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Abstract: This paper considers the problem of optimal actuator dimensioning for LTI systems, in the
sense of choosing appropriate saturation limits for a given set of admissible initial conditions and for
a predefined integral state-feedback control law. By using an invariant ellipsoid argument, it is shown
that this problem can be described as a linear matrix inequality (LMI)-based optimization that can be
solved efficiently. Moreover, the paper shows that the optimal actuator dimensioning is connected to the
choice of the initial conditions of the integral states of the controller, which can be included in the overall
optimization to improve further the results. Two different methods are described and analyzed by means
of numerical simulation.

Keywords: Actuator optimization, Actuator saturation, LMI, Invariant ellipsoid, Integral state reset

1. INTRODUCTION

Actuator saturation is a nonlinearity that affects every practical
control system. If not taken properly into account, it can lead
to undesired performance degradation and even to instability
of the closed-loop response. For this reason, actuator saturation
has attracted a strong attention by several researchers, which is
demonstrated by the large number of books on the topic, see
e.g. Kapila and Grigoriadis (2002), Tarbouriech et al. (2011),
Corradini et al. (2012). The developed approaches can be di-
vided into two main categories. Some of them handle the satura-
tion constraints by using anti-windup compensators, which are
added to a control system previously designed without taking
into account the saturation (Grimm et al., 2003, Yang et al.,
2016). On the other hand, in direct design approaches, the
input constraints are considered at the controller design stage
(Da Silva and Tarbouriech, 2001, Ruiz et al., 2019).

Another problem of interest in control system design is optimal
component placement, in which the best possible choice of
actuators (sensors) which make the system controllable (ob-
servable) is sought (Casillas et al., 2013, Chanekar et al., 2017).
This problem is usually motivated by energetic or economi-
cal considerations, which allow defining some kind of metrics
in order to avoid non-optimal selection of the components.
For instance, Johnson (1969) was among the earliest works
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to present on optimal actuator selection based on an ener-
getic perspective. Müller and Weber (1972) proposed to use
the determinant, trace and maximal eigenvalue of the inverse
controllability grammian to quantify controllability for actuator
selection purposes. Münz et al. (2014) developed an algorithm
for actuator placement in linear systems based on H2 and H∞
optimization. Further related methods involve some kind of
iterative (Dhingra et al., 2014, Tzoumas et al., 2015) or greedy
heuristic (Olshevsky, 2014) procedures, among others.

The present work aims at considering the problem of optimal
actuator selection from an alternative viewpoint. In particular,
the problem under consideration is as follows: given a pre-
defined control law and a set of initial conditions, optimize
the deliverable actuator action, i.e. choose appropriate actuator
saturation limits, needed to regulate to the origin any state tra-
jectory starting from the specified set. For the sake of simplicity,
the considered class of plants is the one of LTI systems subject
to actuator saturation, controlled via a static state-feedback with
integral action. A first contribution of this work is to show
that this problem can be described as a linear matrix inequality
(LMI)-based optimization, so that a solution can be found ef-
ficiently using available solvers. A second contribution of this
work is to show that in a control loop that contains an integral
action, the optimal actuator dimensioning is connected to the
choice of the initial conditions of the integral states, which can
be included in the overall optimization to improve further the
results. It is worth noting that the proposed results are related
to invariant ellipsoid methods for saturated systems, but with
a different twist where instead of designing a controller for a
system with a priori known saturation bounds, the saturation
bounds are designed a posteriori. Also, it must be highlighted
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Llorens i Artigas 4-6, 08028 Barcelona, Spain
3 Department of Systems Engineering and Department of Material Science

and engineering, Saarland University, Saarbrücken, Germany
e-mail: gianluca.rizzello@imsl.uni-saarland.de

Abstract: This paper considers the problem of optimal actuator dimensioning for LTI systems, in the
sense of choosing appropriate saturation limits for a given set of admissible initial conditions and for
a predefined integral state-feedback control law. By using an invariant ellipsoid argument, it is shown
that this problem can be described as a linear matrix inequality (LMI)-based optimization that can be
solved efficiently. Moreover, the paper shows that the optimal actuator dimensioning is connected to the
choice of the initial conditions of the integral states of the controller, which can be included in the overall
optimization to improve further the results. Two different methods are described and analyzed by means
of numerical simulation.

