t)

 ̈(t) = �̇(t)�̇(t)
(Ix − Iy

Iz

)

+ 1
Iz
� (t)

(45)

where xb(t), yb(t), zb(t) and ẋb(t), ẏb(t), żb(t) define the position and velocity of the translation of the octorotor, �(t) is the roll
angle, �(t) is the pitch angle,  (t) is the yaw angle, �̇(t), �̇(t),  ̇(t) are the angular velocities, Ω(t) is the disturbance caused by
the residual of overall rotor speed, defined as:

Ω(t) = −Ω1(t) − Ω2(t) + Ω3(t) + Ω4(t) − Ω5(t) − Ω6(t) + Ω7(t) + Ω8(t), (46)

and uf (t) is the total thrust, ��(t), ��(t) and � (t) are the torques, defined as:

uf (t) =F1(t) + F2(t) + F3(t) + F4(t) + F5(t) + F6(t) + F7(t) + F8(t),

��(t) =Q
(

F7(t) + F8(t) − F3(t) − F4(t)
)

+ Q̃
(

F1(t) + F6(t) − F2(t) − F5(t)
)

,

��(t) =Q
(

F5(t) + F6(t) − F1(t) − F2(t)
)

+ Q̃
(

F4(t) + F7(t) − F3(t) − F8(t)
)

,
� (t) =�3(t) + �4(t) + �7(t) + �8(t) − �1(t) − �2(t) − �5(t) − �6(t), (47)
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with:

Fi(t) =b ⋅Ω2i (t), (48)
�i(t) =d ⋅Ω2i (t), for i = 1,… , 8, (49)

whereΩi(t), i = 1,… , 8 are the angular speeds of the rotors,Q = l cos(�∕8) and Q̃ = l sin(�∕8), l are the arm lengths, m is the
total mass, Ix, Iy, and Iz are the inertia on the x, y, and z axis, respectively, b is the thrust coefficient, d is the drag coefficient,
Ir is the inertia of the motor, and g is the gravitational acceleration. The nominal parameters used for the simulations are listed
in Table 1.

TABLE 1 Parameter values used in the simulations

Parameter value unit Parameter value unit Parameter value unit

l 0.4 m b 10 × 10−6 N s2 Ix 0.044 kg m2

m 1.64 kg d 0.3 × 10−6 N m s2 Iy 0.044 kg m2

g 9.81 m/s2 Ir 90 × 10−6 kg m2 Iz 0.088 kg m2

Remark 1. The octorotor UAV is inherently unstable; for this reason, a controller is necessary to stabilize this system. An
altitude controller will calculate uf (t) to get the total thrust. The x−y position controller will calculate the desired pitch and roll
angles depending on the desired values for x and y. These angles, along with the desired yaw angle, are inputs to the attitude
controller which provides ��(t), ��(t) and � (t). A sliding mode control (SMC), developed in the work of Adir and Stoica42, has
been chosen to stabilize the system for its characteristics of robustness to disturbances and uncertainty. Also, according to the
works of Li et al.43, Wang et tal.44 and Saied et al.45 the SMC can be used as a passive fault-tolerant control since it can maintain
the stability of the system under certain faults. It is important to note that the proposed work is not dedicated to analyzing the
controller, but the fault diagnosis method. Therefore, for more information about the FTC, the reader should refer to the cited
works.

4.1 LPV model of the octorotor
The dynamics of the octorotor UAV can be separated into two subsystems: the translational part and the rotational part, as it
can be seen in (44) and (45). It is well known that the attitude dynamics is much faster than the translational one. Moreover,
the attitude dynamics is decoupled of the translational dynamics. Nevertheless, the translational dynamics is related with the
attitude dynamics. Thus, it is possible to separate the system into two independent subsystems.46 Because it is assumed that the
vehicle is flying in a hover position and actuator faults are considered, only the rotational dynamics of the UAV is used for the
design of the fault diagnosis system.47,48,49,50 The corresponding differential equations (45) can be reshaped into a quasi-LPV
structure, as follows:

