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Abstract. The loading conditions of a composite pipeline is the main factor for its dimensioning.
During S-lay offshore installation of multilayered FRP pipelines, severe tensional and torsional
loads take place in the above sea part of the pipeline. Since the wall pipe is multilayered and the
material properties of the laminae and the laminate is anisotropic, the maximum stresses depend
on the stacking sequence. In the present work, an analytical model is proposed for calculating
the capacity of multilayered FRP pipelines to carry axial and torsional loads. Numerical results
for typical multilayered filament wound E-Glass/Epoxy pipelines under axial tension and torsion
are provided and discussed.

1. Introduction

Since in past the unit price of composite materials was high, steel pipes are still mainly used for oil and
oil product transmission. Nowadays, the high maintenance cost due to corrosion of the old steel pipelines
as well as the reduction of the unit price of composite materials have changed the key parameters of the
optimum design of offshore pipelines. In the last decade the offshore industry has been benefited from
the development of Fiber Reinforced Polymeric (FRP) pipelines and more multi-layered anisotropic
pipelines are used for offshore applications.

The final cost is strongly affected by the material strength, density and performance in fatigue and
corrosion. Since FRP materials have significantly lower density and much higher strength than carbon
steel, the final cost of such materials is today comparable to the cost of carbon steel. Moreover, the lower
maintenance cost of composite pipelines due to their excellent resistance in corrosion and fatigue we
can conclude that the use of composite materials for pipeline applications is today advantageous
comparing to the use of carbon steel pipelines.

As FRPs are anisotropic materials, the methods, and theoretical tools for mechanical design of
composite pipelines are completely different than the design procedures of steel pipelines [1-6]. The
existing design standards are rather semi-empirical and cover simple loading cases.

During offshore S-lay installation of FRP pipelines, the above level part of the pipeline is subjected
to bending and axial tension due to the weight of the pipeline, and torsion during the turning of the vessel
(Fig. 1). A model for calculating the bending capacity of FRP pipelines has been presentment in [3, 7].
In the present work, a model for estimating the axial tension and torsional capacity is proposed. The
models are based in the classical lamination theory.
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Seabed

Figure 1. Schematic representation of the FRP pipeline part subjected to S-lay installation loads.
2. Formulation of the problem

2.1. Axial tension
A multi-layered pipe with mean diameter D made by a wall composed by NP layers with stacking

sequence [i@] (Fig. 2) is considered.

l

Figure 2. Geometry of the problem

N

A

We assume that the load N is distributed uniformly around the circumference of the cross section.
Therefore, the load per unit length N, of laminate is:
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N
N =— 1
=5 e
This is the only external load acting on the laminate constituting the wall of the pipe and thus
N, =0 2)
N,=0 (3)
M_=0 (4)
M, =0 (5)
M, =0 (6)

In order to estimate the allowable force N, a failure criterion, e.g. the Tsai-Wu criterion [8] should
be applied, and the principal stresses o5, 0, 712 can be determined by following the general procedure

shown in Fig. 3.

NX NY 00,0
ABD eEY
Ny ' 28y x|
Matrix
My My E°kCK°
xVyTxy
Myy
Allowable axial .
R Failure
iteri C1 62 T12
force N Iclrlterlonn

Kirchhoff
hypothesis

Figure 3. Concept for estimation of allowable axial force N

Stress-
strain
relation

Taking into account this procedure as well as the egs. (1)-(6) and the formula for the inverse ABD

matrix, it can be written:

& =a,N,
&) =a,N,
7/; a,¢N,
k)(c) =b,N,
k;) =b,N,
k)(c)y = bléNx
Therefore:
£, =& +zk)
&, = ;+Zk;)
Ve =3, +2ky,

(7
(8)
(9)
(10)
(11)
(12)

(13)
(14)

(15)
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Thus the stresses o, 0y, Ty, for each lamina with fibers orientation 6 can be obtained by the well-
known stress-strain relation:

0. =0,(0) ¢ +0,0)-¢,+0,0) 7, (16)
0, =0,(0) ¢ +0,(0) &, +0,(0) 7, (17)
7, =0,(0) & +0,(0)¢,+040) 7, (18)

With the aid of matrix [T(#)], the principal stresses 01, 0, 71> for every lamina can be determined by
the following matrix equation:

O-l Ux
o, 1 =[T©®)]{0, (19)
T T

xy

By applying the Tsai-Wu failure criterion for the values o3, 05, T12 of every lamina,

o, + F,o, +E1012 + }7220_22 +F667122 —JF . Fpoo, =1 (20)
where:
1 1
1 ( lT O'IC) ( )
1 1
F,=(—+—7) (22)
2 2
1
F;l =TT . (23)
o-l O-1
1
F,=- — 24)
O-Z O-Z
1
Fo=(=)’ (25)

12

the allowable axial tension N can be obtained. Since this procedure yields different values of N, the
minimum one should be adopted.