Keywords: Actuator optimization, Actuator saturation, LMI, Invariant ellipsoid, Integral state reset

1. INTRODUCTION

Actuator saturation is a nonlinearity that affects every practical
control system. If not taken properly into account, it can lead
to undesired performance degradation and even to instability
of the closed-loop response. For this reason, actuator saturation
has attracted a strong attention by several researchers, which is
demonstrated by the large number of books on the topic, see
e.g. Kapila and Grigoriadis (2002), Tarbouriech et al. (2011),
Corradini et al. (2012). The developed approaches can be di-
vided into two main categories. Some of them handle the satura-
tion constraints by using anti-windup compensators, which are
added to a control system previously designed without taking
into account the saturation (Grimm et al., 2003, Yang et al.,
2016). On the other hand, in direct design approaches, the
input constraints are considered at the controller design stage
(Da Silva and Tarbouriech, 2001, Ruiz et al., 2019).

Another problem of interest in control system design is optimal
component placement, in which the best possible choice of
actuators (sensors) which make the system controllable (ob-
servable) is sought (Casillas et al., 2013, Chanekar et al., 2017).
This problem is usually motivated by energetic or economi-
cal considerations, which allow defining some kind of metrics
in order to avoid non-optimal selection of the components.
For instance, Johnson (1969) was among the earliest works

� This work has been supported by the Spanish State Research Agency (AEI)
through the Maria de Maeztu Seal of Excellence to IRI (MDM-2016-0656)
and the grant Juan de la Cierva-Formacion (FJCI-2016-29019), by the DAAD
funding programme: Research Grants - Short-Term Grants, 2019 (57440917),
personal reference: 91725219, and by the University of Stavanger through the
project IN-12267.

to present on optimal actuator selection based on an ener-
getic perspective. Müller and Weber (1972) proposed to use
the determinant, trace and maximal eigenvalue of the inverse
controllability grammian to quantify controllability for actuator
selection purposes. Münz et al. (2014) developed an algorithm
for actuator placement in linear systems based on H2 and H∞
optimization. Further related methods involve some kind of
iterative (Dhingra et al., 2014, Tzoumas et al., 2015) or greedy
heuristic (Olshevsky, 2014) procedures, among others.

The present work aims at considering the problem of optimal
actuator selection from an alternative viewpoint. In particular,
the problem under consideration is as follows: given a pre-
defined control law and a set of initial conditions, optimize
the deliverable actuator action, i.e. choose appropriate actuator
saturation limits, needed to regulate to the origin any state tra-
jectory starting from the specified set. For the sake of simplicity,
the considered class of plants is the one of LTI systems subject
to actuator saturation, controlled via a static state-feedback with
integral action. A first contribution of this work is to show
that this problem can be described as a linear matrix inequality
(LMI)-based optimization, so that a solution can be found ef-
ficiently using available solvers. A second contribution of this
work is to show that in a control loop that contains an integral
action, the optimal actuator dimensioning is connected to the
choice of the initial conditions of the integral states, which can
be included in the overall optimization to improve further the
results. It is worth noting that the proposed results are related
to invariant ellipsoid methods for saturated systems, but with
a different twist where instead of designing a controller for a
system with a priori known saturation bounds, the saturation
bounds are designed a posteriori. Also, it must be highlighted

On the optimization of actuator saturation limits
for LTI systems: an LMI-based invariant ellipsoid

approach

Damiano Rotondo1,2, Gianluca Rizzello3

1 Department of Electrical and Computer Engineering (IDE),
University of Stavanger, 4009 Stavanger, Norway

e-mail: damiano.rotondo@uis.no
2 Institut de Robòtica i Informàtica Industrial, CSIC-UPC
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that to the best of the authors’ knowledge, the problem of opti-
mal actuator design has been considered so far by just a scarce
number of works, such as Messine et al. (1998), which showed
the advantage of a deterministic global-optimization method in
the optimal design of electromechanical actuators.

The remaining of the paper is structured as follows. The prob-
lem formulation is provided in Section 2. Two different so-
lutions are provided in Section 3 and Section 4, respectively.
Section 5 is devoted to simulation results. Finally, the main
conclusions and perspectives about future research are outlined
in Section 6.

Notation: The notation is fairly standard. Given a symmetric
matrix P ∈ Rn, P � 0 (P ≺ 0) stands for positive (negative)
definiteness.