ẋ(t) = A(�1(t), �2(t))x(t) + Bu(t) + Fa(�1(t), �2(t))fa(t) + J (�1(t), �2(t))w(t), (50)

where:

x(t) =
[

�(t) �(t)  (t) �̇(t) �̇(t)  ̇(t)
]T =

[

x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)
]T , (51)

u(t) =
[

��(t) ��(t) � (t)
]T , (52)

and the exogenous disturbances/noise vector is w(t) =
[

Ω(t) wn(t)
]T , with Ω(t) denoting the disturbances and wn(t) the noise,

respectively.
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By defining �1(t) = x4(t) and �2(t) = x5(t), the matrices A(⋅), B and J (⋅) are defined as:

A(�1(t), �2(t)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 c1�2(t)
0 0 0 0 0 c2�1(t)
0 0 0 c3�2(t) 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
c4 0 0
0 c5 0
0 0 c6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, J (�1(t), �2(t)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 0

−c7�2(t) 0
c8�1(t) 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (53)

with constants c1 = (Iy − Iz)∕Ix, c2 = (Iz − Ix)∕(Iy), c3 = (Ix − Iy)∕Iz), c4 = 1∕Ix, c5 = 1∕Iy, c6 = 1∕Iz, c7 = Ir∕Ix and
c8 = Ir∕Iy.
By considering �(t) = [�1(t), �2(t)]T as the scheduling variables vector with �1(t) ∈ [�1min �1max] = [−2 2] rad/s,

�2(t) ∈ [�2min �2max] = [−3 3] rad/s, the quasi-LPV system (50) can be rewritten into a polytopic representation using the
nonlinear sector transformation,51 as follows:

ẋ(t) =
4
∑

i=1
�i(�(t))

(

Aix(t) + Bu(t) + Fa,ifa(t) + Jiw(t)
)

(54)

where the weighting functions are defined as:

�1(�(t)) =
�1(t) − �1min
�1max−�1min

�2(t) − �2min
�2max−�2min

,

�2(�(t)) =
�1(t) − �1min
�1max−�1min

�2max − �2(t)
�2max−�2min

, (55)

�3(�(t)) =
�1max − �1(t)
�1max−�1min

�2(t) − �2min
�2max−�2min

,

�4(�(t)) =
�1max − �1(t)
�1max−�1min

�2max − �2(t)
�2max−�2min

, (56)

with A1 = A(�1max, �2max), A2 = A(�1max, �2min), A3 = A(�1min, �2max), A4 = A(�1min, �2min), J1 = J (�1max, �2max), J2 =
J (�1max, �2min), J3 = J (�1min, �2max), J4 = J (�1min, �2min). In the following section, Fa,i and fa(t) are characterized.

4.2 Actuator and sensor faults on the octorotor system
In order to consider the presence of actuator faults, the losses of effectiveness are represented by:

N(t) =
[

N1(t) N2(t) … N8(t)
]T (57)

whereN1(t),… ,N8(t) represent the level of effectiveness of each rotor. In particular,Nj(t) = 0means that the rotor j is working
without fault, whereas 0 < Nj(t) < 1means that the rotor j has a partial fault and, as a consequence, the corresponding actuator
operates with reduced capacity. IfNj(t) = 1, then the rotor j is undergoing a total fault.
The thrust and torque produced by a faulty rotor are described by:

F̃i(t) =(1 −Ni(t))Fi(t),
�̃i(t) =(1 −Ni(t))�i(t), (58)

then, the loss of efficiency in a rotor appears as an additive fault on the control inputs of the system (��(t), ��(t) and � (t)), which
can be isolated and estimated by means of a fault diagnosis scheme. It is important to emphasize that it is possible to approximate
the loss of efficiency through an additive representation if and only if the fault occurrence does not cause instability.52 Therefore,
when a rotor fails, there appears a loss of thrust that generates positive or negative moments in the Euler angle directions,53
which causes residual torques to occur in the input torques. In this situation, the real inputs [�̃�(t) �̃�(t) �̃ (t)]T applied to the
system are unknown, so they can be described as follows:

⎡

⎢

⎢

⎣

�̃�(t)
�̃�(t)
�̃ (t)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

��(t)
��(t)
� (t)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

Δ��(t)
Δ��(t)
Δ� (t)

