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Abstract: This paper establishes a methodology based on linear matrix inequalities (LMIs)
to design a shifting H∞ linear parameter varying (LPV) state-feedback controller for systems
affected by time-varying input saturations. By means of the shifting paradigm, the instantaneous
saturation values are linked to a scheduling parameter vector. Then, the disturbance rejection
is dealt with the quadratic boundedness concept and the shifting H∞ methodology. The design
conditions are obtained within the LPV framework using ellipsoidal invariant sets, thus obtaining
an LMI-based feasibility problem that can be solved via available solvers. Finally, the main
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1. INTRODUCTION

In Ruiz et al. (2019), a methodology for designing state-
feedback controllers taking into account time-varying in-
put saturations was developed. In addition to saturation,
real-world systems can be also affected by unknown dis-
turbances. These disturbances may contribute to saturate
the control inputs, emphasize the actuator degradation
and even make the system unstable. This paper is about
disturbance rejection under time-varying saturation limits.

In order to deal with disturbances, quadratic boundedness
(QB) received attention in the literature (Brockman and
Corless, 1998). The QB approach consists in enforcing
all the state trajectories to converge inside an ellipsoidal
region described by a quadratic Lyapunov function, in
spite of the disturbances. On the other hand, the H∞
methodology is a well-known approach to consider distur-
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bances, which allows to design a controller that minimizes
the energy transmission from the input to the output.
For example, Boyd et al. (1994) proposed a linear ma-
trix inequality (LMI)-based problem in order to obtain
a controller that satisfies an L2 gain constraint for a
constant specification. Furthermore, the H∞ methodology
was extended to deal with linear parameter varying (LPV)
systems in Apkarian et al. (1995).

The works addressing the saturation phenomenon in com-
bination with disturbance rejection assume that the satu-
ration limits are constant. For instance, Köse and Jabbari
(2003) used the H∞ methodology and the QB concept
through a parameter-dependent Lyapunov function to de-
sign two gain-scheduled controllers. These controllers are
subject to saturations with constant limits and provide a
guaranteed L2 gain. Moreover, the controllers adapt their
gains based on the distance from the origin, providing
high-gains when the states are close to the origin, thus
increasing the system’s performance. Sajjadi-Kia and Jab-
bari (2013) extended the previous work by adding an anti-
windup to handle the saturation under worst-case distur-
bance. In Ping et al. (2017), the assumption of the input
saturation limits being constant in time is maintained with
the objective of approximating the region of attraction
by means of off-line optimization algorithms. Also, this
approach allows to design a saturated dynamic output-
feedback controller for an LPV system with bounded dis-
turbances using the QB concept. On the other hand, Ding
(2009) presented an output-feedback controller based on
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∗∗∗ Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i

Artigas 4-6, 08028 Barcelona, Spain

Abstract: This paper establishes a methodology based on linear matrix inequalities (LMIs)
to design a shifting H∞ linear parameter varying (LPV) state-feedback controller for systems
affected by time-varying input saturations. By means of the shifting paradigm, the instantaneous
saturation values are linked to a scheduling parameter vector. Then, the disturbance rejection
is dealt with the quadratic boundedness concept and the shifting H∞ methodology. The design
conditions are obtained within the LPV framework using ellipsoidal invariant sets, thus obtaining
an LMI-based feasibility problem that can be solved via available solvers. Finally, the main
characteristics of the proposed approach are validated by means of an illustrative example.

Keywords: Linear parameter varying (LPV), Saturation, Disturbance rejection, Linear matrix
inequalities (LMIs)

1. INTRODUCTION

In Ruiz et al. (2019), a methodology for designing state-
feedback controllers taking into account time-varying in-
put saturations was developed. In addition to saturation,
real-world systems can be also affected by unknown dis-
turbances. These disturbances may contribute to saturate
the control inputs, emphasize the actuator degradation
and even make the system unstable. This paper is about
disturbance rejection under time-varying saturation limits.