2. PROBLEM FORMULATION

Let us consider the following LTI system subject to actuator
saturations:

ẋ(t) = Ax(t) +Bsat(u(t)) (1)
where x ∈ Rn is the state, u ∈ Rm is the control input, A,B
are matrices of appropriate dimensions and sat : Rm → Rm is
the saturation function, defined as:

sat(ui(t)) =



ui, if ui(t) > ui

ui(t), if |ui(t)| ≤ ui

−ui, if ui(t) < −ui

(2)

for i = 1, . . . ,m, with ui > 0. To enforce the closed loop
robustness with respect to constant exogenous disturbances,
it is common to introduce integral states in the control loop,
according to the internal model principle (Francis and Wonham,
1976). To this end, we define first a performance output y =
Ex, where y ∈ Rp with p ≤ m and E is a matrix of appropriate
dimensions. Therefore, we introduce

ẋI(t) = Ex(t) (3)
where xI ∈ Rp denotes auxiliary integral states.

Then, one can feed back xI(t) along with x(t) as part of the
controller equations, for example by computing the control law
by means of a state-feedback strategy, as follows:

u(t) = [KP KI ]

[
x(t)
xI(t)

]
= K̄x̄(t) (4)

where x̄(t) =
[
x(t)T xI(t)

T
]T

, KP and KI denote gains of
appropriate dimensions, and K̄ denotes the overall controller
gain. Then, the augmented system with state vector x̄(t) would
evolve according to the following:

˙̄x(t) =

[
A 0
E 0

]
x̄(t) +

[
B
0

]
sat

(
K̄x̄(t)

)
(5)

We assume that a stabilizing controller K̄ is already given for
the unsaturated system (5). The design of such a K̄ can be
achieved based on any of the methods available for LTI systems.
The problem considered in this paper is the one of choosing ad-
equate actuators, which means designing appropriate saturation
limits ui, i = 1, . . . ,m, such that, given a polytopic region
described by vertices x(1), . . . , x(h):

P = Co{x(1), x(2), . . . , x(h)} (6)
then the system trajectory belongs to the region of linearity (i.e.,
|ui(t)| ≤ ūi ∀i = 1, . . . ,m, ∀t ≥ 0) for any initial condition

x(0) ∈ P . Moreover, convergence of the state trajectory to the
origin of the state space must be guaranteed.

Due to economic reasons, it makes sense to seek for the smallest
values of ui which make the above specifications hold true. In
this way, smaller and cheaper actuators can be used without
losing the benefits of working under a linear setting. The above
requirement can be formally defined, e.g., as the minimization
of an appropriate cost function, defined as follows:

J = γ1u
2
1 + γ2u

2
2 + . . .+ γmu2

m (7)
where γ1, γ2, . . . , γm are positive weighting coefficients.

3. FIRST APPROACH

If x̄(t) is such that all inputs are working in the linearity region,
i.e. |ui(t)| ≤ ūi ∀i = 1, . . . ,m, ∀t ≥ 0, then (5) becomes:

˙̄x(t) =

[
A+BKP BKI

E 0

]
x̄(t) = Āx̄(t) (8)

It is possible to assess the stability of (8) by using Lyapunov
function V (x̄(t)) = x̄(t)TW−1x̄(t), with W � 0, thus
obtaining the following condition corresponding to V̇ (x̄(t)) <
0:

ĀTW−1 +W−1Ā ≺ 0 (9)
which, pre- and post-multiplied by W , leads to:

WĀT + ĀW ≺ 0 (10)
As stated in the previous section, it is assumed that control
gains KP and KI are already given in such a way that (10)
holds true for a suitable choice of W . In order to ensure that the
state trajectory does not leave the actuators linearity region, the
following set of LMIs can be used (Nguyen and Jabbari, 2000):[

W WK̄T
i

K̄iW u2
i

]
� 0 i = 1, . . . ,m (11)

where K̄i denotes the i-th row of K̄i, which enforces |K̄ix̄| ≤
ui ∀i = 1, . . . ,m, ∀x̄ ∈ {x̄ : x̄TW−1x̄ ≤ 1}.