⎤

⎥

⎥

⎦

(59)
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where [��(t) ��(t) � (t)]T are the nominal inputs calculated by the controller and fa(t) = [Δ��(t) Δ��(t) Δ� (t)]T are
the residual torques, that are considered to be faults for estimation purposes, in this case, F1 = F2 = F3 = F4 = B. For
example, when there is a loss of effectiveness in the rotor 1, the thrust is F̃1(t) = (1 −N1(t))F1(t), and the torque is given by
�̃1(t) = (1 −N1(t))�1(t) so substituting these expressions in (47), the corresponding torques developed by the actuators are:

�̃�(t) =Q
(

F7(t) + F8(t) − F3(t) − F4(t)
)

+ Q̃
(

(1 −N1(t))F1(t) + F6(t) − F2(t) − F5(t)
)

,

�̃�(t) =Q
(

F5(t) + F6(t) − (1 −N1(t))F1(t) − F2(t)
)

+ Q̃
(

F4(t) + F7(t) − F3(t) − F8(t)
)

,
�̃ (t) =�3(t) + �4(t) + �7(t) + �8(t) − (1 −N1(t))�1(t) − �2(t) − �5(t) − �6(t), (60)

and using (47), (60) can be expressed as:

�̃�(t) =��(t) −N1(t)Q̃F1(t), (61)
�̃�(t) =��(t) +N1(t)QF1(t), (62)
�̃ (t) =� (t) +N1(t)�1(t). (63)

Then, the residual torques are:

Δ��(t) = −N1(t)Q̃F1(t), (64)
Δ��(t) = +N1(t)QF1(t), (65)
Δ� (t) = +N1(t)�1(t). (66)

Generalizing to the other rotors, the corresponding torques provided by the actuators are:
{

�̃�(t) = ��(t) ±Ni(t)QFi(t),
�̃�(t) = ��(t) ±Ni(t)Q̃Fi(t),

for i = 3, 4, 7, 8 (67)
{

�̃�(t) = ��(t) ±Ni(t)Q̃Fi(t),
�̃�(t) = ��(t) ±Ni(t)QFi(t),

for i = 1, 2, 5, 6 (68)

�̃ (t) = � (t) ±Ni(t)�i(t), for i = 1,… , 8 (69)

then:
{

Δ��(t) = ±Ni(t)QFi(t),
Δ��(t) = ±Ni(t)Q̃Fi(t),

for i = 3, 4, 7, 8 (70)
{

Δ��(t) = ±Ni(t)Q̃Fi(t),
Δ��(t) = ±Ni(t)QFi(t),

for i = 1, 2, 5, 6 (71)

Δ� (t) = ±Ni(t)�i(t),for i = 1,… , 8 (72)

where the actual sign represented by the symbol ± depends on the considered torque and motor, as summarized in Table 2.

TABLE 2 Additive faults according to the failing motor

Fault Δ��(t) Δ��(t) Δ� (t) Fault Δ��(t) Δ��(t) Δ� (t)

Motor 1 − + + Motor 5 + − +
Motor 2 + + + Motor 6 − − +
Motor 3 + + − Motor 7 − − −
Motor 4 + − − Motor 8 − + −

Using Table 2, the fault of a rotor can be isolated, and then using the information on the nominal angular speed of the rotor
calculated by the controller, and by the equations (70), (71) or (72), the efficiency can be estimated. In this work, it is considered
that the octorotor is equipped with sensors that measure the angular positions �(t), �(t) and  (t), and the angular velocities
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�̇(t), �̇(t). Also, two additive sensor faults fs(t) are considered affecting the angular positions �(t) and �(t). Hence, the output
equation is defined as follows:

y(t) = Cx(t) + Fsfs(t) +Dw(t), (73)
where:

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
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⎥

⎥

⎥

⎥

⎦

.