In order to deal with disturbances, quadratic boundedness
(QB) received attention in the literature (Brockman and
Corless, 1998). The QB approach consists in enforcing
all the state trajectories to converge inside an ellipsoidal
region described by a quadratic Lyapunov function, in
spite of the disturbances. On the other hand, the H∞
methodology is a well-known approach to consider distur-

� This work has been partially funded by the Spanish State Re-
search Agency (AEI) and the European Regional Development Fund
(ERFD) through the project SCAV (ref. MINECO DPI2017-88403-
R) and the SMART project (ref. nº EFA 153/16 Interreg Coop-
eration Program POCTEFA 2014-2020). This work has also been
partially funded by AGAUR of Generalitat de Catalunya through
the Advanced Control Systems (SAC) group grant (2017 SGR 482)
and by the Spanish State Research Agency through the Maria de
Maeztu Seal of Excellence to IRI (MDM-2016-0656). A. Ruiz is
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a Takagi-Sugeno formulation, with input constraints and
bounded noise.

However, from a practical viewpoint, it makes sense to
consider the case in which the saturation limits are time-
varying due, e.g., to the degradation of the actuators over
time. Obviously, such degradation affects the disturbance
rejection performance provided by the controller. The
main contribution of this work lies in proposing an LMI-
based methodology to design a shifting H∞ and quadrat-
ically bounded LPV state-feedback controller, which en-
sures rejection against bounded, unknown exogenous dis-
turbances while maintaining the control inputs inside the
actuator linearity zone. To achieve this objective, the shift-
ing paradigm is applied (Rotondo et al., 2015), following
some ideas developed recently in Ruiz et al. (2019). The
overall design approach is developed using a constant
quadratic Lyapunov matrix, thus introducing some con-
servativeness. Nevertheless, such restriction can be relaxed
by considering results available in the literature which use
parameter-dependent Lyapunov functions, at the cost of
inceasing the computational burden.

This paper is structured as follows. In Section 2, the prob-
lem statement is introduced. In Section 3, the LMI-based
procedure for controller design is presented. Section 4
presents an illustrative example with simulation results.
Finally, Section 5 summarizes the main conclusions and
discusses possible future work.

2. PROBLEM STATEMENT

Let us consider the following continuous-time LPV system
{
ẋ(t) = A(θ(t))x(t) +Bww(t) +Busat(u(t))

z(t) = Czx(t)
, (1)

where: x(t) ∈ Rnx is the state vector; w(t) ∈ Rnw is the
unknown external disturbance, such that ‖w(t)‖2 ≤ 1;
u(t) ∈ Rnu is the control input; and z(t) ∈ Rnz denotes
the performance output. The matrices Bw, Bu and Cz

are the disturbance, input and performance output ma-
trices, respectively 1 . On the other hand, the parameter-
dependent state matrix A(θ(t)) depends on a scheduling
parameter vector θ(t) ∈ Θ ⊂ Rnθ , and it can be rep-
resented as the convex hull of a finite set of N vertex
matrices: A(θ) ∈ Co {Ai, i = 1, . . . , N}.
The polytopic representation of system (1) is used through-
out this paper, which means that the following holds for
matrices Ai

Co {Ai} :=

{
N∑
i=1

µi(θ(t))Ai, µi(θ(t)) ≥ 0,

N∑
i=1

µi(θ(t)) = 1

}
.

(2)

Note that the input u(t) in (1) is affected by symmetric
saturations with time-varying limits

1 The results obtained throughout this paper can be extended to
the case where Bu(θ(t)), Bw(θ(t)) and Cz(θ(t)) are parameter-
dependent matrices. This extension is possible by applying Polya’s
theorems for definiteness of double sums, although at the cost of
increasing the overall complexity of the solution. The interested
reader is referred to Sala and Arino (2007).

sat(uh(t)) =

{
sign(uh(t))σh(t) if | uh(t) |> σh(t)

uh(t) if | uh(t) |≤ σh(t)
,

(3)
where h = 1, . . . , nu, the symbols > and ≤ denote an
element-wise comparison and σh(t) ∈ Rnu

+ is the instan-
taneous saturation limit value.