The requirement that the convergence to the origin is ensured
for any x(0) ∈ P can be expressed as:

x̄(0) =

[
x(0)
xI(0)

]
∈ {x̄ : x̄TW−1x̄ ≤ 1} ∀x(0) ∈ P (12)

which can be rewritten as:

1−
[
x(0)T xI(0)

T
]
W−1

[
x(0)
xI(0)

]
≥ 0 ∀x(0) ∈ P (13)

and, through Schur complement:
 W

[
x(0)
xI(0)

]

[
x(0)T xI(0)

T
]

1


 � 0 ∀x(0) ∈ P (14)

In order to obtain a finite number of conditions from (14), let us
choose xI(0) such that:

x(0) =
h∑

j=1

αjx(j) ⇒ xI(0) =

h∑
j=1

αjxI(j) (15)

with:
h∑

j=1

αj = 1, αj ≥ 0 ∀j = 1, . . . , h (16)

Then, (14) becomes equivalent to:


W

[
x(j)

xI(j)

]

[
xT
(j) xT

I(j)

]
1


 � 0 j = 1, . . . , h (17)

Hence, the problem formulated in Section 2 can be cast as the
minimization of J in (7) subject to the LMI constraints (10),
(11) and (17), where the decision variables are W , u2

i and xI(j),
with i = 1, . . . ,m and j = 1, . . . , h. Note that, once x(0) is
known, coefficients αj can be obtained from (15)-(16) and used
to compute the corresponding integrator initial condition xI(0).

4. SECOND APPROACH

Let us define a new augmented state variable as follows:

z(t) =

[
z1(t)
z2(t)
z3(t)

]
=

[
ẋ(t)
ẋI(t)
u(t)

]
(18)

Then, by differentiating (18), and taking into account (4) and
(8), one can write the dynamics of z(t) in a compact form as:

ż(t) = Ãz(t) (19)
with:

Ã =

[
A+BKP BKI 0

E 0 0
KP KI 0

]
(20)

Note that z1 and z2 can be obtained from x and xI through the
following linear state transformation[

z1(t)
z2(t)

]
=

[
A+BKP BKI

E 0

] [
x(t)
xI(t)

]
(21)

The stability of the subsystem which describes the evolution of
z1(t) and z2(t) can be assessed using the condition (10). Note
that this condition results into the convergence of z1 and z2, i.e.,
ẋ and ẋI . On the other hand, due to the fact that Ā is Hurwitz,
equation (21) implies that the convergence of z1 and z2 results
into the convergence of x and xI as well.

The specification that the actuators work in their region of
linearity can be enforced by requiring that the state z3(t)
does not leave an ellipsoidal invariant set contained within the
saturation limits. First of all, let us consider the following LMI:

W̃−1Ã+ ÃT W̃−1 � 0 (22)
with W̃ � 0, which ensures that Z = {z : zT W̃−1z ≤ 1} is an
invariant set (Boyd et al., 1994). By pre- and post-multiplying
(22) by W̃ , one gets:

ÃW̃ + W̃ ÃT � 0 (23)

Next, let us consider the following lemma, which can be derived
from some related results presented in Pope (2008).

Lemma 1. Given an ellipsoid Z = {z : zT W̃−1z ≤ 1},
W̃ � 0, and a line L parameterized by s, and defined by
L = {z : z = sv}, where v is a given non-zero vector with
unit Euclidean norm (vT v = 1), the projection of Z onto L
corresponds to the interval [−

√
vT W̃v,

√
vT W̃v] in s.

Proof: According to Pope (2008), the projection of Z onto L
corresponds to the interval [−s̄, s̄] in s, where s̄ is the Euclidean
norm of the vector W̃ 1/2v. Hence:

s̄ = ‖W̃ 1/2v‖ =
√
vT W̃ 1/2W̃ 1/2v =

√
vT W̃v (24)

In order for the control input not to saturate, we require that
the projection of Z onto each of the directions of the state
z3(t) = u(t) is contained within the saturation limits. Let
us refer to v1, v2, . . . , vm as the natural basis which generates

the subspace z(t) = [0, 0, z3(t)]
T . Hence, to ensure that u(t)

remains inside the saturation bounds, the following is required:√
vTi W̃vi ≤ ui i = 1, . . . ,m (25)

which is equivalent to:

vTi W̃vi ≤ u2
i i = 1, . . . ,m (26)

that is:
W̃n+p+i,n+p+i ≤ u2

i i = 1, . . . ,m (27)

where W̃n+p+i,n+p+i denotes the n+p+ i− th element of the
diagonal of W̃ .