Solving the LMI (23) of Theorem 1, the unknown gains of the PMISMO are obtained. The constants are selected as E = 30,
� = 10−1, �4 = 0.1 and since the main objective is to estimate the faults the matrix L is chosen as:

L =
[

05×6 05×5 I5×5 05×5
]

. (74)

In this case, to consider a 10% uncertainty in the weight functions, the uncertain factors are bounded as follows:

�i ∈ [0.9 1.1], for i = 1, … , 4, (75)

and it is possible to compute �1,i, �2,i and �3,i from (13), (14) and (15), respectively, whose values are found in the Appendix.
The simulation results are carried out with an attenuation level  = 0.23, the obtained constants �2 = 32.6039, �5 = 11.3383,

�6 = 0.0480, �8 = 0.0011 and matrices Ki (i = 1,… , 4), whose values can be found in the Appendix, are used to implement
the PMISMO (12) whose performance is validated by simulations.
The initial conditions of the rotational part of the system is:

x0 = [ 0 0 0 0 0 0 ]T , (76)

the initial conditions for the PMISMO is:
̂̄X0 = 021×1, (77)

and for the filter is:
z0 = [ 0.01 0.01 0.01 0.01 0.01 ]T . (78)

The measurement noise w(t) in the output is a band-limited white noise, with noise power 1 × 10−6. The system outputs, the
filtered signals and the estimates are shown in Figure 3 and Figure 4.
For a more realistic scenario, the scheduling variables applied to the NLPV PMISMO are obtained from the measurements

of y4(t) = �̇(t) and y5(t) = �̇(t), which are affected by measurement noise. The uncertainty weighting functions that depend on
the scheduling variables are shown in Figure 5. In this case, the measurements of the scheduling variables are considered to be
fault-free.
To demonstrate the effectiveness of the observer to estimate actuator faults, a time-varying fault has been induced in rotor 2,

which causes a maximum loss of 50% in the efficiency of the rotor from t = 10s to t = 60s approximately, which causes residual
torques in the system that are estimated by the NLPV PMISMO. The signals Δ��(t), Δ��(t), Δ� (t) and their estimations are
shown in Figure 6, and their signs are compared with the values of Table 2 in order to isolate the actuator fault. In this case, the
fault in the rotor is considered to be a time-varying signal with a norm-bounded second-derivative. By knowing the nominal
values of the motors speeds calculated by the controller and using either equations (70), (71) or (72), the efficiency of the rotor
is reconstructed. The loss of efficiency in rotor 2 and its estimation are shown in Figure 7.
To verify the effectiveness of the NLPV PMISMO to estimate sensor faults, two time-varying faults are induced: fs1(t) is

the fault on the sensor that measures the angular position �(t) from t = 20s to t = 70s and fs2(t) is the fault on the sensor
that measures the angular position �(t) from t = 30 to t = 80s, both faults are time-varying signals with maximum magnitudes
of 0.25. Figure 8 shows the sensor fault and its estimation. As it can be seen, the time lapses in which the two faults occur
are overlapping, which allows verifying the efficiency of the proposed observer in the event of simultaneous faults. The fault
estimation turns out to be successful.
Figure 9 show that the state of the system is estimated correctly despite the actuator and sensor faults and the measurement

noise that affects the output and the scheduling variables.
The obtained results demonstrate that the proposed NLPV PMISMO has a good performance for the estimation of actuators

and sensors faults in LPV systems with uncertain scheduling variables.
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FIGURE 3 Measured angular positions y1(t), y2(t) and y3(t), their filtered versions z1(t), z2(t) and z3(t), and the estimate signals
ẑ1(t), ẑ2(t) and ẑ3(t).
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FIGURE 4 Measured angular velocities y4(t) and y5(t), their filtered signals z4(t) and z5(t), and the estimates ẑ4(t) and ẑ5(t).
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0 10 20 30 40 50 60 70 80 90
−0.05

0.00

0.05

0.10

0.15

0.20

0.25

T
or

qu
e

(N
m

)

∆τφ(t)

∆̂τφ(t)

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
or

qu
e

(N
m

)

∆τθ(t)

∆̂τθ(t)

0 10 20 30 40 50 60 70 80 90

Time (s)

−0.02

0.00

0.02

0.04

0.06

T
or

qu
e

(N
m

) ∆τψ(t)

∆̂τψ(t)

FIGURE 6 Signals Δ��(t), Δ��(t), Δ� (t) and their estimates.



16 Gómez-Peñate. ET AL

0 10 20 30 40 50 60 70 80 90

Time (s)

0.0

0.2

0.4

0.6

M
ag

ni
tu

de

N2(t)

N̂2(t)

FIGURE 7 Rotor efficiency with partial fault and its estimate
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FIGURE 8 Sensor faults and their estimates
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FIGURE 9 State variables and their estimates.