Following the shifting paradigm (Rotondo et al., 2015),
the time-varying saturation is described in polytopic form
by introducing a new scheduling vector φ(t) ∈ Φ ⊂ Rnu ,
linked to the instantaneous saturation limits σ(t) ∈ [σ, σ]
by (Ruiz et al., 2019)

φh(t) =
σh

2 − σh(t)
2

σh
2 − σh

2
. (4)

The time dependency of x, w, u, θ and φ is dropped from
now on and it will only be made explicit when necessary.

2.1 Background

Let us introduce the definitions of quadratic bounded-
ness (Brockman and Corless, 1998) and the shifting H∞
performance in order to address the unknown external
disturbances:

Definition 1. (Quadratic boundedness). Given w(t) ∈ Ω
with Ω ⊂ Rnw closed and bounded, the system ẋ(t) =
Ax(t) + Bww(t) is quadratically bounded with Lyapunov
symmetric matrix P � 0, if xTPx > 1 =⇒ xTP (Ax +
Bww) < 0, ∀w(t) ∈ Ω.

Definition 2. (Shifting H∞ performance). An LPV system
is said to achieve shifting H∞ performance if the L2 gain
of the input/output map is bounded by γ(φ(t)) ∀φ(t) ∈
Φ ⊂ Rnu∥∥∥γ(φ(t))− 1

2 z(t)T z(t)
∥∥∥
2
<

∥∥∥γ(φ(t)) 1
2w(t)Tw(t)

∥∥∥
2
. (5)

3. CONTROLLER DESIGN PROCEDURE

Let us consider the following control law for (1)

u(t) = K(θ(t), φ(t))x(t) =

N∑
i=1

µi(θ(t))

M∑
j=1

ηj(φ(t))Kijx(t),

(6)
where K(θ(t), φ(t)) ∈ Rnu×nx is a parameter-dependent
gain and Kij ∈ Rnu×nx denotes the polytopic vertex gain
matrix for the pair (i, j).

Then, by introducing the control law (6) in the system’s
equation (1), the polytopic expression of the system under
control is obtained

ẋcl(t) =

N∑
i=1

µi(θ(t))
M∑
j=1

ηj(φ(t))(Ai +BuKij)x(t) +Bww(t)

zcl(t) = Czx(t)

.

(7)

3.1 Quadratic Boundedness

Theorem 1 introduces a set of LMIs that guarantee
quadratic boundedness of (7), thus ensuring that all the
closed-loop system trajectories evolve towards an ellipsoid
V defined by the unit level curve of the Lyapunov function
V (x) = xTPx, in spite of the external disturbance w(t).
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Theorem 1. Consider the continuous-time closed-loop LPV
system (7) with ‖w(t)‖2 ≤ 1 and, assume that there exists
a symmetric matrix Q � 0, a constant parameter α ∈ R+

and matrices Γij such that

Q � 0, (8)[
AiQ+BuΓij +QAT

i + ΓT
ijB

T
u + αQ Bw

BT
w −αI

]
� 0. (9)

If the vertex gains of the LPV controller (6) are calculated
as Kij = ΓijQ

−1, then the closed-loop system is quadrat-
ically bounded with Q as a Lyapunov matrix.