Note that at time t = 0, the following holds:

z(0) =

[
ẋ(0)
ẋI(0)
u(0)

]
=

[
(A+BKP )x(0) +BKIxI(0)

Ex(0)
KPx(0) +KIxI(0)

]
(28)

so that the requirement that convergence to the origin is ensured
for any x(0) ∈ P can be expressed as:

z(0) ∈ {z : zT W̃−1z ≤ 1} ∀x(0) ∈ P (29)
which means that:

1− z(0)T W̃−1z(0) ≥ 1 ∀x(0) ∈ P (30)
and, by Schur complements:
 W̃

[
(A+BKP )x(0) +BKIxI(0)

Ex(0)
KPx(0) +KIxI(0)

]


 1


 � 0 ∀x(0) ∈ P

(31)
Choosing xI(0) according to (15)-(16) allows transforming
(31) into:

W̃



(A+BKP )x(j) +BKIxI(j)

Ex(j)

KPx(j) +KIxI(j)





 1


 � 0 j = 1, . . . , h

(32)
so that the problem formulated in Section 2 can be cast as the
minimization of J in (7) subject to the LMI constraints (23),
(27) and (32), where the decision variables are W̃ , u2

i and xI(j),
with i = 1, . . . ,m and j = 1, . . . , h.

4.1 Additional considerations

Due to the special structure of Ã in (20), it is possible to trans-
form the semi-definiteness constraint in (23) into a definiteness
one due to the equivalence stated in the following proposition.

Proposition 1. Let matrices Ã and W̃ , with W̃ symmetric, be
partitioned as follows:

Ã =

[
A11 0
A21 0

]
W̃ =

[
W11 W12

WT
12 W22

]
(33)

with A11 Hurwitz. Given a matrix W11 such that:
A11W11 +W11A

T
11 ≺ 0 (34)

then (23) holds if and only if:

W12 = W11A
−T
11 AT

21 (35)

Proof: (Sufficiency) Taking into account (33), then (23) can be
written as follows:[

A11W11 A11W12

A21W11 A21W12

]
+ 
 � 0 (36)

where 
 denotes the term induced by symmetry.
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ẋ and ẋI . On the other hand, due to the fact that Ā is Hurwitz,
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us refer to v1, v2, . . . , vm as the natural basis which generates

the subspace z(t) = [0, 0, z3(t)]
T . Hence, to ensure that u(t)

remains inside the saturation bounds, the following is required:√
vTi W̃vi ≤ ui i = 1, . . . ,m (25)

which is equivalent to:

vTi W̃vi ≤ u2
i i = 1, . . . ,m (26)

that is:
W̃n+p+i,n+p+i ≤ u2

i i = 1, . . . ,m (27)

where W̃n+p+i,n+p+i denotes the n+p+ i− th element of the
diagonal of W̃ .

Note that at time t = 0, the following holds:

z(0) =

[
ẋ(0)
ẋI(0)
u(0)

]
=

[
(A+BKP )x(0) +BKIxI(0)

Ex(0)
KPx(0) +KIxI(0)

]
(28)

so that the requirement that convergence to the origin is ensured
for any x(0) ∈ P can be expressed as:

z(0) ∈ {z : zT W̃−1z ≤ 1} ∀x(0) ∈ P (29)
which means that:

1− z(0)T W̃−1z(0) ≥ 1 ∀x(0) ∈ P (30)
and, by Schur complements:
 W̃

[
(A+BKP )x(0) +BKIxI(0)

Ex(0)
KPx(0) +KIxI(0)

]


 1


 � 0 ∀x(0) ∈ P

(31)
Choosing xI(0) according to (15)-(16) allows transforming
(31) into:

W̃



(A+BKP )x(j) +BKIxI(j)

Ex(j)

KPx(j) +KIxI(j)





 1


 � 0 j = 1, . . . , h

(32)
so that the problem formulated in Section 2 can be cast as the
minimization of J in (7) subject to the LMI constraints (23),
(27) and (32), where the decision variables are W̃ , u2

i and xI(j),
with i = 1, . . . ,m and j = 1, . . . , h.

4.1 Additional considerations

Due to the special structure of Ã in (20), it is possible to trans-
form the semi-definiteness constraint in (23) into a definiteness
one due to the equivalence stated in the following proposition.