5 CONCLUSIONS

This paper dealt with the estimation of system states, sensors and actuator faults in nonlinear systems described by LPV models
affected by noisy measurements in the scheduling variables and system outputs. A proportional multiple-integral sliding mode
observer was designed with a ∞ performance criterion in order to guarantee stability and robustness against the sensor noise
and the uncertainty induced by inexact scheduling variables. Finally, the developed observer was applied in a physical system
consisting of an octorotor UAV system in order to show the applicability and effectiveness of the proposed approach. It was
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demonstrated that the proposed approach allows estimating simultaneously states and faults with good performance. There are
different research paths that could be explored next, for instance, the authors will work in integrating the method with fault-
tolerant control techniques. Based on the computed fault estimation, a reconfigurable control scheme can be developed with the
aim of maintaining an acceptable performance and close-to-nominal steady-state of the system under fault occurrence.
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APPENDIX

�1,1 = �1,2 = �1,3 = �1,4 = 12.72
�2,1 = �2,2 = �2,3 = �2,4 = 2.27
�3,1 = �3,2 = �3,3 = �3,4 = 6.70 (79)
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−0.2212 −0.2199 −0.1288 2.1012 −0.0307
−0.2243 −0.2256 −0.1395 −0.0172 2.1135
−7.7179 −7.7178 35.6926 −0.5770 −1.0337
−3.0937 −3.0928 −22.1069 37.0722 −0.4262
−4.7483 −4.7490 −17.2080 −0.3615 38.4038
−44.0812 −44.0805 180.7754 −3.4446 −6.2792
23.9043 −6.2409 −2.7146 0.5254 −0.8550
−6.2406 23.9050 −2.7119 −0.4708 0.1374
−6.3427 −6.3426 30.0418 −0.4692 −0.8377
−6.5554 −6.5549 −4.0683 33.0441 −0.9153
−6.6876 −6.6876 −4.3901 −0.5111 33.4127
−0.8397 −0.8390 −1.6259 5.0232 −0.1298
−1.0565 −1.0574 −2.1832 −0.0870 6.2533
−8.2129 −8.2128 31.9730 −0.6701 −1.2368
6.2579 −1.6216 −0.7693 −0.1237 −0.2230
−1.6215 6.2581 −0.7686 −0.1228 −0.2250
−0.5916 −0.5910 −1.3822 3.6836 −0.0924
−0.8233 −0.8244 −2.1345 −0.0691 5.1666
−5.5543 −5.5542 20.5902 −0.4634 −0.8549
8.5173 −1.7943 −2.8526 −0.1465 −0.2675
−1.7942 8.5175 −2.8516 −0.1450 −0.2704
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−0.2209 −0.2196 −0.1298 2.1014 −0.0307
−0.2242 −0.2255 −0.1397 −0.0171 2.1134
−7.7171 −7.7170 35.6919 −0.5755 −1.0353
−11.2563 −11.2553 11.5672 36.4340 −1.5918
−4.7400 −4.7408 −17.2270 −0.3585 38.4021
−44.0771 −44.0766 180.7733 −3.4359 −6.2885
23.9016 −6.2436 −2.7067 0.5254 −0.8558
−6.2433 23.9023 −2.7041 −0.4708 0.1366
−6.3455 −6.3455 30.0512 −0.4687 −0.8393
−6.5486 −6.5482 −4.0908 33.0468 −0.9142
−6.6879 −6.6879 −4.3864 −0.5103 33.4112
−0.8373 −0.8367 −1.6346 5.0238 −0.1292
−1.0560 −1.0569 −2.1837 −0.0869 6.2531
−8.2120 −8.2119 31.9722 −0.6684 −1.2385
6.2580 −1.6215 −0.7696 −0.1236 −0.2232
−1.6214 6.2582 −0.7689 −0.1226 −0.2251
−0.5901 −0.5895 −1.3878 3.6840 −0.0919
−0.8229 −0.8240 −2.1350 −0.0690 5.1665
−5.5536 −5.5536 20.5896 −0.4623 −0.8561
8.5172 −1.7943 −2.8526 −0.1464 −0.2676
−1.7942 8.5174 −2.8516 −0.1450 −0.2705
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