Proof. This proof follows the reasoning in Brockman and
Corless (1998). The LMIs[

PAi +AT
i P + αP PBw

BT
wP −αI

]
� 0 (10)

can be applied to each vertex for assessing whether an
autonomous polytopic LPV system described by matrix
Ai is quadratically bounded. Then, by pre and post
multiplying (10) by diag(Q, I), where Q = P−1 and
replacing Ai by the closed-loop vertex matrices of (7),
the following bilinear matrix inequalities are obtained for
design[

AiQ+BuKijQ+QAT
i +QKT

ijB
T
u +Qα Bw

BT
w −αI

]
� 0,

(11)
which can be converted into LMIs (note that α is fixed
beforehand) by means of the change of variable Γij =
KijQ, thus obtaining (9). �

3.2 Shifting disturbance rejection

By means of the shifting H∞ performance, the controller
will modify online its performance whenever the input sat-
uration limits undergo variations. Consequently, the con-
troller will reject larger disturbances when larger control
actions are available and, conversely, smaller disturbances
when the saturation limits are smaller.

Theorem 2 provides the conditions for the vertex gains
Kij to ensure the robustness of (7) against external
disturbances and time-varying saturation limits.

Theorem 2. Consider the continuous-time closed-loop LPV
system (7), and assume that there exisits a symmetric
matrix Q � 0, a set of M values γj > 0 and matrices
Γij such that the following set of LMIs is feasible for
i = 1, . . . , N and j = 1, . . . ,M

Q � 0, (12)

AiQ+BuΓij +QAT

i + ΓT
ijB

T
u Bw QCT

z

BT
w −γjI 0

CzQ 0 −γjI


 ≺ 0. (13)

If the vertex gains of the LPV controller (6) are calculated
as Kij = ΓijQ

−1, then the closed-loop system is robust
against external disturbances with a guaranteed shifting
H∞ gain performance

γ(φ) =

M∑
j=1

ηj(φ)γj . (14)

Proof. Let us consider the following system{
ẋ(t) = A(θ)x(t) +Bww(t)

z(t) = Czx(t)
. (15)

Assume that the Lyapunov function V (x) = xTPx, with
P � 0, is such that for all t > 0,

V̇ (x) + γ(φ(t))
−1

z(t)
T
z(t)− γ(φ(t))w(t)

T
w(t) < 0, (16)

where γ(φ) > 0 and

V̇ (x) = xT (A(θ)TP + PA(θ))x+ 2xTPBww (17)

Then, the L2 gain is bounded in the interval described by
γ(φ) for all x and w. To show this, let us integrate (16)
from t=0 to t=∞ with x(0) = 0, thus obtaining

V (x(∞)) +

∫ ∞

0

γ(φ(t))
−1

z(t)
T
z(t) dt

−
∫ ∞

0

γ(φ(t))w(t)
T
w(t) dt < 0.

(18)

V (x(∞)) ≥ 0 by construction, implying that∫ ∞

0

γ(φ(t))
−1

z(t)
T
z(t) dt <

∫ ∞

0

γ(φ(t))w(t)
T
w(t) dt,

(19)
thus obtaining a similar expression to the one in Köse and
Jabbari (2003). After that, by recalling the definition of
L2 norm (Boyd et al., 1994), (5) is obtained.

In order to obtain (13) by means of appropriate manipu-
lations of (16), the inequality[

A(θ)TP + PA(θ) + γ(φ)−1CT
z Cz PBw

BT
wP −γ(φ)I

]
≺ 0 (20)

is obtained. Then, applying the Schur complement to (20)
and after some calculations, the following LMI


A(θ)Q+QA(θ)T Bw QCT

z

BT
w −γ(φ)I 0

CzQ 0 −γ(φ)I


 ≺ 0. (21)

is derived. Finally, the LMI (21) is replaced by the closed-
loop vertex matrices of (7) obtaining (13). �

Note that (19) can be compared with the traditional H∞
performance with a constant γ, since replacing γ(φ) by γ,
the following L2 gain is obtained

sup
‖w(t)‖2 �=0

‖z(t)‖2
‖w(t)‖2

< γ, (22)

demonstrating that the shifting H∞ performance defined
in Definition 2 is an extension of the above concept.