Proposition 1. Let matrices Ã and W̃ , with W̃ symmetric, be
partitioned as follows:

Ã =

[
A11 0
A21 0

]
W̃ =

[
W11 W12

WT
12 W22

]
(33)

with A11 Hurwitz. Given a matrix W11 such that:
A11W11 +W11A

T
11 ≺ 0 (34)

then (23) holds if and only if:

W12 = W11A
−T
11 AT

21 (35)

Proof: (Sufficiency) Taking into account (33), then (23) can be
written as follows:[

A11W11 A11W12

A21W11 A21W12

]
+ 
 � 0 (36)

where 
 denotes the term induced by symmetry.
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By replacing (35) into (36), the following is obtained:[
A11W11 A11W11A

−T
11 AT

21

A21W11 A21W11A
−T
11 AT

21

]
+ � � 0 (37)

By pre- and post-multiplying (37) by:[
I 0

−A21A
−1
11 I

]
(38)

and its transpose, respectively, the following is obtained:[
A11W11 +W11A

T
11 0

0 0

]
� 0 (39)

which holds if (34) holds.

(Necessity) Let us consider a perturbed matrix W̃ , as follows:

W̃ =

[
W11 W12 +∆

WT
12 +∆T W22

]
(40)

where ∆ is any matrix of appropriate dimensions. Following
the previous reasoning, (37) is replaced by:[

A11W11 A11W11A
−T
11 AT

21 +A11∆
A21W11 A21W11A

−T
11 AT

21 +A21∆

]
+ � � 0 (41)

and, through pre- and post-multiplication by (38) and its trans-
pose, respectively, the following is obtained:[

A11W11 +W11A
T
11 A11∆

∆TAT
11 0

]
� 0 (42)

Noting that (42) is associated to the quadratic form:
2xT

1 (A11W11x1 +A11∆x2) ≤ 0 (43)
it is clear that if ∆ �= 0, one can always find a state x2 such
that (43) does not hold, hence the matrix in (42) would be
not definite. Hence, ∆ = 0, which proves the necessity, thus
completing the proof. �

A relevant consequence of Proposition 1 is that it limits the ap-
plicability of the second approach when linear parameter vary-
ing (LPV) of the form (Mohammadpour and Scherer, 2012):

ẋ(t) = A (θ(t))x(t) +Bsat (u(t)) (44)
are considered, where θ ∈ Θ defines some time-varying param-
eters. In fact, in this case it follows from (35) that a necessary
condition for the applicability of the approach, which is based
on a Lyapunov function with constant matrix, is that:

A21(θ)A
−1
11 (θ) = const. ∀θ ∈ Θ (45)

5. SIMULATION RESULTS

This section presents an extensive numerical validation of the
methods presented above. To compare the different approaches
in a meaningful way, a large number of systems is consid-
ered. In particular, for each system the entries of matrices A
and B are chosen as randomly generated numbers distributed
uniformly in the interval [0, 1], while E is always chosen as
E = [I 0]. The stabilizing controller for the linear dynamics
is designed via an LQR strategy, with Q and R both chosen as
identity matrices of appropriate dimensions. Additionally, the
convex set of initial conditions is selected as the unit cross-
polytope defined by P = Co{e1, . . . , en,−e1, . . . ,−en},
where the generic ek represents the k-th natural basis vector of
Rn. Several simulations are performed by considering systems
of different orders, i.e., n = 1, 2, 3, 4. Only SISO models are
considered, i.e., m = 1 and p = 1. For each value of n, 1000
models are generated randomly based on the criteria described
above. For each plant, an LQR controller is designed first, and

the saturation limits ūi which minimize the cost function J
given by (7) is subsequently evaluated. Four different methods
are used for evaluating the optimal ūi, i.e., the approach in sec-
tion 3 with optimal reset of xI(0) (denoted as 1R), the approach
in section 4 with optimal reset of xI(0) (denoted as 2R), and the
same methods with no reset of xI(0) (denoted as 1NR and 2NR,
respectively). The optimal integral state reset is implemented by
letting variables xI(j) in (17) and (32) be free decision variables
for the LMI solver, while for the no-reset methods xI(j) = 0 is
considered ∀j. In this way, the effectiveness of each method as
well as the amount of control effort reduction due smart integral
reset can be assessed.