2.2. Torsion

(b)

Figure 4. Geometry of a composite pipe subjected to torsion
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When a torque Wr . (see Fig. 4a) is applied to a long composite pipe, a resultant N, £, 1S acting on

the cross section of the wall (see Fig. 4b). Considering the equilibrium between N, and Wr . itcanbe
written:
W
N, =——= 26
én 27Z_R2 ( )
where R is the radius of the pipe (R=D/2).
Taking into account that:

N, = 0 (because of absence of axial force) (27)
N, =0 (because of absence of external pressure) (28)
M. =M,=M,, = 0 (because of absence of moments) (29)
The corresponding strains &7, €, , ¥7,, k2, k, , k7, can be obtained by the following matrix equation:
fa, a, ag b, b, by -1 0 0 0 0 O][AN; 0
Gy Gy Ay b21 bzz bzo 0 -1 0 0 0 0 Nn 0
Qg Gy A bé] brsz b66 0 0 -1 0 0 0 N5n 0
b, b, by d, d, d¢ 0 0 0 -1 0 0 M§ 0 (30)
b, b, b, d, d, d)y 0 0 0 0 -1 0 M, 0
bl6 b26 b66 d16 d26 d66 0 0 0 0 0 _1 M§n _ 0
1 0. 0 0 0 0 0 0 0 0 0 of]e/[ 0
01 0 0 0 0 0 0 0 0 0 0]]e&° 0
00 1 0 0 0 0 0 0 0 0 07| |M/22R
00 0 1 0 0 0 0 0 0 0 Of]Kk 0
o 0 0 0 1 0 0 0 0 0 0 O k! 0
00 0 0 0 1 0 0 0 0 0 0]]|KkK 0
The solution of the above equation yields:
o aléw[x
£e =5 2 (31)
2R
0 amw[ x
& =% (32)
27R
0 a66w[ x
by, M
ki =" (34)
2R
b M
ky =—2—% (35)
27R
o bﬁéw[x
kg, =D (36)
2R

Therefore
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&e &¢ k:
£ =16 v+ k] (37)
j/r.fn 7/;, kgn

For symmetric lay up of fibers the maximum shear stresses 7., are taking place into the exterior
layers of the pipe. Therefore, for { =/4/2 equations (31)-(3%) yield:

h
Qg +Eb16
&
Sl b h
& (= AR’ Qs +Eb62 (38)
y};n
% +Eb66

Taking into account the above equation, the stress-strain relation for the exterior lamina with fiber
orientation 6 can be written:

O 2
O, = [Qij(a):" &, (39)
Tfn }/§n

Therefore, the principal stresses of the exterior lamina can be obtained by the following well known
formula:

o, o
O, = I:]Ie)] 10, (40)
Tl2 Z—cfn

With the aid of the above equation, the allowable torque %/I ¢ can be obtained by the Tsai-Wu
criterion:

ko +Fo, +Elo-lz +F220-22 +F667122 —\F,Fypo0,<1 (41)
where
F=1/c] +1/0f, F,=1/0, +1/05, F,=(01/7}), F,=-1/0/0cf, F,=-1/0cl0%.

3. Model implementation and results

3.1. Axial force capacity A
Taking into account the derived model for axial force capacity, the allowable tensile force N is
estimated for pipes made by the E-Glass/Epoxy. The algorithm has been coded in Mathematica platform
[9]. In the following diagrams (Fig. 5) the allowable values N are demonstrated for pi&)es of diameters
Dia=0.1 m - 1.2 m consisting of plies of thickness 0.150 mm, fiber orientation 6=+15" , £30°, +45° |
+60° , +75° and number of plies NP=10, 20, 30, 40, 50.
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Figure 5. Axial force capacity for E-Glass/Epoxy multilayered pipelines

3.2. Torsional moment capacity

Taking into account the model for torsional moment capacity, the allowable torsional moment M, has
been estimated for pipes made by the materials E-Glass/Epoxy. In the following diagrams (Fig. 6) the
allowable values M, are demonstrated for pipes of diameter: Dia=0.10 m - 1.20 m constituting by plies

of thickness 0.150 mm, fiber orientation 6=+15" , £30°, +45°, £60°, £75" for number of plies N5=10
- 50.
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Figure 6. Torsional moment capacity for E-Glass/Epoxy multilayered pipelines

4. Conclusions

1. In the present work, stress analysis of multilayered FRP pipelines during S-lay offshore
installation is performed.

2. With the aid of the classical lamination theory (CLT) of anisotropic materials, mathematical
models are derived for calculating the axial tension and torsion capacity of pipelines during
offshore installation.

3. Unlike existing commercial software packages, the proposed analytical models are

advantageous because they provide accurate results.
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4. Implementation of the models on typical multilayered FRP pipelines made of E-Glass/Epoxy
material has been carried out and useful nomographs for quick estimation of tensional force and
torsional moment capacity are provided.
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