Let us define ηj(φ(t)) in order to calculate the polytopic
weights of (14) for any number of vertices as follows

ηj(φ(t)) =

nu∏
h=1

γjh(φh(t)), (23)

where

γjh(φh(t)) =

{
φh(t) if mod(j, 2h) ∈ {1, . . . , 2h−1}
1− φh(t) else

.

(24)

Furthermore, with the goal of casting an optimization
problem which involves fewer parameters than M , let us
define each value γj as follows

γj =
γCj + γ(nu − Cj)

nu

, (25)

where γ and γ are the lower and upper limits of γ(φ(t)),

respectively. Cj = |{h ∈ {1, . . . , nu} : mod(j, 2h) ∈
{1, . . . , 2h−1}}| and |A| denotes the cardinality of A.
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Remark 1. Note that the interval limits [γ, γ] in (25) are
introduced as symbolic decision variables. These variables
can be obtained by minimizing the following

min J =
1

2
(γ + γ) (26)

under the set of LMIs showed in Theorem 2, thus obtaining
a gain-scheduled controller with an optimal shifting H∞
gain performance γ(φ).

3.3 Overall controller design

The design of the shifting H∞ LPV state-feedback con-
troller that takes into account (3) and quadratic bound-
edness is ensured as follows. Following Ruiz et al. (2019),
let us establish three ellipsoidal regions in the state space
domain that satisfy

E ⊆ V ⊆ U(φ(t)) ⊆ L, (27)

where E contains the set of allowed initial conditions of
the system

E = {x ∈ Rnx : xTRx ≤ 1}, (28)

V corresponds to the unit level curve defined by V (x) as

V = {x ∈ Rnx : xTPx ≤ 1}, (29)

and the control input region U(φ)
U(φ) = {u ∈ Rnu : uTS(φ)u ≤ 1}, (30)

where S(φ) contains the orientations and magnitudes of
the control input ellipsoids in the following way

S(φ) = diag
(
σ1(φ1)

2
, . . . , σh(φh)

2
)−1

. (31)

σh(φh)
2
, with h = 1, . . . , nu, can be obtained from (4).

Then, replacing the control law (6) in (30), the region U(φ)
can be mapped onto a state-space region U(θ, φ), which
corresponds to an ellipsoidal subset of L, where the inputs
are not saturated

U(θ, φ) = {x ∈ Rnx : xTK(θ, φ)TS(φ)K(θ, φ)x ≤ 1}.
(32)

Note that E ⊆ V allows guaranteeing that x(0) ∈ E =⇒
x(t) ∈ V, ∀t as long as the system works in the linear
region described by (3). Also, by means of the inclusion
V ⊆ U(θ, φ) any state trajectory will converge inside V,
in spite of the external disturbance w(t) thanks to the
QB and, maintaining u(t) in the region of linearity of the
actuators, such that no saturation occurs.

Finally, combining Theorems 1 and 2 with the above-
mentioned ellipsoidal regions, Corollary 1 provides the
conditions to obtain the vertex gains of the controller Kij

that ensure the quadratic boundedness and the rejection
of unknown exogenous disturbances, as in Sections 3.1 and
3.2. Moreover, this controller is able to adapt its rejection
performance according to the instantaneous saturation
limit values, considering that the input signal u ∈ U(φ).

Corollary 1. Consider the closed-loop LPV system (7), a
constant parameter α ∈ R+, the regions E and U(θ, φ) of
the state space described by (28) and (32), respectively,
with given matrices R � 0 and S(φ) � 0 and the function
γ(φ) ∈ R+ that varies within the interval [γ, γ]. Assume

that both γ(φ) and S(φ)−1 can be expressed in polytopic
form as in (14) and (33), respectively.