The simulation studies are conducted in MATLAB environment,
by implementing the LMI problems via the YALMIP toolbox
(Löfberg, 2004) using the SeDuMi solver (Sturm, 1999). The
results are shown in Figs. 1-4 for n = 1, 2, 3, 4, respectively.
The left-hand side of each figure shows the optimal saturation
value ūi obtained for each plant, which is denoted as a blue
circle for 1R, as a red cross for 2R, as a cyan diamond for 1NR,
and as a magenta plus for 2NR. At the same time, the right-
hand side plots illustrate the ratio between no-reset and reset
values of optimal ūi, computed for both approach 1 (blue cir-
cle) and approach 2 (red cross). For better illustration purpose,
the results are sorted such that ūi appears as monotonically
decreasing for 1NR. It can be noticed immediately that ap-
proaches 1 and 2 provide practically the same results, with just a
few observed differences (see Figs. 3-4) which might be due to
numerical issues. Therefore, we deduce that the two approaches
appear to be numerically equivalent for the considered systems.
This holds true even if models of higher order or with more
inputs and outputs are considered, although this is not shown
in this paper due to space limitations. The other interesting
result which can be observed is that the optimal reset of xI(0)
permits to achieve a remarkable reduction of the saturation limit
ūi. In particular, a reduction up to 15 times can be observed
on the right-hand side of Figs. 1-4. Interestingly enough, the
plots for n = 2, 3, 4 show similar results with most of the data
concentrated in the range from 2 to 5, while for n = 1 a value
of about 2.4 is obtained in practically all cases. As a result,
we conclude that the improvement in control effort reduction is
more remarkable for plants of order n ≥ 2.

For further comparison, the statistical distribution correspond-
ing to the previous simulations are also reported in Figs. 5-
8 for n = 1, 2, 3, 4, respectively. In each plot, the left-hand
side shows the probability distributions of 1R (solid blue line),
2R (dashed red line), 1NR (solid cyan line), and 2NR (dashed
magenta line), while the right-hand side shows the correspond-
ing probability distribution for the ratios 1NR/1R (solid blue
line) and 2NR/2R (dashed red line). Trends which are similar to
Figs. 1-4 can be observed. For a quantitative evaluation, mean
and standard deviation are also computed for each distribution,
and denoted as µ and σ in the corresponding legend entry. For
n = 2, 3, 4, both mean and standard deviation of the abso-
lute performance (left-hand side) increase with the plant order,
while the corresponding values change only slightly in the rel-
ative performance plots (right-hand side). For such plots, the
optimal integral reset leads to an average relative improvement
between 3.6 and 3.9. The results are quite different for the case
n = 1, for which the distributions show a significantly smaller
spread, in agreement with Fig. 1. For this case, an average
relative improvement of 2.36 is obtained. Finally, mean and
standard deviation values for each
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Table 1. Mean µ and standard deviation σ values
for the distributions reported in Figs. 5-8, given in

the format (µ, σ)

Method n = 1 n = 2 n = 3 n = 4

1R (2.77, 2.90) (3.46, 3.63) (4.20, 3.65) (5.15, 4.10)
2R (2.77, 2.90) (3.46, 3.63) (4.20, 3.63) (5.09, 3.79)
1NR (6.18, 5.81) (11.11, 8.90) (14.46, 10.70) (18.11, 11.49)
2NR (6.18, 5.81) (11.11, 8.90) (14.46, 10.70) (18.11, 11.49)
1NR/1R (2.36, 0.20) (3.61, 1.86) (3.85, 1.86) (3.97, 1.81)
2NR/2R (2.36, 0.20) (3.61, 1.86) (3.85, 1.86) (3.97, 1.83)

experiment are summarized in Table 1.

6. CONCLUSIONS

This paper has presented two LMI strategies for optimal selec-
tion of actuator saturation limits in LTI systems. Both methods
aim at finding the maximal control effort required by a given
state feedback + integral controller to regulate a convex set of
initial conditions to the origin of the state space. In addition, an
optimal integral reset strategy has been also proposed to reduce
further the amount of control effort. By means of an extensive
simulation study, it has been found that: 1) both developed
approaches provide nearly identical results from the numerical
point of view; 2) the integral reset strategy permits a significant
reduction of the required control input saturation value, by a
mean factor of 2.36 for plants of order 1 and larger than 3.6 for
plants of higher order; 3) the improvement in performance is
relatively insensitive to system parameters and dynamic order,
with the only exception given by first order models. Based on
the developed results, optimal selection of cheap and saturation-
avoiding actuator components can be carried out effectively.

Future research will aim at developing alternative LMI condi-
tions to combine the actuator optimization with the controller
design. In addition, further theoretical studies will be conducted
to prove if the equivalence between both methods holds not
only on a numerical, but also on an analytical point of view.
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