S(φ)−1 =

M∑
j=1

ηj(φ)S
−1
j (33)

Let a symmetric matrix Q and matrices Γij be solution of
the minimization problem (26), such that

Q � 0, (34)[
Q I
IT R

]
� 0, (35)

[
S−1
j Γij

ΓT
ij Q

]
� 0, (36)

and the LMIs (9) and (13) are feasible. If the vertex
gains of the LPV state-feedback controller (6) are cal-
culated as Kij = ΓijQ

−1, then the closed-loop system
(7) is quadratically bounded with Lyapunov matrix Q
and robust against external disturbances with shifting H∞
performance γ(φ(t)). Moreover, if x(0) ∈ E , then x(t) ∈ V
and the control input u(t) is such that u(t) ∈ U(φ(t)).

Proof. Part of this proof is developed in Ruiz et al.
(2019), where the LMIs (35) and (36) are obtained through
the inclusions E ⊆ V and V ⊆ U(θ, φ), respectively.
Similarly, the LMIs (9) and (13) are proven in the proof
of Theorems 1 and 2 of this paper, respectively. �

4. ILLUSTRATIVE EXAMPLE

Consider a numerical continuous-time LPV system with
the following matrices

A(θ(t)) =

[
4.25 + 3.5θ(t) 3.8971

3.8971 8.75− 5.5θ(t)

]
,

Bu =

[
1 0
0 0.5

]
, Bw =

[
1
0

]
, Cz = [1 0] ,

(37)

where θ(t) ∈ [0, 1]. Note that the system is open-loop
unstable for every frozen value of θ(t).

Let us introduce the additional scheduling parameter
vector φ(t), which is linked to the time-varying input
saturation limits of u1(t) and u2(t) as follows

φ1(t) =
σ1

2 − σ1(t)
2

σ1
2 − σ1

2
and φ2(t) =

σ2
2 − σ2(t)

2

σ2
2 − σ2

2
. (38)

φ1(t) and φ2(t) vary within the interval [0, 1] and the
saturation limits σ1(t), σ2(t) ∈ [5, 10] for the inputs u1(t)
and u2(t), respectively.

The controller is obtained applying Corollary 1. In this
case, the resulting 26 LMIs are as follows



Q � 0[
AiQ+BuΓij +QAT

i + ΓT
ijB

T
u + αQ Bw

BT
w −αI

]
� 0



AiQ+BuΓij +QAT

i + ΓT
ijB

T
u Bw QCT

z

BT
w −γjI 0

CzQ 0 −γjI


 ≺ 0

[
Q I; IT R

]
� 0

[
S−1
j Γij ; Γ

T
ij Q

]
� 0

,

(39)
where i = 1, 2, j = 1, 2, 3, 4. The parameter α and the
matrix R have been chosen as

α = 1.2975, R = diag (100, 100) . (40)
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Which means that the expected initial conditions for the
system lie in a 0.1 radius circle centred in the origin of the
state-space. The polytopical expression of (14) for M = 4
is

γ(φ) = φ1φ2γ1 + (1− φ1)φ2γ2
+ φ1(1− φ2)γ3 + (1− φ1)(1− φ2)γ4

, (41)

and γ1, . . . , γ4 are obtained by means of (25) as follows

γ1 = γ, γ2 = γ3 =
γ + γ

2
, γ4 = γ, (42)

which are introduced in the LMI-based problem as sym-
bolic decision variables.

Finally, the vertex matrices of Sj are as follows

S1 = diag
(
102, 102

)−1
, S2 = diag

(
52, 102

)−1
,

S3 = diag
(
102, 52

)−1
, S4 = diag

(
52, 52

)−1
,

(43)

taking into account the extreme values of σ1(t) and σ2(t).

The solution to (39), minimizing (26), was found using
SeDuMi solver (Sturm, 1999) and the YALMIP tool-
box (Löfberg, 2004). The resulting interval of γ(φ) is
[0.2410, 1.0623]. Accordingly, the eight controller vertex
gains are calculated as Kij = ΓijQ

−1.

4.1 Scenario I: constant saturation limits

The controller is tested in an scenario with external dis-
turbance, w(t) = sin(4t), subject to three different satura-
tion limit values kept constant throughout the simulation,
σ1 = σ2 = {10, 7.5, 5} that lead to φ1 = φ2 = {0, 0.5, 1}
by means of (38). The controlled system is simulated with
an initial state x(0) = [0, 0]T and θ(t) = 1− e−t.

Fig. 1 (a) shows the disturbance rejection for the three
values of σ1 and σ2. Note the controller rejects the dis-
turbance the most when φ1 = φ2 = 0, which corresponds
to the largest saturation limit and to the obtained value
γ = 0.2410. Conversely, the output is more affected by
the disturbance when φ1 = φ2 = 1, showing that the per-
formance of the controller depends on the instantaneous
saturation limits. Fig. 1 (b) and (c) show the evolution
of u1(t) and u2(t), where it can be seen that they both
remain inside the boundaries determined by all the values
of σ1(t) and σ2(t) that were mentioned.

Fig. 2 and Fig. 3 show the state space phase portrait with
the established ellipsoidal regions E , V and U(θ, φ). For
illustrative purposes, the region U(θ, φ) is drawn only on
the vertex values of θ(t) and φ(t). It can be seen that
the state trajectories in the worst case scenario, which
correspond to φ1 = φ2 = 1 and γ = 1.0623, remain inside
V, demonstrating the effectiveness of the QB. Moreover,
it is guaranteed that the control inputs do not saturate
because the states do not exceed the boundaries that are
established by the multiple regions of U(θ, φ).

4.2 Scenario II: time-varying saturation limit

Scenario II shows the adaptability of the designed con-
troller to time variations of the saturation limit of u1(t).
The controller is tested in the same conditions as in the
previous scenario, except for the limit of u2(t), which is
fixed to σ2(t) = 10, while σ1(t) varies within the interval
[5, 10] depending on φ1(t).

(a) Plot of z(t) with different frozen values of φ(t).

(b) Plot of u1(t) with different frozen values of φ(t).

(c) Plot of u2(t) with different frozen values of φ(t).

Fig. 1. Scenario I: results of z(t), u1(t) and u2(t).

Fig. 4 shows the adaptability of the control performance
output signal z(t), for the different values of σ1(t). It can
be seen that z(t) is less affected by the external disturbance
when σ1(t) = 10, which corresponds to φ1(t) = 0 and,
conversely, it is more affected when σ1(t) = 5 (φ1(t) = 1).
Therefore, it is shown that the controller is able to adapt
when the limits of u1(t) change.

5. CONCLUSION

In this paper, the problem of designing a shifting H∞
LPV state-feedback controller that takes into account the
time-varying input saturation limits subject to unknown
external disturbances has been investigated. The quadratic
boundedness concept has been added in order to ensure
that all the state trajectories converge inside the ellipsoidal
region described by the quadratic Lyapunov function, in
spite of external disturbances. Moreover, the shifting H∞
paradigm has been incorporated to adapt the rejection
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Fig. 2. Scenario I: plot of ellipsoidal regions for θ(t) = 0.

Fig. 3. Scenario I: plot of ellipsoidal regions for θ(t) = 1.

Fig. 4. Scenario II: evolution of z(t) vs φ1(t).

performance depending on the instantaneous saturation
limits. This overall design corresponds to a minimization
problem involving LMI-based feasibility constraints, which
can be solved using the available solvers.

Finally, the results obtained in the illustrative example
with an LPV numerical system have shown the effective-
ness of the proposed approach. The designed controller
has the capability of adapting its rejection performance
based on the instantaneous saturation limit values of the
actuators. However, the results appear to be conservative,
probably due to the assumption of considering a constant
Lyapunov matrix. For this reason, with the aim of applying
the proposed method to more complex systems, future
work will focus on developing a design procedure that uses
a parameter-dependent Lyapunov matrix.
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